
Mitsubishi Industrial Robot
CR800 Series Controller

INSTRUCTION MANUAL
Detailed explanations of functions and operations

BFP-A3478-V

This instruction manual is applicable to both the iQ Platform-compatible CR800-R/CR860-R/
CR800-Q/CR860-Q controllers and the standalone CR800-D/CR860-D controllers.

All teaching work must be carried out by an operator who has received
special training. (This also applies to maintenance work with the power
source turned ON.)
Enforcement of safety training

For teaching work, prepare a work plan related to the methods and
procedures of operating the robot, and to the measures to be taken when
an error occurs or when restarting. Carry out work following this plan. (This
also applies to maintenance work with the power source turned ON.)
Preparation of work plan

Prepare a device that allows operation to be stopped immediately during
teaching work. (This also applies to maintenance work with the power
source turned ON.)
Setting of emergency stop switch

During teaching work, place a sign indicating that teaching work is in
progress on the start switch, etc. (This also applies to maintenance work
with the power source turned ON.)
Indication of teaching work in progress

Provide a fence or enclosure during operation to prevent contact of the
operator and robot.
Installation of safety fence

Establish a set signaling method to the related operators for starting work,
and follow this method.
Signaling of operation start

As a principle turn the power OFF during maintenance work. Place a sign
indicating that maintenance work is in progress on the start switch, etc.
Indication of maintenance work in progress

Before starting work, inspect the robot, emergency stop switch and other
related devices, etc., and confirm that there are no errors.
Inspection before starting work

Always read the following precautions and the separate
"Safety Manual" before starting use of the robot to learn the
required measures to be taken.

Safety Precautions

 CAUTION

 CAUTION

 WARNING

 CAUTION

 DANGER

 CAUTION

 CAUTION

 CAUTION

The points of the precautions given in the separate "Safety Manual" are given below.
Refer to the actual "Safety Manual" for details.

When automatic operation of the robot is performed using multiple control
devices (GOT, programmable controller, push-button switch), the
interlocking of operation rights of the devices, etc. must be designed by the
customer.

Use the robot within the environment given in the specifications. Failure to
do so could lead to a drop or reliability or faults. (Temperature, humidity,
atmosphere, noise environment, etc.)

Transport the robot with the designated transportation posture.
Transporting the robot in a non-designated posture could lead to personal
injuries or faults from dropping.

Always use the robot installed on a secure table. Use in an instable posture
could lead to positional deviation and vibration.

Wire the cable as far away from noise sources as possible. If placed near a
noise source, positional deviation or malfunction could occur.

Do not apply excessive force on the connector or excessively bend the
cable. Failure to observe this could lead to contact defects or wire
breakage.

Make sure that the workpiece weight, including the hand, does not exceed
the rated load or tolerable torque.
Exceeding these values could lead to errors or faults.

Securely install the hand and tool, and securely grasp the workpiece.
Failure to observe this could lead to personal injuries or damage if the
object comes off or flies off during operation.

Securely ground the robot and controller. Failure to observe this could lead
to malfunctioning by noise or to electric shock accidents.

Indicate the operation state during robot operation. Failure to indicate the
state could lead to operators approaching the robot or to incorrect
operation.

When carrying out teaching work in the robot's movement range, always
secure the priority right for the robot control. Failure to observe this could
lead to personal injuries or damage if the robot is started with external
commands.

Keep the jog speed as low as possible, and always watch the robot. Failure
to do so could lead to interference with the workpiece or peripheral devices.

After editing the program, always confirm the operation with step operation
before starting automatic operation. Failure to do so could lead to
interference with peripheral devices because of programming mistakes,
etc.

 DANGER

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING

 WARNING

 CAUTION

 WARNING

 CAUTION

 CAUTION

Make sure that if the safety fence entrance door is opened during automatic
operation, the door is locked or that the robot will automatically stop. Failure
to do so could lead to personal injuries.

Never carry out modifications based on personal judgments, or use non-
designated maintenance parts.
Failure to observe this could lead to faults or failures.

When the robot arm has to be moved by hand from an external area, do not
place hands or fingers in the openings. Failure to observe this could lead to
hands or fingers catching depending on the posture.

Do not stop the robot or apply emergency stop by turning the robot
controller's main power OFF. If the robot controller main power is turned
OFF during automatic operation, the robot accuracy could be adversely
affected. Moreover, it may interfere with the peripheral device by drop or
move by inertia of the arm.

Do not turn off the main power to the robot controller while rewriting the
internal information of the robot controller such as the program or
parameters.
If the main power to the robot controller is turned off while in automatic
operation or rewriting the program or parameters, the internal information of
the robot controller may be damaged.

Do not connect the Handy GOT when using the GOT direct connection
function of this product. Failure to observe this may result in property
damage or bodily injury because the Handy GOT can automatically operate
the robot regardless of whether the operation rights are enabled or not.

Do not connect the Handy GOT to a programmable controller when using
an iQ Platform compatible product with the CR800-R/Q series. Failure to
observe this may result in property damage or bodily injury because the
Handy GOT can automatically operate the robot regardless of whether the
operation rights are enabled or not.

Do not remove the SSCNET III cable while power is supplied to the multiple
CPU system or the servo amplifier. Do not look directly at light emitted from
the tip of SSCNET III connectors or SSCNET III cables of the Motion CPU
or the servo amplifier. Eye discomfort may be felt if exposed to the light.
(Reference: SSCNET III employs a Class 1 or equivalent light source as
specified in JIS C 6802 and IEC60825-1 (domestic standards in Japan).)

Do not remove the SSCNET III cable while power is supplied to the
controller. Do not look directly at light emitted from the tip of SSCNET III
connectors or SSCNET III cables. Eye discomfort may be felt if exposed to
the light. (Reference: SSCNET III employs a Class 1 or equivalent light
source as specified in JIS C 6802 and IEC60825-1 (domestic standards in
Japan).)

Attach the cap to the SSCNET III connector after disconnecting the
SSCNET III cable. If the cap is not attached, dirt or dust may adhere to the
connector pins, resulting in deterioration connector properties, and leading
to malfunction.

 CAUTION

 CAUTION

 WARNING

 CAUTION

 CAUTION

 DANGER

 DANGER

 DANGER

 DANGER

 DANGER

Make sure there are no mistakes in the wiring. Connecting differently to the
way specified in the manual can result in errors, such as the emergency
stop not being released. In order to prevent errors occurring, please be sure
to check that all functions (such as the teaching box emergency stop,
customer emergency stop, and door switch) are working properly after the
wiring setup is completed.

Use the network equipments (personal computer, USB hub, LAN hub, etc)
confirmed by manufacturer. The thing unsuitable for the FA environment
(related with conformity, temperature or noise) exists in the equipments
connected to USB. When using network equipment, measures against the
noise, such as measures against EMI and the addition of the ferrite core,
may be necessary. Please fully confirm the operation by customer.
Guarantee and maintenance of the equipment on the market (usual office
automation equipment) cannot be performed.

To maintain the security (confidentiality, integrity, and availability) of the
robot and the system against unauthorized access, DoS*1 attacks,
computer viruses, and other cyberattacks from unreliable networks and
devices via network, take appropriate measures such as firewalls, virtual
private networks (VPNs), and antivirus solutions.
Mitsubishi Electric shall have no responsibility or liability for any problems
involving robot trouble and system trouble by unauthorized access, DoS
attacks, computer viruses, and other cyberattacks.
*1 DoS: A denial-of-service (DoS) attack disrupts services by overloading
systems or exploiting vulnerabilities, resulting in a denial-of-service (DoS)
state.

 CAUTION

 CAUTION

 CAUTION

* CR800-D/R/Q controllers

Notes of the basic component are shown.

Please install the earth leakage breaker in the primary side power supply of the
controller because of leakage protection.

1) Prepare the following items.

2) Confirm that the primary power matches the specifications.
3) Confirm that the primary power is OFF and that the earth leakage breaker power switch is OFF.
4) Connect the ACIN cable to the breaker.

Connect the power terminals of the ACIN cable to the secondary side terminals of the earth leakage
breaker. Also, ground the FG terminal of the cable.

5) Connect the ACIN cable to the ACIN connector on the rear of the controller.
<1> Face the main key on the ACIN cable plug upwards. (Refer to the "ACIN cable connection" illustra-
tion.)
<2> Align the main key of the ACIN cable plug with the grooves on the ACIN connector. Push the plug
into the connector as far as it will go.
The plug may be damaged if it is not correctly aligned with the connector.
<3> Tighten the coupling on the ACIN cable, turning it to the right until it locks.

6) Connect one end of the grounding cable to the PE (protective earth) terminal on the controller and ground
the other end (2-point grounding) in order to comply with the requirements of EN 61800-5-1 for the
touch current of 3.5 mA AC or more.

7) Connect the primary power cable to the primary side terminal of the earth leakage breaker.

Part name Specifications Remarks

Earth leakage breaker The following is recommended product. Prepared by customer.

Single phase: NV30FAU-2P-10A-AC100-240V-30 mA
(Terminal cover: TCS-05FA2)

Three phase: NV30FAU-3P-10A-AC100-240V-30 mA
(Terminal cover: TCS-05FA3)

Cable for primary power
supply

AWG14 (2 mm2) or above Prepared by customer.
Tightening torque for termi-
nal fixing screw is 2 to 3 Nm.

Grounding cable AWG14 (2 mm2) or above Prepared by customer.
Tightening torque for termi-
nal fixing screw is 2 to 3 Nm.

ACIN cable Terminal: M5, cable length: 3 m Supplied with the product.

 CAUTION

L1 L2 L3 L N

Controller rear

ACIN cable
(attachment)

PE terminal
PE terminal

PE terminal

Primary side

Secondry side

Single phase
AC200V

Three phase
AC200V

ACIN connector

PE (protective earth) terminal
M4 screw

Grounding cable

Note 1)
Earth
leakage
breaker
(NV)

<3>

<1> <2>

ACIN cable connection

ACIN cable
(male)

ACIN connector
(female)
Main key (wide)

Top

Top

Coupling

Groove for main
key (wide)

Note 1) Always use the terminal cover for the earth leakage breaker.

* CR860-D/R/Q controllers

Notes of the basic component are shown.

When installing or connecting a unit or cable to inside the robot controller, do not
touch the conductive parts, circuit boards, or electronic components directly. Failure
to observe this may result in malfunction or failure of the controller.

Note 1) Always use the terminal cover for the earth leakage breaker.
Note 2) For an example of taking preventive measures against noise (surge) in the primary power supply, refer to the

following page:

• Connecting the power cable
1) Prepare a power cable with an outer diameter of 19mm to 23mm for power supply (8 AWG (8mm2) or

above, three cores) and grounding (8 AWG (8mm2) or above, one core) and a grounding wire for
protective grounding (8 AWG (8mm2)). Use a power cable that incorporates power wires and grounding
wire.

2) Loosen the two screws fixing the controller front door, then open it. To open the front door, turn the knob
on the front of the controller counterclockwise.

3) Pull out the disengagement prevention projection on the terminal cover of the earth leakage breaker by
displacing the projection with your finger.

4) Confirm that the primary power matches the specifications.
5) Ensure that the primary power is shut OFF and the earth leakage breaker of the controller is OFF.
6) Put the power cable through the cable entrance on the side of the controller and fix the cable using a

power cable clamp (Capcon).
7) Connect the power cable to the L1, L2, and L3 terminals (M5 screws) of the earth leakage breaker.
8) Connect the grounding wire of the power cable to the grounding terminal (for protective grounding) (M6

screw) of the NV plate.
9) Press down the terminal cover of the earth leakage breaker (removed in step 3) until the cover snaps into

place.
10) Close the controller front door, then fix it using the front door fixing screws. IP54 cannot be satisfied

unless the front door fixing screws are fixed.

 CAUTION

Section A

Grounding wire
Grounding terminal
(for protective grounding)

Power cable clamp (Capcon)
Power cable Note2)

Cable entrance

Cable entrance
(attached on the side of the controller)

Front door fixing screw: 2

Earth leakage
breaker Note1)

Grounding plate

Grounding cable

Details of section B
(attached inside the controller)

Details of section A

Terminal cover

L1, L2, L3 from the left

Disengagement
prevention
projection

NV plate

Power cable Note2)

Capcon

Section B

Turn the knob on the
earth leakage breaker
counterclockwise.

11) Connect the grounding wire for protective grounding to the grounding terminal (for protective grounding)
(M6 screw) located next to the power cable clamp (Capcon).

• Connecting the grounding wire
When functional grounding is required, connect a grounding wire to the unused part on the

grounding plate in section B. Do not remove any existing cables.

Grounding wire for
protective grounding

Grounding terminal
(for protective grounding)

Power cable clamp (Capcon)

Revision history

Date Specifications No. Details of revisions

2017-05-30 BFP-A3478 • First print

2017-06-28 BFP-A3478-A • “(1) PLC CPU parameter setting” in “6.2.1 Parameter setting” was modified.
• Factory default setting of the hand I/O type parameter (HIOTYPE) was corrected.

2017-09-25 BFP-A3478-B • Reference program of PrmWrite command was modified.
• Supplementary explanation for commands were added.

(If…Then…ElseIf…Else…EndIf, Select Case)

2017-11-01 BFP-A3478-C • Description of countermeasures against unauthorized access was added.
• Descriptions of continuity function were deleted.
• “7.6 Log function” was added.

2018-03-01 BFP-A3478-D • The CR800-Q controller was added.

2018-09-01 BFP-A3478-E • Supplementary explanation for the compliance mode was added. (Cmp Jnt, Cmp
Pos, Cmp Tool, Cmp Off)

2018-10-15 BFP-A3478-F • The high speed spline interpolation command was added.

2018-12-25 BFP-A3478-G • Added further explanation of the ACIN cable.

2019-04-19 BFP-A3478-H • Revised the descriptions of device assignment.
• Corrected error. (Incorrect: MELFA-BASIC V)

2020-01-24 BFP-A3478-J • Added the following parameters: TOOLSPEC, RCDUVER
• Corrected the explanation of Base, Tool, Def Work, and M_Tool.
• Added “6.6 How to select and run a program using external signals”.

2020-10-30 BFP-A3478-K • Amended the precautions regarding the prevention of unauthorized access.
• Amended the example #Include statement string. (Fig. 4-6)
• Revised section 3.11 "Operation to Temporarily Reset an Error that Cannot Be Can-

celed".
• Added and corrected CR series values for the simulated component setting param-

eter.
• Corrected the example Cmp Off command string.
• Added the section "2.4 Robot CPU status indicator LEDs".
• Corrected other mistakes and changed some sections.

2021-02-19 BFP-A3478-M • Added command explanations. (Def Act, Function...FEnd)
• Added FUNCSPEC parameter.

2021-04-01 BFP-A3478-N • Added "5.28 Security function".
• Added a robot (system) state variable M_AmpInfoA.
• Added the following parameters: NETIPFLT, NETIPFLS, NETIPFLE
• Added the Safety Communication Function Instruction Manual in "1.1.1 The details

of each instruction manual".

2021-09-30 BFP-A3478-P • Revised "4.4.2 About base conversion".
• Amended the GetM command.
• Corrected other mistakes and changed some sections.

2022-01-31 BFP-A3478-R • Corrected other mistakes and changed some sections.

2022-02-24 BFP-A3478-S • Software version C2d supported.
Added HNDCHK parameter.

2023-04-17 BFP-A3478-T • Software version C2j supported.
Added an explanation on the command word "JRC" in "4.12.2 Explanation of each
command word".
Added a parameter to "5.1 Movement parameter". (UORGSPEC)

• Corrected other mistakes and changed some sections.

2023-09-14 BFP-A3478-U • Added the CR860 controller.
• Corrected other mistakes and changed some sections.

2024-03-08 BFP-A3478-V • Revised "2.1 Teaching pendant (T/B) functions".
• Revised "3.7 Debugging".
• Corrected other mistakes and changed some sections.

*Introduction

Thank you for purchasing the Mitsubishi industrial robot.
This instruction manual explains the functions and operation methods of the robot controller and
teaching pendant (R32TB (option)), and the functions and specifications of the MELFA-BASIC VI
programming language.
The following are the series and controllers described in this instruction manual.

This instruction manual is applicable to both the iQ Platform-compatible CR800-R/Q series and the
standalone CR800-D series. Note that the functions specific to each series are described as
"CR800-R only", "CR800-D only", "CR860-R only", and "CR860-D only".

Also in this instruction manual, operation of robot programs such as start-up and shutdown is
explained based on key operations on the teaching pendant and operation in the operation screen
of the teaching pendant. For the operation using external signals (exclusive input/output signals),
refer to the following page, which summarizes the exclusive input/output signals corresponding to
the T/B operation. Using the parameter settings, please assign exclusive input/output signals to
general purpose input/output signals.

Always read through this manual before starting use to ensure correct usage of the robot.
As much as possible, we have tried to include all special operations in this instruction manual.
Please assume that operations not included in this manual are "not possible".

Name Description

CR800 series Indicates the CR800 and CR860 controllers.

CR800-D series Indicates the CR800-D and CR860-D controllers.

CR800-Q series Indicates the CR800-Q and CR860-Q controllers.

CR800-R series Indicates the CR800-R and CR860-R controllers.

CR800 controller Indicates the CR800-D, CR800-Q, and CR800-R controllers.

CR860 controller Indicates the CR860-D, CR860-Q, and CR860-R controllers.

• No part of this manual may be reproduced by any means or in any form, without prior consent
from Mitsubishi.

• The details of this manual are subject to change without notice.
• An effort has been made to make full descriptions in this manual. However, if any discrepancies

or unclear points are found, please contact your dealer.
• The information contained in this document has been written to be accurate as much as

possible. Please interpret that items not described in this document "cannot be performed." or
"alarm may occur".
Please contact your nearest dealer if you find any doubtful, wrong or skipped point.

• This is the original document.
• Ethernet is registered trademarks or trademarks of Xerox Corporation in the United States.
• AutoCAD® is a registered trademark of Autodesk, Inc. in the U.S. and other countries.
• All other company names and production names in this document are the trademarks or

registered trademarks of their respective owners.
• Illustrations in this Instruction Manual may differ from the actual products.

 Copyright(C) 2017 MITSUBISHI ELECTRIC CORPORATION

Notice
*ONLY QUALIFIED SERVICE PERSONNEL MAY INSTALL OR SERVICE THE ROBOT SYSTEM.
*ANY PERSON WHO PROGRAM, TEACHES, OPERATE, MAINTENANCE OR REPAIRS THE ROBOT
SYSTEM IS TRAINED AND DEMONSTRATES COMPETENCE TO SAFELY PERFORM THE
ASSIGNED TASK.

*ENSURE COMPLIANCE WITH ALL LOCAL AND NATIONAL SAFETY AND ELECTRICAL CODES
FOR THE INSTALLATION AND OPERATION OF THE ROBOT SYSTEM.

For users operating robots that have not been mounted with an operation panel:

Operation of robot programs such as start-up and shutdown are carried out using external signals
(exclusive input/output signals). This instruction manual is based on key operations on the teaching
pendant and operation in the operation screen of the teaching pendant. Using the parameter
settings, please assign exclusive input/output signals that correspond with each operation to
general purpose input/output signals, and operate the robot using signal operations.
The following table details exclusive input/output signals that correspond with the operations
explained in this manual. Please use this as a reference to assign signals and operate the robot.
For further details regarding parameters please see Page 649, "6.3 Dedicated input/output", for the
time chart of each signal please see Page 663, "6.5 External signal timing chart", and for
instructions on how to set parameters please see Page 94, "3.15 Operation of parameter screen".

Table: Conversion table of the buttons and dedicated I/O signals

T/B operation Parameter
name Class Function Default

setting

Start
In operation

START Input Starts a program. 3,0

Output Indicates that a program is being executed.

[STOP] key
Standby

STOP Input Stops a program. 0,-1

Output Indicates that the program is paused.

[RESET] key
ERROR lamp
Program reset

ERRRESET Input Releases the error state. 2,2

Output Indicates that an error has occurred.

SLOTINIT Input Cancels the paused status of the program and brings the
executing line to the top. Executing a program reset makes it
possible to select a program.

-1,-1

Output Outputs that in the program selection enabled state.

Program selection
[OVRD↑] key
[OVRD↓] key
Step display

PRGSEL Input Selects the value inputted into the signal assigned to the
numerical input as a program number.

-1,

Output -

PRGOUT Input Outputs the program number selected to the signal assigned to
the numerical output.

-1,-1

Output Indicates outputting the program number to the numerical
output.

OVRDSEL Input Sets the value inputted into the signal assigned to the numerical
input as a override.

-1,

Output -

OVRDOUT Input Outputs the override value to the signal assigned to the
numerical output.

-1,-1

Output Indicates outputting the override value to the numerical output.

LINEOUT Input Outputs the current line number to the signal assigned to the
numerical output.

-1,-1

Output Indicates outputting the current line number to the numerical
output.

ERROUT Input Outputs the error number to the signal assigned to the numerical
output.

-1,-1

Output Indicates outputting the error number to the numerical output.

IODATA Input Reads the program number and the override value as a binary
value.

-1,-1,
-1,-1

Output Outputs the program number, line number and override value as
a binary value.

Consecutive
cycle

CYCLE Input Starts the cycle stop. -1,-1

Output Outputs that the cycle stop is operating.

[SERVO] key
SERVO lamp

SRVON Input Turns ON the servo power supply. 4,1

Output Indicates the servo power supply is ON.

[SERVO] key
SERVO lamp

SRVOFF Input Turns OFF the servo power supply. 1,-1

Output This output indicates a status where the servo power supply
cannot be turned ON. (Echo back)

Contents
Page
1 Before starting use .. 1-1
1.1 Using the instruction manuals ... 1-1

1.1.1 The details of each instruction manual ... 1-1
1.1.2 Symbols used in instruction manual ... 1-2

1.2 Safety Precautions .. 1-3
1.2.1 Precautions given in the separate Safety Manual .. 1-4

2 Explanation of functions .. 2-7
2.1 Teaching pendant (T/B) functions ... 2-7

2.1.1 Operation rights .. 2-8
2.1.2 Handling the T/B ... 2-9

(1) Installing the T/B ... 2-10
(2) Removing the T/B ... 2-10

2.2 Functions Related to Movement and Control ... 2-10
2.3 Robot type resetting .. 2-13
2.4 Robot CPU status indicator LEDs ... 2-14

2.4.1 R-type CPU unit (R16RTCPU) status indicators ... 2-14
2.4.2 Q-type CPU unit (Q172DSRCPU) status indicators ... 2-15

2.5 Operation panel (O/P) functions (CR860-D/R/Q only) .. 2-16
2.5.1 Explanation of the operation panel ... 2-16
2.5.2 Explanation of the STATUS NUMBER (display panel) ... 2-17

(1) Changing the display on the STATUS NUMBER (display panel) 2-17
(2) Display status ... 2-19
(3) Robot reset operation ... 2-19

3 Explanation of operation methods .. 3-20
3.1 Operation of the teaching pendant menu screens .. 3-20

(1) Screen tree ... 3-20
(2) Input of the number/character .. 3-24
(3) Selecting a menu .. 3-25

3.2 Jog Feed (Overview) ... 3-27
3.2.1 Types of jog feed .. 3-27
3.2.2 Speed of jog feed .. 3-28
3.2.3 JOINT jog .. 3-30
3.2.4 XYZ jog ... 3-30
3.2.5 TOOL jog .. 3-31
3.2.6 3-axis XYZ jog .. 3-31
3.2.7 CYLNDER jog ... 3-32
3.2.8 WORK jog ... 3-32
3.2.9 Switching Tool Conversion Data ... 3-33
3.2.10 Changing the world coordinate (specifies the base coordinate number) 3-34
3.2.11 Impact Detection during Jog Operation .. 3-36

(1) Impact Detection Level Adjustment during Jog Operation ... 3-37
3.3 Opening/Closing the Hands .. 3-38
3.4 Returning to the Safe Point ... 3-40
3.5 Aligning the Hand .. 3-41
3.6 Programming .. 3-43

3.6.1 Creating a program ... 3-43
(1) Opening the program edit screen ... 3-43
(2) Creating a program .. 3-44
(3) Completion of program creation and saving programs .. 3-46
(4) Correcting a program ... 3-47
(5) Registering the current position data .. 3-49
(6) Deletion of the position variable ... 3-52
(7) Confirming the position data (Position jump) .. 3-53
(8) Correcting the MDI (Manual Data Input) .. 3-54
i

Contents
Page
(9) Executing a Command Directly .. 3-55
3.7 Debugging ... 3-56

(1) Step feed .. 3-56
(2) Step return .. 3-57
(3) Step feed in another slot .. 3-58
(4) Step jump ... 3-60

3.8 Automatic operation .. 3-61
3.8.1 Setting the operation speed .. 3-61

(1) Operation with the T/B .. 3-61
(2) Operation with the O/P (CR860-D/R/Q only) .. 3-61

3.8.2 Starting automatic operation ... 3-62
(1) Operation with the T/B .. 3-62
(2) Operation with the O/P (CR860-D/R/Q only) .. 3-66

3.8.3 Stopping .. 3-68
(1) Operation with the T/B .. 3-68
(2) Operation with the O/P (CR860-D/R/Q only) .. 3-68

3.8.4 Resuming automatic operation from stopped state .. 3-68
(1) Operation with the T/B .. 3-68
(2) Operation with the O/P (CR860-D/R/Q only) .. 3-68

3.8.5 Resetting the program .. 3-69
(1) Operation with the T/B .. 3-69
(2) Operation with the O/P (CR860-D/R/Q only) .. 3-69

3.9 Turning the servo ON/OFF ... 3-70
(1) Operation with the T/B .. 3-70
(2) Operation with the O/P (CR860-D/R/Q only) .. 3-70

3.10 Error reset operation ... 3-70
(1) Operation with the T/B .. 3-70
(2) Operation with the O/P (CR860-D/R/Q only) .. 3-70

3.11 Operation to Temporarily Reset an Error that Cannot Be Canceled 3-71
3.12 Operating the program control screen .. 3-73

(1) Program list display .. 3-73
(2) Copying programs .. 3-74
(3) Name change of the program (Rename) .. 3-75
(4) Deleting a program (Delete) ... 3-76
(5) Protection of the program (Protect) .. 3-77
(6) Select the program ... 3-78

3.13 Operation of operating screen .. 3-79
3.13.1 Display of the execution line ... 3-79

(1) Select the confirmation menu ... 3-79
(2) Step feed .. 3-79
(3) Step jump ... 3-81
(4) Step feed in another slot .. 3-81
(5) Finishing of the confirmation screen. .. 3-82

3.13.2 Test operation ... 3-82
(1) Select the test operation ... 3-82

3.13.3 Operating the OPERATION screen .. 3-83
3.14 Operating the monitor screen ... 3-84

(1) Input signal monitor .. 3-84
(2) Output signal monitor ... 3-86
(3) Input register monitor ... 3-88
(4) Output register monitor ... 3-89
(5) Variable monitor ... 3-91
(6) Error history .. 3-93

3.15 Operation of parameter screen ... 3-94
3.16 Operation of the origin and the brake screen .. 3-96

(1) Origin .. 3-96
ii

Contents
Page
(2) Brake .. 3-96
3.17 Operation of setup / initialization screen ... 3-98

(1) Initialize the program .. 3-98
(2) Initialize the parameter ... 3-99
(3) Initialize the battery .. 3-100
(4) Operation .. 3-100
(5) Time setup .. 3-101
(6) Version ... 3-101

3.18 ENHANCED .. 3-102
(1) SQ DIRECT .. 3-102
(2) WORK COORD .. 3-102

3.19 Operation of the initial-setting screen ... 3-103
(1) Set the display language .. 3-103
(2) Adjustment of contrast .. 3-105

4 MELFA-BASIC VI .. 4-107
4.1 MELFA-BASIC VI functions .. 4-107

4.1.1 Robot operation control .. 4-108
(1) Joint interpolation movement ... 4-108
(2) Linear interpolation movement ... 4-109
(3) Circular interpolation movement ... 4-110
(4) Continuous movement ... 4-112
(5) Acceleration/deceleration time and speed control .. 4-113
(6) Confirming that the target position is reached .. 4-115
(7) High path accuracy control ... 4-116
(8) Hand and tool control ... 4-117

4.1.2 Pallet operation ... 4-118
4.1.3 Program control .. 4-123

(1) Unconditional branching, conditional branching, waiting .. 4-123
(2) Repetition ... 4-124
(3) Interrupt .. 4-125
(4) Subroutine .. 4-126
(5) Timer .. 4-127
(6) Stopping ... 4-127

4.1.4 Inputting and outputting external signals .. 4-128
(1) Input signals ... 4-128
(2) Output signals .. 4-128

4.1.5 Communication ... 4-129
4.1.6 Expressions and operations ... 4-130

(1) List of operator ... 4-130
(2) Relative calculation of position data (multiplication) ... 4-132
(3) Relative calculation of position data (Addition) ... 4-132

4.1.7 Appended statement ... 4-133
4.2 Multitask function .. 4-134

4.2.1 What is multitasking? .. 4-134
4.2.2 Executing a multitask .. 4-135
4.2.3 Operation state of each slot .. 4-135
4.2.4 Precautions for creating multitask program .. 4-137

(1) Relationship between number of tasks and processing time 4-137
(2) Specification of the maximum number of programs executed concurrently 4-137
(3) How to pass data between programs via external variables .. 4-137
(4) Confirmation of operating status of programs via robot status variables 4-137
(5) The program that operates the robot is basically executed in slot 1. 4-137
(6) How to perform the initialization processing via constantly executed programs 4-138

4.2.5 Precautions for using a multitask program .. 4-138
(1) Starting the multitask .. 4-138
(2) Display of operation status ... 4-138
iii

Contents
Page
4.2.6 Example of using multitask ... 4-139
(1) Robot work details. ... 4-139
(2) Procedures to multitask execution ... 4-140

4.2.7 Program capacity .. 4-141
(1) Program save area ... 4-141
(2) Program edit area ... 4-141
(3) Program execution area ... 4-141

4.3 Detailed specifications of MELFA-BASIC VI ... 4-142
(1) Program name .. 4-142
(2) Command statement .. 4-142
(3) Variable .. 4-143

4.3.1 Statement ... 4-144
4.3.2 Appended statement ... 4-144
4.3.3 Step .. 4-144
4.3.4 Step No. .. 4-144
4.3.5 Label ... 4-144
4.3.6 Types of characters that can be used in program .. 4-145
4.3.7 Characters having special meanings .. 4-146

(1) Uppercase and lowercase identification ... 4-146
(2) Underscore (_) ... 4-146
(3) Apostrophe (') ... 4-146
(4) Asterisk (*) .. 4-146
(5) Comma (,) .. 4-146
(6) Period (.) ... 4-146
(7) Space ... 4-146

4.3.8 Data type .. 4-147
4.3.9 Constants .. 4-147
4.3.10 Numeric value constants .. 4-147

(1) Decimal number ... 4-147
(2) Hexadecimal number ... 4-147
(3) Binary number .. 4-147
(4) Types of constant ... 4-147

4.3.11 Character string constants .. 4-147
4.3.12 Position constants (XYZ/work coordinate constants) .. 4-148

(1) Coordinate, posture and additional axis data types and meanings 4-148
(2) Meaning of structure flag data type and meanings .. 4-148

4.3.13 Joint constants .. 4-149
(1) Axis data format and meanings .. 4-149

4.3.14 Angle value ... 4-150
4.3.15 Variables ... 4-150
4.3.16 Numeric value variables ... 4-151
4.3.17 Character string variables ... 4-151
4.3.18 Position variables (XYZ/work coordinate variables) .. 4-152
4.3.19 Joint variables ... 4-152
4.3.20 Input/output variables ... 4-153
4.3.21 Array variables .. 4-153
4.3.22 External variables ... 4-154
4.3.23 Program external variables ... 4-154
4.3.24 User-defined external variables .. 4-155
4.3.25 Creating User Base Programs .. 4-156
4.3.26 Scope .. 4-157
4.3.27 Function procedure ... 4-157
4.3.28 #Include statement ... 4-158

4.4 Coordinate system description of the robot .. 4-159
4.4.1 About the robot's coordinate system ... 4-159
4.4.2 About base conversion ... 4-160
4.4.3 About position data ... 4-161
4.4.4 About tool coordinate system (mechanical interface coordinate system) 4-162
iv

Contents
Page
(1) Mechanical interface coordinate system .. 4-162
(2) Tool coordinate system .. 4-163
(3) Effects of use of tool coordinate system ... 4-164

4.5 Robot status variables .. 4-167
4.5.1 Logic numbers .. 4-171

4.6 Functions .. 4-172
(1) User-defined functions ... 4-172
(2) Built-in functions ... 4-172

4.7 List of Command ... 4-174
(1) Command related to movement control ... 4-174
(2) Command related to program control ... 4-175
(3) Definition commands .. 4-176
(4) Multi-task related .. 4-177
(5) Communications ... 4-177
(6) Others ... 4-177

4.8 Operators .. 4-178
4.9 Priority level of operations ... 4-179
4.10 Depth of program's control structure ... 4-179
4.11 Reserved words .. 4-179
4.12 Detailed explanation of command words .. 4-180

4.12.1 How to read the described items .. 4-180
4.12.2 Explanation of each command word ... 4-180

4.13 Detailed explanation of Robot Status Variable ... 4-356
4.13.1 How to Read Described items .. 4-356
4.13.2 Explanation of Each Robot Status Variable .. 4-356

4.14 Detailed Explanation of Functions .. 4-450
4.14.1 How to Read Described items .. 4-450
4.14.2 Explanation of Each Function ... 4-450

5 Functions set with parameters .. 5-492
5.1 Movement parameter .. 5-492
5.2 Signal parameter ... 5-508

5.2.1 About multiple CPU input offsets (CR800-R/Q series only) .. 5-513
(1) Case (A) ... 5-513
(2) Case (B) ... 5-514

5.3 Operation parameter ... 5-516
5.4 Command parameter .. 5-520
5.5 Communication parameter .. 5-524
5.6 Standard Tool Coordinates ... 5-528
5.7 About Standard Base Coordinates ... 5-530
5.8 About user-defined area ... 5-531

5.8.1 Selecting a coordinate system .. 5-532
5.8.2 Setting Areas .. 5-533

(1) Position Area .. 5-533
(2) Posture Area .. 5-534
(3) Additional Axis Area ... 5-534

5.8.3 Selecting mechanism to be checked .. 5-535
5.8.4 Specifying behavior within user-defined area ... 5-535
5.8.5 Example of settings .. 5-536

5.9 Free plane limit ... 5-537
5.9.1 The definition of a free plane limit ... 5-537
5.9.2 Selection of a coordinates system for a free plane limit .. 5-538

5.10 Automatic return setting after jog feed at pause ... 5-539
5.11 Automatic execution of program at power up ... 5-540
v

Contents
Page
5.12 About the hand type .. 5-541
(1) Solenoid valve types and signal numbers .. 5-541

5.13 About default hand status ... 5-542
5.14 About the output signal reset pattern .. 5-543
5.15 About the communication setting (Ethernet) ... 5-545

5.15.1 Details of parameters .. 5-545
(1) NETIP (IP address of robot controller) ... 5-545
(2) NETMSK (sub-net-mask) ... 5-545
(3) NETPORT (port No.) .. 5-545
(4) CRRCE11 to 19 (protocol) ... 5-546
(5) COMDEV (Definition of devices corresponding to COM1: to 8) 5-546
(6) NETMODE (server specification). .. 5-546
(7) NETHSTIP (The IP address of the server of the data communication point). 5-546
(8) MXTTOUT (Timeout setting for executing real-time external control command) 5-546

5.15.2 Example of setting of parameter 1 (When the Support Software is used) 5-547
5.15.3 Example of setting of parameter 2-1 ... 5-548
5.15.4 Example of setting parameters 2-2 ... 5-549
5.15.5 Example of setting parameters 3 .. 5-550
5.15.6 Connection confirmation ... 5-551
5.15.7 Checking the connection with the Windows ping command ... 5-551

5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings) 5-552
5.17 About the singular point adjacent alarm .. 5-554
5.18 High-speed RAM operation function ... 5-555
5.19 Warm-Up Operation Mode .. 5-556
5.20 About singular point passage function .. 5-563
5.21 About the collision detection function .. 5-568

(1) Overview of the function ... 5-568
(2) Related parameters .. 5-569
(3) How to use the collision detection function .. 5-570

5.22 Optimizing the overload level .. 5-576
5.23 Multi-rotational restrictions for the pallet definition instruction .. 5-577
5.24 Interference avoidance function .. 5-578

5.24.1 Operation procedures ... 5-579
5.24.2 Preparing and connecting the devices .. 5-580
5.24.3 Registering the simulated components for interference check 5-582
5.24.4 Registering a free plane limit .. 5-591
5.24.5 Support of additional axes .. 5-592
5.24.6 Setting the CPU buffer memory expanded function (Checking for interference between ro-

bots) ... 5-593
5.24.7 Calibration between robots (Checking for interference between robots) 5-596
5.24.8 Enabling and disabling the interference avoidance function ... 5-598
5.24.9 Using the interference avoidance function .. 5-598
5.24.10 Sample programs ... 5-600

5.25 Direct control of the PLC input/output module .. 5-602
5.25.1 CR800-R series .. 5-602

(1) Operation procedure .. 5-602
(2) Configuration example of the hardware ... 5-602
(3) Setting the parameters for the system configuration example 1 5-603
(4) Setting the parameters for the system configuration example 2 5-609
(5) Controlling with status variables ... 5-614

5.25.2 CR800-Q series .. 5-616
(1) Operation procedure .. 5-616
(2) Configuration example of the hardware ... 5-616
(3) Setting the parameters for the system configuration example 1 5-617
(4) Setting the parameters for the system configuration example 2 5-623
(5) Details of robot parameters .. 5-630
vi

Contents
Page
(6) Controlling with status variables ... 5-631
5.26 Direct communication with robot CPUs .. 5-633

(1) Specification ... 5-633
(2) Description of the status variable ... 5-633

5.27 Parameter for behavior selection at the error occurrence on dual system 5-634
5.28 Security function ... 5-635

(1) IP address filtering function .. 5-635

6 External input/output functions .. 6-636
6.1 Types .. 6-636
6.2 PLC link I/O function ... 6-637

6.2.1 Parameter setting ... 6-637
(1) PLC CPU parameter setting ... 6-637
(2) Robot CPU parameter setting .. 6-641

6.2.2 CPU buffer memory and robot I/O signal compatibility ... 6-644
6.2.3 Sequence ladder example .. 6-644
6.2.4 Assignment of the dedicated I/O signal. (at factory shipping) ... 6-646

6.3 Dedicated input/output .. 6-649
6.4 Enable/disable status of signals .. 6-662
6.5 External signal timing chart ... 6-663

6.5.1 Individual timing chart of each signal .. 6-663
6.5.2 Timing chart example ... 6-671

(1) External signal operation timing chart (Part 1) ... 6-671
(2) External signal operation timing chart (Part 2) ... 6-672
(3) Example of external operation timing chart (Part 3) ... 6-673
(4) Example of external operation timing chart (Part 4) ... 6-674
(5) Example of external operation timing chart (Part 5) ... 6-675

6.6 How to select and run a program using external signals .. 6-676
6.6.1 Methods .. 6-676
6.6.2 Selecting a method to run a program ... 6-676
6.6.3 Related I/O parameters .. 6-676
6.6.4 Operation procedure ... 6-677

6.7 Emergency stop input ... 6-679
6.7.1 Robot Behavior upon Emergency Stop Input ... 6-679

6.8 Devices ... 6-680
6.8.1 Device list ... 6-680
6.8.2 Device assignment ... 6-682
6.8.3 PLC device assignment function .. 6-686

7 Appendix .. Appendix-691
7.1 Configuration flag ... Appendix-691
7.2 Spline interpolation .. Appendix-694

7.2.1 Outline ... Appendix-694
(1) Outline ... Appendix-694
(2) Features .. Appendix-694
(3) Required devices and software version .. Appendix-695
(4) Terminology ... Appendix-695

7.2.2 Specifications ... Appendix-696
(1) Basic specifications ... Appendix-696
(2) Restrictions .. Appendix-697
(3) Robot behavior during spline interpolation .. Appendix-698
(4) Check related to path points .. Appendix-699

7.2.3 Explanation of functions ... Appendix-701
(1) Path adjustment .. Appendix-701
(2) Operation mode ... Appendix-704
(3) Signal output ... Appendix-705
vii

Contents
Page
(4) Numerical setting ... Appendix-706
(5) Frame transformation .. Appendix-707

7.2.4 Work procedures ... Appendix-709
7.2.5 Creating the spline file ... Appendix-711

(1) New file .. Appendix-711
(2) Creating a file by DXF File Import function .. Appendix-712
(3) Creating new spline files with robot language ... Appendix-719
(4) Opening an existing spline file ... Appendix-719
(5) Explanation of Spline File Edit screen ... Appendix-720
(6) Spline file editing ribbon .. Appendix-722
(7) Details of path point data ... Appendix-725
(8) Editing the spline file ... Appendix-726
(9) Saving the spline file ... Appendix-733
(10) Deleting a spline file .. Appendix-735
(11) Changing the spline No. .. Appendix-735
(12) Copying the spline file ... Appendix-736
(13) Spline file manager .. Appendix-736
(14) Import/export function .. Appendix-738
(15) Auxiliary editing functions .. Appendix-746
(16) Displays the spline curve ... Appendix-748
(17) Checking edited data ... Appendix-748
(18) Robot program .. Appendix-750

7.2.6 Creating the robot program .. Appendix-752
7.2.7 Confirming the movement .. Appendix-754
7.2.8 Saving in the robot controller ... Appendix-755
7.2.9 Adjustment work .. Appendix-755

(1) Position adjustment function ... Appendix-755
(2) Frame transformation function .. Appendix-757
(3) Position jump ... Appendix-759
(4) Parameter SPLOPTGC ... Appendix-760

7.2.10 High speed spline interpolation command ... Appendix-761
(1) Outline ... Appendix-761
(2) Required software versions ... Appendix-761
(3) Specifications .. Appendix-761
(4) RT ToolBox3 settings .. Appendix-762
(5) Precautions and limitations ... Appendix-763

7.3 Ex-T control .. Appendix-764
7.3.1 Outline ... Appendix-764

(1) Features .. Appendix-764
(2) Specifications .. Appendix-765
(3) Equipment and software version requirements ... Appendix-765

7.3.2 Ex-T coordinates setting .. Appendix-765
(1) Setting ... Appendix-765

7.3.3 Ex-T jog ... Appendix-767
(1) Movement of the posture element in the WORK jog Appendix-768
(2) Movement of the posture element in the Ex-T jog ... Appendix-768
(3) Ex-T jog operation ... Appendix-769
(4) WORK jog operation of the RV 6-axis type ... Appendix-770
(5) WORK jog operation of the RH 4-axis type ... Appendix-773
(6) WORK jog operation of the RH 4-axis hanging type Appendix-775

7.3.4 Creation of robot program .. Appendix-777
(1) List of commands/variables related to the Ex-T control Appendix-777
(2) Programming example .. Appendix-777

7.4 Get-position-quick function .. Appendix-779
7.4.1 Outline ... Appendix-779
7.4.2 Specifications of the GPS Function ... Appendix-779
7.4.3 Specifications of Digital Input Signal .. Appendix-780
7.4.4 Electric Specification of Digital Input .. Appendix-781
viii

Contents
Page
7.4.5 How to use the GPS function ... Appendix-782
(1) Position data acquisition at the sensor input timing .. Appendix-782
(2) Workpiece presence recognition in a cassette .. Appendix-783

7.5 Upgrade of the servo software ... Appendix-785
7.6 Log function ... Appendix-786

7.6.1 Outline ... Appendix-786
7.6.2 Specifications ... Appendix-787

(1) Basic specifications ... Appendix-787
(2) Log file specifications .. Appendix-787

7.6.3 Error numbers to be saved .. Appendix-788
7.6.4 Parameter setting .. Appendix-788
7.6.5 Checking the log file details ... Appendix-789

(1) Error history ... Appendix-789
(2) Event history .. Appendix-790
(3) Program execution history ... Appendix-792

7.7 Special devices .. Appendix-793
7.7.1 CR800-R series ... Appendix-793
7.7.2 CR800-D series ... Appendix-794
7.7.3 CR800-Q series ... Appendix-796
ix

 1Before starting use
1 Before starting use
This chapter explains the details and usage methods of the instruction manuals, the basic terminology and
the safety precautions. Moreover, handling and operation of a teaching pendant (T/B) are described based
on R32TB in instruction manuals. If using other T/B, such as R56TB, refer to a supplied instruction manual
of the T/B.

1.1 Using the instruction manuals
1.1.1 The details of each instruction manual

The contents and purposes of the documents enclosed with this product are shown below. Use these
documents according to the application.
For special specifications, a separate instruction manual describing the special section may be enclosed.

Manual name Description

Safety Manual Explains the common precautions and safety measures to be taken for robot handling, system
design and manufacture to ensure safety of the operators involved with the robot.

Standard Specifications Explains the product's standard specifications, factory-set special specifications, option
configuration and maintenance parts, etc.
Precautions for safety and technology, when incorporating the robot, are also explained.

Robot Arm Setup & Maintenance Explains the procedures required to operate the robot arm (unpacking, transportation,
installation, confirmation of operation), and the maintenance and inspection procedures.

Controller setup, basic operation,
and maintenance

Explains the procedures required to operate the controller (unpacking, transportation,
installation, confirmation of operation), basic operation from creating the program to automatic
operation, and the maintenance and inspection procedures.

Detailed explanations of functions
and operations

Explains details on the functions and operations such as each function and operation,
commands used in the program, connection with the external input/output device, and
parameters, etc.

Troubleshooting Explains the causes and remedies to be taken when an error occurs. Explanations are given for
each error No.

Additional axis function Explains the specifications, functions and operations of the additional axis control.

Tracking Function Explains the control function and specifications of conveyor tracking.

GOT Direct Connection Extended
Function

Explains the detailed description of data configuration of shared memory, monitoring, and
operating procedures about the GOT (standalone type robot).

iQ Platform Supporting Extended
Function

Explains the detailed description of data configuration of shared memory, monitoring, and
operating procedures about the PLC (iQ Platform compatible type robot).

Safety communication function Explains about the safety communication function which expands the robot safety functions by
communicating safely with a safety programmable controller.

Ethernet Function Explains the measures to perform communication with personal computers on Ethernet with the
TCP/IP protocol.
 Using the instruction manuals 1-1

1

1Before starting use
1.1.2 Symbols used in instruction manual
The symbols and expressions shown in Table 1-1 are used throughout this instruction manual. Learn the
meaning of these symbols before reading this instruction manual.

Table 1-1:Symbols in instruction manual

Terminology Item/Symbol Meaning

Item

iQ Platform compatible type

Controller Indicates the controller which controls the robot arm.

The robot CPU unit or robot CPU
Indicates the CPU unit for the robots which installed to the PLC base
unit of MELSEC iQ-R/MELSEC-Q series. It is connected with the
controller by the dedicated cable.

The robot CPU system
Multi-CPU system.
It consists of MELSEC units, such as the PLC base unit, the PLC
CPU unit, and the robot CPU unit, etc.

Standalone type

Controller Indicates the controller which controls the robot arm.

Symbol

Precaution indicating cases where there is a risk of operator fatality or
serious injury if handling is mistaken. Always observe these
precautions to safely use the robot.

Precaution indicating cases where the operator could be subject to
fatalities or serious injuries if handling is mistaken. Always observe
these precautions to safely use the robot.

Precaution indicating cases where operator could be subject to injury
or physical damage could occur if handling is mistaken. Always
observe these precautions to safely use the robot.

[JOG] If a word is enclosed in brackets or a box in the text, this refers to a
key on the teaching pendant.

[RESET] + [EXE]
 (A) (B)

This indicates to press the (B) key while holding down the (A) key.
In this example, the [RESET] key is pressed while holding down the
[EXE] key.

T/B This indicates the teaching pendant.
Descriptions in this manual are based on R32TB.

DANGER

 WARNING

CAUTION
-2 Using the instruction manuals

 1Before starting use
1.2 Safety Precautions
Always read the following precautions and the separate "Safety Manual" before starting use of the robot to
learn the required measures to be taken.

All teaching work must be carried out by an operator who has received special
training. (This also applies to maintenance work with the power source turned ON.)
Enforcement of safety training

For teaching work, prepare a work plan related to the methods and procedures of
operating the robot, and to the measures to be taken when an error occurs or when
restarting. Carry out work following this plan. (This also applies to maintenance
work with the power source turned ON.)
Preparation of work plan

Prepare a device that allows operation to be stopped immediately during teaching
work. (This also applies to maintenance work with the power source turned ON.)
Setting of emergency stop switch

During teaching work, place a sign indicating that teaching work is in progress on
the start switch, etc. (This also applies to maintenance work with the power source
turned ON.)
Indication of teaching work in progress

Provide a fence or enclosure during operation to prevent contact of the operator
and robot.
Installation of safety fence

Establish a set signaling method to the related operators for starting work, and
follow this method.
Signaling of operation start

As a principle turn the power OFF during maintenance work. Place a sign indicating
that maintenance work is in progress on the start switch, etc.
Indication of maintenance work in progress

Before starting work, inspect the robot, emergency stop switch and other related
devices, etc., and confirm that there are no errors.
Inspection before starting work

 CAUTION

 CAUTION

 WARNING

 CAUTION

 DANGER

 CAUTION

 CAUTION

 CAUTION
 Safety Precautions 1-3

1

1Before starting use
1.2.1 Precautions given in the separate Safety Manual
The points of the precautions given in the separate "Safety Manual" are given below.
Refer to the actual "Safety Manual" for details.

When automatic operation of the robot is performed using multiple control devices
(GOT, programmable controller, push-button switch), the interlocking of operation
rights of the devices, etc. must be designed by the customer.

Use the robot within the environment given in the specifications. Failure to do so
could lead to a drop or reliability or faults. (Temperature, humidity, atmosphere,
noise environment, etc.)

Transport the robot with the designated transportation posture. Transporting the
robot in a non-designated posture could lead to personal injuries or faults from
dropping.

Always use the robot installed on a secure table. Use in an instable posture could
lead to positional deviation and vibration.

Wire the cable as far away from noise sources as possible. If placed near a noise
source, positional deviation or malfunction could occur.

Do not apply excessive force on the connector or excessively bend the cable.
Failure to observe this could lead to contact defects or wire breakage.

Make sure that the workpiece weight, including the hand, does not exceed the
rated load or tolerable torque.
Exceeding these values could lead to errors or faults.

Securely install the hand and tool, and securely grasp the workpiece. Failure to
observe this could lead to personal injuries or damage if the object comes off or
flies off during operation.

Securely ground the robot and controller. Failure to observe this could lead to
malfunctioning by noise or to electric shock accidents.

Indicate the operation state during robot operation. Failure to indicate the state
could lead to operators approaching the robot or to incorrect operation.

When carrying out teaching work in the robot's movement range, always secure
the priority right for the robot control. Failure to observe this could lead to personal
injuries or damage if the robot is started with external commands.

Keep the jog speed as low as possible, and always watch the robot. Failure to do
so could lead to interference with the workpiece or peripheral devices.

After editing the program, always confirm the operation with step operation before
starting automatic operation. Failure to do so could lead to interference with
peripheral devices because of programming mistakes, etc.

Make sure that if the safety fence entrance door is opened during automatic
operation, the door is locked or that the robot will automatically stop. Failure to do
so could lead to personal injuries.

Never carry out modifications based on personal judgments, or use non-
designated maintenance parts.
Failure to observe this could lead to faults or failures.

When the robot arm has to be moved by hand from an external area, do not place
hands or fingers in the openings. Failure to observe this could lead to hands or
fingers catching depending on the posture.

 DANGER

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING

 WARNING

 CAUTION

 WARNING

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING
-4 Safety Precautions

 1Before starting use
Do not stop the robot or apply emergency stop by turning the robot controller's
main power OFF.
If the robot controller main power is turned OFF during automatic operation, the
robot accuracy could be adversely affected.

Do not turn off the main power to the robot controller while rewriting the internal
information of the robot controller such as the program or parameters. If the main
power to the robot controller is turned off while in automatic operation or rewriting
the program or parameters, the internal information of the robot controller may be
damaged.

Do not connect the Handy GOT when using the GOT direct connection function of
this product. Failure to observe this may result in property damage or bodily injury
because the Handy GOT can automatically operate the robot regardless of
whether the operation rights are enabled or not.

Do not connect the Handy GOT to a programmable controller when using an iQ
Platform compatible product with the CR800-R/Q series. Failure to observe this
may result in property damage or bodily injury because the Handy GOT can auto-
matically operate the robot regardless of whether the operation rights are enabled
or not.

Do not remove the SSCNET III cable while power is supplied to the multiple CPU
system or the servo amplifier. Do not look directly at light emitted from the tip of
SSCNET III connectors or SSCNET III cables of the Motion CPU or the servo
amplifier. Eye discomfort may be felt if exposed to the light. (Reference: SSCNET
III employs a Class 1 or equivalent light source as specified in JIS C 6802 and
IEC60825-1 (domestic standards in Japan).)

Do not remove the SSCNET III cable while power is supplied to the controller. Do
not look directly at light emitted from the tip of SSCNET III connectors or SSCNET
III cables. Eye discomfort may be felt if exposed to the light. (Reference: SSCNET
III employs a Class 1 or equivalent light source as specified in JIS C 6802 and
IEC60825-1 (domestic standards in Japan).)

Attach the cap to the SSCNET III connector after disconnecting the SSCNET III
cable. If the cap is not attached, dirt or dust may adhere to the connector pins,
resulting in deterioration connector properties, and leading to malfunction.

Make sure there are no mistakes in the wiring. Connecting differently to the way
specified in the manual can result in failures, such as the emergency stop not
being released. In order to prevent from occurring, please be sure to check that all
functions (such as the teaching box emergency stop, customer emergency stop,
and door switch) are working properly after the wiring setup is completed

Use the network equipments (personal computer, USB hub, LAN hub, etc)
confirmed by manufacturer. The thing unsuitable for the FA environment (related
with conformity, temperature or noise) exists in the equipments connected to USB.
When using network equipment, measures against the noise, such as measures
against EMI and the addition of the ferrite core, may be necessary. Please fully
confirm the operation by customer. Guarantee and maintenance of the equipment
on the market (usual office automation equipment) cannot be performed.

 CAUTION

 CAUTION

 CAUTION

 DANGER

 DANGER

 DANGER

 DANGER

 CAUTION

 CAUTION
 Safety Precautions 1-5

1

1Before starting use
To maintain the security (confidentiality, integrity, and availability) of the robot and
the system against unauthorized access, DoS*1 attacks, computer viruses, and
other cyberattacks from unreliable networks and devices via network, take
appropriate measures such as firewalls, virtual private networks (VPNs), and
antivirus solutions.
Mitsubishi Electric shall have no responsibility or liability for any problems
involving robot trouble and system trouble by unauthorized access, DoS attacks,
computer viruses, and other cyberattacks.
*1 DoS: A denial-of-service (DoS) attack disrupts services by overloading systems
or exploiting vulnerabilities, resulting in a denial-of-service (DoS) state.

 CAUTION
-6 Safety Precautions

 2Explanation of functions
2 Explanation of functions
2.1 Teaching pendant (T/B) functions

This chapter explains the functions of R32TB (optional).

Fig.2-1:General-view

11)

14)
13)

12)

9)

5)
6)
7)

15)

16)

20)

5)
6)
8)

18)

19)

10)

17)

1)

4)

3)

2)

1) [EMG. STOP] switch The robot servo turns OFF and the operation stops immediately.
2) [Enable/Disable] switch This switch changes the T/B key operation between enable and disable.
3) [Enable] switch When the [Enable/Disable] switch "2)" is enabled, and this key is released

or pressed with force, the servo will turn OFF, and the operating robot will
stop immediately.
For CR800 series controller software version D1 or later, keep this switch
lightly pressed down when using step operation, regardless of whether
you are commanding the robot to move or not.

4) LCD display panel The robot status and various menus are displayed.
5) Status display lamp............. Display the state of the robot or T/B.
6) [F1], [F2], [F3], [F4] Execute the function corresponding to each function currently displayed

on LCD.
7) [FUNCTION]........................ Change the function display of LCD.
8) [STOP] key.......................... This stops the program and decelerates the robot to a stop.
9) [OVRD↑][OVRD↓] key Change moving speed. Speed goes up by [OVRD↑] key. Speed goes

down by [OVRD↓] key
10) JOG operation key Move the robot according to jog mode. And, input the numerical value.
11) [SERVO] key Press this key with holding [Enable] switch lightly, then servo power will

turn on.
12) [MONITOR] key................. It becomes monitor mode and display the monitor menu.
13) [JOG] key It becomes jog mode and display the jog operation.
14) [HAND] key It becomes hand mode and display the hand operation.
15) [CHAR] key This changes the edit screen, and changes between numbers and

alphabetic characters.
16) [RESET] key...................... This resets the error. The program reset will execute, if this key and the

EXE key are pressed.
17) [↑][↓][←][→] key............. Moves the cursor each direction.
18) [CLEAR] key...................... Erase the one character on the cursor position.
19) [EXE] key Input operation is fixed. And, while pressing this key, the robot moves

when direct mode.
20) Number/Character key...... Erase the one character on the cursor position. And, inputs the number or

character
 Teaching pendant (T/B) functions 2-7

2

2Explanation of functions
2.1.1 Operation rights
Only one device is allowed to operate the controller (i.e., send commands for operation and servo on, etc.)
at the same time, even if several devices, such as T/Bs or PCs, are connected to the controller.This limited
device "has the operation rights".
Operations that start the robot, such as program start and error reset, and operations that can cause starting
require the operation rights. Conversely, operation that stop the robot, such as stopping and servo OFF, can
be used without the operation rights for safety purposes.

Table 2-1:Relation of setting switches and operation rights ○ : Has operation rights, X: Does not have operation rights

Table 2-2:Operations requiring operation rights Operation item: ○ =Requires operation rights, X= Does not require operation rights

Setting switch

T/B [ENABLE/DISBLE] DISABLE Note1)

Note1) In "AUTOMATIC" mode, the T/B has the operation rights while displaying the <OPERATION> screen. (The T/
B’s status display lamp [ENABLE] blinks)

ENABLE

Controller mode
(mode selector switch) AUTOMATIC MANUAL AUTOMATIC MANUAL

Operation rights T / B X X X Note2)

Note2) If the controller mode is set to "AUTOMATIC" when the T/B is set to "ENABLE", the error 5000 will occur.

○

Controller operation panel ○ Note3)

Note3) When the "operation right input signal (IOENA)" is input from an external device, the external signal has the
operation rights, and the personal computer's operation rights are disabled.

X X Note2) X

Personal computer X X Note2) X

External signal ○ Note3) X X Note2) X

Class Operation
rights Operation

Operation
Note1)

○ Servo ON

X Servo OFF

○ Program start. Starting also by operation of T/B other than the controller operation panel is possible.

X Program stop/cycle stop

○ Slot initialization (program reset)

X Error reset

○ Override change. Note this is always possible from the T/B.

X Override read

○ Program No. change

X Program No./line No. read

Input/output
signal Note2)

X Input/output signal read

X Output signal write

○ Dedicated input start/reset/servo ON/brake ON/OFF/manual mode changeover/general-purpose
output reset/program No. designation/line No. designation/override designation

X Dedicated input stop/servo OFF/continuous cycle/ operation rights input signal/ program No.output
request/line No. output request/override output request/error No. request, numeric input

X Hand input/output signal read

○ Hand output signal write

Program
editing Note3)

X Line registration/read/call; Position addition/correction/read; Variable write/read

○ Step feed/return, execution

X Step up/down

○ Step jump, direct execution, jog

File operation X Program list read/protection setting/copy/delete/rename/ initialization

Maintenance
operation

X Parameter read, clock setting/read, operation time read, alarm history read

○ Origin setting, parameter change
-8 Teaching pendant (T/B) functions

 2Explanation of functions
2.1.2 Handling the T/B
Installing and removing the T/B, with turning off the controller power. If T/B is installed and removed in the
state of control source ON, emergency stop alarm will be occurred.
However, it allows you to remove the T/B from the controller without occurrence of alarm by pulling out the
T/B connector within five seconds since the 3-position enable switch of the T/B being pulled up lightly (in the
position 2) was released. Note1)

Note1) When the CR860-D/R/Q controller is used, you may not be able to remove the T/B without generat-
ing an emergency stop alarm depending on how the external emergency stop button is wired. For wiring
examples, refer to the "Standard Specifications Manual" (BFP-A3779).

Please do not pull the cable of T/B strongly or do not bend it too much.
It becomes the breaking of a wire of the cable and the cause of breakage of the
connector. Please installing and removing so that stress does not start the
cable with the connector itself.

<CR800-D/R/Q>

Note1) To operate the robot on the <operation panel> of the T/B, the operating rights depend on the controller mode as
shown below.
• "MANUAL": Enable the operation rights by pressing [TB ENABLE] of the T/B.
• "AUTOMATIC": The operating rights are automatically transferred to the T/B without pressing [TB ENABLE] of
the T/B when the <operation panel> screen is displayed. (The T/B's status display lamp [ENABLE] blinks.)

Note2) While the <operation panel> screen is displayed on the T/B, operation using the [MONITOR] key is not
possible.

Note3) When one device is being used for editing on-line, editing from other devices is not possible.

 CAUTION

A

Lock lever

B

TB connector

Teaching penadnt (T/B)

T/B connection connector

Details of the A section

When removing the connector for T/B
connection, use lock release (state
which raised the lock lever to the up
side), make the case of the B section
slide to the front, and remove and pull
up out the latch.
 Teaching pendant (T/B) functions 2-9

2

2Explanation of functions
<CR860-D/R/Q>

Fig.2-2:Installing and removing the T/B

(1) Installing the T/B
Explain the installation method of T/B below.

1) Check that the power supply of the robot controller is OFF.
2) Refer to Fig. 2-2, connects T/B connector to the robot controller. Use as the upper surface the lock

lever, and push in until there is sound.

The installation of T/B is finished.

(2) Removing the T/B
Explain the removing method of T/B below.

*In MANUAL mode
1) Check that the power supply of the robot controller is OFF.
2) Refer to Fig. 2-2, raise up the lock lever in the connector upper part, and pull up the connector. Please

install the dummy connector, if you use the robot, without connecting T/B.
The removing of T/B is finished.

*In AUTOMATIC mode
1) Pull up lightly (in the position 2) the 3-position enable switch of the T/B.
2) Pull out the T/B connector within five seconds while 1). Refer to Fig. 2-2, raise up the lock lever in the

connector upper part, and pull up the connector.
Please install the dummy connector, if you use the robot, without connecting T/B.

The removing of T/B is finished.

2.2 Functions Related to Movement and Control
This controller has the following characteristic functions.

Function Explanation Explanation page
Optimum speed control This function prevents over-speed errors as much as possible by limiting

the speed while the robot is tracking a path, if there are postures of the
robot that require the speed to be limited while moving between two
points. However, the speed of the hand tip of the robot will not be
constant if this function is enabled.

Page 334, "Spd (Speed)"

Details of section A

Lift the lock lever, and
hold the connector to
pull it out.

Teaching penadnt (T/B)

T/B connection
connector

A T/B
-10 Functions Related to Movement and Control

 2Explanation of functions
Optimum acceleration/
deceleration control

This function automatically determines the optimum acceleration/
deceleration time when the robot starts to move or stops, according to the
weight and center of gravity settings of the hand, and the presence of a
workpiece. The cycle time improves normally, although the cycle time
decreases by the condition..

Page 306, "Oadl (Optimal
Acceleration)",
Page 275, "Loadset (Load Set)"

XYZ compliance With this function, it is possible to control the robot in a pliable manner
based on feedback data from the servo. This function is particularly
effective for fitting or placing workpieces. Teaching along the robot's
orthogonal coordinate system is possible. However, depending on the
workpiece conditions, there are cases where this function may not be
used.

Page 198, "Cmp Tool (Compliance
Tool)"

Impact Detection The robot stops immediately if the robot's tool or arm interferes with a
peripheral device, minimizing damage.
This function can be activated during automatic operation as well as
during jog operation.
Note) Please note that this function cannot be used together with the

multi-mechanism control function.

Page 205, "ColChk (Col Check)"
Refer to "COL" parameter in Page
492, "5 Functions set with
parameters".

Interference avoidance
function

This function is used with the CR800-R/Q series controller. The robot is
moved while checking for interference between two or three robots using
direct communication between the robot CPUs.
Robot damage can be reduced by predicting interference between robots
and stopping the movement during jog operation or automatic operation.
When interference is predicted, the robot movement will stop. The robot
can be programmed to generate an alarm or to restore operation.

Refer to Page 578, "5.24
Interference avoidance function".

Maintenance Forecast The maintenance forecast function forecasts the robot's battery, belt and
grease maintenance information based on the robot's operating status.
This function makes it possible to check maintenance information using
the optional Personal Computer Support software.
Note) Please note that this function cannot be used together with the

multi-mechanism control function.

Use optional Personal Computer
Support software.

Position Restoration
Support

The position restoration support function calculates the correction values
of OP data, tools and the robot base by only correcting a maximum of
several 10 points if a deviation in the joint axis, motor replacement, hand
deformation or a deviation in the robot base occurs, and corrects position
deviation. This function is implemented by optional Personal Computer
Support software.

Use optional Personal Computer
Support software.

Continuous path
control

This function is used to operate the robot between multiple positions
continuously without acceleration or deceleration. This function is
effective to improvement of the cycle time.

Page 112, "(4) Continuous
movement",
Page 202, "Cnt (Continuous)"

Multitask program
operation

With this function, it is possible to execute programs concurrently by
grouping between programs for the robot movement, programs for
communication with external devices, etc. It is effective to shorten input/
output processing. In addition, it is possible to construct a PLC-less
system by creating a program for controlling peripheral jigs.

Refer to X*** instructions such as
Page 134, "4.2.1 What is
multitasking?", Page 351, "XRun (X
Run)".

Program constant
execution function

With this function, it is possible to execute a program all the time after the
controller's power is turned on. This function is effective when using the
multitask functions to make the robot program serve as a PLC.

Refer to "SLTn" parameter start
attribute (ALWAYS) in Page 492, "5
Functions set with parameters".

Additional axis control With this function, it is possible to control up to two axes as additional
axes of the robot. Since the positions of these additional axes are stored
in the robot's teaching data as well, it is possible to perform completely
synchronous control. In addition, arc interpolation while moving additional
axes (travelling axes) is also possible.

Separate manual "ADDITIONAL
AXIS FUNCTION".

Multi-mechanism
control

With this function, it is possible to control up to two (excluding the
standard robots) robots (user mechanism) driven by servo motors,
besides the standard robots.

Separate manual "ADDITIONAL
AXIS FUNCTION".

External device
communication
function

The following methods are available for communicating with the external
devices
For controlling the controller and for interlock within a program

1) Via input/output signals
 (CR800-R/Q: PLC link input/output: 8192/8192 max.)
 (CR800-D: Parallel input/output: 256/256 max.)

2)As a data link with an external device (*CR800-D only)
3)Communication via Ethernet
[Reference]The data link refers to a given function in order to

exchange data, for instance amount of compensation, with
external devices (e.g., vision sensors).

Refer to Page 391, "M_In/M_Inb/
M_In8/M_Inw/M_In16/M_In32",
Page 402, "M_Out/M_Outb/M_Out8/
M_Outw/M_Out16/M_Out32".

Function Explanation Explanation page
 Functions Related to Movement and Control 2-11

2

2Explanation of functions
Interrupt monitoring
function

With this function, it is possible to monitor signals, etc. during program
operation, and pause the current processing in order to execute an
interrupt routine if certain conditions are met. It is effective for monitoring
that workpieces are not dropped during transport.

Page 212, " Def Act (Define act)",
Page 183, " Act (Act)"

Inter-program jump
function

With this function, it is possible to call a program from within another
program using the CallP instruction.

Page 188, " CallP (Call P)"

Pallet calculation
function

This function calculates the positions of workpieces arranged in the grid
and glass circuit boards in the cassette. It helps to reduce the required
teaching amount. The positions can be given in row-by-column format,
single row format, or arc format.

Page 118, "4.1.2 Pallet operation",
Page 226, " Def Plt (Define
pallet)",Page 314, " Plt (Pallet)"

User-defined area
function

With this function, it is possible to specify an arbitrary space consisting of
up to 32 areas, monitor whether the robot's hand tip is within these areas
in real time, output the status to an external device, and check the status
with a program, or use it to generate an error. Moreover, two functions
(Zone and Zone2) that have a similar function are available for use in a
robot program.

Page 531, "5.8 About user-defined
area", Page 417, "M_Uar", Page
418, "M_Uar32".

Page 489, "Zone",
Page 490, "Zone 2"
Page 491, "Zone3"

JOINT movement
range
XYZ operation range
Free plane limit

It is possible to restrict the robot movement range in the following three
ways
JOINT movement range:
It is possible to restrict the movement range of each axis.
XYZ operation range:
It is possible to restrict the movement range using the robot's XYZ
coordinate system.
Free plane limit:
It is possible to define an arbitrary plane and restrict the movement range
of the robot to be only in front of or only behind the plane.

Refer to "MEJAR" and "MEPAR"
parameter in Page 492, "5 Functions
set with parameters"

Refer to Page 537, "5.9 Free plane
limit"

Function Explanation Explanation page
-12 Functions Related to Movement and Control

 2Explanation of functions
2.3 Robot type resetting
If the type information is lost by the ablation of the battery etc., the errors (H1600: Mechanism un-
setting. etc.) occur, and the operation becomes impossible.
In this case, it can return to the status at factory shipping by the following type resetting operations.

Because it returns to the status at factory shipping by this operation, so the
parameter, the program, and various log data are eliminated.
Therefore, when the error (H1600) has not occurred, don't carry out this operation.
The deleted data can be restored using the restore function if batch backup data of
RT ToolBox3 (option) is saved.

<PARAMETER> NAME(MECHRST)
 ELE()
 DATA
(　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(MECHRST)
 ELE()
 DATA
(　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> (MECHRST) ()
 CLEAR

CLOSE 123

<PARAMETER> NAME(MECHRST)
 ELE()
 DATA
(　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

The machine reset operation can be performed from the teaching box or RT ToolBox3.
The method for resetting the robot type by teaching pendant is shown below.

Enter the parameter name [M], [E], [C], [H], [R], [S], [T]
Input [EXE]

Current setting is displayed.

Setting the data [F1] Delete the current data [CLEAR]
Enter the data [C], [L], [E], [A], [R]
Input [EXE]

2) Turn the controller power ON again.

1) Set "CLEAR" to the parameter MECHRST.

 CAUTION
 Robot type resetting 2-13

2

2Explanation of functions
2.4 Robot CPU status indicator LEDs
2.4.1 R-type CPU unit (R16RTCPU) status indicators

No. Name Status Description

<1> READY LED (green) OFF While the power is off, during initialization immediately after
power-on (approx. 30s), and when hardware error occurs

Flashing During initialization (while system software is starting up)

ON During normal operation (after system software has started up)

<2> ERROR LED (red) OFF No error/hardware error

ON/flashing Error occurring

<3> Dot-matrix display H-1 When the power is on or immediately after reset
If this is displayed for more than a few seconds, the product
may be faulty.

00 to 99 During hardware boot/OS startup

i19 to i00 During system software startup

E00 to E60 System error
If the error does not clear even after a power reset, the product
may be faulty.

Rdy Ready for operation

Run Program running

Stp Program paused

AL
H** **
L** **
C** **

Error occurring
"AL" will flash three times first, then a 4-digit error number will
flash. The error number will be split into two parts. The error lev-
els "H", "L", or "C" and the upper two digits of the error number
will flash first, followed by the lower two digits of the error num-
ber.

<3>

<1>
<2>
-14 Robot CPU status indicator LEDs

 2Explanation of functions
2.4.2 Q-type CPU unit (Q172DSRCPU) status indicators

No. Name Status Description

<1> 7-segment LED display b00 to o99 Immediately after power-on or reset and during hardware boot/
OS initialization (approx. 10s).
If this is displayed for one minute or more, the product may be
faulty.

qrw, qin, rin Initializing PLC CPU and robot CPU
If this is displayed for one minute or more, the product may be
faulty.

i24 to i00
8.8.8.

During system software startup
If this is displayed for one minute or more, the product may be
faulty.

Rdy Ready for operation

Run Program running

Stp Program paused

AL
H** **
L** **
C** **

Error occurring
"AL" will flash three times first, then a 4-digit error number will
flash. The error number will be split into two parts. The error
levels "H", "L", or "C" and the upper two digits of the error
number will flash first, followed by the lower two digits of the
error number.

The last dot flashing indicates normal operation

Three solid dots indicate that the watchdog error has occurred.
Hardware/software error
If the error still occurs even after a power reset, the product may
be faulty.

Q172DSRCPU

<1>
 Robot CPU status indicator LEDs 2-15

2

2Explanation of functions
2.5 Operation panel (O/P) functions (CR860-D/R/Q only)
2.5.1 Explanation of the operation panel

Fig.2-3:Part names of the operation panel (CR860 controller)

1) Display panel (STATUS.NUMBER)
Displays information such as alarm numbers, program names, and over-
ride values (%). After power-on, it takes approximately one minute for
the display panel to turn on

2) Display change button (CHNG DISP)
Changes the contents displayed on the display panel in the following
order: override → line number → program name → user information →
manufacturer information.

3) UP/DOWN button....................Moves the contents displayed on the display panel up or down.
4) POWER lamp..........................Indicates the main power (primary power supply) status.

• ON: Main power (primary power supply) ON
• OFF: Main power (primary power supply) OFF

5) Emergency stop switch (EMG.STOP)
Emergency stop switch (EMG.STOP)

6) Start button (START)...............Runs the program to operate the robot. The program runs continuously.
7) SVO.ON button.......................Turns on the servo power supply. (Servo ON)
8) Reset button (RESET)............Reset button (RESET)
9) Mode selector switch (MODE)

Mode selector switch (MODE)
• AUTOMATIC: Operations can be performed from the operation panel
or external device. Operations that require operation rights cannot be
performed from the T/B. (Except automatic program start)
• MANUAL: When the T/B is enabled, operation can only be performed
with the T/B. Operations that require operation rights cannot be per-
formed from the operation panel or external devices.

10) SVO.OFF button...................Turns off the servo power supply. (Servo OFF)
11) End button (END)..................Stops the running program at the last line or moves the program to the

last line.
12) Stop button (STOP)...............Stops the robot operated under the program. The servos will not turn off.
13) T/B connection port (T/B)......When the T/B is not connected to the port, attach a cap or a dummy con-

nector (sold separately) as appropriate for the environment the product
is being used in.

14) PC...Computer connection port. Open the cover and connect the USB cable.
The CR860-R/Q controllers do not support the use of this port.

15) LAN.......................................Ethernet connection port. The CR860-R/Q controllers do not support the
use of this port.

4)

5)
1)

2) 3)

6)7)
9)

10)
13) 14)

15)

11)
12)

8)
-16 Operation panel (O/P) functions (CR860-D/R/Q only)

 2Explanation of functions
2.5.2 Explanation of the STATUS NUMBER (display panel)
(1) Changing the display on the STATUS NUMBER (display panel)

Changing the display on the STATUS NUMBER (display panel)

Override

Line number

Program name

[↓DOWN] [↑UP]

[CHNG DISP]

User
message*1)

Manufacturer
message

Serial number

Software version

In-panel temperature

Mechanism name

Operation
rights

IP address

User information

*1) The user message displays the string (up to
32 alphanumeric characters) set in the parameter "USERMSG".
This can be used to display the name or version
of the application program used.

Manufacturer
information

[↓DOWN]
[↑UP]

Operation panel

External I/O signal

Teaching pendant

No operation rights
 Operation panel (O/P) functions (CR860-D/R/Q only) 2-17

2

2Explanation of functions
Table 2-3:Contents displayed on the display panel
Display Display example Description

Override O.100 The current override value is displayed.

Program name P.1234 The name of the program set for slot 1 is displayed.
Note that "DMODE" is displayed while the SQ DIRECT function is being
executed.
* The name is not displayed when five of more characters are used in the
program name. If a program with five of more characters in its name is
selected from the T/B, RT ToolBox3, etc., "p.- - - -" is displayed. If no pro-
gram is set for slot 1, "p.0000" is displayed.

Line number 12345 The line number of the currently selected program is displayed.

User informa-
tion

User mes-
sage

No Message A user message is displayed. If the user message is six or more charac-
ters long, it is scroll-displayed.
The user message is the string (up to 32 alphanumeric characters) set in
the parameter "USERMSG". Note that " (double quotation marks), ,
(commas), and ; (semicolons) cannot be used in the user message. "\" is
displayed with a backslash. Double-byte characters, half-width katakana
characters, and spaces cannot be used.

Operation
rights

OP The device name that has the operation rights of the controller is dis-
played.
Operation panel: OP
Teaching pendant: TB
External I/O function: IO
No operation rights: - -

IP address 192. 168. 0. 20 The IP address of the controller is scroll-displayed.

Manufac-
turer informa-
tion

Manufac-
turer mes-
sage

COPYRIGHT(C) 2017-
20xx MITSUBISHI
ELECTRIC CORPORA-
TION ALL RIGHTS
RESERVED

A user message is scroll-displayed.

Mechanism
name

RV-35FR-D The model name of the robot is scroll-displayed.

Serial num-
ber

B10050088M The serial number of the controller is scroll-displayed.

Software ver-
sion

Ver.C2g The software version of the controller is scroll-displayed.

In-panel tem-
perature

T.035 The temperature inside the controller is displayed. [unit: °C]
For the CR860-R/D, the temperature inside the robot CPU is displayed.
[unit: °C]

Error number display H.0060 If an error exists, the corresponding error number is displayed flashing.
If more than one error exists, the highest level and latest error number is
displayed. The displayed error number can be changed by pressing the
UP/DOWN button.

Error number display
When the display change button (CHNG DISP) is pressed while the error number is being displayed, the
panel is switched to the standard display (override, line number, program name, user information, manu-
facturer information). The panel returns to the error number display when the display change button
(CHNG DISP) is released. When the display change button (CHNG DISP) is pressed again, the panel
displays the next display status (order: override → line number → program name → user information →
manufacturer information → override).
-18 Operation panel (O/P) functions (CR860-D/R/Q only)

 2Explanation of functions
(2) Display status
The left-most character represents the status of the display.

(3) Robot reset operation
If the robot information is lost due to weak battery, etc., the errors (H1600: Mechanism unsetting, etc.) occur,
and the operation becomes impossible.
In this case, perform the robot reset operation and return the robot to the factory default status.

This operation will set the robot to the factory default status and will erase parame-
ters, programs, and various log data. Do not perform this operation unless an error
(H1600) has occurred. The erased data can be restored using the restore function
if batch backup data has been saved in RT ToolBox3 (option).

Override Program name
Controller in-

panel
temperature

High level
error Low level error Warning

O/P operation
rights Note1)

Note1) When the LED displays the override, program name, or in-panel temperature and the operation
panel has the operation rights, the upper left dot turns on.

Power off the controller, and power on the controller pressing the reset button.

Press the start button to perform the reset processing.
Press the end button to start operation without performing the reset processing.

Power on the controller again.

When no error exists When an error exists

 CAUTION
 Operation panel (O/P) functions (CR860-D/R/Q only) 2-19

3

3Explanation of operation methods
3 Explanation of operation methods
This chapter describes how to operate R32TB (optional).

3.1 Operation of the teaching pendant menu screens
(1) Screen tree

<MENU>

1.FILE/EDIT 2.RUN
3.PARAM.
5.SET/INIT. 6.ENHANCED

CLOSE123

<FILE/EDIT>

1
2
A1
B1

COPY123POSI.EDIT NEW

<NEW PROGRAM>
　 　 　

PROGRAM NAME
()

CLOSE
　

123

<PROGRAM> 1

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

TEACH123DELETEEDIT INSERT ⇒

<POS.> JNT 100% P50
X: ＋0.00
Y:＋0.00 ＋0.00
Z:
L1:

FL1:

Next123TEACHMOVE Prev ⇒

<PROGRAM COPY>

SRC.NAME (1)

DST.NAME ()

CLOSE
　

123

<PROGRAM RENAME>

SRC.NAME (1)

DST.NAME ()

CLOSE123

MELFA CR800-D
RH-3FRH5515-D

COPYRIGHT (C) 2011 MITSUBISHI ELEC
TRIC CORPORATION ALL RIGHTS RESE
RVED

<PROGRAM DELETE>

NAME (1)

CLOSE123

<PROTECT>

NAME (1) protect
COMMAND : OFF

DATE : OFF

CLOSE123DATACMD.

Title screen

Program name input screen

Menu screen

1.File/Edit menu screen

Program editing screen

Position editing screen

Program copy screen

Rename screen

Delete screen

Protect screen

Ａ

⇒

a1

4.ORIGIN/BRK

1363201/20 Rem

Ver. S3

FL2: 0
L2:

0

A:
B:
C:

08-04-24
08-04-24
08-04-24
08-04-24

22490
694
2208
1851

17:20:32
14:56:08
13:05:54
13:05:54

100%

＋0.00
＋0.00

＋0.00

＋0.00
＋0.00

[EXE]

[CLOSE]

[NEW]

[EDIT]

[POSI.]

[COPY]

[RENAME]

[PROECT]

[DELETE]

[CHANGE]

Note 1) For "1. SQ DIRECT" in "6.
ENHANCED", refer to the
"CR800-R/CR800-Q series con-
troller iQ Platform Supporting
Extended Function Instruction
Manual" (BFP-A3528)
-20 Operation of the teaching pendant menu screens

 3Explanation of operation methods
Ｂ ＣＣ Ｄ

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

<CHECK> SLOT 1 1 100%
　
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JumpFWD SLOT ⇒

<TEST RUN>

 PROG.NAME : 1 STEP : 1

 MODE : CONT.

CLOSE 123CSTOP ⇒

<PARAMETER> NAME()
 ELE()
 DATA
 (　　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<ORIGIN/BRAKE>　　 　

 1.ORIGIN 2.BRAKE

CLOSE　 123

<ORIGIN>　　 　

 1.DATA 2.MECH
 3.TOOL 4.ABS
 5.USER

CLOSE　 123

<ORIGIN> DATA
 D:(Z1K85K)
J1:(01ag%4) J2:(F&15K0) J3:(01E27C)
J4:(A&5g%4) J5:(05H&30) J6:(81#DA9)
J7:() J8:()

CLOSE123

<ORIGIN> MECH COMPLETED

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE123

<ORIGIN> TOOL COMPLETED

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE123

Ａ

2.Run menu screen

3.Parameter screen

4.Origin/Brake screen

Check screen

Test run screen

Origin screen

1.Data screen

2.Mechanical stopper screen

3.Tool screen

<PROGRAM SELECTION>

 SELECT THE PROGRAM
 INTO TASK SLOT 1. OK?

Yes No123 ⇒

a1

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG1 00001
 STATUS: RUN MODE: CONT.

CHOOSE 123CYCLE ⇒START RESET

Operation screen

[CHECK]

[TEST
 RUN]

[ORIGIN]

[DATA]

[MECH]

[TOOL]

[Select the program]

[OPERATION]
 Operation of the teaching pendant menu screens 3-21

3

3Explanation of operation methods
Ｂ ＣＣ Ｄ

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

5.Set/Initialize screen

<ORIGIN> ABS

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123

4.ABS screen

3.User screen

<ORIGIN> USER

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123

<BRAKE>

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

2.Brake screen

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<HOURE DATA>

 POWER ON TIME 18 Hr

 BATTERY ACC. 14089 Hr

CLOSE 123

<CLOCK>

 DATE 08-05-07

 TIME 16:04:50

CLOSE 123

<VERSION>

 R/C Ver. R3
 T/B Ver. 1.7

CLOSE 123

1.Initialize screen

2.Operating time screen

3.Clock screen

4.Version screen

E

[ABS]

[USER]

[BRAKE]

[INITIALIZE]

[POWER]

[ClOCK]

[VERSION]
-22 Operation of the teaching pendant menu screens

 3Explanation of operation methods
<BASE SELECT>

 BASE:(1)

CLOSE123TOOL

<TOOL SELECT>

 TOOL : (1)
 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00

CLOSE 123BASE

E

<ENHANCED>
1. SQ DI RECT 2. WORK COORD

CLOSE123

6. ENHANCED 1. SQ DI RECT

<CURRENT> JOINT 100% P1 B1
J1: 0. 00 J5: 0. 00
J2: 0. 00 J6: 0. 00
J3: 90. 00 :
J4: 0. 00 :

JOGTOOLXYZ

3軸直交
Jog scr een [JOG] key

<HAND> ±C : HAND1 ±Z : HAND4
±B : HAND2 ±Y : HAND5
±A : HAND3 ±X : HAND6
76543210 76543210

OUT-900□□□□□□IN-900 □□□□□□

CLOSEHNDALI GNSAFE

Hand scr een [HAND] key

⇒CYLNDR3-XYZ

<WORK COORD. > WORK NUMBER (1)
TEACHI NG POI NT (WO)

X: 0. 00
Y: 0. 00
Z: 0. 00

DEFI NE123TEACH WX WY

2. WORK COORD

<SQ DI RECT> JNT 100% POS. 123
X: ＋128.56 A : ＋180.00
Y: ＋0 .00 B : ＋90.00
Z: ＋845.23 C : －180.00

L1: L2:
FL1: 7 FL2: 0

Next123TEACHMOVE Prev ⇒

CR800-R/CR800-Q
(Note) For the details on the function, refer to the
"CR800-R/CR800-Q series controller iQ Platform
Supporting Extended Function Instruction Manual"
(BFP-A3528).

[SQ
DIRECT]

[WORK
COORD]

Tool select screen [HAND]key long push

Base select screen [HAND]key long push
 Operation of the teaching pendant menu screens 3-23

3

3Explanation of operation methods
(2) Input of the number/character
Each time the [CHARACTER] key is pressed, the number input mode and the character input mode change.
The current input mode is displayed in the center under the screen, and the display of "123" shows that the
number input mode and "ABC" is the character input mode.

1) Input the number
The number ("-" (minus) and "." (decimal point) are included) can be inputted if the key currently
displayed on the lower left of each key is pressed.
Press the [CHARACTER] key, and in the condition that "123" is displayed on the screen lower side,
press the number key.
Ex.) If "51" is inputted into the program name.

2) Input the character
The character is displayed on the lower right of each key. The character can be inputted if the key is
pressed. Press the [CHARACTER] key, and in the condition that "ABC" is displayed on the screen
lower side, press the character key. Whenever the key as which two or more characters are displayed
presses the key, it changes the input character.
Ex.)The [ABC] key : "A" "B" "C" "a" "b" "c"....It repeats.

If it continues and inputs the character currently displayed on the same key, once press the [→] key
and advance the cursor.
Ex.)If it inputs "ABY", push the [ABC], [→], [ABC] twice, [WXYZ] 3 times.

It comes out to input the character which is not displayed on the key. The character currently assigned
to the key is shown below.
a) [’ ()] key............... ’ → (→) → " → ^ → : → ; → ? → ?
b) [@ =] key @→ = → + → - → * → / → < → >
c) [, %] key , → % → # → $ → ! → & → _ → .

3) Delet the character
The character mistaken and inputted will delete the character in the position of the cursor, if the
[CLEAR] key is pressed.
Ex.) If "B" of "ABY" is changed into "M" and it is made "AMY".

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 ()

CLOSE　 123

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 (51)

CLOSE　 123

Input the number [CHARACTER] [5] [1]

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 (ABY)

CLOSE　 ABC

Input the character [CHARACTER] [ABC] [→] [ABC] [ABC] [WXYZ] [WXYZ] [WXYZ]

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 ()

CLOSE　 ABC
-24 Operation of the teaching pendant menu screens

 3Explanation of operation methods
Move the cursor to character"B", and input "M" and "Y" after pressing and deleting the [CLEAR] key.

If the long pushing [CLEAR] key, all the data in the parenthesis can be deleted.

(3) Selecting a menu
A menu can be selected with either of the following two methods.

*Press the number key for the item to be selected.
*Move the cursor to the item to be selected, and press the [EXE] key.

How to select the Management/edit screen ("1. FILE/EDIT") from the <menu> screen with each method is
shown below.

1) Set the controller mode to "MANUAL". Press
the [ENABLE] switch of the T/B to enable the
T/B. (The switch and the ENABLE LED light
up.)

2) Press one of the keys (example, [EXE] key)
while the <TITLE> screen is displayed.
The <MENU> screen will appear.

*Press the number key method

Press the [1] key. The <FILE/EDIT> screen will
appear.

*Use the arrow key method

Press the arrow keys and move the cursor to "1.
FILE/EDIT", and then press the [EXE] key. The
<FILE/EDIT> screen will appear.

The same operations can be used on the other
menu screens.

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 ()

CLOSE　 ABC

Correction of the input character [←] [CLEAR] [MNO] [WXYZ] [WXYZ] [WXYZ]

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 (ABY)

CLOSE　 ABC

MELFA CR800-D
RH-3FRH5515-D

COPYRIGHT (C) 2011 MITSUBISHI ELEC
TRIC CORPORATION ALL RIGHTS RESE
RVED

Ver. S3

Display the MENU screen from the title screen.

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

T/B

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

Move the cursor - set [↑] [↓] [←] [→] + EXE

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒
 Operation of the teaching pendant menu screens 3-25

3

3Explanation of operation methods
Using the T/B
Set the controller mode to "MANUAL". When the controller is set to a mode other than MANUAL mode,
only specific operations (current position display on the JOG screen, changing of override, monitoring)
can be performed.

Function key
There is the menu displayed on the lowest stage of the screen in the white character. These are assigned
to [F1], [F2], [F3], and [F4] key sequentially from the left. The menu currently displayed by pressing the
corresponding function key can be selected.
And, if "=>" is displayed at the right end of the menu, it is shown that there is still the menu other than the
current display, and whenever it presses the [FUNCTION] key, the display menu changes.

3-XYZ

<CURRENT> JOINT 50% M1 TO B1
 J1: 0.00 J5: 0.00
 J2: -0.01 J6: 0.00
 J3: -0.03 :
 J4: 0.00 :

123TOOLXYZ ⇒CYLNDR3-XYZ 3-XYZ

<CURRENT> JOINT 50% M1 TO B1
 J1: 0.00 J5: 0.00
 J2: -0.01 J6: 0.00
 J3: -0.03 :
 J4: 0.00 :

JOGADD.AX ⇒CLOSE

[FUNCTION]
-26 Operation of the teaching pendant menu screens

 3Explanation of operation methods
3.2 Jog Feed (Overview)
Jog feed refers to a mode of operation in which the position of the robot is adjusted manually.
Here, an overview of this operation is given using a vertically articulated robot as an example.
The axes are configured differently depending on the type of robot. Refer to the separate manual "ROBOT
ARM SETUP & MAINTENANCE" for further information regarding the axis configuration of each type of
robot.

3.2.1 Types of jog feed
The following six types of jog feed modes are available: (The illustrations below are of a vertically articulated
6-axis robot.)
Table 3-1:Types of jog feed

Type Operation Explanation

JOINT jog 1) Set the key switch to the [ENABLE]
position.

2) Hold the enable lightly.
3) Press the [SERVO] key. (The servo is

turned on.)
4) Press the [JOG], [F1] key to change to the

JOINT jog mode.
5) Press the key corresponding to each of the

axes from J1 to J6.

In this mode, each of the axes can be adjusted independently.
It is possible to adjust the coordinates of the axes J1 to J6 as
well as the additional axes J7 and J8 independently. Note that
the exact number of axes may be different depending on the
type of robot, however.

The additional axis keys [J1] and [J2] correspond to axes J7
and J8, respectively.

XYZ jog Perform steps 1) to 3) above.
4) Press the function key to change to the

XYZ jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

The axes are adjusted linearly with respect to the robot
coordinate system.
The posture rotates around the X, Y, and Z axes of the robot
coordinate system by pressing the A, B, and C keys, without
changing the actual position of the hand tip. It is necessary to
specify the tool length in advance using the MEXTL parameter.

TOOL jog Perform steps 1) to 3) above.
4) Press the function key to change to the

TOOL jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

Pressing the X, Y, or Z key moves the arm forward/backward,
left/right, or upward/downward while maintaining the direction
of the robot hand relative to the origin position of the tip of the
hand in the Tool coordinate system.
Pressing the A, B, or C key rotates the hand around the X, Y, or
Z axes of the Tool coordinate system and changes the direction
of the hand. The position of the tip of the hand is fixed. The tool
length must be specified correctly in advance using the MEXTL
parameter.
The Tool coordinate system for the tip of the hand depends on
the type of robot.
In the case of vertically articulated robots, the direction from the
mechanical interface plane to the hand tip is +Z.
In the case of horizontally articulated robots, the upward
direction from the mechanical interface plane to the hand tip is
+Z.

3-axis XYZ jog Perform steps 1) to 3) above.
4) Press the function key twice to switch to

the 3-axis XYZ jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,J4,J5,J6.

The axes are adjusted linearly with respect to the robot
coordinate system.
Unlike in the case of XYZ jog, the posture will be the same as
in the case of the J4, J5, and J6 axes JOINT jog feed. While
the position of the hand tip remains fixed, the posture is
interpolated by X, Y, Z, J4, J5, and J6; i.e., a constant posture
is not maintained. It is necessary to specify the tool length in
advance using the MEXTL parameter.

+J1

ｰJ1

+J2
-J2

+J4

-J3

-J4

+J5

-J5

+J3

+J6

-J6

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ

＋Ｂ

－Ｂ

＋Ｃ －Ｃ

+Z

+Y
+X

＋Ａ

＋Ｃ

＋Ｂ

ｰＣ

－Ｂ
－Ａ

＋Ｚ

＋Ｙ
＋Ｘ

+J4

+J5

-J5

+J6

-J6
 Jog Feed (Overview) 3-27

3

3Explanation of operation methods
If the robot's control point comes near a singular point during the operation of TOOL jog, XYZ jog,
CYLINDER jog or WORK jog mode among the types of jog feed listed in Table 3-1, a warning mark is
displayed on the T/B screen together with the sound of buzzer to warn the operator. It is possible to set this
function valid or invalid by parameter MESNGLSW. (Refer to Page 492, "5 Functions set with parameters".)
Please refer to Page 554, "5.17 About the singular point adjacent alarm" for details of this function.

3.2.2 Speed of jog feed
The current speed (%) is displayed on the screen. To change these values, press either the [OVRD↑] /
[OVRD↓] key. The following types of jog feed speed are available.

CYLNDER jog Perform steps 1) to 3) above.
4) Press the function key twice to switch to

the CYLNDER jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

Use this mode when moving the hand in a cylindrical direction
in relation to the origin position of the robot's world coordinate
system.
Adjusting the X-axis moves the hand in the radial direction from
the origin position of the robot's world coordinate system.
Adjusting the Y-axis moves the hand around the J1 axis in the
same way as JOINT jog feed. (Cylindrical movement)
Adjusting the Z-axis moves the hand in the Z direction in the
same way as XYZ jog feed. (Upward/downward movement)
Pressing the A, B, or C key performs the same operation as
XYZ jog feed.
This may be enabled for some horizontally articulated robots.

WORK jog
(WORK jog mode)

Perform steps 1) to 3) above.
4) Press the function key to change to the

WORK jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

It is necessary to set "0 (Work jog mode)" in the parameter
WKnJOGMD (n = 1 to 8) in advance to perform this jog
operation.
The axes are adjusted linearly with respect to the work
coordinate system.
The posture rotates around the X, Y, and Z axes of the work
coordinate system by pressing the A, B, and C keys, without
changing the actual position of the hand tip. It is necessary to
specify the tool length in advance using the MEXTL parameter.
Notes) Work coordinate system:

Set up beforehand.(eight kinds setting is available)
If the work coordinate system is not set up, will move by
the XYZ jog.
Refer to separate manual: "ROBOT ARM SETUP &
MAINTENANCE"

WORK jog
(Ex-T jog mode)

Perform steps 1) to 3) above.
4) Press the function key to change to the

WORK jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

It is necessary to set "1 (Ex-T jog mode)" in the parameter
WKnJOGMD (n = 1 to 8) in advance to perform this jog
operation.
The axes are adjusted linearly with respect to the work
coordinate system.
The posture rotates around the X, Y, and Z axes of the work
coordinate system by pressing the A, B, and C keys, without
changing the actual position of the hand tip.
By pressing the A, B, and C keys, the control point can be
rotated around the X, Y, and Z axes of the same work
coordinates system while changing the actual position of the
hand tip.
It is necessary to specify the tool length in advance using the
MEXTL parameter.
Notes) Work coordinate system:

Set up beforehand.(eight kinds setting is available)
If the work coordinate system is not set up, will move by
the XYZ jog.
Refer to separate manual: "ROBOT ARM SETUP &
MAINTENANCE"

When the work coordinates system is not specified, the XYZ
jog operation is performed by pressing the X, Y, and Z keys.
The rotating operation around the robot origin coordinates
system is performed by pressing the A, B, and C keys.

Type Operation Explanation

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ
＋Ｂ

－Ｂ

＋Ｃ －Ｃ

－Ｙ

+Z

+Y
+X

Work
coordinates

Ｘ

Ｙ

Ｚ

+Z

+Y
+X

Work
coordinates

Ｘ

Ｙ

Ｚ

-28 Jog Feed (Overview)

 3Explanation of operation methods
[OVRD↑] key --- [OVRD↓] key

LOW and HIGH are fixed-dimension feed. In fixed-dimension feed, the robot moves a fixed amount every
time the key is pressed. The amount of movement depends on the individual robot.

Table 3-2: An example of fixed-dimension

LOW HIGH 3% 5% 10% 30% 50% 70% 100%

JOINT jog TOOL, XYZ jog

LOW 0.01 deg. 0.01 mm

HIGH 0.10 deg. 0.10 mm
 Jog Feed (Overview) 3-29

3

3Explanation of operation methods
3.2.3 JOINT jog
Adjusts the coordinates of each axis independently in angle units.

3.2.4 XYZ jog
Adjusts the axis coordinates along the direction of the robot coordinate system.
The X, Y, and Z axis coordinates are adjusted in mm units. The A, B, and C axis coordinates are adjusted in
angle units.

 +J1

ｰJ1

+J2
-J2

+J4

-J3

-J4

+J5

-J5

+J3

+J6

-J6

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ

＋Ｂ

－Ｂ

＋Ｃ －Ｃ
-30 Jog Feed (Overview)

 3Explanation of operation methods
3.2.5 TOOL jog
Adjusts the coordinates of each axes along the direction of the hand tip.
The X, Y, and Z axis coordinates are adjusted in mm units. The A, B, and C axis coordinates are adjusted in
angle units.

3.2.6 3-axis XYZ jog
Adjusts the X, Y, and Z axis coordinates along the direction of the robot coordinate system in the same way
as in XYZ jog feed. The J4, J5 and J6 axes perform the same operation as in JOINT jog feed, but the
posture changes in order to maintain the position of the control point (X, Y and Z values).
The X, Y, and Z axis coordinates are adjusted in mm units. The J4, J5, and J6 axis coordinates are adjusted
in angle units.

+Z +X

+Y

＋C
-C

-A
＋A

＋B

-B

+J4
-J4

+J5

-J5

+J6

-J6

＋X
＋Y

＋Z
 Jog Feed (Overview) 3-31

3

3Explanation of operation methods
3.2.7 CYLNDER jog
Adjusting the X-axis coordinate moves the hand in the radial direction away from the robot's origin.
Adjusting the Y-axis coordinate rotates the arm around the J1 axis. Adjusting the Z-axis coordinate moves
the hand in the Z direction of the robot coordinate system. Adjusting coordinates of the A, B, and C axes
moves the hand in the same way as in XYZ jog feed.
The X and Z axis coordinates are adjusted in mm units. The Y, A, B, and C axis coordinates are adjusted in
angle units.

3.2.8 WORK jog
Adjusts the axis coordinates along the direction of the work coordinate system.
The X, Y, and Z axis coordinates are adjusted in mm units. The A, B, and C axis coordinates are adjusted in
angle units.

＋Z

＋C -C

＋B

-B

＋X

-A

＋A

-Y

＋Y

Work coordinate system:
 Coordinate system squared with the work, the working table, etc.

+Z

+X

+Y

+A

-B

+C-C

-A +B
-32 Jog Feed (Overview)

 3Explanation of operation methods
3.2.9 Switching Tool Conversion Data
Set the tool conversion data you want to use in the MEXTL1 to 16 parameters, and select the number of

the tool you want to use according to the following operation.
1) Set the controller mode to "MANUAL". Press the [ENABLE] switch of the T/B to enable the T/B. (The

switch and the ENABLE LED light up.)

2) Long press the [HAND] key, and display the <TOOL SELECT> screen.
3) If the number key to wish is pressed and the [EXE] key is pressed, tool conversion data will change.

MEXTL1-16 of the parameter corresponds to 1-16 of the number.

4) Press the function key assigned for "CLOSE" and finish.

5) The current tool number (T1-T16) is displayed on the upper right of the <JOG> screen.

To move the robot to the position where teaching was performed while switching
tool conversion data (MEXTL1 to 16 parameters) during the automatic operation
of the program, substitute the M_Tool variable by a tool number when needed,
and operate the robot by switching tool conversion data. Exercise caution as the
robot moves to an unexpected direction if the tool conversion data during teaching
does not match the tool number during operation.

To move the robot while switching tool conversion data during the step operation
of the program, exercise caution as the robot moves to an unexpected direction if
the tool conversion data at the time of teaching does not match the tool number
during step operation.

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

<TOOL SELECT>

 TOOL : (0)
 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00

CLOSE 123BASE

<TOOL SELECT>

 TOOL : (1)
 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00

CLOSE 123BASE

<TOOL SELECT>

 TOOL : (1)
 0.00, 0.00, 280.00, 0.00, 0.00,
 0.00

CLOSE 123BASE

Display of the tool change screen [HAND]

The change of tool conversion data [1] - [16] [EXE]

Completed [F4]

<TOOL SELECT>

 TOOL : (1)
 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00

CLOSE 123BASE

 CAUTION

 CAUTION
 Jog Feed (Overview) 3-33

3

3Explanation of operation methods
3.2.10 Changing the world coordinate (specifies the base coordinate number)
The world coordinate which is the standard of position control of the robot can be changed easily by T/B

operation
In use of the base conversion function (Base instruction), this function is convenient for teaching operations.
Set the base coordinate system to specify as parameter WK1 CORD-WK8CORD previously. (Refer to
"Work jog operation" of "ROBOT ARM SETUP & MAINTENANCE" of separate volume. Refer to Page 492,
"5.1 Movement parameter" of this volume for details of the parameter MK1CODE - MK8CODE also.)

When the world coordinate is changed by this function, although the robot does
not move, the current coordinate value will change.
Confirm that the relation of the position in the program to teach corresponding to
the Base instruction and the base coordinate number which you are using now is
right.
Failure to confirm this could lead to personal injuries or damage if you teach by the
wrong base coordinate number, because the robot does the unexpected motion at
program execution.
Make related the name of the position variable corresponding to the base
coordinate number, and please manage rightly.

Operating procedure is shown below.

1) Set the controller mode to "MANUAL". Press the [ENABLE] switch of the T/B to enable the T/B. (The
switch and the ENABLE LED light up.)

2) Long press the [HAND] key, and display the <BASE SELECT> screen.
If the <TOOL SELECT> screen is displayed, press the function key [F1] corresponding to the "BASE"
under the screen.

Verifying the Tool Number
The current tool number can be checked on the <TOOL SELECT> screen, <JOG> screen, or with the
M_Tool variable.

Related Information
MEXTL, MEXTL1, MEXTL2, MEXTL3, MEXTL4 MEXTL16 parameters
Tool instruction, M_Tool variable
The MEXTL parameter holds tool conversion data at that point. When using the MEXTL1 to 16
parameters, be careful as the MEXTL parameter is overwritten once a tool number is selected.
Execute the Tool instruction to return the tool number to 0.

 CAUTION

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

<BASE SELECT>

 BASE:(0)

CLOSE123TOOL

Display of the <BASE SELECT> screen :

Long press the [HAND] key
-34 Jog Feed (Overview)

 3Explanation of operation methods
3) If the base coordinate number to wish is inputted and the [EXE] key is pressed, the world coordinate
will change.
1 to 8 : Base coordinate number (correspond to parameter WK1CORD - WK8CORD)
0: Return to condition at shipment. (Condition without base conversion)

4) Press the function key corresponding to "CLOSE" and finish.

5) The current tool number (B1-B8) is displayed on the upper right of the jog screen.

<BASE SELECT>

 BASE:(1)

CLOSE123TOOL

The setup of the world coordinate by the base coordinate number [0], [1] to [8], [EXE]

<BASE SELECT>

 BASE:(0)

CLOSE123TOOL

(Example : Change to the base coordinate number 1.)

Completed 　 [F4]

<BASE SELECT>

 BASE:(1)

CLOSE123TOOL
 Jog Feed (Overview) 3-35

3

3Explanation of operation methods
3.2.11 Impact Detection during Jog Operation
 This function can be enabled and disabled with a parameter. If the controller detects an impact, an error
numbered 101n will be generated (the least significant digit, n, is the axis number).
This function can also be enabled during jog operation; initial setting differs depending on the type.

Table 3-3:Impact detection parameters

Parameter Name No. of
elements Description Initial value

Impact
detection
Note1)

Note1) This function cannot be used together with the multi-mechanism control function.

COL Integer 3 Define whether the impact detection function can/cannot be used, and
whether it is enabled/disabled immediately after power ON.
Element 1: The impact detection function can (1)/cannot (0) be used.
Element 2: It is enabled (1)/disabled (0) as the initial state during operation.
Element 3: Enable (1)/disable (0)/NOERR mode (2) during jog operation

The NOERR mode does not issue an error even if impact is detected. It
only turns off the servo. Use the NOERR mode if it is difficult to operate
because of frequently occurring errors when an impact is detected.
The specification depends on the settings for jog operation (element 3) in
cases other than program operation (including position jump and step
feed).

RH-3FRH/
6FRH/12FRH/
20FRH series:
1,0,1
RV-FR series:
0,0,1
RH-3FRHR
series:
1,1,1

Detection
level during
jog
operation

COLLVLJG Integer 8 Set the detection level (sensitivity) during jog operation (including pause
status) for each joint axis. Unit: %
Make the setting value smaller to increase the detection level (sensitivity).
If an impact error occurs even when no impact occurs during jog operation,
increase a numeric value.
Setting range: 1 to 500 (%)

The setting
varies
depending on
the model.

Hand
condition

HNDDAT0 Real value 7 Set the initial condition of the hand. (Specify with the tool coordinate
system.)
Immediately after power ON, this set value is used during jog operation.
To use the impact detection function during jog operation, set the actual
hand condition before using. If it is not set, erroneous detection may occur.
(Weight, size X, size Y, size Z, center of gravity X, center of gravity Y, center
of gravity Z)
Unit: Kg, mm

The setting
varies
depending on
the model.

Workpiece
condition

WRKDAT0 Real value 7 Set the initial condition of the workpiece. (Specify with the tool coordinate
system.)
Immediately after power ON, this setting value is used during jog operation.
(Weight, size X, size Y, size Z, center of gravity X, center of gravity Y, center
of gravity Z)
Unit: Kg, mm

0.0,0.0,0.0,0.0,0
.0,0.0,0.0
-36 Jog Feed (Overview)

 3Explanation of operation methods
(1) Impact Detection Level Adjustment during Jog Operation
The sensitivity of impact detection during jog operation is set to a lower value. If higher impact sensitivity is
required, adjust the COLLVLJG parameter before use. Also, be sure to set the HNDDAT0 and WRKDAT0
parameters correctly before use. If a jog operation is carried out without setting these parameters correctly,
erroneous detection may occur depending on the posture of the robot.

Precaution for the Impact Detection Function
Enabling the impact detection function does not completely prevent the robot, hand, workpiece and others
from being damaged, which may be caused by interference with peripheral devices. In principle, operate
the robot by paying attention not to interfere with peripheral devices.

Operation after Impact
If the servo is turned ON while the hand and/or arm is interfering with peripheral devices, the impact
detection state occurs again, preventing the servo from being turned ON. If an error persists even after
repeatedly turning ON the servo, release the arm by a brake release operation once and then turn ON the
servo again. Or, release the arm by turning ON the servo according to the Page 71, "3.11 Operation to
Temporarily Reset an Error that Cannot Be Canceled".

Relationship with impact detection for automatic operation
Settings of the impact detection function for jog operation and the impact detection function for automatic
operation are independent. The setting for jog operation is used when the robot is not performing program
operation. Even if the impact detection function for automatic operation is disabled in a program when the
setting for jog operation is enabled, the setting is switched to that for jog operation (impact detection
enabled) when the operation is paused.
 Jog Feed (Overview) 3-37

3

3Explanation of operation methods
3.3 Opening/Closing the Hands
The open/close operation of the hands attached to on the robot is explained below.
The a maximum of six hands are controllable. The hand 6, 5, 4, 3, 2, and 1 are assigned to each key of X, Y,
Z, A, B, and C axis. To open the hand press each the key of "+", to close the hand press each the key of "-".

1) Set the controller mode to "MANUAL". Press the [ENABLE] switch of the T/B to enable the T/B. (The
switch and the ENABLE LED light up.)

2) Press the [HAND] key and display the <HAND> screen. The opening and closing condition of the
hand is shown in OUT-900, and the ON/OFF condition of the hand check input signal is shown in IN-
900. To open the hand1 press the key of [+C], to close the hand1 press the key of [-C].
The other hands can be operated in the same way by the key of X, Y, Z, A, and B axis.

Opening and closing hand 1

Open: Press [+C] key
Close: Press [-C] key

Opening and closing hand 2
Open: Press [+B] key
Close: Press [-B] key

Opening and closing hand 3
Open: Press [+A] key
Close: Press [-A] key

Opening and closing hand 4
Open: Press [+Z] key
Close: Press [-Z] key

Opening and closing hand 5
Open: Press [+Y] key
Close: Press [-Y] key

Opening and closing hand 6
Open: Press [+X] key
Close: Press [-X] key

The I/O signal numbers monitored on the hand screen are from 900 to 907.
As the numbers are not those of the hand I/O signals of the CR860 controller, the
I/O signal status cannot be monitored on the hand screen.
Hand input signal numbers: 764 to 775
Hand output signal numbers: 764 to 771

OUT-900 to OUT-907 7 6 5 4 3 2 1 0

Open/Close Close Open Close Open Close Open Close Open

Hand number 4 3 2 1

IN-900 to IN-907 7 6 5 4 3 2 1 0

Input signal 907 906 905 904 903 902 901 900

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

 <HAND> ±C:HAND1 ±Z:HAND4
_ ±B:HAND2 ±Y:HAND5
_ ±A:HAND3 ±X:HAND6
_ 76543210 76543210
_OUT-900 IN-900
_ SAFE CLOSE ALIGN 123 →

Display the <HAND> screen: [HAND] key

Open Close

 [-C]

 [+C]

 CAUTION
-38 Opening/Closing the Hands

 3Explanation of operation methods
It is possible to mount various tools on the robot's hand area. In the case of pneumatic control, where the
solenoid valve (at double solenoid) is used, two bits of the hand signal is controlled by the open/close
operation of the hand. For more information about the hand signal, please refer to Page 541, "5.12 About
the hand type" and Page 542, "5.13 About default hand status".
 Opening/Closing the Hands 3-39

3

3Explanation of operation methods
3.4 Returning to the Safe Point
The robot can be moved to the safe point specified by the JSAFE parameter.
The safe point return procedure is as follows:

1) Set the controller mode to "MANUAL". Press the [ENABLE] switch of the T/B to enable the T/B. (The
switch and the ENABLE LED light up.)

2) Press down the enabling switch (3 position switch), press the [SERVO] key and carry out servo-on.
3) Press the "HAND" key and display the <hand> screen.

4) Pressing the function key currently assigned to "SAFE" is kept with the enabling switch (3 position
switch) pressed down. While keeping pushing, the robot does safe point return movement and
[START] LED of the controller unit turns on during movement.
If either is detached in the middle of movement, the robot will stop.

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

<HAND> ±C : HAND1 ±Z : HAND4
 ±B : HAND2 ±Y : HAND5
 ±A : HAND3 ±X : HAND6
 76543210 76543210
OUT-900□□□□□□ IN-900□□□□□□

CLOSE HNDALIGNSAFE

Hand screen [HAND]

Execution of safe point return "SAFE"

<HAND> ±C : HAND1 ±Z : HAND4
 ±B : HAND2 ±Y : HAND5
 ±A : HAND3 ±X : HAND6
 76543210 76543210
OUT-900□□□□□□ IN-900□□□□□□

CLOSE HNDALIGNSAFE
-40 Returning to the Safe Point

 3Explanation of operation methods
3.5 Aligning the Hand
The posture of the hand attached to the robot can be aligned in units of 90 degrees.
This feature moves the robot to the position where the A, B and C components of the current position are set
at the closest values in units of 90 degrees.

If tool coordinates are specified with the TOOL command or parameters, the hand will be aligned at the
specified tool coordinates. If not specified, the hand will be aligned at the center of the mechanical interface.
The illustration above shows an example of a vertically articulated robot. "With Tool Coordinate Specifica-
tion" indicates when the tool coordinates are specified at the tip of the hand. For further information on tool
coordinates, refer to Page 528, "5.6 Standard Tool Coordinates".
The hand alignment procedure is as follows:

1) Set the controller mode to "MANUAL". Press the [ENABLE] switch of the T/B to enable the T/B. (The
switch and the ENABLE LED light up.)

2) Press down the enabling switch (3 position switch), press the [SERVO] key and carry out servo-on.
3) Press the "HAND" key and display the <hand> screen.

4) Pressing the function key currently assigned to "ALIGN" is kept with the enabling switch (3 position
switch) pressed down. While keeping pushing, the robot does hand alignment movement and
[START] LED of the controller unit turns on during movement.
If either is detached in the middle of movement, the robot will stop.

Without tool coordinate
specification.

With tool coordinate
specification.

Without tool coordinate
specification.

With tool coordinate
specification.

Control
point

Control
point

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

<HAND> ±C : HAND1 ±Z : HAND4
 ±B : HAND2 ±Y : HAND5
 ±A : HAND3 ±X : HAND6
 76543210 76543210
OUT-900□□□□□□ IN-900□□□□□□

CLOSE HNDALIGNSAFE

Hand screen [HAND]

Execution of hand alignment "ALIGN"

<HAND> ±C : HAND1 ±Z : HAND4
 ±B : HAND2 ±Y : HAND5
 ±A : HAND3 ±X : HAND6
 76543210 76543210
OUT-900□□□□□□ IN-900□□□□□□

CLOSE HNDALIGNSAFE
 Aligning the Hand 3-41

3

3Explanation of operation methods
If any posture components (A, B and C) become 180 degrees as a result of
aligning the hand, the component values can be either +180 degrees or -180
degrees even if the posture is the same. This is due to internal operation errors,
and there is no consistency in which sign is employed. If the position is used as
position data for the pallet definition instruction (Def Plt) and the same posture
component values include both +180 degrees and -180 degrees, the hand will
rotate and move in unexpected ways because the pallet operation calculates
positions by dividing the distance between -180 degrees and +180 degrees. When
using position data whose posture component values include 180 degrees for
pallet definitions, use either + or - consistently for the sign of 180 degrees. Note
that if the position data is used directly as the target position in an interpolation
instruction, the hand moves without problem regardless of the sign.

 CAUTION
-42 Aligning the Hand

 3Explanation of operation methods
3.6 Programming
MELFA-BASIC VI used with this controller allows advanced work to be described with ample operation
functions. The programming methods using the T/B are explained in this section. Refer to Page 180, "4.12
Detailed explanation of command words" in this manual for details on the MELFA-BASIC VI commands and
description methods.

3.6.1 Creating a program
(1) Opening the program edit screen

1) Select "1. FILE/EDIT" screen on the <MENU> screen.
2) Press the function key corresponding to "NEW." Display the program name input screen.

3) Input the program name. Display the command edit screen.
(Open the existing program, if the existing program name is inputted)

Select the function [F3]

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 ()

CLOSE　 ABC

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 (1_)

CLOSE　 ABC

<PROGRAM> 1 100%

TEACH123DELETEEDIT INSERT ⇒

Inputs "1" of program name [1] [EXE]

Edit of the constantly-executed program (ALWAYS attribute)
The program set as the constantly-executed (ALWAYS) attribute with the SLTn parameter once cancels the
attribute of the constantly executed, and edits it. Since the program of the constantly-executed attribute is
always executed, edit of it is impossible. Change ALWAYS into START with the SLTn parameter, re-turn on
the power supply of the controller, and stop the constantly executed.

Open the existing program.
Except how to input the existing program name as mentioned above, it is also possible to press the arrow
key on <FILE/EDIT> screen, and to press the function key currently assigned to "EDIT" in the condition that
the program is chosen.
 Programming 3-43

3

3Explanation of operation methods
(2) Creating a program
The key operation in the case of inputting the program of the following and the three steps is shown.

1 Mov P1
2 Mov P2
3 End

1) Press the function key ([F3]) corresponding to "INSERT" in the command edit screen.

2) Input of step number "1."
Press the [CHARACTER] key, set it in the number input mode and press the [1] key.
The space between step number and command is omissible.

3) Input "Mov."
Press the [CHARACTER] key, set it in the character input mode
Press the [MNO] ("M"),[→], [MNO]("O") 3 times, and [TUV] ("V") 3 times in order.

4) Input "P1."
Press the [SP] ("space"), [PQRS] ("P").
Press the [CHARACTER] key, set it in the number input mode and press the [1] key.
For the instruction word and the data which accompanies the command, the space is required.

Step insertion [F3]

<PROGRAM> 1 100%

TEACH123DELETEEDIT INSERT ⇒

<PROGRAM> 1 100%

 ＿

CLOSE123

<PROGRAM> 1

 1＿

CLOSE123

Step number input [1]

<PROGRAM> 1 100%

 ＿

CLOSE123

<PROGRAM> 1

 1MOV＿

CLOSE123

Input "Mov" [CHARACTER] [MNO] [→] [MNO] [MNO] [MNO] [TUV] [TUV][TUV]

<PROGRAM> 1

 1＿

CLOSE123

<PROGRAM> 1

 1MOV P1＿

CLOSE123

Input "P1" [SP] [PQRS] [CHARACTER] [1]

<PROGRAM> 1

 1MOV＿

CLOSE123
-44 Programming

 3Explanation of operation methods
5) Registration of Step 1
Press the [EXE] key and register the step 1.

6) Hereafter, input Steps 2 and 3 in the same way.

The input of the program was completed above.

<PROGRAM> 1 100%

1Mov P1

TEACH123DELETEEDIT INSERT ⇒

Registration of Step 1 [EXE]

<PROGRAM> 1

 1MOV P1＿

CLOSE123

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 End

TEACH123DELETEEDIT INSERT ⇒

Displaying the previous and next command step
Display the four lines on the screen of T/B. For moving the cursor to the front line, the [↑] key is pressed, for
moving the cursor to the next line, press the [↓] key, and select.

Displaying a specific line
Press the [FUNCTION] key, and change the function display, and press the [F2] key. The display changes to
the JUNP screen. The specification line can be displayed, if the step number to display in the parenthesis is
inputted and the [EXE] key is pressed.

The step number can be omitted when inserting.
It is inserted in the next of the cursor line if it omits.

The capital letter and the small letter are changed automatically.
Display the reserved word and the variable name in MELFA BASIC VI combining the capital letter and the
small letter. Change automatically at the time of confirmation of the line also with the capital letter (with the
small letter) at the time of the input from TB.
 Programming 3-45

3

3Explanation of operation methods
(3) Completion of program creation and saving programs
If the function key which corresponds for "CLOSE" is pressed, the program will be saved and creation will
be finished.
If the "CLOSE" is not indicated, press the [FUNCTION] key, and display it.

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 End

CLOSE123CHANGEDIRECT ⇒

Save & exit of the program [F4]

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

Precautions when saving programs
Make sure to perform the operation above. The edited data will not be updated if the power is turned off
without doing so after modifying a program on the program edit screen. Moreover, as much as possible, try
to save programs not only on the controller but also on a PC in order to make backup copies of your
work.It is recommended to manage programs using RT ToolBox 2 (optional).
-46 Programming

 3Explanation of operation methods
(4) Correcting a program
Before correcting a program, refer to Page 43, "3.6.1 Creating a program" in "(1)Opening the program edit
screen", and open the program edit screen.

An example, change"5 Mov P5" to "5 Mvs P5".

1) Display the step 5
Press the [FUNCTION] key and change the function display. Press the [F2] ("JUMP") key and display
the command edit screen. Press the [5], [EXE] key and display the 5th step.
Step 5 can be called even if it moves the cursor to Step 5 by the [↑] or [↓] key.

2) Correction of the instruction word.
Press the function key corresponding to "EDIT".

3) Press the [→] key 3 times. Move the cursor to "o."
Press the [CLEAR] key twice and delete "ov". Leave "M". Press the [TUV] key 3 times (input "v"), the
[→] key, the [PQRS] key 4 times (input "s"). Then, 5 step is "Mvs P5". Press the [EXE] key, and
register step 5.

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

TEACH123DELETEEDIT INSERT ⇒

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 100%

 STEP (5)

CLOSE123

Call the step 5 [5] [EXE]Call the step 5 [F2]

<PROGRAM> 1 100%

4 Mov P4
5 Mov P5
6 End

TEACH123DELETEEDIT INSERT ⇒

<PROGRAM> 1 Edit

 5 Mov P5＿

CLOSE123

Correct the command [F1]

<PROGRAM> 1 Edit

 5 Mov P5＿

CLOSEABC

<PROGRAM> 1 Edit

 5 Mov P5＿

CLOSEABC

<PROGRAM> 1 Edit

 5 MVS P5＿

CLOSEABC

<PROGRAM> 1 100%

4 Mov P4
5 Mvs P5
6 End

TEACH123DELETEEDIT INSERT ⇒

 [TUV] [TUV] [TUV] [→]
 Correct the command [PQRS] [PQRS] [PQRS] [PQRS]

Correct the command [EXE]
 Programming 3-47

3

3Explanation of operation methods
Select and correct the line.
[↑] by the [↓] key, the cursor can be moved to step 5, and the function key corresponding to "EDIT" can
also be pressed and corrected to it.

Cancel correction.
Correction can be canceled if the function key which corresponded for "CLOSE" is pressed in the middle of
correction.

Correction of the character.
Move the cursor to up to the mistaken character, and input the correct character after pressing the
[CLEAR] key and deleting leftward.

If the program is corrected.
If the program is corrected, certainly save. Function key [F4] which correspond for "CLOSE" are pushed, or
push the [ENABLE] switch on the back of T/B, and disable T/B. Please check that it has been correctly
corrected by step operation about the details.
-48 Programming

 3Explanation of operation methods
(5) Registering the current position data
Teach the position variable which moves the robot to the movement position by jog operation etc., and is
using the position by the program (registration). It is overwritten if already taught (correction). There are the
teaching in the command edit screen and the teaching in the position edit screen.

(a) Teaching in the command edit screen
Call the step which is using the position variable to teach.
The operating procedure in the case of teaching the current position to the below to the position variable
P5 of step 5 "Mvs P5" is shown. Move the robot to the movement position by jog operation etc.
beforehand.
1) Call the step 5

Press the function key corresponding to "JUMP", then step number input screen is displayed. Press
the [5], [EXE] key, move cursor to step 5.
Step 5 can be called even if it moves the cursor to Step 5 by the [↑], [↓] key.

2) Teaching of the current position
Press the function key corresponding to "TEACH" ([F4]), then the confirmation screen is displayed.

3) Press the function key corresponding to "Yes", then the robot's current position data will be taught to
P5, and display will return to the original command edit screen. The teaching can be canceled if the
function key corresponding to "No" is pressed.

The teaching of the current position was completed above.

Call the step 5 [F2] Call the step 5 [5] [EXE]

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 100%

 STEP (5)

CLOSE123

<PROGRAM> 1

P5
 RECORD CURRENT POSITION.
 OK?

No123Yes

Register the current position [F4]

<PROGRAM> 1 100%

4 Mov P4
5 Mov P5
6 End

TEACH123DELETEEDIT INSERT ⇒

Register the current position [F1]

<PROGRAM> 1

P5
 RECORD CURRENT POSITION.
 OK?

No123Yes

<PROGRAM> 1 100%

4 Mov P4
5 Mov P5
6 End

TEACH123DELETEEDIT INSERT ⇒

Only one position variable is the target.
If the read step is using two or more position variables, such as "Mov P1+P2" and "P1=P10", the position
variable of most left-hand side is the target of the teaching.
And, as shown in "Mov p1+P2", the position variable of the capital letter and the small letter is intermingled,
the position variable of the capital letter is target. (The software version of T/B is 1.3 or later) It is the
following page if it teaches other variables. Refer to "(b) Teaching in the position edit screen" as follows.
 Programming 3-49

3

3Explanation of operation methods
(b) Teaching in the position edit screen
The operating procedure in the case of teaching the current position to the below to the position variable
P5 is shown. Move the robot to the movement position by jog operation etc. beforehand.
1) Teaching in the position edit screen

Press the function key ([F2]) corresponding to "CHANGE", and display the position edit screen.

2) Press the function key corresponding to "Prev" and "Next", and call "P5".

3) Teaching of the current position
Press the function key corresponding to "TEACH" ([F2]), then the confirmation screen is displayed.

4) Press the function key corresponding to "Yes", then the robot's current position data will be taught to
P5, and display will return to the original position edit screen. The teaching can be canceled if the
function key corresponding to "No" is pressed.

The teaching of the current position was completed above.

<PROGRAM> 1
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123CHANGEDIRECT ⇒

Display the current position [F2]

<POS.> JNT 100% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.> JNT 100% P5
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Call the position 5 [F3] [F4]

<POS.> JNT 100% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Call the position 5 [F2]

<POS.EDIT> 1

P5
 RECORD CURRENT POSITION.
 OK?

No123Yes

<POS.> JNT 100% P5
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Register the current position [F1]

<POS.> JNT 50% P5
 X:+977.45 A:-180.00
 Y: +0.00 B: +89.85
 Z:+928.24 C:+180.00
 L1: L2:
 FL1: 7 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.EDIT> 1

P5
 RECORD CURRENT POSITION.
 OK?

No123Yes
-50 Programming

 3Explanation of operation methods
Change of the command edit screen and the position edit screen.
If the function key corresponding to "CHANGE" is pressed, the command edit screen and the position edit
screen can be changed each other.
If the "CHANGE" is not displayed on the screen, it is displayed that the [FUNCTION] key is pressed. If "→"
is displayed at the right end of the menu, the state of changing the menu by pressing the [FUNCTION] key is
shown.

The position variable of order can be called one by one by "Prev" (F3) and "Next" (F4). Usually, although it is
the call of only the position variable, change the function key and the call can do the joint variable by the
"NAME" (F2). After calling the joint variable, the joint variable of order can be called one by one by "Prev"
(F3) and If it displays to the head or the last by the joint variable, it will return to the position variable by the
next display.

<PROGRAM> 1
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123CHANGEDIRECT ⇒

<POS.> JNT 100% P5
 X:＋128.56 A:＋180.00
 Y: ＋0.00 B: ＋90.00
 Z:＋845.23 C:－180.00
 L1: L2:
 FL1: 7 FL2: 0

Next123TEACHMOVE Prev ⇒

NextTEACHMOVE Prev NextTEACHMOVE Prev
[FUNCTION] key

DELET NAME CHANGE CLOSE

Position edit screen

Command edit screen

 [F3]

 [F2]
 Programming 3-51

3

3Explanation of operation methods
(6) Deletion of the position variable
The operating procedure which deletes the position variable is shown.
Restrict to the variable which is not used by the program and it can delete.

1) Display the position edit screen.
Press the function key corresponding to "CHANGE", and display the position edit screen.

2) Display the position variable to delete.
Press the function key corresponding to "Prev" and "Next", and display the position variable to delete.

3) Deletion of the position variable
Press the function key corresponding to "DELETE", then the confirmation screen is displayed.
(When "DELETE" is not displayed, it is displayed that the [FUNCTION] key is pressed).

4) Deletion of the position variable
Press the function key corresponding to "Yes", then the position variable is deleted.

Display the position edit screen [F2]

<PROGRAM> 1
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123CHANGEDIRECT ⇒

<POS.> JNT 100% P5
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Call the position 5 [F3] [F4]

<POS.> JNT 50% P55
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.> JNT 100% P5
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P55
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

CHANGE123NAMEDELETE ⇒CLOSE

<POS.EDIT>

P55
 DELETE OK?

No123Yes

Delete the P55

<POS.> JNT 50% P55
 X: A:
 Y: B:
 Z: C:
 L1: L2:
 FL1: 0 FL2: 0

CHANGE123NAMEDELETE ⇒CLOSE

<POS.EDIT>

P55
 DELETE OK?

No123Yes
-52 Programming

 3Explanation of operation methods
(7) Confirming the position data (Position jump)
Move the robot to the registered position data place.
The robot can be moved with the "joint mode" or "XYZ mode" method.
Perform a servo ON operation while lightly holding the deadman switch before moving positions.

Table 3-4:Moving to designated position data

The operation method is shown in the following.
Do this operation by maintaining the servo-on state, carrying out servo-on and holding the enabling switch
(3 position switch) lightly.

1) Display the position variable to make it move beforehand.
Press the function key corresponding to "MOVE", then move the robot to position which currently
displayed variable, only while keeping pressing the key.
If the function key corresponding to "MOVE" is detached, the robot will stop. And, if the enabling
switch (3 position switch) is detached or it presses down still more strongly, servo-off will be carried
out and the robot will stop.

The robot moves by this operation.
When the robot moves, confirm not interfering with peripheral equipment etc.
beforehand.
We recommend you to lower speed at first. And, also important to predicting the
trajectory of the robot by moving mode (the joint, the XYZ) of operation.

Name Movement method

Joint mode The robot moves with joint interpolation to the designated position data place.
This moving method is used when the jog mode is JOINT jog.
The axes are adjusted in the same way as with the Mov instruction.

XYZ mode The robot moves with linear interpolation to the designated position data place. Thus, the robot will
not move if the structure flag for the current position and designated position differ.
This moving method is used when the jog mode is XYZ, 3-axis XYZ, CYLNDER or TOOL jog.
The axes are adjusted in the same way as with the Mvs instruction.

<POS.> JNT 50% P5
 X:+977.45 A:-180.00
 Y: +0.00 B: +89.85
 Z:+928.24 C:+180.00
 L1: L2:
 FL1: 7 FL2: 0

Prev123TEACHMOVE ⇒Next

Display the position edit screen [F1]

 CAUTION
 Programming 3-53

3

3Explanation of operation methods
(8) Correcting the MDI (Manual Data Input)
MDI is the method of inputting the numerical value into each axial element data of position data directly, and
registering into it.
This is a good registration method for registration of the position variable which adds position data and is
used as an amount of relative displacement from a reference position (difference), if it tunes registered
position data finely.

Reference) Position data as an amount of relative displacement
Ex.) In the case of move by joint interpolation to over 50mm from P1 of reference position, the P1 is

registered by teaching. And set "50.00" into Z-axis element, and set "0.00" to the other element
by MDI. Then, executing the Mov P1+P50 is possible.

The operation method in the case of registering P50 of the above-mentioned example by MDI is shown.

1) Display the position edit screen.
Press the function key corresponding to "CHANGE", and display the position edit screen.

2) Input "50.00" into Z-axis element
Press the [↓] key twice and move the cursor to the Z-axis. Press the [CLEAR] key, and delete "+0.00"
currently displayed. Press [5], [0], and the [EXE] key. As for the position variable P50, only the value
of the Z-axis is registered as the 50mm.

Display the position edit screen [F2]

<PROGRAM> 1
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123CHANGEDIRECT ⇒

<POS.> JNT 100% P5
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: 50 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Input 50 [5] [0] [EXE]

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: 50.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Clear the value [↓] [CLEAR]

<POS.> JNT 100% P5
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next
-54 Programming

 3Explanation of operation methods
(9) Executing a Command Directly
Direct execution is the method of executing the input statements instantaneously.
The robot operation can be checked during the progress of editing programs.
The operational procedure for direct execution of the Mov command is shown below.

1) Display the directly execution screen.
Press the function key corresponding to "DIRECT", and display the direct execution screen.

2) Execute the command (after changing any statement if necessary).
To edit the command, press the [→] key to move the cursor to the target point and change it.
To perform the command as is, press the [EXE] key. The command is executed while the [EXE] key is
held pressed.
The execution of the command stops when the [EXE] key is released.

<PROGRAM> 1 Exec

 Mov P2

CLOSE123 ⇒

Display the direct execution screen [F1]

<PROGRAM> 1
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123CHANGEDIRECT ⇒

<PROGRAM> 1 Exec

 Mov P2

CLOSE123 ⇒
 Programming 3-55

3

3Explanation of operation methods
3.7 Debugging
Debugging refers to testing that the created program operates correctly, and to correcting an errors if an
abnormality is found. These can be carried out by using the T/B's debugging function. The debugging
functions that can be used are shown below. Always carry out debugging after creating a program, and
confirm that the program runs without error.

(1) Step feed
Check the operation using the T/B while running the program step by step (step operation).
Before debugging a program, refer to "(1) Opening the program edit screen" on Page 43, "3.6.1 Creating a
program" to display the Program edit screen.
When commanding the robot to move, maintain the servo ON state by lightly pressing down the 3-position
enable switch on the T/B once the servos are turned on.
For CR800 series controller software version D1 or later, keep this switch lightly pressed down when using
step operation, regardless of whether you are commanding the robot to move or not.

1) Execution of step feed
Press the [FUNCTION] key and change the function display. Pressing the [F1] ("FWD") key is kept,
and the robot will start moving.
When the execution of one line is completed, the robot will stop, and the next line will appear on the
screen.
If [F1] ("FWD") is released during this step, the robot will stop. And, detach the enabling switch (3
position switch), or push in still more strongly -- thing servo-off can be carried out and execution can
be stopped.
During execution, the lamp on the controller's [START] switch will light. If execution of the one step is
completed, LED of the [START] switch will go out and LED of the [STOP] switch will turn it on. If the
[F1] key is detached, the cursor of the T/B screen will move to the following step.

Whenever it presses the function key corresponding to "FWD", step to the following step.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG.STOP] switch and immediately stop the
robot.

The robot's locus of movement may change with specified speed.
Especially as for the corner section, short cut distance may change. Therefore,
when beginning automatic operation, moves at low speed at first, and you
should gather speed slowly with being careful of interference with peripheral
equipment.

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

Step feed [F1]

 CAUTION

 CAUTION

About step operation
"Step operation" executes the program line by line. The operation speed is slow, and the robot stops after
each line, so the program and operation position can be confirmed.
During execution, the lamp on the controller's [START] switch will light. Execution of the End command or
the Hlt command will not step feed any more.
-56 Debugging

 3Explanation of operation methods
(2) Step return
The line of a program that has been stopped with step feed or normal operation is returned one line at a time
and executed. This can be used only for the interpolation commands. Note that only up to four lines can be
returned.

1) Execution of step return
If the function key corresponding to "BWD" is pressed, only while keeping pushing, only the one step
will be executed in the return direction of the step.
If the function key is released during this step, the robot will stop. And, release the enabling switch (3
position switch), or push in still more strongly, then the servo power off, and execution can be
stopped.
During execution, the lamp on the controller's [START] switch will light. If execution of the one step is
completed, LED of the [START] switch will go out and LED of the [STOP] switch will turn it on. The
cursor of the T/B screen moves to the step of the next interpolation command in the return direction
of the step.

Whenever it presses the function key corresponding to "BWD", it returns to the front step.

[Supplement] If it does step return after carrying out the step feed of the following program to Step 4 and
step return is further done after returning to P1, it will return to the position at the time of the start which
did step feed.(The position at the time of the start is the position which began to execute Step 1.)

Change of the execution step
The execution step can be changed by cursor movement by the arrow key, and jump operation ("JUMP").
Refer to Page 60, "(4) Step jump".

Immediately stopping the robot during operation
・Press the [EMG.STOP] (emergency stop) switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, reset the alarm, turn the servo ON, and start step operation.

・Release or for cibly press the "enable" switch.
The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, lightly press the "enable" switch, and start step operation.

・Release the [F1] ("FWD") key.
The step execution will be stopped. The servo will not turn OFF.
To resume operation, press the [F1] ("FWD") key.

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

Step return [F4]

開始時の位置

P1 P2

P3 P4Starting position

P1 P2

P3 P4
Program
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4
 :
 :
 Debugging 3-57

3

3Explanation of operation methods
Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG. STOP] switch and immediately stop the
robot.

(3) Step feed in another slot
When checking a multitask program, it is possible to perform step feed in the confirmation screen of the
operation menu, not in the edit screen.

1) Selection of the operation menu
Press the [2] keys in the menu screen and select "2. RUN".

2) Selection of the confirmation screen
Press the [1] keys in the menu screen and select "1. CHECK".
Display the program set as the slot 1. The program name is displayed following the slot number.

 CAUTION

Immediately stopping the robot during operation
・Press the [EMG. STOP] (emergency stop) switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, reset the alarm, turn the servo ON, and start step operation.

・Release or for cibly press the "enable" switch.
The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, lightly press the "enable" switch, and start step operation.

・Release the [F1] ("FWD") key.
The step execution will be stopped. The servo will not turn OFF.
To resume operation, press the [F1] ("FWD") key.

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

Display the run menu screen [2]

<CHECK> SLOT 1 1 50%
　
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JumpFWD SLOT ⇒

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

Display the check menu screen [2]
-58 Debugging

 3Explanation of operation methods
3) Change of the slot
Press the function key ([F3]) corresponding to the "SLOT" will display the slot number specified
screen.

Input the slot number to wish and press the [EXE] key.
Display the inputted program of the slot number. (The following example specifies the slot 2)

4) Execution of step operation
Step feed and step return can be executed like the step operation in the command edit screen.
Only while keeping pressing the function key, execute step feed and step return separately.
If the function key is released during this step, the robot will stop. And, detach the enabling switch (3
position switch), or push in still more strongly -- thing servo-off can be carried out and execution can
be stopped.
During execution, the lamp on the controller's [START] switch will light. If execution of the one step is
completed, LED of the [START] switch will go out and LED of the [STOP] switch will turn it on. If the
[F1] key is detached, the cursor of the T/B screen will move to the following step.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG. STOP] switch and immediately stop the
robot.

<CHECK>　　 　

 SLOT ()

CLOSE　 123

<CHECK> SLOT 1 1 50%
　
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JumpFWD SLOT ⇒

<CHECK>　　 　

 SLOT (2)

CLOSE　 123

<CHECK> SLOT 2 1 50%
　
1 Mov P1
2 Mvs P2
3 Dly 0.5
4 Mvs P1

BWD123JumpFWD SLOT ⇒

<CHECK> SLOT 2 1 50%
　
1 Mov P1
2 Mvs P2
3 Dly 0.5
4 Mvs P1

BWD123JumpFWD SLOT ⇒

<CHECK> SLOT 2 1 50%
　
1 Mov P1
2 Mvs P2
3 Dly 0.5
4 Mvs P1

BWD123JumpFWD SLOT ⇒

 CAUTION

Change of the execution step
The execution step can be changed by cursor movement by the arrow key, and jump operation ("JUMP").
Refer to Page 60, "(4) Step jump".
 Debugging 3-59

3

3Explanation of operation methods
(4) Step jump
It is possible to change the currently displayed step or line.
The operation in the case of doing step operation from Step 5 as an example is shown.

1) Call Step 5.
Press the function key corresponding to "JUMP", and press the [5], [EXE] key. The cursor moves to
Step 5.

Step 5 can be called even if it moves the cursor to Step 5 by the [↑], [↓] key.

2) Execution of step feed
If the function key corresponding to "FWD" is pressed, step feed can be done from Step 5.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG. STOP] switch and immediately stop the
robot.

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 100%

 STEP (5)

CLOSE123

<PROGRAM> 1 50%
　
4 Mov P4
5 Mov P5
6 Mov P6
7 End

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%
　
4 Mov P4
5 Mov P5
6 Mov P6
7 End

BWD123JUMPFWD ⇒

 CAUTION
-60 Debugging

 3Explanation of operation methods
3.8 Automatic operation
3.8.1 Setting the operation speed

The robot operation speed is set with the T/B (teaching pendant) or the O/P (operation panel) of the control-
ler. Note that the setting with the O/P is available only for the CR860-D/R/Q. The actual speed during auto-
matic operation will be:
Operation speed = (Controller or T/B setting value) x (Program setting value)

(1) Operation with the T/B
1) Every time the UP button is pressed, the override increases in the following order: 10 → 20 → 30 →

40 → 50 → 60 → 70 → 80 → 90 → 100%. Every time the DOWN button is pressed, the override
decreases in reverse order.

The following table shows the available robot operation and its operation speed depending on the status of
each setting switch.

Robot operation other than the automatic operation that can be carried out from the T/B includes the jog
operation, step operation, and position jump.

These operations are available when the status of setting switches is as shown below. The robot operates
at the safe operating speed (250 mm/s) or less.

To operate the robot mounted on a travel axis in MANUAL mode, set the
operating speed (composite speed) of the robot including the travel axis so that it
does not exceed the safe speed (250 mm/s).
For details on the speed setting of the travel axis, refer to the "ADDITIONAL AXIS
FUNCTION INSTRUCTION MANUAL".

(2) Operation with the O/P (CR860-D/R/Q only)

1) Press the display change button (CHNG
DISP) of the controller twice to display the
"override" on the display panel (STA-
TUS.NUMBER).

2) Every time the UP button is pressed, the
override increases in the following order:
10 → 20 → 30 → 40 → 50 → 60 → 70 →
80 → 90 → 100%.
Every time the DOWN button is pressed,
the override decreases in reverse order.

Setting switch

Controller Controller mode
(mode selector switch) AUTOMATIC MANUAL

T/B
T/B ENABLE switch

OFF ONEnabling switch
(3-position enable switch)

Robot operation that can be carried out from the T/B Automatic operation (program execution)
Operation speed Program specified speed

(max. 100%)
Safe operating speed
 (250 mm/s) or less

Setting switch

Controller Controller mode
(mode selector switch) MANUAL

T/B
T/B ENABLE switch

ONEnabling switch
(3-position enable switch)

Operation speed Safe operating speed
 (250 mm/s) or less

 CAUTION

 Override display

Override settings
 Automatic operation 3-61

3

3Explanation of operation methods
3.8.2 Starting automatic operation
(1) Operation with the T/B

Operations are carried out from the <OPERATION> screen opened by selecting <MENU> → <RUN>.
This function can be disabled by setting parameter: TBOP.
The <OPERATION> screen is as shown below.

The functions which can be executed from the T/B <OPERATION> screen and the operations which can be
executed while the <OPERATION> is displayed are shown below.

Operations from <OPERATION> screen (Each function key)
<1> Selecting a program..."CHOOSE"
<2> Turning servo ON/OFF......................................."SV. ON” / ”SV. OFF"

(When the controller mode is set to
"AUTOMATIC", the ENABLE switch does not
need to be turned ON.)

<3> Executing automatic operation..........................."START"
<4> Changing operation mode (continuous/cycle)...."CONT./CYCLE"
<5> Resetting a program .."RESET"

Other key operations
<1> Changing the movement speed[OVRD↑] / [OVRD↓] key

Note) When the controller mode is set to "AUTOMATIC", the robot operates at the speed specified
by a user. When it is set to "MANUAL", the robot operates at the safe operating speed (250
mm/s) or less (for operation check). Set the controller to the desired mode.

<2> Turning servo ON...[SERVO] key
(When the controller mode is set to
"AUTOMATIC", the ENABLE switch does not
need to be turned ON.)

<3> Resetting the alarm..[RESET] key

* The robot can be stopped at any time with the [EMG. STOP] switch or [STOP] key.
Operations using the [JOG], [HAND] or [MONITOR] key will be invalid

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG1 00001

 STATUS: RUN MODE: CONT.

CLOSE 123 ⇒SV.ON SV.OFF

CHOOSE 123CYCLE ⇒START RESET

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG1 00001

 STATUS: STOP MODE: CONT.

Note 3)

Explanation of <OPERATION> screen

"START"..................................Starts program execution / restarts from stopped state.
"CONT." / "CYCLE."................Switches over the operation mode
"RESET"Cancels program’s halted state, and executes program reset.

Resets alarm if alarm is occurring.
"CHOOSE"Selects the program to start. Opens the <PROGRAM CHOICE> screen.
"SV. ON" / "SV. OFF" Turns the servo power ON/OFF
"CLOSE".................................Ends the <OPERATION> screen (Ends the operation started from

the T/B.)

Note 1) When the controller mode is "MANUAL", the robot moves at low speed even if the set speed is 100%. (For operation check)
Note 2) When the controller mode is "AUTOMATIC", the T/B's status display lamp [ENABLE] blinks to indicate that the T/B is

enabled. The T/B is disabled when the <OPERATION> screen is ended.
Note 3) The [JOG], [HAND] and [MONITOR] keys are disabled while the <OPERATION> screen is opened.

 Setting speed Controller (drive unit) mode
Note 2)

 Currently selected program name

 Indication of program
execution status
・ RUN
・ READY
・ STOP

Line No. currently being executed

Indication of operation mode
・ CONT.
・ CYCLE

Note 1)
-62 Automatic operation

 3Explanation of operation methods
Before starting automatic operation, always confirm the following items. Starting
automatic operation without confirming these items could lead to property
damage or physical injury.
・ Before initiating the automatic operation, ensure that there are no exposed

persons in the safeguarded space.
・ Always start automatic operation outside the safety protection area (outside the

safety fence).
・ Before starting automatic operation, always confirm that the work details and

selected program match.
・ When the modification of the program is done during the suspension, be sure to

verify the program at least one time before initiating the automatic operation.
・ If a held workpiece or other object may fly out and cause a hazard by the

centrifugal force during automatic operation or by the impact force of an
emergency stop, suitable means must be taken to prevent such hazard.

・ If the robot collides with a workpiece or the peripheral equipment at high speed
due to e.g. a program error, then the workpiece, the peripheral equipment, the
robot arm, and the reduction system of the robot may be considerably
damaged.

 CAUTION
 Automatic operation 3-63

3

3Explanation of operation methods
The methods for starting automatic operation from the T/B are explained in this section.

1) Press the T/B ENABLE switch on the rear side of the teaching box (T/B) to disable the T/B operation
(the T/B ENABLE switch lamp turns off), and set the mode selector switch of the user prepared
controller to "AUTOMATIC".
When the mode selector switch is switched to "AUTOMATIC" while the T/B ENABLE switch is
enabled, the error H5000 "TB Enable key is ON" occurs.

2) Press the [EXE] key while the title screen is displayed. The <MENU> screen appears.

3) Press the [2] key while the <MENU> screen is displayed. The <RUN> screen appears.

4) Press [3] key while the <RUN> screen is displayed. The <OPERATION> screen appears.

Up :DISABLE
Down :ENABLE
 *Lighting

T/B

MELFA CR800-D
RH-3FRH5515-D

COPYRIGHT (C) 2011 MITSUBISHI ELEC
TRIC CORPORATION ALL RIGHTS RESE
RVED

Ver . S3 <MENU>

1.FILE/EDIT 2.RUN
3.PARAM.
5.SET/INIT. 6.ENHANCED

CLOSE123

4.ORIGIN/BRK

MENU screen display [EXE]

CLOSE　 123

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

RUN menu selection [2]

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

CHOOSE 123CYCLE ⇒START RESET

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG1 00001

 STATUS: STOP MODE: CONT.

CLOSE　 123

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

OPERATION selection [3]

ENABLE

lamp flashes

The status display
lamp "ENABLE" on the
front of the T/B blinks.
-64 Automatic operation

 3Explanation of operation methods
5) Set the safe speed by pressing the [OVRD↑] and [OVRD↓] keys.

6) Press the [F4] key ("CHOOSE") while the <OPERATION> screen is displayed. The <PROGRAM
CHOICE> screen appears.

7) Enter the name of the program into the Program Name brackets, and press the [EXE] key.
A new program will be displayed and the screen will return to the <OPERATION> screen.
* Always check that the target program is selected.
* The program cannot be changed when the program execution status is "STOP". Before operation,
press [RESET] (the F3 key), and set the status indication to "READY".

8) When the "SV. ON" function is not displayed, press the [FUNCTION] key to switch the function menu
display.

9) Check that no operators are in the robot operation area before turning on the servo, and press the [F1]
key ("SV. ON"). * The servo can be turned on with the [SERVO] key on the T/B.
* During this operation, you do not need to hold the [Enable] switch.

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CHOOSE 123CYCLE ⇒START RESET

 STATUS: STOP MODE: CONT.

Speed setting [OVRD↑], [OVRD↓] When the speed is changed to 10%

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CHOOSE 123CYCLE ⇒START RESET

 STATUS: STOP MODE: CONT.

10

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG1 00001

CHOOSE 123CYCLE ⇒START RESET

 STATUS: STOP MODE: CONT.

<PROGRAM CHOICE>　　 　

 PROGRAM NAME

 (PRG1)

CLOSE　 123

Program selection [F4] Name of the currently selected program is displayed.

10

<PROGRAM CHOICE>　　 　

 PROGRAM NAME

 (PRG2)

CLOSE　 123

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CHOOSE 123CYCLE ⇒START RESET

 STATUS: STOP MODE: CONT.

Enter the program name and press [EXE] key The figure shows an example of changing program
name to “PRG2”.

10

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CHOOSE 123CYCLE ⇒START RESET

 STATUS: STOP MODE: CONT.

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CLOSE 123 ⇒SV.ON SV.OFF

 STATUS: STOP MODE: CONT.

10 10

Switch the function menu [FUNCTION]

10<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CLOSE 123 ⇒SV.ON SV.OFF

 STATUS: STOP MODE: CONT.

Servo ON [F1]

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CLOSE 123 ⇒SV.ON SV.OFF

 STATUS: STOP MODE: CONT.

10 10
 Automatic operation 3-65

3

3Explanation of operation methods
10) Press the [FUNCTION] key to switch the function menu display.

11) Press the [F1] key ("START"). The check screen appears.

12) Press the [F1] key ("YES"). Automatic operation of the currently selected program will start. The
screen will return to the <OPERATION> screen. The operation mode follows the mode displayed on
the screen.

This completes the starting of automatic operation from the T/B.

(2) Operation with the O/P (CR860-D/R/Q only)

Before starting automatic operation, always check the following items. Failure to
do so may result in property damage or bodily injury.
• No one is in the vicinity of the robot.
• The safety fence is locked and no one can get close to the robot unintentionally.
• There are no unnecessary objects such as tools in the operating range of the
robot.
• Workpieces are positioned correctly.
• Programs can operate correctly using step operation.

When the operation panel is opened with the T/B, no button except the stop
button (STOP) can be pressed with the O/P. To perform operation with the O/P,
switch the T/B screen to a screen other than the operation panel.

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CHOOSE 123CYCLE ⇒START RESET

 STATUS: STOP MODE: CONT.

10

Start [F1]

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CLOSE 123 ⇒SV.ON SV.OFF

 STATUS: STOP MODE: CONT.

10

Start [F1]

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

CHOOSE 123CYCLE ⇒START RESET

 STATUS: STOP MODE: CONT.

<STARTING PROGRAM>

PRG2
 START THE PROGRAM.
 OK?

No123Yes

10

<OPERATION> 100% Auto

 PROGRAM NAME: STEP:
 PRG2 00001

 STATUS: RUN MODE: CONT.

CHOOSE 123CYCLE ⇒START RESET

Yes [F1]

<STARTING PROGRAM>

PRG2
 START THE PROGRAM.
 OK?

No123Yes

Operation mode

 CAUTION

 CAUTION
-66 Automatic operation

 3Explanation of operation methods
1) Check that the [ENABLE] switch of the T/B is
set to "DISABLE".

2) Check that the mode selector switch (MODE) of
the controller is set to "AUTOMATIC".

3) Press the SVO.ON button of the controller to
turn on the servo power. The SVO ON lamp
turns on.

4) Press the start button (START) to start
automatic operation. (continuous operation)
When the end button (END) is pressed during
continuous operation, the operation will stop in
one cycle. The LED flashes during the cycle
stop. When the end button (END) is pressed
during the cycle stop, continuous operation
resumes.

Before starting automatic operation, always check that your desired program
name is selected.

Take special care to the robot movements during automatic operation.
If any abnormalities are found, press the emergency stop switch (EMG.STOP) to
stop the robot immediately.

When starting automatic operation, first operate the robot at low speed, then
gradually increase the speed while being careful of interference with the
peripheral equipment.

Start (continuous operation)

Stop in one cycle

Preparing the controller

Starting automatic operation

T/B disabled

Controller enabled

Servo ON

Servo ON

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

 CAUTION

 CAUTION

 CAUTION
 Automatic operation 3-67

3

3Explanation of operation methods
3.8.3 Stopping
(1) Operation with the T/B

The running program is immediately stopped, and the moving robot is decelerated to a stop.

1) Press the [STOP] key.

(2) Operation with the O/P (CR860-D/R/Q only)

1) Press the stop button (STOP).

3.8.4 Resuming automatic operation from stopped state
(1) Operation with the T/B

The operation method is the same as the start of automatic operation. Please do restart operation from T/B
with reference to Page 62, "3.8.2 Starting automatic operation".

(2) Operation with the O/P (CR860-D/R/Q only)

Before starting automatic operation, always check the following items. Failure to
do so may result in property damage or bodily injury.
• No one is in the vicinity of the robot.
• The safety fence is locked and no one can get close to the robot unintentionally.
• There are no unnecessary objects such as tools in the operating range of the
robot.
• Workpieces are positioned correctly.
• Programs can operate correctly using step operation.

1) Set the [ENABLE] switch of the T/B to
"DISABLE".

2) Set the mode selector switch (MODE) of the
controller to "AUTOMATIC".

3) Press the start button (START) to start
automatic operation. (continuous operation)
Continuous operation and cycle operation will
hold the previous state.

Before restarting automatic operation, always check that your desired program
name is selected.

Do not turn off the power supply of the robot CPU during automatic operation.
The memory in the robot CPU may become abnormal and the program may be
corrupted. Use the emergency stop switch to stop the robot immediately.

Stop [STOP]

Stop

Operation rights not required
The stopping operation is always valid regardless of the operation rights.

 CAUTION

Start (continuous operation)

Restarting automatic operation

Preparing the controller

T/B disabled

Controller enabled

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

 CAUTION

 CAUTION
-68 Automatic operation

 3Explanation of operation methods
Don't turn off the power supply of robot CPU during automatic operation. The
memory in robot CPU may become abnormal and the program may break. Use
the emergency stop, when stopping the robot immediately.

3.8.5 Resetting the program
(1) Operation with the T/B

The program's stopped state is canceled, and the execution line is returned to the head.
1) Set the controller mode to "MANUAL".
2) Set the T/B [ENABLE] switch to "ENABLE".

3) Press the [EXE] key while holding down the
[RESET] key. The execution line will return to
the head, and the program will be reset.

(2) Operation with the O/P (CR860-D/R/Q only)

1) Set the [ENABLE] switch of the T/B to
"DISABLE".

2) Set the mode selector switch (MODE) of the
controller to "AUTOMATIC".

3) Press the display change button (CHNG DISP)
of the controller to display the "program name".

4) Press the reset button (RESET) of the
controller.
The STOP lamp turns off and the paused status
of the program is canceled.

 CAUTION

Program reset [RESET] + [EXE]

Execute of program reset

T/B enable

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

Preparing the controller

T/B disabled

Controller enabled

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

Reset

Resetting the program

Program name display

Valid only while program is stopped
The program cannot be reset while the program is running. Perform the operation while the program is
being paused.
When resetting the program from the operation panel of the controller, display the "program name" on the
display panel (STATUS.NUMBER) first and then perform the reset operation.

The STOP lamp turns off.
When the program is reset, the STOP lamp turns off.
 Automatic operation 3-69

3

3Explanation of operation methods
3.9 Turning the servo ON/OFF
For safety purposes, the servo power can be turned ON during the teaching mode only while the enable
switch on the back of the T/B is lightly pressed. Carry out this operation with the T/B while lightly pressing
the deadman switch.

(1) Operation with the T/B
1) Set the controller mode to "MANUAL".
2) Set the T/B [ENABLE] switch to "ENABLE".

3) The servo will turn ON when the [SERVO] key
is pressed.

4) Servo-off will be carried out, if the enabling
switch (3 position switch) is detached or it
pushes in still more strongly.

(2) Operation with the O/P (CR860-D/R/Q only)

1) Set the [ENABLE] switch of the T/B to
"DISABLE".

2) Set the mode selector switch (MODE) of the
controller to "AUTOMATIC".

3) When the SVO.ON button is pressed, the servo
turns on and the SVO ON lamp turns on.

4) When the SVO.OFF button is pressed, the
servo turns off and the SVO OFF lamp turns on.

3.10 Error reset operation
(1) Operation with the T/B

1) Press the [RESET] key.

(2) Operation with the O/P (CR860-D/R/Q only)

1) Press the reset button (RESET) of the control-
ler.
If an error on the T/B side is not reset, perform
the error reset operation from the T/B.

Execute servo ON

T/B enable

Servo ON operation [SERVO]

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

Execute servo OFF
Servo OFF operation [enabling]

Preparing the controller

T/B disabled

Controller enabled

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

Servo OFF

Execute servo OFF

Servo ON

Execute servo ON

Brakes will activate
The brakes will automatically activate when the servo is turned OFF. Depending on the type of robot,
some axes may not have brakes.

Cancel errors

Error reset [RESET]

Cancel errors

Error reset
-70 Turning the servo ON/OFF

 3Explanation of operation methods
3.11 Operation to Temporarily Reset an Error that Cannot Be Canceled
Depending on the type of robot, errors that cannot be cancelled may occur when axis coordinates are
outside the movement range, etc. In this case, it is not possible to turn the servo on and perform jog
operations with the normal operations. The following procedure can be used to cancel such errors
temporarily. For instance, if the axes are outside the movement range, perform a jog operation to adjust the
axes while the error is canceled temporarily.
The [RESET] key corresponding to the [CAUTION] key in R56TB. When operating with R56TB, use the
[CAUTION] key and perform following operation.

1) Set the controller mode to "MANUAL".
2) Set the Enable switch of the teaching pendant
to ENABLE.
3) Press the [JOG] key to display the JOG screen.
When using the force sensor function, errors can
be temporarily reset by accessing the Force
sense function screen from the JOG screen.
4) Lightly hold the Enable switch (3-position
switch).
5) For the R32TB, press and hold the [RESET]
key. For the R56TB, press and hold the [CAU-
TION] key.
6) Press the [SERVO] key to turn the servo on.
7) Move the robot using Jog operation.

The operation above will reset errors temporarily.
Temporary error reset mode can be disabled using any of the following methods:
(1) Releasing the [RESET] key ([CAUTION] key).
(2) Setting the Enable switch of the teaching pendant to DISABLE and changing the controller mode to

AUTOMATIC.
(3) Displaying the JOG screen or a screen unrelated to the force sense function. (This method will only work

for the R32TB.)

Errors will still occur after Temporary error reset mode is disabled if they have not been resolved.
Press and hold the [RESET] key ([CAUTION] key) when moving the robot in Jog operation mode.

The robot will not stop at the operating range limit while using Jog operation in
Temporary error reset mode.
Be careful not to move the robot outside of the operating range.

T/B enable

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

Teaching pendant setup

(Front of TB for the R56TB)

 CAUTION
 Operation to Temporarily Reset an Error that Cannot Be Canceled 3-71

3

3Explanation of operation methods
[Reference] Controller LED displays
The front of the controller contains 4 LEDs that represent controller status.

Fig.3-1:CR800-D/R/Q controller status LED

Table 3-5:LED displays

Table 3-6:LED display status for each function

LED Details

POWER Indicates the control power status.
On: Control power ON
Off: Control power OFF

AUTO Indicates the controller mode.
On: AUTOMATIC mode
Off: MANUAL mode

ERROR Indicates the error status.
On: Low level error or warning occurred.
Rapid flashing: High level error occurred.
Off: Normal operation

READY Indicates the operation status.
On: ON (ready)
Slow flashing: During operation
Rapid flashing: Operation suspended.

Controller status LED display status

Low level error
Warning

ERROR LED
lights up.

High level error ERROR LED
blinks.

Blinks quickly.

System writing data to the SD
card or USB memory

AUTO LED
blinks.

AUTO and READY LEDs blink
quickly.

READY LED
blinks.

During startup
(From the time the power is
turned on until startup
completes.)

AUTO LED
blinks.

AUTO and READY LEDs
alternately blink slowly.
Both LEDs light up for 1 second
when startup completes.READY LED

blinks.

During operation READY LED
blinks.

Blinks slowly.

While operation is suspended READY LED
blinks.

Blinks quickly.

Controller front
-72 Operation to Temporarily Reset an Error that Cannot Be Canceled

 3Explanation of operation methods
3.12 Operating the program control screen
Here, explain the operation method of the following related with program management.

"(1)Program list display"
"(2)Copying programs"
"(3)Name change of the program (Rename)"
"(4)Deleting a program (Delete)"
"(5)Protection of the program (Protect)"

(1) Program list display
This functions allows the status of the programs registered in the controller to be confirmed.

1) Select the Management/edit menu
Press the [1] key in the menu screen. "1. FILE/EDIT" are selected and display the list of the
programs.

Same operation can be done, even if the cursor is moved to "1. FILE/EDIT" by the [↑] or [↓] key
and it presses the [EXE] key.
And, the program which is the target of each operation can also be selected.

The menu ("EDIT", "POSI.", "NEW", "COPY") corresponding to the function key is displayed under
the screen.
Press the [FUNCTION] key, then display the "RENAME", "DELETE", "PRTCT", "CLOSE".

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

Display the <FILE/EDIT> screen [1]
 Operating the program control screen 3-73

3

3Explanation of operation methods
(2) Copying programs
1) Select the copy menu

Press the function key corresponding to the "COPY" by program list display. Display the copy screen.

2) Specification and execution of the program to copy.
In the parenthesis of the copied source, the program name beforehand selected by the program list
screen is displayed. (The figure the program name "1") If it changes, move the cursor by the arrow
key.
Input the program name copied in the parenthesis of the copy destination, and press the [EXE] key.

<PROGRAM COPY>　
　 　
 SRC.NAME (1)

 DSR.NAME ()

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<PROGRAM COPY>　
　 　
 SRC.NAME (1)

 DSR.NAME (21)

CLOSE　 123

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
A1　　 　 08-04-24　13:05:54　 2208
B1　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

Protected information is not copied
The program protection information and variable protection information is not copied with the copy
operation.
Reset this information as necessary.
-74 Operating the program control screen

 3Explanation of operation methods
(3) Name change of the program (Rename)
1) Select the rename menu

Press the function key corresponding to the "RENAME" by program list display. Display the rename
screen. If the "renaming" menu is not displayed, press and display the [FUNCTION] key.

2) Specification of the program which changes the name.
In the parenthesis of the renaming source, the program name beforehand selected by the program
list screen is displayed. (The figure the program name "1") If it changes, move the cursor by the arrow
key.
Into the parenthesis of the renaming destination, input the new program name and press the [EXE]
key.

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
A1　　 　 08-04-24　13:05:54　 2208
B1　　 　 08-04-24　13:05:54 　1851

RENAME DELETE PRTCT CLOSE123 ⇒

<PROGRAM RENAME>　
　 　
 SRC.NAME (1)

 DST.NAME ()

CLOSE　 123

<FILE/EDIT>　 　1/ 20 Rem 136320

2　　　 　 08-04-24　14:56:08　 694
3　 　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851
31 08-04-24 17:20:32 22490

EDIT POSI. NEW COPY123 ⇒

<PROGRAM RENAME>　
　 　
 SRC.NAME (1)

 DST.NAME (31)

CLOSE　 123

The program name protected cannot be changed.
The program name with which command protection is set up cannot be changed. Please execute after
removing command protection.
 Operating the program control screen 3-75

3

3Explanation of operation methods
(4) Deleting a program (Delete)
1) Select the delete menu

Press the function key corresponding to the "DELETE" by program list display. Display the delete
screen. If the "DELETE" menu is not displayed, press and display the [FUNCTION] key

2) Specification of the program which delete.
In the parenthesis of the deleteing source, the program name beforehand selected by the program
list screen is displayed. (The figure the program name "1") If it changes, input the correct program
name.
Press the [EXE] key, and display the confirmation screen.

3) Delete the program
If the function key corresponding to "Yes" is pressed, it will delete the specification program and will
return to the program list display.
If it does not delete, press the function key corresponding to "No" It returns to the deletion screen.

<PROGRAM DELETE>　　 　

 NAME (1)

CLOSE　 123

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
A1　　 　 08-04-24　13:05:54　 2208
B1　　 　 08-04-24　13:05:54 　1851

RENAME DELETE PRTCT CLOSE123 ⇒

<PROGRAM DELETE>

 31
 DELETE OK?

No123Yes

<PROGRAM DELETE>　　 　

 NAME (31)

CLOSE　 123

<FILE/EDIT>　 　1/ 20 Rem 136320

2　　　 　 08-04-24　14:56:08　 694
3　 　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

<PROGRAM DELETE>

 31
 DELETE OK?

No123Yes

<PROGRAM DELETE>

 31
 DELETE OK?

No123Yes

<FILE/EDIT>　 　1/ 20 Rem 136320

2　　　 　 08-04-24　14:56:08　 694
3　 　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851
31 08-04-24 17:20:32 22490

EDIT POSI. NEW COPY123 ⇒

The program name protected cannot be deleted.
The program name with which command protection is set up cannot be deleted. Please execute after
removing command protection.
-76 Operating the program control screen

 3Explanation of operation methods
(5) Protection of the program (Protect)
1) Select the protect menu

Press the function key corresponding to the "PRTCT" by program list display. Display the protect
screen. If the "PRTCT" menu is not displayed, press and display the [FUNCTION] key

2) Setup of the protection.
The protection of the program can specify the command and data (variable value) separately.
If it sets up protection of the command, press the function key corresponding to "CMD." If it sets up
protection of the data, press the function key corresponding to "DATA".

If the function key corresponding to "ON" is pressed, it will be set up for "protecting." If the function
key corresponding to "OFF" is pressed, it will be set up for "not protecting."

<PROTECT>　　 　

 NAME (1) protect
 COMMAND : OFF
 DATE : OFF

CLOSE　 123DATACMD.

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
A1　　 　 08-04-24　13:05:54　 2208
B1　　 　 08-04-24　13:05:54 　1851

RENAME DELETE PRTCT CLOSE123 ⇒

<PROTECT>　　 　

 1
 SET COMMAND PROTECT.

OFF　 123ON

<PROTECT>　　 　

 1
 SET DATA PROTECT.

OFF　 123ON

<PROTECT>　　 　

 NAME (1) protect
 COMMAND : OFF
 DATE : OFF

CLOSE　 123DATACMD.

<PROTECT>　　 　

 NAME (1) protect
 COMMAND : OFF
 DATE : OFF

CLOSE　 123DATACMD.

ON :protecting
OFF:not protecting

<PROTECT>　　 　

 NAME (1) protect
 COMMAND : OFF
 DATE : OFF

CLOSE　 123DATACMD.

<PROTECT>　　 　

 1
 SET COMMAND PROTECT.

OFF　 123ON

<PROTECT>　　 　

 1
 SET DATA PROTECT.

OFF　 123ON
 Operating the program control screen 3-77

3

3Explanation of operation methods
(6) Select the program
The program of step or automatic execution can be selected.
The operation method is shown in the following.

1) Select the program
Move the cursor to the program which select by the key [↑], [↓].

2) Setting of the program name (number)
Press the [FUNCTION]+[EXE] key of T/B. The confirmation screen is displayed.

Confirm the program name (number) currently displayed. If the function key corresponding to "Yes"
([F1]) is pressed, the program name (number) is selected.
If the function key corresponding to "No" ([F4]) is pressed, the operation is canceled. Each returns to
the program list display.

Selection of the program is finishing above.

About command protection
It is the function which protects deletion of the program, name change, and change of the command from
the operation mistake.
・ Protection information is not copied in copy operation.
・ In initialization operation, protection information is disregarded and execute initialization.

About data protection
It is the function which protects the variable from the substitution to each variable by registration of the
position data based on the operation mistake, change, and the mistaken execution of the program.
・ Protection information is not copied in copy operation.
・ In initialization operation, protection information is disregarded and execute initialization.

The figure is the example which selected the program 3.

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
3 　　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
3 　　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

<PROGRAM SELECTION>

 SELECT THE PROGRAM
 INTO TASK SLOT 1. OK?

Yes No123 ⇒

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
3 　　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

<PROGRAM SELECTION>

 SELECT THE PROGRAM
 INTO TASK SLOT 1. OK?

Yes No123 ⇒

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
3 　　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒
-78 Operating the program control screen

 3Explanation of operation methods
3.13 Operation of operating screen
(1)Display of the execution line........... 1.Confirmation:

Display the executing program line, or execute step feed.
(2)Display of the test execution line 2. Test execution:

Display the name of the program selected, and the executing
step number. And, change the continuation mode of operation to
cycle stop mode.

3.13.1 Display of the execution line
(1) Select the confirmation menu

1) Press the [2] key in the menu screen, and display the <RUN> screen.

2) Press the [1] key, and display the confirmation screen.
Display the program set as the slot 1 on the screen. The program name is displayed following the slot
number.

The cursor moves to the execution line during program execution.

(2) Step feed
The same operation as above-mentioned step feed and step return can be done.

1) Step feed
Pressing the [F1] ("FWD") key is kept, and the robot will start moving.
If [F1] ("FWD") is released during this step, the robot will stop. And, detach the enabling switch (3
position switch), or push in still more strongly -- thing servo-off can be carried out and execution can
be stopped.
If execution of the one step is completed, the cursor of the T/B screen will move to the following step.

Whenever it presses the function key corresponding to "FWD", step to the following step.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG. STOP] switch and immediately stop the
robot.

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

<CHECK> SLOT 1 1 50%
　
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JumpFWD SLOT ⇒

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

 CAUTION
 Operation of operating screen 3-79

3

3Explanation of operation methods
2) Step return
The line of a program that has been stopped with step feed or normal operation is returned one line at
a time and executed. This can be used only for the interpolation commands. Note that only up to four
lines can be returned.

If the function key corresponding to "BWD" is pressed, only while keeping pushing, only the one step
will be executed in the return direction of the step.
If the function key is released during this step, the robot will stop. And, detach the enabling switch (3
position switch), or push in still more strongly -- thing servo-off can be carried out and execution can
be stopped.
If execution of the one step is completed, the cursor of the T/B screen moves to the step of the next
interpolation command in the return direction of the step.

Whenever it presses the function key corresponding to "BWD", it returns to the front step.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG. STOP] switch and immediately stop the
robot.

About step operation
"Step operation" executes the program line by line. The operation speed is slow, and the robot stops after
each line, so the program and operation position can be confirmed.
During execution, the lamp on the controller's [START] switch will light. Execution of the End command or
the Hlt command will not step feed any more.

Change of the execution step
The execution step can be changed by cursor movement by the arrow key, and jump operation ("JUMP").

Immediately stopping the robot during operation
・ Press the [EMG.STOP] (emergency stop) switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, reset the alarm, turn the servo ON, and start step operation.

・ Release or for cibly press the "enable" switch.
The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, lightly press the "enable" switch, and start step operation.

・ Release the [F1] ("FWD") key.
The step execution will be stopped. The servo will not turn OFF.
To resume operation, press the [F1] (FWD)key.

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

 CAUTION
-80 Operation of operating screen

 3Explanation of operation methods
(3) Step jump
It is possible to change the currently displayed step or line.
The operation in the case of doing step operation from Step 5 as an example is shown.

1) Call Step 5.
Press the function key corresponding to "JUMP", and press the [5], [EXE] key. The cursor moves to
Step 5.

2) Execution of step feed
If the function key corresponding to "FWD" is pressed, step feed can be done from Step 5.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG. STOP] switch and immediately stop the
robot.

(4) Step feed in another slot
When checking a multitask program, it is possible to perform step feed in the confirmation screen of the
operation menu, not in the edit screen.
Refer to Page 58, "(3) Step feed in another slot" for operation method.

Immediately stopping the robot during operation
・ Press the [EMG.STOP] (emergency stop) switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, reset the alarm, turn the servo ON, and start step operation.

・ Release or for cibly press the "enable" switch.
The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, lightly press the "enable" switch, and start step operation.

・ Release the [F1] ("FWD") key.
The step execution will be stopped. The servo will not turn OFF.
To resume operation, press the [F1] ("FWD") key.

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 100%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

 CAUTION
 Operation of operating screen 3-81

3

3Explanation of operation methods
(5) Finishing of the confirmation screen.
1) Press the function key corresponding to "CLOSE", and return to the <OPERATION> screen.

3.13.2 Test operation
(1) Select the test operation

1) Press the [2] key in the menu screen, and display the operation menu screen.

2) Press the [2] key, and display the test operation screen.
The program name, execution step number, and operating mode is displayed.

3) When the function key ([F2]) corresponding to "CSTOP" is pressed during program execution, it is
change to the cycle mode of operation. "CYCLE" is displayed as the mode name. The operation
finishes after the last line of the program or the END command is executed.

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123 ⇒

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

<TEST RUN>
1 Mov P1
 PROG.NAME: 1 STEP: 1

 MODE: CONT.

CLOSE123 ⇒CSTOP

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

<TEST RUN>
1 Mov P1
 PROG.NAME: 1 STEP: 1

 MODE: CYCLE

CLOSE123 ⇒CSTOP

<TEST RUN>
1 Mov P1
 PROG.NAME: 1 STEP: 1

 MODE: CONT.

CLOSE123 ⇒CSTOP
-82 Operation of operating screen

 3Explanation of operation methods
4) Press the function key corresponding to "CLOSE", and return to the operation menu screen.

3.13.3 Operating the OPERATION screen
Turning on and off the servo power, selecting the program, starting of automatic operation, etc can be done.
Refer to Page 62, "3.8.2 Starting automatic operation".

<RUN>　　 　

 1.CHECK 2.TEST RUN
 3.OPERATION

CLOSE　 123

<TEST RUN>
1 Mov P1
 PROG.NAME: 1 STEP: 1

 MODE: CONT.

CLOSE123 ⇒CSTOP

If execution of the program is stopped, it will become the continuation mode of operation.
If the [STOP] key is pressed in the cycle mode of operation and execution of the program is stopped, it
changes to the continuation mode of operation. If it continues execution of the program by the cycle mode of
operation, please press the [F4] key again after pushing the [START] button.
 Operation of operating screen 3-83

3

3Explanation of operation methods
3.14 Operating the monitor screen
Here, explain the operation method of the following functions.

(1)Input signal monitor1.Input: Parallel input signal monitor
(2)Output signal monitor........2.Output: Parallel output signal monitor. Setup of ON/OFF
(3)Input register monitor........3.Input register: Input register of CC-Link
(4)Output register monitor4.Output register: Output register of CC-Link
(5)Variable monitor5.Variable: Variable value monitor & set up
(6)Error history display6.Error history: History of the occurrence error

All of the above press the [MONITOR] key of T/B. It operates, even when T/B is invalid.
Although the screen currently displayed may be free, the variable monitor does not operate in the program
(command) edit screen.

(1) Input signal monitor
1) Press the [1] key in the monitor menu screen, and display the input signal screen. The input signal of

the 32 points can be monitored on the one screen.

The case where the state of the input signals 8-15 is confirmed is shown in the following.

2) Press the function key corresponding to "NUMBER".
Set "8" as the start number.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<INPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<INPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<INPUT>　　 　

 START No. (8_)

CLOSE　 123
-84 Operating the monitor screen

 3Explanation of operation methods
3) Display the ON/OFF state of the 32 points at the head for the input signal No. 8. Black painting
indicates ON and white indicates OFF.

Press the function key corresponding to "Next", then display the next input signal screen. Press the function
key corresponding to "Prev", then display the previous input screen.

4) Press the function key corresponding to "CLOSE", and return to the monitor menu screen.

5) Press the function key corresponding to "CLOSE" in monitor menu screen is pressed, finish the
monitor, and return to the original screen.

Next [F3]

Previous [F2]

<INPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 55 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 40
 71 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 56
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<INPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24
 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev

<INPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24

 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

Finish the monitor
If the [MONITOR] key is pressed, the monitor will be finished always and it will return to the original screen.
 Operating the monitor screen 3-85

3

3Explanation of operation methods
(2) Output signal monitor
There are the function which always makes the ON/OFF state of the output signal the monitor, and the
function outputted compulsorily.

1) Press the [2] key in the monitor menu screen, and display the output signal screen. The output signal
of the 32 points can be monitored on the one screen.

The case where the state of the output signals 8-15 is confirmed is shown in the following.

2) Press the function key corresponding to "Number".
Set "8" as the start number.

Although the state of the current output signal is displayed on the output value on the display, it is not always
the display here in the section which sets up the compulsive output value of the signal.
Press the function key corresponding to "CLOSE". Display the ON/OFF state of the 32 points at the head for
the output signal No. 8. Black painting indicates ON and white indicates OFF.

Press the function key corresponding to "Next", then display the next output signal screen. Press the
function key corresponding to "Prev", then display the previous output screen.

<OUTPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16

 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<OUTPUT>
START No. （ 8_)

 5432109876543210
OUT.VALUE （0000000000000000）

CLOSE 123OUTPUT

<OUTPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<OUTPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24

 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev

<OUTPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 55 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 40
 71 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 56

 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

Next [F3]

Previous [F2]
-86 Operating the monitor screen

 3Explanation of operation methods
3) The compulsive output of the output signal.
In the following, the operation method in the case of turning off the output signal No. 8 compulsorily is
shown.
Press the function key corresponding to "NUMBER".
Set "8" as the start number. (Press [8], and [EXE] key)

4) Move the cursor to the position of "8" of the output value by the arrow key.
Since the output signal 8 number is turned on now, value "1" is displayed.
If the value is changed into "0" which shows OFF and the function key ([F1]) corresponding to the
"OUTPUT" is pressed, this output signal will actually be off.

5) Press the function key corresponding to "CLOSE", and return to the output monitor screen.

6) Press the function key corresponding to "Close", and return to the monitor menu screen.

<OUTPUT>
START No. （ 8_)

 5432109876543210
OUT.VALUE （0000000000000000）

CLOSE 123OUTPUT

<OUTPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16

 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<OUTPUT>
1 Mov P1
START No. (8_)

 3210987654321098
OUT.VALUE (0000000000000001)

CLOSE123 ⇒OUTPUT

<OUTPUT>
1 Mov P1
START No. (8)

 3210987654321098
OUT.VALUE (0000000000000001)

CLOSE123 ⇒OUTPUT

<OUTPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24

 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev

<OUTPUT>
1 Mov P1
START No. (8)

 3210987654321098
OUT.VALUE (0000000000000001)

CLOSE123 ⇒OUTPUT

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<OUTPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24

 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev
 Operating the monitor screen 3-87

3

3Explanation of operation methods
7) Press the function key corresponding to "CLOSE" in monitor menu screen is pressed, finish the
monitor, and return to the original screen.

(3) Input register monitor
If CC-Link is used, it is the function which always monitors the value of the input register.
Note) Since there is no CC-Link option in the CR800-R/Q series, this function can not be used.

1) Press the [3] key in the monitor menu screen, and display the input register screen. The input register
of the 4 registers can be monitored on the one screen.

The case where the state of the input register 8000 is confirmed is shown in the following.

2) Press the function key corresponding to "NUMBER".
Set "8000" as the start number.

3) Display the ON/OFF state of the 4 input register at the head for the input register No. 8000.

Press the function key corresponding to "Next", then display the next input register screen. Press the
function key corresponding to "Prev", then display the previous input register screen.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<INPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<INPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

<INPUT REGISTER>

 START No. （_ ）

CLOSE 123

<INPUT REGISTER>

 8000 0 0×0000
 8001 0 0×0000
 8002 0 0×0000
 8003 0 0×0000

CLOSE 123NUMBER Prev Next

<INPUT REGISTER>

 8004 0 0×0000
 8005 0 0×0000
 8006 0 0×0000
 8007 0 0×0000

CLOSE 123NUMBER Prev Next

Next [F3]

Previous [F2]
-88 Operating the monitor screen

 3Explanation of operation methods
4) Press the function key corresponding to "CLOSE", and return to the monitor menu screen.

5) Press the function key corresponding to "CLOSE" in monitor menu screen is pressed, finish the
monitor, and return to the original screen.

(4) Output register monitor
If CC-Link is used, it is the function which always monitors the value of the output register.
Note) Since there is no CC-Link option in the CR800-R/Q series, this function can not be used.

1) Press the [4] key in the monitor menu screen, and display the output register screen. The output
register of the 4 registers can be monitored on the one screen.

The case where the state of the output register 8000 is confirmed is shown in the following.

2) Press the function key corresponding to "NUMBER".
Set "8000" as the start number.

<INPUT REGISTER>

 8000 0 0×0000
 8001 0 0×0000
 8002 0 0×0000
 8003 0 0×0000

CLOSE 123NUMBER Prev Next

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

Finish the monitor
If the [MONITOR] key is pressed, the monitor will be finished always and it will return to the original screen.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<OUTPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

<OUTPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (0)
 0x(0000)

CLOSE 123OUTPUT
 Operating the monitor screen 3-89

3

3Explanation of operation methods
3) The current output value of No. 8000 is displayed by the decimal number in the parenthesis following
the output value. The value in the parenthesis following lower 0x is the hexadecimal number.

If the function key which corresponds for "CLOSE" is pressed, it can also return to the monitoring
screen on the basis of No. 8000 of the output register, but the output value can be changed on the
current screen.
The case where the value of the output register No. 8000 is set as 12 (decimal number) is shown in
the following.

4) The setup of the value can be set up by the decimal number or the hexadecimal number.
If it sets up by the decimal number, move the cursor to the output value by the arrow key, and input
"10". The unnecessary character should press and erase the [CLEAR] key.
If it sets up by the hexadecimal number, move the cursor to 0x by the arrow key, and input "C". The
unnecessary character should press and erase the [CLEAR] key.
Press the function key ([F1]) corresponding to the "OUTPUT", then will actually output the set-up
value.

5) Press the function key corresponding to "CLOSE", and return to the output register monitor screen.

6) Press the function key corresponding to "CLOSE", and return to the output menu screen.

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (0)
 0x(0000)

CLOSE 123OUTPUT

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (10)
 0x(000C)

CLOSE 123OUTPUT

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (0)
 0x(0000)

CLOSE 123OUTPUT

<OUTPUT REGISTER>

 8000 0 0×0000
 8001 0 0×0000
 8002 0 0×0000
 8003 0 0×0000

CLOSE 123NUMBER Prev Next

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (10)
 0x(000C)

CLOSE 123OUTPUT

<OUTPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123
-90 Operating the monitor screen

 3Explanation of operation methods
7) Press the function key corresponding to "CLOSE", and return to the monitor menu screen.

(5) Variable monitor
It is the function to display or change the details of the variable currently used by the program.

1) Press the [5] key in the monitor menu screen, and display the variable monitor screen.

2) Specify the target program of the monitor with the slot number.
Press the function key corresponding to "SLOT", and input the slot number.
Set up "1", if the multitasking function is not being used.

3) Display the slot number and the program name after "slot:".
Press the function key corresponding to the "NAME", and input the variable name to monitor.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

Finish the monitor
If the [MONITOR] key is pressed, the monitor will be finished always and it will return to the original screen.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<VARIABLE>
SLOT : 1 TEST
 =
 =
 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>

 SLOT (1_)

CLOSE 123

<VARIABLE>
SLOT : 1 TEST
 =
 =
 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>
SLOT : 1 5
 =
 =
 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>

 NAME (M1_)

CLOSE 123
 Operating the monitor screen 3-91

3

3Explanation of operation methods
4) Display the value of the numeric variable M1 on the screen.
The variable which will be monitored if the cursor is moved to the line which is vacant in the arrow key
and operation of the above "3)" is repeated can be added. The variable which can be monitored
simultaneously is to the three pieces.

5) Change the variable value.
The value of the variable currently displayed can be changed.
Move the cursor to the variable name changed by the arrow key, and press the function key
corresponding to the "VALUE"
Although the current value (data) is displayed, it can input and change.

6) Press the function key corresponding to "CLOSE", and return to the monitor menu screen.

7) Press the function key corresponding to "CLOSE" in monitor menu screen is pressed, finish the
monitor, and return to the original screen.

<VARIABLE>
SLOT : 1 5
 M1 =＋1
 =
 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>
SLOT : 1 5
 M1 =＋1
 P1 =(＋595.40､＋0.00､＋829.)
 C1 =

CLOSE 123 VALUESLOT NAME

Add the variable to monitor.

<VARIABLE> NAME
DATA M1
＋1

CLOSE 123SLOT NAME VALUE

<VARIABLE>
SLOT : 1 5
 M1 =＋8
 P1 =(＋595.40､＋0.00､＋829.)
 C1 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>
SLOT : 1 5
 M1 =＋8
 P1 =(＋595.40､＋0.00､＋829.)
 C1 =

CLOSE 123 VALUESLOT NAME

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

The right of operation is unnecessary.
It operates, even when T/B is invalid.
And, the value (data) of the variable can be changed also in automatic operation.

Finish the monitor
If the [MONITOR] key is pressed, the monitor will be finished always and it will return to the original screen.
-92 Operating the monitor screen

 3Explanation of operation methods
(6) Error history
Display the error history. Please use reference at the time of trouble occurrence.

1) Press the [6] key in the monitor menu screen, and display the error history.

Display error history before and after by the arrow key.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<ERROR LOG>　　 　
No-0001 H0120
 08-05-08 16:51:00

Instantaneous power failure

CLOSE　 123

<ERROR LOG>　　 　
No-0002 L1826
 08-05-08 16:49:22

Pos.data disagree. Check origin

CLOSE　 123

[↓]

[↑]

<ERROR LOG>　　 　
No-0001 H0120
 08-05-08 16:51:00

Instantaneous power failure

CLOSE　 123

The right of operation is unnecessary.
It operates, even when T/B is invalid.
And, the value (data) of the variable can be changed also in automatic operation.
 Operating the monitor screen 3-93

3

3Explanation of operation methods
3.15 Operation of parameter screen
The parallel I/O designated input/output settings and settings for the tool length, etc., are registered as
parameters. The robot moves based on the values set in each parameter. This function allows each
parameter setting value to be displayed and registered.

1) Press the [3] key in the menu screen, and display the <parameter> screen.

An example of changing the parameter "MEXTL (tool conversion data)" Z axis (3rd element) setting
value from 0 to 100mm is shown below.

2) Input "MEXTL" into the name and input "3" into the element.
The data set up now is displayed.

3) Press the function key corresponding to the "DATA", and input new preset value "100".
Delete the unnecessary number by the [CLEAR] key.

If the [EXE] key is pressed, the buzzer will sound, the value will be fixed and it will return to the
screen of the parameter.
If the function key corresponding to the "CLOSE" is pressed also after inputting the new preset value,
change can be canceled and it can return to the parameter screen.

And, press the function key corresponding to "Next" will display the next parameter.
Display that the previous parameter presses the function key corresponding to "Prev".
In this case, because of to display all the elements of the parameter shown by the name, delete
specification of the element number.

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<PARAMETER> NAME()
 ELE()
 DATA
 (　　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (0.00　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> (MEXTL) (3)
100_

CLOSE 123

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (0.00　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev
-94 Operation of parameter screen

 3Explanation of operation methods
The value can be changed also in this state.
Press the function key corresponding to the "DATA", make it move to the position of the element
number which changes the cursor by the arrow key, and input the new preset value. Delete the
unnecessary number by the [CLEAR] key.

If the [EXE] key is pressed, the buzzer will sound, the value will be fixed and it will return to the
screen of the parameter.
If the function key corresponding to the "CLOSE" is pressed also after inputting the new preset value,
change can be canceled and it can return to the parameter screen.

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (100.00　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev
<PARAMETER> NAME(MEXTL1)
 ELE()
 DATA
 (0.00,0.00,0.00,0.00,0.00,0.00　)

CLOSE 123 NextDATA Prev
<PARAMETER> NAME(MEXTL)
 ELE()
 DATA
 (0.00,0.00,100.00,0.00,0.00,0.00　)

CLOSE 123 NextDATA Prev

[F3]

[F2]

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (0.00,0.00,0.00,0.00,0.00,0.00　)

CLOSE 123 NextDATA Prev

<PARAMETER> (MEXTL) ()

 0.00,0.00,100.00,0.00,0.00,0.00　

CLOSE 123 NextDATA Prev

Power must be turned ON again
The changed parameter will be validated only after the controller power has been turned OFF and ON once.

Only display is valid during program execution.
If the setting value of the parameter is changed during execution of the program, the error will occur. (Even
if the error occurs, execution of the program does not stop)

Display the parameter near the name of the inputted parameter.
Even if the name of the parameter does not input all characters correctly, it displays the parameter near the
inputted name automatically.
 Operation of parameter screen 3-95

3

3Explanation of operation methods
3.16 Operation of the origin and the brake screen
(1) Origin

If the origin position has been lost or deviated when the parameters are lost or due to robot interference,
etc., the robot origin must be set again using this function.
Refer to the separate manual: "Robot arm setup & maintenance" for details on the operation.

(2) Brake
In the state of servo off, it is the function to release the brake of the servo motor. Refer to the Page 70, "3.9
Turning the servo ON/OFF" for servo off operation.
With CR860, this operation is enabled only when the user-supplied enabling device is connected to the
enabling device of the emergency stop input port (CNUSR11) on the controller.
Always connect an enabling device to use a robot safety.

Due to the robot configuration, when the brakes are released, the robot arm will
drop with its own weight depending on the released axis.
To ensure safety, take appropriate measures such as supporting the axis to avoid
the free fall.

The operation method is shown in the following. Perform this operation, in the condition that the enabling
switch (3 position switch) is pushed lightly.

1) Press the [4] key in the <menu> screen, and display the <ORIGIN/BRAKE> screen.

2) Press the [2] key in the <ORIGIN/BRAKE> screen, and display the <BRAKE> screen.

3) Input "1" into the axis which release the brake.

 CAUTION

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<ORIGIN/BRAKE>　　 　

 1.ORIGIN 2.BRAKE

CLOSE　 123

<BRAKE>

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

<ORIGIN/BRAKE>　　 　

 1.ORIGIN 2.BRAKE

CLOSE　 123

<BRAKE>

J1:(0)J2:(0)J3:(1)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

<BRAKE>

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.
-96 Operation of the origin and the brake screen

 3Explanation of operation methods
Due to the robot configuration, when the brakes are released, the robot arm will
drop with its own weight depending on the released axis.
To ensure safety, take appropriate measures such as supporting the axis to avoid
the free fall.

4) Press function key continuously corresponding to "REL." to release the brake of the specified axis only
while the keys are pressed.
Only while the function key ([F1]) is pushing, the brake of the specified axis is released.

・ RH-3FRH series, RV-2FR/4FR/7FR series, RH-3FRHR series:
The brake is released continuously.

・ RH-6FRH/12FRH/20FRH series:
The brake is released in an off-and-on way.
(released → locked → released → locked →...)

・ RV-13FR series, RV-20FR series:
J2 and J3 axis brakes are released in an off-and-on way.
(released → locked → released →locked →...)
The others are released continuously.

・ RV-35FR/50FR/80FR series:
The brakes of axes J2, J3, J4, J5, and J6 are released in an off-and-on way.
(released → locked → released →locked →...) The brake of axis J1 is released continu-
ously.

The brakes will activate when the function key or enabling switch is released.

 CAUTION

<BRAKE>

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

<BRAKE>

J1:(0)J2:(0)J3:(1)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.
 Operation of the origin and the brake screen 3-97

3

3Explanation of operation methods
3.17 Operation of setup / initialization screen
Here, explain the operation method of the following functions.

(1)Initialization1. Programs: Delete all the programs
2. Parameter: Return the parameter to the setup at the time of shipment.
3. Battery: Reset the expended hours of the battery.

(2)OperationDisplay the accumulation time of the power supply ON, and the remaining
time of the battery.

(3)TimeDisplay of the date and time, the setup
(4)VersionDisplay the software version of the controller and the teaching pendant.

Press the [5] key in the menu screen, and display the <SET/INITIALIZE> screen.

(1) Initialize the program
Delete all the programs.

1) Press the [1] key in the <SET/INITIALIZE> screen, and display the initial menu screen.

2) Press the [1] key in the initial menu screen, and select the program.
Display the screen of confirmation.

3) If it initializes, press the function key corresponding to "Yes". If it does not initialize, press the function
key corresponding to "No". The screen returns to <INITIALIZE> screen.

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<INITIALIZE>

 INITIALIZE PROGRAM.
 OK?

No 123Yes

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<INITIALIZE>

 INITIALIZE PROGRAM.
 OK?

No 123Yes

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123
-98 Operation of setup / initialization screen

 3Explanation of operation methods
4) Press the function key corresponding to "CLOSE", and return to the <SET/INITIALIZE> screen.

(2) Initialize the parameter
Return the parameter to the setup at the time of shipment.

1) Press the [1] key in the <SET/INITIALIZE> screen, and display the <INITIALIZE> screen.

2) Press the [2] key in the initial menu screen, and select the parameter. Display the screen of
confirmation.

3) If it initializes, press the function key corresponding to "Yes". If it does not initialize, press the function
key corresponding to "No".
The screen returns to <INITIALIZE> screen.

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

Executed even when protected
The program will be initialized even if the program protection or variable protection is set to ON.

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<INITIALIZE>

 INITIALIZE PARAMETER.
 OK?

No 123Yes

<INITIALIZE>

 INITIALIZE PARAMETER.
 OK?

No 123Yes

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123
 Operation of setup / initialization screen 3-99

3

3Explanation of operation methods
4) Press the function key corresponding to "CLOSE", and return to the <SET/INITIALIZE> screen.

(3) Initialize the battery
In CR800 series controller, consumption of the battery is automatically checked by detection of the voltage.
Thus, it is not necessary to perform the battery initialization after replacing the battery. The battery initializa-
tion will be invalid even if it is performed.

(4) Operation
Display the accumulation time of the power supply ON, and the remaining time of the battery.

1) Press the [2] key in the <SET/INITIALIZE> screen, and display the <HOUR DATA> screen.

2) Press the function key corresponding to "CLOSE", and return to the <SET/INITIALIZE> screen.

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<HOURE DATA>

 POWER ON TIME 18 Hr

 BATTERY ACC. 14089 Hr

CLOSE 123

<HOURE DATA>

 POWER ON TIME 18 Hr

 BATTERY ACC. 14089 Hr

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123
-100 Operation of setup / initialization screen

 3Explanation of operation methods
(5) Time setup
Display of the date and time, the setup

1) Press the [3] key in the <SET/INITIALIZE> screen, and display the <CLOCK> screen.

2) Date and time can be setup on the <CLOCK> screen.
Move the cursor by the arrow key and input the current date and time.

3) Press the function key corresponding to "CLOSE", and return to the <SET/INITIALIZE> screen.

(6) Version
Display the software version of the controller and the teaching pendant

1) Press the [4] key in the <SET/INITIALIZE> screen, and display the <VERSION> screen.

2) Press the function key corresponding to "CLOSE", and return to the <SET/INITIALIZE> screen.

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<CLOCK>

 DATE 08-05-07

 TIME 16:04:50

CLOSE 123

<CLOCK>

 DATE 08-05-07

 TIME 16:35:20

CLOSE 123

<CLOCK>

 DATE 08-05-07

 TIME 16:04:50

CLOSE 123

<CLOCK>

 DATE 08-05-07

 TIME 16:35:20

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<VERSION>

 R/C Ver. P2T
 T/B Ver. 1.2.1

CLOSE 123

<VERSION>

 R/C Ver. P2T
 T/B Ver. 1.2.1

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123
 Operation of setup / initialization screen 3-101

3

3Explanation of operation methods
3.18 ENHANCED

(1) SQ DIRECT
This function controls the robot directly by the program of the PLC. The CR800-R/Q series support the use
of this function.
For details on the specifications and operation methods, refer to the "CR800-R/CR800-Q series controller
iQ Platform Supporting Extended Function Instruction Manual" (BFP-A3528).

(2) WORK COORD
This screen defines the work coordinates system necessary for work jog operation. If you use the work

jog, define the target work coordinates system.
The details of the operation method are described in the jog operation. Please use with reference to them.
[Reference]

1) Setting of work coordinates, work jog operation:
Separate manual: "ROBOT ARM SETUP & MAINTENANCE"

2) Types of jog feed: This instruction manual/ Page 27, "3.2.1 Types of jog feed".
3) Related parameter: This instruction manual/ "Work coordinates" on Page 492, "5.1 Movement param-

eter".

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<EMHANCED>　　 　

1.SQ DIRECT 2.WORK COORD.

CLOSE　 123
-102 ENHANCED

 3Explanation of operation methods
3.19 Operation of the initial-setting screen
There is the function of initial setting shown in the following.

(1)Setup of the display language... The character displayed on the T/B can be set to either Japanese or
English.

(2)Adjustment of contrast The brightness of the screen of T/B can be adjusted in the 16 steps.

Operate this operation on the initial-setting screen displayed at turning on the control power in the condition
of pushing both of [F1] key and [F3] key of T/B.

(1) Set the display language
The character displayed on the T/B can be set to either Japanese or English.

1) Press the [F1] key in the initial-setting screen, and select "1. Configuration".

2) Press the [F1] key, and select "1. Default Language".

3) Display the "JPN" by [F1] or [F2] key, then language is set as Japanese. And, display the "ENG", then
language is set as English.

[EXE]

<1>：[F1]

<2>：[F2]キ
 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Default Language
 2.Contrast

 <1> <2> Next

 <Default Language>
 001
 ENG

 <UP> <DWN> Back

 1.Default Language
 2.Contrast

 <1> <2> Next

English

 <Default Language>
 001
 ENG

 <UP> <DWN> Back

Japanese

 <Default Language>
 002
 JPN

 <UP> <DWN> Back

 <Default Language>
 001
 ENG

 <UP> <DWN> Back
 Operation of the initial-setting screen 3-103

3

3Explanation of operation methods
4) Press the [EXE] key, and fix it.

5) Press the [EXE] key, and display finish screen.

6) Press the [F1] key, and save the setup.
If not saved, press the [F2] key. All return to the initial-setting screen.
And, the setup can be done over again if the [EXE] key is pressed.

7) T/B starts in the language set up when the [EXE] key was pressed.

Japanese

English

 <Default Language>
 002
 JPN

 <UP> <DWN> Back

 <Default Language>
 001
 ENG

 <UP> <DWN> Back

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Save and Exit
 2.Exit without Save

 <1> <2> Prev

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Save and Exit
 2.Exit without Save

 <1> <2> Prev

 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Configuration
 2.Com.Information

 <1> <2> Rset

MELFA CR800-D
RH-3FRH5515-D

COPYRIGHT (C) 2011 MITSUBISHI ELEC
TRIC CORPORATION ALL RIGHTS RESE
RVED

Ver. S3
-104 Operation of the initial-setting screen

 3Explanation of operation methods
(2) Adjustment of contrast
The brightness of the screen of T/B can be adjusted in the 16 steps.

1) Press the [F1] key in the initial-setting screen, and select "1. Configuration".

2) Press the [F2] key and select "2. Contrast."
The brightness set up now is displayed as the numerical value of 0 to 15.

3) If it makes the screen bright, the [F1] key is pressed, if it makes it dark, press the [F2] key, and set it as
the good brightness. It becomes so bright that the numerical value is large.

4) Press the [EXE] key and fix it.

5) Press the [EXE] key, and display finish screen.

 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Default Language
 2.Contrast

 <1> <2> Next

 <Contrast>
 012

 <UP> <DWN> Back

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Default Language
 2.Contrast

 <1> <2> Next

 <Contrast>
 012

 <UP> <DWN> Back

 <Contrast>
 015

 <UP> <DWN> Back

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Save and Exit
 2.Exit without Save

 <1> <2> Prev
 Operation of the initial-setting screen 3-105

3

3Explanation of operation methods
6) Press the [F1] key, and save the setup.
If not saved, press the [F2] key. All return to the initial-setting screen.
And, the setup can be done over again if the [EXE] key is pressed.

7) T/B starts in the contrast set up when the [EXE] key was pressed.

 1.Save and Exit
 2.Exit without Save

 <1> <2> Prev

 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Configuration
 2.Com.Information

 <1> <2> Rset

MELFA CR800-D
RH-3FRH5515-D

COPYRIGHT (C) 2011 MITSUBISHI ELEC
TRIC CORPORATION ALL RIGHTS RESE
RVED

Ver. S3
-106 Operation of the initial-setting screen

4MELFA-BASIC VI
4 MELFA-BASIC VI
In this chapter, the functions and the detailed language specification of the programming language "MELFA-
BASIC VI" are explained.

4.1 MELFA-BASIC VI functions
The outline of the programming language "MELFA-BASIC VI" is explained in this section. The basic
movement of the robot, signal input/output, and conditional branching methods are described.

Table 4-1:List of items described

For the detailed description of each instruction, please refer to Page 180, "4.12 Detailed explanation of com-
mand words".

Item Details Related instructions, etc.

1 4.1.1Robot operation control (1)Joint interpolation movement Mov

2 (2)Linear interpolation movement Mvs

3 (3)Circular interpolation movement Mvr, Mvr2, Mvr3, Mvc

4 (4)Continuous movement Cnt

5 (5)Acceleration/deceleration time and speed control Accel, Oadl

6 (6)Confirming that the target position is reached Fine, Mov and Dly

7 (7)High path accuracy control Prec

8 (8)Hand and tool control HOpen, HClose, Tool

9 4.1.2Pallet operation -------------- Def Plt, Plt

10 4.1.3Program control (1)Unconditional branching, conditional branching,
waiting

GoTo, If Then Else, Wait, etc

11 (2)Repetition For Next, While WEnd

12 (3)Interrupt Def Act, Act

13 (4)Subroutine GoSub, CallP, On GoSub, etc

14 (5)Timer Dly

15 (6)Stopping End(Pause for one cycle), Hlt

16 4.1.4Inputting and outputting
external signals

(1)Input signals M_In, M_Inb, M_Inw, etc

17 (2)Output signals M_Out, M_Outb, M_Outw, etc

18 4.1.5Communication -------------- Open, Close, Print, Input, etc

19 4.1.6Expressions and operations (1)List of operator +, -, *, / , <>, <, >, etc

20 (2)Relative calculation of position data (multiplication) P1 * P2

21 (3)Relative calculation of position data (Addition) P1 + P2

22 4.1.7Appended statement -------------- Wth, WthIf
 MELFA-BASIC VI functions 4-107

4

4MELFA-BASIC VI
4.1.1 Robot operation control
(1) Joint interpolation movement

The robot moves with joint axis unit interpolation to the designated position. (The robot interpolates with a
joint axis unit, so the end path is irrelevant.)

*Command word

*Statement example

*Program example

Program example

Command word Explanation

Mov The robot moves to the designated position with joint interpolation. It is possible to specify the
interpolation form using the TYPE instruction. An appended statement Wth or WthIf can be
designated

Statement example Explanation
Mov P1 ... ' Moves to P1.

Mov P1+P2... ' Moves to the position obtained by adding the P1 and P2 coordinate elements. Refer to Page 132.

Mov P1*P2.. ' Moves to the position relatively converted from P1 to P2. Refer to Page 132.

Mov P1,-50 *1).. ' Moves from P1 to a position retracted 50mm in the hand direction.

Mov P1 Wth M_Out(17)=1......................... ' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

Mov P1 WthIf M_In(20)=1, Skip................. ' If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped, and the
program proceeds to the next stop.

Mov P1 Type 1, 0 ..
(Default value: Long way around)

' Specify either roundabout (or shortcut) when the operation angle of each axis exceeds 180 deg..

Program Explanation
1 Mov P1 ’(1) Moves to P1.

2 Mov P2, -50 *1) ’(2) Moves from P2 to a position retracted 50mm in the hand direction.

3 Mov P2 ’(3) Moves to P2

4 Mov P3, -100 Wth M_Out (17) = 1 ’(4) Starts movement from P3 to a position retracted 100mm in the hand direction, and turns ON output
signal bit 17.

5 Mov P3 ’(5) Moves to P3

6 Mov P3, -100 *1) ’(6) Returns from P3 to a position retracted 100mm in the hand direction.

7 End ’Ends the program.

(1)

(2)

P1

(3)

(4) Turn output
 signal bit 17 ON.

(5)

(6)

50
m

m

100mm

P2
P3

Hand

 :Movement position
 :Robot movement

*1) Specification of
forward/backward
movement of the hand

The statement examples and program
examples are for a vertical 6-axis robot.The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool
coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement
-108 MELFA-BASIC VI functions

4MELFA-BASIC VI
*Related functions

(2) Linear interpolation movement
The end of the hand is moved with linear interpolation to the designated position.

*Command word

*Statement example

*Program example

Function Explanation page
Designate the movement speed.. Page 113, "(5) Acceleration/deceleration time and speed con-

trol"

Designate the acceleration/deceleration time. Page 113, "(5) Acceleration/deceleration time and speed con-
trol"

Confirm that the target position is reached. Page 115, "(6) Confirming that the target position is reached"

Continuously move to next position without stopping at target
position. ... Page 112, "(4) Continuous movement"

Move linearly. ... Page 109, "(2) Linear interpolation movement"

Move while drawing a circle or arc. ... Page 110, "(3) Circular interpolation movement"

Add a movement command to the process....................................... Page 346, " Wth (With)"

Command word Explanation

Mvs The robot moves to the designated position with linear interpolation. It is possible to specify the
interpolation form using the TYPE instruction. An appended statement Wth or WthIf can be
designated.

Statement example Explanation
Mvs P1 .. ' Moves to P1

Mvs P1+P2.. ' Moves to the position obtained by adding the P1 and P2 coordinate elements. Refer to Page
132.

Mvs P1*P2... ' Moves to the position relatively converted from P1 to P2.

Mvs P1, -50 *1).. ' Moves from P1 to a position retracted 50mm in the hand direction.

Mvs ,-50 *1) ... ' Moves from the current position to a position retracted 50mm in the hand direction.

Mvs P1 Wth M_Out(17)=1................................... ' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

Mvs P1 WthIf M_In(20)=1, Skip.......................... ' If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped, and
the program proceeds to the next stop.

Mvs P1 Type 0, 0... ' Moves to P1 with equivalent rotation

Mvs P1 Type 9, 1... ' Moves to P1 with 3-axis orthogonal interpolation.

(1)

(2)
(3)

(4)Turn output
 signal bit 17 ON.

(5)
(6)

50
m

m

100mm

P1
P2

Hand
 :Movement position
 :Robot movement *1) Specification of

forward/backward
movement of the hand

The statement examples and program
examples are for a vertical 6-axis robot.The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool
coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement
 MELFA-BASIC VI functions 4-109

4

4MELFA-BASIC VI
Program example

*Related functions

(3) Circular interpolation movement
The robot moves along an arc designated with three points using three-dimensional circular interpolation.
If the current position is separated from the start point when starting circular movement, the robot will move
to the start point with linear operation and then begin circular interpolation.

*Command word

Program Explanation
1 Mvs P1, -50 *1) ' (1) Moves with linear interpolation from P1 to a position retracted 50mm in the hand

direction.
2 Mvs P1 ' (2) Moves to P1 with linear interpolation.
3 Mvs ,-50 *1) ' (3) Moves with linear interpolation from the current position (P1) to a position retracted

50mm in the hand direction.
4 Mvs P2, -100 Wth M_Out(17)=1 *1) (4) Output signal bit 17 is turned on at the same time as the robot starts moving.
5 Mvs P2 (5) Moves with linear interpolation to P2.
6 Mvs , -100 *1) (6) Moves with linear interpolation from the current position (P2) to a position retracted

50mm in the hand direction.
7 End ’Ends the program.

Function Explanation page
Designate the movement speed. .. Page 113, "(5) Acceleration/deceleration time and speed

control"
Designate the acceleration/deceleration time. ... Page 113, "(5) Acceleration/deceleration time and speed control"
Confirm that the target position is reached. ... Page 115, "(6) Confirming that the target position is reached"
Continuously move to next position without stopping at target position.... Page 112, "(4) Continuous movement"
Move with joint interpolation.. Page 108, "(1) Joint interpolation movement"
Move while drawing a circle or arc. ... Page 110, "(3) Circular interpolation movement"
Add a movement command to the process... Page 346, " Wth (With)"

Command word Explanation

Mvr Designates the start point, transit point and end point, and moves the robot with circular
interpolation in order of the start point - transit point - end point. It is possible to specify the
interpolation form using the TYPE instruction. An appended statement Wth or WthIf can be
designated.

Mvr2 Designates the start point, end point and reference point, and moves the robot with circular
interpolation from the start point - end point without passing through the reference point. It is
possible to specify the interpolation form using the TYPE instruction. An appended statement Wth
or WthIf can be designated.

Mvr3 Designates the start point, end point and center point, and moves the robot with circular
interpolation from the start point to the end point. The fan angle from the start point to the end
point is 0 deg. < fan angle < 180 deg. It is possible to specify the interpolation form using the
TYPE instruction. An appended statement Wth or WthIf can be designated.

Mvc Designates the start point (end point), transit point 1 and transit point 2, and moves the robot with
circular interpolation in order of the start point - transit point 1 - transit point 2 - end point. An
appended statement Wth or WthIf can be designated.
-110 MELFA-BASIC VI functions

4MELFA-BASIC VI
*Statement example

*Program example

Program example

*Related functions

Statement example Explanation
Mvr P1, P2, P3 ... ' Moves with circular interpolation between P1 - P2 - P3.

Mvr P1, P2, P3 Wth M_Out (17) = 1................................ ' Circular interpolation between P1 - P2 - P3 starts, and the output signal bit 17 turns ON.

Mvr P1, P2, P3 WthIf M_In (20) = 1, Skip ' If the input signal bit 20 turns ON during circular interpolation between P1 - P2 - P3,
circular interpolation to P1 is stopped, and the program proceeds to the next step.

Mvr P1, P2, P3 TYPE 0, 1.. ' Moves with circular interpolation between P1 - P2 - P3.

Mvr2 P1, P3, P11 ... ' Circular interpolation is carried out from P1 to P3 in the direction that P11 is not passed.
P11 is the reference point.

Mvr3 P1, P3, P10 ... ' Moves with circular interpolation from P1 to P3 in the direction with the smallest fan
angle. P10 is the center point.

Mvc P1, P2, P3... ' Moves with circular movement from P1 - P2 - P3 - P1.

Program Explanation
1 Mvr P1, P2, P3 Wth M_Out(18) = 1 ' (1) Moves between P1 - P2 - P3 as an arc. The robot current position before movement is

separated from the start point, so first the robot will move with linear operation to the start point. (P1)
output signal bit 18 turns ON simultaneously with the start of circular movement.

2 Mvr P3, P4, P5 ' (2) Moves between P3 - P4 - P5 as an arc.
3 Mvr2 P5, P7, P6 ' (3) Moves as an arc over the circumference on which the start point (P5), reference point (P6) and

end point (P7) in the direction that the reference point is not passed between the start point and end
point.

4 Mvr3 P7, P9, P8 ' (4) Moves as an arc from the start point to the end point along the circumference on which the
center point (P8), start point (P7) and end point (P9) are designated.

5 Mvc P9, P10, P11 ' (5) Moves between P9 - P10 - P11 - P9 as an arc. The robot current position before movement is
separated from the start point, so first the robot will move with linear operation to the start point.(1
cycle operation)

6 End ' Ends the program.

Function Explanation page
Designate the movement speed. .. Page 113, "(5) Acceleration/deceleration time and speed

control"

Designate the acceleration/deceleration time. ... Page 113, "(5) Acceleration/deceleration time and speed
control"

Confirm that the target position is reached. ... Page 115, "(6) Confirming that the target position is reached"

Continuously move to next position without stopping at target position.......... Page 112, "(4) Continuous movement"

Move with joint interpolation.. Page 108, "(1) Joint interpolation movement"

Move linearly. .. Page 109, "(2) Linear interpolation movement"

Add a movement command to the process. ... Page 346, " Wth (With)"

(1)

(2)

(3)

(4)

(5)
P1

P2
P3

P4

P5

P7

P6
(Reference
 point)

P10

P9

P11

P8
(Center point)

Hand
 :Movement position
 :Robot movement

Turn output
signal bit
18 ON.

Robot movement
 MELFA-BASIC VI functions 4-111

4

4MELFA-BASIC VI
(4) Continuous movement
The robot continuously moves to multiple movement positions without stopping at each movement position.
The start and end of the continuous movement are designated with the command statement. The speed can
be changed even during continuous movement.

*Command word

*Statement example

*Program example

Program example

*Related functions

Command word Explanation

Cnt Designates the start and end of the continuous movement.

Statement example Explanation
Cnt 1 ... Designates the start of the continuous movement.

CNT 1, 100, 200 ... Designates the start of the continuous movement, and designates that the start point
neighborhood distance is 100mm, and the end point neighborhood distance is 200mm.

CNT 0 ... Designates the end of the continuous movement.

Program Explanation
1 Mov P1 ' (1) Moves with joint interpolation to P1.

2 Cnt 1 ' Validates continuous movement. (Following movement is continuous movement.)

3 Mvr P2, P3, P4 ' (2) Moves linearly to P2, and continuously moves to P4 with arc movement.

4 Mvs P5 ' After arc movement, moves linearly to P5.

5 Cnt 1, 200, 100 ' (3) Sets the continuous movement's start point neighborhood distance to 200mm,
and the end point neighborhood distance to 100mm.

6 Mvs P6 ' (4) After moving to previous P5, moves in succession linearly to P6.

7 Mvs P1 ' (5) Continuously moves to P1 with linear movement.

8 Cnt 0 ' Invalidates the continuous movement.

9 End ' Ends the program.

Function Explanation page
Designate the movement speed. .. Page 113, "(5) Acceleration/deceleration time and speed control"
Designate the acceleration/deceleration time. Page 113, "(5) Acceleration/deceleration time and speed control"
Confirm that the target position is reached. Page 115, "(6) Confirming that the target position is reached"
Move with joint interpolation.. Page 108, "(1) Joint interpolation movement"
Move linearly. .. Page 109, "(2) Linear interpolation movement"
Move while drawing a circle or arc. ... Page 110, "(3) Circular interpolation movement"

Hand

(1)

(2)

(3)

(4)

(5)
100mm

200m
m

Default value

:Movement position
:Robot movement

P1

P2

P3

P4

P5

P6

100m
m

The robot moves continuously for less than the smaller distance
of either the proximity distance when moving toward P6 (200 mm)
or the proximity distance to the starting point of the path to P1 (100 mm).

The robot moves continuously for less than the smaller distance of either
the proximity distance when moving toward P5 (default value) or the proximity
distance to the starting point of the path to P6 (200 mm).

*1) Specification of forward/backward
movement of the hand

The statement examples and program
examples are for a vertical 6-axis robot.The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool
coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTION
Robot movement

The robot's locus of movement may change
with specified speed.
Especially as for the corner section, short cut
distance may change. Therefore, when
beginning automatic operation, moves at low
speed at first, and you should gather speed
slowly with being careful of interference with
peripheral equipment.

CAUTION
-112 MELFA-BASIC VI functions

4MELFA-BASIC VI
(5) Acceleration/deceleration time and speed control
The percentage of the acceleration/deceleration in respect to the maximum acceleration/deceleration, and
the movement speed can be designated.

*Command word

*Statement example

*Movement speed during joint interpolation
Controller (T/B) setting value x Ovrd command setting value x JOvrd command setting value.

*Movement speed during linear and circular interpolation
Controller (T/B) setting value x Ovrd command setting value x Spd command setting value.

*Program example

Command word Explanation

Accel Designates the acceleration during movement and the deceleration as a percentage (%) in
respect to the maximum acceleration/deceleration speed.

Ovrd Designates the movement speed applied on the entire program as a percentage (%) in respect
to the maximum speed.

JOvrd Designates the joint interpolation speed as a percentage (%) in respect to the maximum speed.

Spd Designate the linear and circular interpolation speed with the hand end speed (mm/s).

Oadl This instruction specifies whether the optimum acceleration/deceleration function should be
enabled or disabled.

Statement example Explanation
Accel... Sets both the acceleration and deceleration to 100%.

Accel 60, 80.. Sets the acceleration to 60% and the deceleration to 80%.
(For maximum acceleration/deceleration is 0.2 sec.
acceleration 0.2/0.6=0.33 sec. deceleration 0.2/0.8=0.25 sec.)

Ovrd 50... Sets the joint interpolation, linear interpolation and circular interpolation to 50% of the
maximum speed.

JOvrd 70... Set the joint interpolation operation to 70% of the maximum speed.

Spd 30 .. Sets the linear interpolation and circular interpolation speed to 30mm/s.

Oadl ON ... This instruction enables the optimum acceleration/deceleration function.

(1)....Maximum speed

(2)..........Maximum speed

P1

(3)....50%

(4)120mm/s
(5)Maximum speed

(6)70%

50
m

m

P2 P3

Hand :Movement position
 :Robot movement *1) Specification of

forward/backward
movement of the hand

The statement examples and program
examples are for a vertical 6-axis robot.The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool
coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTION
Robot movement
 MELFA-BASIC VI functions 4-113

4

4MELFA-BASIC VI
Program example

*Related functions

Program Explanation
1 Ovrd 100 ' Sets the movement speed applied on the entire program to the maximum speed.
2 Mvs P1 ' (1) Moves at maximum speed to P1.
3 Mvs P2, -50 *1) ' (2) Moves at maximum speed from P2 to position retracted 50mm in hand direction.
4 Ovrd 50 ' Sets the movement speed applied on the entire program to half of the maximum speed.
5 Mvs P2 ' (3) Moves linearly to P2 with a speed half of the default speed.
6 Spd 120 ' Sets the end speed to 120mm/s. (Since the override is 50%, it actually moves at 60 mm/s.)
7 Ovrd 100 ' Sets the movement speed percentage to 100% to obtain the actual end speed of 120mm/s.
8 Accel 70, 70 ' Sets the acceleration and deceleration to 70% of the maximum speed.
9 Mvs P3 ' (4) Moves linearly to P3 with the end speed 120mm/s.
10 Spd M_NSpd ' Returns the end speed to the default value.
11 JOvrd 70 ' Sets the speed for joint interpolation to 70%.
12 Accel ' Returns both the acceleration and deceleration to the maximum speed.
13 Mvs , -50 *1) ' (5) Moves linearly with the default speed for linear movement from the current position (P3) to a position

retracted 50mm in the hand direction.
14 Mvs P1 ' (6) Moves to P1 at 70% of the maximum speed.
15 End ' Ends the program.

Function Explanation page
Move with joint interpolation.. Page 108, "(1) Joint interpolation movement"

Move linearly. .. Page 109, "(2) Linear interpolation movement"

Move while drawing a circle or arc. ... Page 110, "(3) Circular interpolation movement"

Continuously move to next position without stopping at target position.......... Page 112, "(4) Continuous movement"
-114 MELFA-BASIC VI functions

4MELFA-BASIC VI
(6) Confirming that the target position is reached
The positioning finish conditions can be designated with as No. of pulses. (Fine instruction) This designation
is invalid when using continuous movement.

*Command word

*Statement example

*Program example

Program example

*Related functions

Command word Explanation

Fine Designates the positioning finish conditions with a No. of pulses. Specify a small number of pulses
to allow more accurate positioning.

Mov and Dly After the Mov movement command, command the Dly instruction (timer) to complete positioning .

Statement example Explanation
Fine100 .. Sets the positioning finish conditions to 100 pulses.

Mov P1 ... Moves with joint interpolation to P1. (The movement completes at the command value
level.)

Dly 0.1 .. Positioning after the movement instruction is performed by the timer.

Program Explanation
1 Cnt 0 ' The Fine instruction is valid only when the Cnt instruction is OFF.

2 Mvs P1 ' (1) Moves with joint interpolation to P1.

3 Mvs P2, -50 *1) ' (2) Moves with joint interpolation from P2 to position retracted 50mm in hand direction.

4 Fine 50 ' Sets positioning finish pulse to 50.

5 Mvs P2 ' (3) Moves with linear interpolation to P2
(Mvs completes if the positioning complete pulse count is 50 or less.)

6 M_Out(17)=1 ' (4) Turns output signal 17 ON when positioning finish pulse reaches 50 pulses.

7 Fine 1000 ' Sets positioning finish pulse to 1000.

8 Mvs P3, -100 *1) ' (5) Moves linearly from P3 to position retracted 100mm in hand direction.

9 Mvs P3 ' (6) Moves with linear interpolation to P3.

10 Dly 0.1 ' Performs the positioning by the timer.
11 M_Out(17)=0 ' (7) Turns output signal 17 off.

12 Mvs , -100 *1) ' (8) Moves linearly from current position (P3) to position retracted 100mm in hand direction.

13 End ' Ends the program.

Function Explanation page
Move with joint interpolation.. Page 110, "(3) Circular interpolation movement"
Move linearly. .. Page 109, "(2) Linear interpolation movement"
Continuously move to next position without stopping at target position.......... Page 112, "(4) Continuous movement"

(1)

(2)

(5)

P1

(3) (6)
(8)

50
m

m

100mm

P2

Hand

 :Movement position
 :Robot movement

P3

(7) Turns output signal bit 17
OFF at finish of positioning to P3.

(4) Turns output signal bit 17 ON
at finish of positioning to P2.

*1) Specification of
forward/backward
movement of the hand

The statement examples and program
examples are for a vertical 6-axis robot.The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool
coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement
 MELFA-BASIC VI functions 4-115

4

4MELFA-BASIC VI
(7) High path accuracy control
It is possible to improve the motion path tracking when moving the robot. This function is limited to certain
types of robot. Currently, the Prec instruction is available for vertical multi-joint type 5-axis and 6-axis robots.

*Command word

*Statement example

*Program example

•Program example

The Prec instruction improves the tracking accuracy of the robot's hand tip, but
lowers the acceleration/deceleration of the robot movement, which means that the
cycle time may become longer. The tracking accuracy will be further improved if the
Cnt instruction is not included. However, the hand tip speed cannot be guaranteed in
this case.

Command word Explanation

Prec This instruction specifies whether the high path accuracy mode should be enabled or disabled.

Statement example Explanation
Prec On .. Enables the high path accuracy mode.

Prec Off... Disables the high path accuracy mode.

Program Explanation
1 Mov P1, -50 *1) ' (1) Moves with joint interpolation from P1 to position retracted 50mm in hand direction.

2 Ovrd 50 ' Sets the movement speed to half of the maximum speed.

3 Mvs P1 ' (2) Moves with linear interpolation to P1.

4 Prec On ' The high path accuracy mode is enabled.

5 Mvs P2 ' (3) Moves the robot from P1 to P2 with high path accuracy.

6 Mvs P3 ' (4) Moves the robot from P2 to P3 with high path accuracy.

7 Mvs P4 ' (5) Moves the robot from P3 to P4 with high path accuracy.

8 Mvs P1 ' (6) Moves the robot from P4 to P1 with high path accuracy.

9 Prec Off ' The high path accuracy mode is ÇÑisableÇÑ.

10 Mvs P1, -50 *1) ' (7) Returns the robot to the position 50 mm behind P1 in the hand direction using linear
interpolation.

11 End ' Ends the program.

P1 P2

P3 P4

(1)

(2)

(3)

(4)

(5)

(6)
(7)

 :Movement position
 :Robot movement

Hand

*1) Specification of
forward/backward
movement of the hand

*1) The statement examples and program
examples are for a vertical 6-axis robot.The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool
coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement

CAUTION
-116 MELFA-BASIC VI functions

4MELFA-BASIC VI
(8) Hand and tool control
The hand open/close state and tool shape can be designated.

*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

HOpen Opens the designated hand.

HClose Closes the designated hand.

Tool Sets the shape of the tool being used, and sets the control point.

Statement example Explanation
HOpen 1 ... Opens hand 1.

HOpen 2 ... Opens hand 2.

HClose 1... Closes hand 1.

HClose 2... Closes hand 2.

Tool (0, 0, 95, 0, 0, 0) .. Sets the robot control point to the position 95 mm from the flange plane in the extension
direction.

Program Explanation
1 Tool(0, 0, 95, 0, 0, 0) ’Sets the hand length to 95 mm.
2 Mvs P1, -50 *1) ’(1) Moves with joint interpolation from P1 to position retracted 50mm in hand direction.
3 Ovrd 50 ’Sets the movement speed to half of the maximum speed.
4 Mvs P1 ’(2) Moves with linear interpolation to P1. (Goes to grasp workpiece.)
5 Dly 0.5 ’ Wait for the 0.5 seconds for the completion of arrival to the target position.
6 HClose 1 ’(3) Closes hand 1. (Grasps workpiece.)
7 Dly 0.5 ’Waits 0.5 seconds.
8 Ovrd 100 ’Sets movement speed to maximum speed.
9 Mvs , -50 *1) ’(4) Moves linearly from current position (P1) to position retracted 50mm in hand direction. (Lifts up

workpiece.)
10 Mvs P2, -50 *1) ’(5) Moves with joint interpolation from P2 to position retracted 50mm in hand direction.
11 Ovrd 50 ’Sets movement speed to half of the maximum speed.
12 Mvs P2 ’(6) Moves with linear interpolation to P2. (Goes to place workpiece.)
13 Dly 0.5 ’ Wait for the 0.5 seconds for the completion of arrival to the target position.
14 HOpen 1 ’(7) Opens hand 1. (Releases workpiece.)
15 Dly 0.5 ’Waits 0.5 seconds.
16 Ovrd 100 ’ Sets movement speed to maximum speed.
17 MVS , -50 *1) ’(8) Moves linearly from current position (P2) to position retracted 50mm in hand direction.

(Separates from workpiece.)
18 End ’Ends the program.

Function Explanation page
Appended statement... Page 346, " Wth (With)"

(1)

(2)
(4)

(3) Grasps
 workpiece

(5)

(6)
(8)

(7) Releases
 workpiece

P2

Hand

 Workpiece

P1

 :Movement position
 :Robot movement

*1) Specification of
forward/backward
movement of the hand

The statement examples and program
examples are for a vertical 6-axis robot.The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool
coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement
 MELFA-BASIC VI functions 4-117

4

4MELFA-BASIC VI
4.1.2 Pallet operation
When carrying out operations with the workpieces neatly arranged (palletizing), or when removing
workpieces that are neatly arranged (depalletizing), the pallet function can be used to teach only the
position of the reference workpiece, and obtain the other positions with operations.

*Command word

*Statement example

The relation of the position designation and a pallet pattern is shown below.

 Pallet pattern = 1 (zigzag) Pallet pattern = 2 (same direction) Pallet pattern = 3 (arc pallet)

Command word Explanation

Def Plt Defines the pallet to be used.

Plt Obtains the designated position on the pallet with operations.

Statement example Explanation
Def Plt 1, P1, P2, P3, P4, 4, 3, 1 Defines to operate pallet No. 1 with a start point = P1, end point A = P2, end point B = P3

and diagonal point = P4, a total of 12 work positions (quantity A = 4, quantity B = 3), and
a pallet pattern = 1(Zigzag).

Def Plt 2, P1, P2, P3, , 8, 5, 2... Defines to operate pallet No. 2 with a start point = P1, end point A = P2, and end point B
= P3, a total of 40 work positions (quantity A = 8, quantity B = 5), and a pallet pattern = 2
(Same direction).

Def Plt 3, P1, P2, P3, , 5, 1, 3... Define that pallet No. 3 is an arc pallet having give five work positions on an arc
designated with start point = P1, transit point = P2, end point = P3 (total three points).

(Plt1, 5) ... Operate the 5th position on pallet No. 1.

(Plt1, M1) .. Operate position in pallet No. 1 indicated with the numeric variable M1.

12

7

6

1

11

8

5

2

10

9

4

3

End point B

Start point End point A

Diagonal point

Start point
10

7

4

1

11

8

5

2

12

9

6

3

１

２
３

４

５

End point

Transit point
End point B Diagonal point

Start point End point A

Zigzag Same direction Arc pallet
-118 MELFA-BASIC VI functions

4MELFA-BASIC VI
<Precautions on the posture of position data in a pallet definition>

Please read "*Explanation" below if you use position data whose posture
components (A, B and C) are approximately +/-180 degrees as the start point, end
points A and B, or the diagonal point.

*Explanation
At a position where a posture component (A, B and C) reaches 180 degrees, the component value can
become either +180 degrees or -180 degrees even if the posture is the same. This is due to internal
operation errors, and there is no consistency in which sign is employed.
If this position is used for the start point, end points A and B or diagonal point of the pallet definition and the
same posture component values include both +180 degrees and -180 degrees, the hand will rotate and
move in unexpected ways because the pallet gird positions are calculated by dividing the distance between
-180 degrees and +180 degrees.
Whether a posture component is +180 degrees or -180 degrees, the posture will be the same. Use the
same sign, either + or -, consistently for position data used to define a pallet.
Note also that similar phenomena can occur if posture components are close to +/-180 degrees (e.g., +179
degrees and -179 degrees) as well, if different signs are used. In this case, add or subtract 360 degrees to/
from the posture components and correct the values such that the sign becomes the same. (For example,
to change the sign of -179 degrees to +, add 360 degrees and correct the value to +181 degrees.)
"•Program example 1" shows an example where the posture components of the end points (P3 and P4) and
diagonal point (P5) are adjusted according to the start point (P2) when the hand direction is the same in all
grid points of a pallet (values of the A, B and C axes are identical) (line numbers 10 to 90). "•Program exam-
ple 2" shows an example where values are corrected to have the same sign as the start point (P2) when the
posture components of a pallet definition position are close to +/-180 degrees and the C-axis values of the
end points (P3 and P4) and diagonal point (P5) are either less than -178 degrees or greater than +178
degrees (line numbers 10 to 100). (+/-178 degrees are set as the threshold values of correction.) Use these
program examples as reference for cases where the pallet precision is not very high and the hand direction
thus must be corrected slightly.

*Program example

CAUTION

13

10

7

4

1

14

11

8

5

2

15

12

9

6

3

P1
(workpiece supply position)

Palletize

3 pcs.

5
pc

s.

P4
(End point B)

P2
(Start point)

P3
(End point A)

P5
(Diagonal point)

Pallet pattern = 2(same direction)

Robot movement

*1) Specification of forward/
backward movement of the
hand

The statement examples and program examples are for a
vertical 6-axis robot.The hand advance/retrace direction
relies on the Z axis direction (+/- direction) of the tool
coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate "From Robot
unit setup to maintenance", and designate the correct
direction.

CAUTION
 MELFA-BASIC VI functions 4-119

4

4MELFA-BASIC VI
The value of the start point of the pallet definition is employed for the structure flag of
grid points (FL1 of position data) calculated by pallet operation (Plt instruction).
For this reason, if position data with different structure flags are used for each point of
the pallet definition, the desired pallet operation cannot be obtained.
Use position data whose structure flag values are all the same for the start point, end
points A and B and the diagonal point of the pallet definition. The value of the start
position of the pallet definition is employed for the multi-rotation flag of grid points
(FL2 of position data) as well. If position data with different multi-rotation flags are
used for each point of the pallet definition, the hand will rotate and move in
unexpected ways depending on the robot positions the pallet operation goes through
and the type of interpolation instruction (joint interpolation, line interpolation, etc.). In
such cases, use the TYPE argument of the interpolation instruction to set the detour/
short cut operation of the posture properly and ensure that the hand moves as
desired.

CAUTION
-120 MELFA-BASIC VI functions

4MELFA-BASIC VI
•Program example 1
The hand direction is the same in all grid points of a pallet (values of the A, B and C axes are identical)

Program Explanation
1 P3.A=P2.A ’Assigns the posture component (A) of P2 to the posture component (A) of P3.

2 P3.B=P2.B ’Assigns the posture component (B) of P2 to the posture component (B) of P3.

3 P3.C=P2.C ’Assigns the posture component (C) of P2 to the posture component (C) of P3.

4 P4.A=P2.A ’Assigns the posture component (A) of P2 to the posture component (A) of P4.

5 P4.B=P2.B ’Assigns the posture component (B) of P2 to the posture component (B) of P4.

6 P4.C=P2.C ’Assigns the posture component (C) of P2 to the posture component (C) of P4.

7 P5.A=P2.A ’Assigns the posture component (A) of P2 to the posture component (A) of P5.

8 P5.B=P2.B ’Assigns the posture component (B) of P2 to the posture component (B) of P5.

9 P5.C=P2.C ’Assigns the posture component (C) of P2 to the posture component (C) of P5.

10 Def Plt 1, P2, P3, P4, P5, 3, 5, 2 ’Defines the pallet. Pallet No. = 1, start point = P2, end point A = P3, end point B = P4,
diagonal point = P5, quantity A = 3, quantity B = 5, pallet pattern = 2 (Same direction).

11 M1=1 ’Substitutes value 1 in numeric variable M1. (M1 is used as a counter.

12 *LOOP ’Designates label LOOP at the jump destination.

13 Mov P1, -50 *1) ’Moves with joint interpolation from P1 to a position retracted 50mm in hand direction.

14 Ovrd 50 ’Sets movement speed to half of the maximum speed.

15 Mvs P1 ’Moves linearly to P1. (Goes to grasp workpiece.)

16 HClose 1 ’Closes hand 1. (Grasps workpiece.)

17 Dly 0.5 ’Waits 0.5 seconds.

18 Ovrd 100 ’Sets movement speed to maximum speed.

19 Mvs , -50 *1) ’Moves linearly from current position (P1) to a position retracted 50mm in hand direction. (Lifts
up workpiece.)

20 P10=(Plt1,M1) ’Operates the position in pallet No. 1 indicated by the numeric variable M1, and substitutes
the results in P10.

21 Mov P10, -50 *1) ’Moves with joint interpolation from P10 to a position retracted 50mm in hand direction.

22 Ovrd 50 ’Sets movement speed to half of the maximum speed.

23 Mvs P10 ’Moves linearly to P10. (Goes to place workpiece.)

24 HOpen 1 ’Opens hand 1. (Places workpiece.)

25 Dly 0.5 ’Waits 0.5 seconds.

26 Ovrd 100 ’Sets movement speed to maximum speed.

27 Mvs , -50 ’Moves linearly from current position (P10) to a position retracted 50mm in hand direction.
(Separates from workpiece.)

28 M1=M1+1 ’Increments numeric variable M1 by 1. (Advances the pallet counter.)

29 If M1<=15 Then *LOOP ’If numeric variable M1 value is less than 15, jumps to label LOOP and repeat process. If
more than 15, goes to next step.

30 End ’Ends the program.
 MELFA-BASIC VI functions 4-121

4

4MELFA-BASIC VI
•Program example 2
Correction when posture components are close to +/-180 degrees

Program Explanation
1 If Deg(P2.C)<0 Then GoTo *MINUS ’Checks the sign of the posture component (C) of P2 and, if it is -

(negative), jump to the label MINUS line.

2 If Deg(P3.C)<-178 Then P3.C=P3.C+Rad(+360) ’If the posture component (C) of P3 is close to -180 degrees,
adds 360 degrees to correct it to a positive value.

3 If Deg(P4.C)<-178 Then P4.C=P4.C+Rad(+360) ’If the posture component (C) of P4 is close to -180 degrees,
adds 360 degrees to correct it to a positive value.

4 If Deg(P5.C)<-178 Then P5.C=P5.C+Rad(+360) ’If the posture component (C) of P5 is close to -180 degrees,
adds 360 degrees to correct it to a positive value.

5 GoTo *DEFINE ’Jumps unconditionally to the label DEFINE line.

6 *MINUS ’Specifies the label MINUS line as the jump destination.

7 If Deg(P3.C)<+178 Then P3.C=P3.C-Rad(+360) ’If the posture component (C) of P3 is close to +180 degrees,
adds 360 degrees to correct it to a negative value.

8 If Deg(P4.C)<+178 Then P4.C=P4.C-Rad(+360) ’If the posture component (C) of P4 is close to +180 degrees,
adds 360 degrees to correct it to a negative value.

9 If Deg(P5.C)<+178 Then P5.C=P5.C-Rad(+360) ’If the posture component (C) of P5 is close to +180 degrees,
adds 360 degrees to correct it to a negative value.

10 *DEFINE ’Specifies the label DEFINE line as the jump destination.

11 Def Plt 1, P2, P3, P4, P5, 3, 5, 2 ’Defines the pallet. Pallet No. = 1, start point = P2, end point A =
P3, end point B = P4, diagonal point = P5, quantity A = 3,
quantity B = 5, pallet pattern = 2 (Same direction).

12 M1=1 ’Substitutes value 1 in numeric variable M1. (M1 is used as a
counter.

13 *LOOP ’Designates label LOOP at the jump destination.

14 Mov P1, -50 *1) ’Moves with joint interpolation from P1 to a position retracted
50mm in hand direction.

15 Ovrd 50 ’Sets movement speed to half of the maximum speed.

16 Mvs P1 ’Moves linearly to P1. (Goes to grasp workpiece.)

17 HClose 1 ’Closes hand 1. (Grasps workpiece.)

18 Dly 0.5 ’Waits 0.5 seconds.

19 Ovrd 100 ’Sets movement speed to maximum speed.

20 Mvs , -50 *1) ’Moves linearly from current position (P1) to a position retracted
50mm in hand direction. (Lifts up workpiece.)

21 P10=(Plt1,M1) ’Operates the position in pallet No. 1 indicated by the numeric
variable M1, and substitutes the results in P10.

22 Mov P10, -50 *1) ’Moves with joint interpolation from P10 to a position retracted
50mm in hand direction.

23 Ovrd 50 ’Sets movement speed to half of the maximum speed.

24 Mvs P10 ’Moves linearly to P10. (Goes to place workpiece.)

25 HOpen 1 ’Opens hand 1. (Places workpiece.)

26 Dly 0.5 ’Waits 0.5 seconds.

27 Ovrd 100 ’Sets movement speed to maximum speed.

28 Mvs , -50 ’Moves linearly from current position (P10) to a position retracted
50mm in hand direction. (Separates from workpiece.)

29 M1=M1+1 ’Increments numeric variable M1 by 1. (Advances the pallet
counter.)

30 If M1<=15 Then *LOOP ’If numeric variable M1 value is less than 15, jumps to label
LOOP and repeat process. If more than 15, goes to next step.

31 End ’Ends the program.
-122 MELFA-BASIC VI functions

4MELFA-BASIC VI
4.1.3 Program control
The program flow can be controlled with branching, interrupting, subroutine call, and stopping, etc.

(1) Unconditional branching, conditional branching, waiting
The flow of the program to a specified step can be set as unconditional or conditional branching.

*Command word

*Statement example

Command word Explanation
GoTo Jumps unconditionally to the designated step.

On GoTo Jumps according to the value of the designated variable. The value conditions follow the
integer value order.

If Then Else
(Instructions written in one

step)

Executes the command corresponding to the designated conditions.. The value conditions
can be designated randomly. There is only one type of condition per command statement.
If the conditions are met, the instruction after Then is executed. If the conditions are not
met, the instruction after Else is executed. They are written in one step.

If Then
Else

End If
(Instructions written in

several steps)

Several steps can be processed according to the specified variables and specified
conditions of the values. It is possible to specify any conditions for values. Only one type
of condition is allowed for one instruction. If the conditions are met, the steps following
Then until the Else step are executed. If the conditions are not met, the steps after Else
until End IF are executed.

Select
Case

End Select

Jumps according to the designated variable and the designated conditions of that value.
The value conditions can be designated randomly.
Multiple types of conditions can be designated per command statement.

Wait Waits for the variable to reach the designated value.

Statement example Explanation
GoTo *FN.. Jumps unconditionally to the label FN step.

ON M1 GoTo *L1, *L2, *L3 If the numeric variable M1 value is 1, jumps to step *L1, if 2 jumps to step *L2, and if 3 jumps to step
*L3. If the value does not correspond, proceeds to next step.

If M1=1 Then *L1.. If the numeric variable M1 value is 1, branches to step *L1. If not, proceeds to the next step.

If M1=1 Then *L2 Else *L2 If the numeric variable M1 value is 1, branches to step *L1. If not, branches to step *L2.

If M1=1 Then ..
 M2=1
 M3=2
Else
 M2=-1
 M3=-2
EndIf

If the numerical variable of M1 is 1, the instructions M2 = 1 and M3 = 2 are executed. If the value of M1
is different from 1, the instructions M2 = -1 and M3 = -2 are executed.

Select M1 ...
 Case 10 ...
 :
 Break
 Case IS 11...
 :
 Break
 Case IS <5 ..
 :
 Break
 Case 6 TO 9 ..
 :
 Break
Default ...
 :
 Break
End Select ..

Branches to the Case statement corresponding to the value of numeric variable M1.
If the value is 10, executes only between Case 10 and the next Case 11.

If the value is 11, executes only between Case 11 and the next Case IS <5.

If the value is smaller than 5, executes only between Case IS <5 and next Case 6 TO 9.

 If value is between 6 and 9, executes only between Case 6 TO 9 and next Default.

If value does not correspond to any of the above, executes only between Default and next End Select.

Ends the Select Case statement.

Wait M_In(1)=1 Waits for the input signal bit 1 to turn ON.
 MELFA-BASIC VI functions 4-123

4

4MELFA-BASIC VI
*Related functions

(2) Repetition
Multiple command statements can be repeatedly executed according to the designated conditions.

*Command word

*Statement example

*Related functions

Function Explanation page
Repetition ... Page 124, "(2) Repetition"

Interrupt.. Page 125, "(3) Interrupt"

Subroutine.. Page 126, "(4) Subroutine"

External signal input... Page 128, "(1) Input signals"

Command word Explanation

For Next Repeat between For statement and Next statement until designated conditions are satisfied.

 While WEnd Repeat between While statement and WEnd statement while designated conditions are
satisfied.

Statement example Explanation
For M1=1 To 10 ..
 :
Next

Repeat between For statement and Next statement 10 times.
The initial numeric variable M1 value is 1, and is incremented by one with each
repetition.

For M1=0 To 10 Step 2 ...
 :
Next

Repeat between For statement and Next statement 6 times.
The initial numeric variable M1 value is 0, and is incremented by two with each
repetition.

While (M1 >= 1) And (M1 <= 10)
 :
WEnd

Repeat between While statement and WEnd statement while the value of the numeric
variable M1 is 1 or more and less than 10.

Function Explanation page
Unconditional branching, branching... Page 123, "(1) Unconditional branching, conditional branching,

waiting"

Interrupt.. Page 125, "(3) Interrupt"

Input signal wait ... Page 128, "(1) Input signals"
-124 MELFA-BASIC VI functions

4MELFA-BASIC VI
(3) Interrupt
Once the designated conditions are established, the command statement being executed can be interrupted
and a designated step branched to.

*Command word

*Statement example

*Related functions

Command word Explanation

Def Act Defines the interrupt conditions and process for generating interrupt.

Act Designates the validity of the interrupt.

Return If a subroutine is called for the interrupt process, returns to the interrupt source line.

Statement example Explanation
Def Act 1, M_In(10)=1 GoSub *SUB1 If input signal bit 10 is turned on for interrupt number 1, the subroutine on step *SUB1 is

defined to be called after the robot decelerates and stops. The deceleration time
depends on the Accel and Ovrd instructions.

Def Act 2, M_In(11)=1 GoSub *SUB2, L........................... If input signal bit 11 is turned on for interrupt number 2, the subroutine on step *SUB2 is
defined to be called after the statement currently being executed is completed.

Def Act 3, M_In(12)=1 GoSub *SUB3, S.......................... If input signal bit 12 is turned on for interrupt number 3, the subroutine on step *SUB3 is
defined to be called after the robot decelerates and stops in the shortest time and
distance possible.

Act 1=1 ... Enables the priority No. 1 interrupt.

Act 2=0 ... Disables the priority No. 1 interrupt.

Return 0.. Returns to the step where the interrupt occurred.

Return 1.. Returns to the step following the step where the interrupt occurred.

Function Explanation page
Unconditional branching, branching... Page 123, "(1) Unconditional branching, conditional branching,

waiting"

Subroutine.. Page 126, "(4) Subroutine"

Communication .. Page 129, "4.1.5 Communication"
 MELFA-BASIC VI functions 4-125

4

4MELFA-BASIC VI
(4) Subroutine
Subroutine and subprograms can be used.
By using this function, the program can be shared to reduce the No. of steps, and the program can be
created in a hierarchical structure to make it easy to understand.

*Command word

*Statement example

*Related functions

Command word Explanation

GoSub Calls the subroutine at the designated step or designated label.

On GoSub Calls the subroutine according to the designated variable number. The value conditions follow
the integer value order. (1,2,3,4,.......)

Return Returns to the step following the step called with the GoSub command.

CallP Calls the designated program. The next step in the source program is returned to at the End
statement in the called program. Data can be transferred to the called program as an argument.

FPrm An argument is transferred with the program called with the CallP command.

Statement example Explanation
GoSub ... Calls the subroutine from step.

On GoSub... Calls the subroutine from label GET.

ON M1 GoSub *L1, *L2, *L3....................... If the numeric variable M1 value is 1, calls the subroutine at step *L1, if 2 calls the subroutine at step
*L2, and if 3 calls the subroutine at step *L3. If the value does not correspond, proceeds to next step.

Return... Returns to the step following the step called with the GoSub command.

CallP "10".. Calls the No. 10 program.

CallP "20", M1, P1 Transfers the numeric variable M1 and position variable P1 to the No. 20 program, and calls the
program.

FPrm M10, P10 .. Receives the numeric variable transferred with the CallP in M10 of the subprogram, and the position
variable in P10.

Function Explanation page
Interrupt.. Page 125, "(3) Interrupt"

Communication .. Page 129, "4.1.5 Communication"

Unconditional branching... Page 123, "(1) Unconditional branching, conditional branching, waiting"
-126 MELFA-BASIC VI functions

4MELFA-BASIC VI
(5) Timer
The program can be delayed by the designated time, and the output signal can be output with pulses at a
designated time width.

*Command word

*Statement example

*Related functions

(6) Stopping
The program execution can be stopped. The moving robot will decelerate to a stop.

*Command word

*Statement example

*Related functions

Command word Explanation

Dly Functions as a designated-time timer.

Statement example Explanation
Dly 0.05 ... Waits for only 0.05 seconds.

M_Out(10)=1 Dly 0.5... Turns on output signal bit 10 for only 0.5 seconds.

Function Explanation page
Pulse signal output... Page 128, "(1) Input signals"

Command word Explanation

Hlt This instruction stops the robot and pauses the execution of the program. When the program is
started, it is executed from the next step.

End This instruction defines the end of one cycle of a program. In continuous operation, the program
is executed again from the start step upon the execution of the End instruction. In cycle
operation, the program ends upon the execution of the End instruction when the cycle is
stopped.

Statement example Explanation
Hlt ... Interrupt execution of the program.

If M_In(20)=1 Then Hlt ... Pauses the program if input signal bit 20 is turned on.

Mov P1 WthIf M_In(18)=1, Hlt .. Pauses the program if input signal bit 18 is turned on while moving toward P1.

End ... Terminates the program even in the middle of the execution.

Function Explanation page
Appended statement.. Page 346, " Wth (With)"
 MELFA-BASIC VI functions 4-127

4

4MELFA-BASIC VI
4.1.4 Inputting and outputting external signals
This section explains the general methods for signal control when controlling the robot via an external
device (e.g., PLC).

(1) Input signals
Signals can be retrieved from an external device, such as a programmable logic controller.
The input signal is confirmed with a robot status variable (M_In(), etc.) Refer to Page 167, "4.5 Robot status
variables" for details on the robot status variables.

*Command word

*System variables
M_In, M_Inb, M_Inw, M_DIn

*Statement example

*Related functions

(2) Output signals
Signals can be output to an external device, such as a programmable logic controller.
The signal is output with the robot status variable (M_Out(), etc.). Refer to Page 167, "4.5 Robot status vari-
ables" for details on the robot status variables.

*Command word

*System variables
M_Out, M_Outb, M_Outw, M_DOut

*Statement example

*Related functions

Command word Explanation

Wait Waits for the input signal to reach the designated state.

Statement example Explanation
Wait M_In(1)=1 ... Waits for the input signal bit 1 to turn ON.

M1=M_Inb(20) .. Substitutes the input signal bit 20 to 27, as an 8-bit state, in numeric variable M1.

M1=M_Inw(5).. Substitutes the input signal bit 5 to 20, as an 16-bit state, in numeric variable M1.

Function Explanation page
Signal output .. Page 128, "(2) Output signals"
Branching with input signal .. Page 123, "(1) Unconditional branching, conditional branching, waiting"
Interrupting with input signal .. Page 125, "(3) Interrupt"

Command word Explanation

Clr Clears the general-purpose output signal according to the output signal reset pattern in the
parameter.

Statement example Explanation
Clr 1 ... Clears based on the output reset pattern.

M_Out(1)=1 ... Turns the output signal bit 1 ON.

M_Outb (8)=0 .. Turns the 8 bits, from output signal bit 8 to 15, OFF.

M_Outw (20)=0.. Turns the 16 bits, from output signal bit 20 to 35, OFF.

M_Out(1)=1 Dly 0.5 ... Turns the output signal bit 1 ON for 0.5 seconds. (Pulse output)

M_Outb (10)=&H0F ... Turns the 4 bits, from output signal bit 10 to 13 ON, and turns the four bits from 14 to 17 OFF.

Function Explanation page
Signal input .. Page 128, "(1) Input signals"

Timer .. Page 127, "(5) Timer"
-128 MELFA-BASIC VI functions

4MELFA-BASIC VI
4.1.5 Communication
Data can be exchanged with an external device, such as a personal computer.

*Command word

*Statement example

*Related functions

Command word Explanation

Open Opens the communication line.

Close Closes the communication line.

Print# Outputs the data in the AscII format. CR is output as the end code.

Input# Inputs the data in the AscII format. The end code is CR.

On Com GoSub Defines the subroutine to be called when an interrupt is generated from the communication line.
The interrupt is generated when data is input from an external device.

Com On Enables the interrupt process from the communication line.

Com Off Disables the interrupt process from the communication line. The interrupt will be invalid even if it
occurs.

Com Stop Stops the interrupt process from the communication line. If there is an interrupt, it is saved, and
is executed after enabled.

Statement example Explanation
Open "COM1:" AS #1 Opens the communication line COM1 as file No. 1.

Close #1 .. Closes file No. 1.

Close ... Closes all files that are open.

Print#1,"TEST" .. Outputs the character string "TEST" to file No. 1.

Print#2,"M1=";M1 Output the character string "M1=" and then the M1 value to file No. 2.
Output data example: "M1 = 1" + CR (When M1 value is 1)

Print#3,P1.. Outputs the position variable P1 coordinate value to file No. 3.
Output data example: "(123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)" +CR
(When X = 123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

Print#1,M5,P5.. Outputs the numeric variable M5 value and position variable coordinate value to file No. 1.
M5 and P5 are separated with a comma (hexadecimal, 2C).
Output data example: "8, (123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)"+CR
(When M5=8, P5 X=123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

Input#1,M3 .. Converts the input data into a value, and substitutes it in numeric variable M3.
Input data example: "8" + CR (when value 8 is to be substituted)

Input#1,P10 ... Converts the input data into a value, and substitutes it in position variable P10.
Input data example: "8, (123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)"+CR
(P5 will be X= 123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

Input#1,M8,P6 ... Converts the first data input into a value, and substitutes it in numeric variable M8. Converts the data
following the command into a coordinate value, and substitutes it in position variable P6. M8 and P6 are
separated with a comma (hexadecimal, 2C)
Input data example: "7,(123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)"+CR
(The data will be M8 = 7, P6 X=123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

On Com(1) GoSub *SUB3......................... Defines to call step *SUB3 subroutine when data is input in communication line COM1.

On Com(2) GoSub *RECV........................ Defines to call subroutine at label RECV step when data is input in communication line COM2.

Com(1) On... Enables the interrupt from communication line COM1.

Com(2) Off... Disables (prohibits) the interrupt from communication line COM2.

Com(1) Stop .. Stops (holds) the interrupt from communication line COM1.

Function Explanation page
Subroutine.. Page 126, "(4) Subroutine"
Interrupt.. Page 125, "(3) Interrupt"
 MELFA-BASIC VI functions 4-129

4

4MELFA-BASIC VI
4.1.6 Expressions and operations
The following table shows the operators that can be used, their meanings, and statement examples.

(1) List of operator
Class Operator Meaning Statement example

Substituti
on

= The right side is
substituted in the left
side.

P1=P2
P5=P_Curr
P10.Z=100.0
M1=1
STS$="OK"

’Substitute P2 in position variable P1.
’Substitute the current coordinate value in current position variable P5.
’Set the position variable P10 Z coordinate value to 100.0.
’Substitute value 1 in numeric variable M1.
’Substitute the character string OK in the character string variable
STS$.

Numeric
value
operation

+ Add P10=P1+P2
Mov P8+P9
M1=M1+1
STS$="ERR"+"001"

’GSubstitute the results obtained by adding the P1 and P2 coordinate
elements to position variable P10.
’Move to the position obtained by adding the position variable P8 and
P9 coordinate elements.
’Add 1 to the numeric variable M1.
’Add the character string 001 to the character string ERR and
substitute in character string variable STS$.

- Subtract P10=P1-P2
Mov P8-P9
M1=M1-1

’Substitute the results obtained by subtracting the P2 coordinate
element from P1 in position variable P10.
’ Move to the position obtained by subtracting the P9 coordinate
element from the position variable P8.
’Subtract 1 from the numeric variable M1.

* Multiply P1=P10*P3
M1=M1*5

’Substitute the relative conversion results from P10 to P3 in position
variable P1.
’Multiple the numeric variable M1 value by 5.

/ Divide P1=P10/P3
M1=M1/2

’Substitute the reverse relative conversion results from P10 to P3 in
position variable P1.
’Divide the numeric variable M1 value by 2.

^ Exponential operation M1=M1^2 ’Square the numeric variable M1 value.
\ Integer division M1=M1\3 ’Divide the numeric variable M1 value by 3 and make an integer

(round down).
MOD Remainder operation M1=M1 Mod 3 ’Divide the numeric variable M1 value by 3 and leave redundant.
- Sign reversal P1=-P1

M1=-M1
’Reverse the sign for each coordinate element in position variable P1.
’Reverse the sign for the numeric variable M1 value.

Comparis
on
operation

= Compare whether
equal

If M1=1 Then *L1
If STS$="OK" Then *L2

’Branch to step *L1 if numeric variable M1 value is 1.
’Branch to step *L2 if character string in character string variable STS$ is
OK.

<>
or
><

Compare whether not
equal

If M1<>2 Then *L3
If STS$<>"OK" Then *L4

’Branch to step *L3 if numeric variable M1 value is 2.
’Branch to step *L4 if character string in character string variable STS$
is not OK.

< Compare whether
smaller

If M1< 10 Then *L3
If Len(STS$)<3 Then *L4

’Branch to step *L3 if numeric variable M1 value is less than 10.
’Branch to step *L4 if No. of characters in character string STS$
variable is less than 3.

> Compare whether
larger

If M1>9 Then *L3
If Len(STS$)>2 Then *L4

’Branch to step *L3 if numeric variable M1 value is more than 9.
’Branch to step *L4 if No. of characters in character string variable
STS$ is more than 2.

=<
or
<=

Compare whether
equal to or less than

If M1<=10 Then *L3
If Len(STS$)<=5 Then *L4

’Branch to step *L3 if numeric variable M1 value is equal to or less
than 10.
’Branch to step *L4 if No. of characters in character string variable
STS$ is equal to or less then 5.

=>
or
>=

Compare whether
equal to or more than

If M1=>11 Then *L3
If Len(STS$)>=6 Then *L4

’Branch to step *L3 if numeric variable M1 value is equal to or more
than 11.
’Branch to step *L4 if No. of characters in character string variable
STS$ is equal to or more than 6.
-130 MELFA-BASIC VI functions

4MELFA-BASIC VI
Note1) Please refer to Page 132, "Relative calculation of position data (multiplication)".
Note 2) Please refer to Page 132, "Relative calculation of position data (Addition)".

Logical
operation

And Logical AND operation M1=M_Inb(1) And &H0F ’Convert the input signal bit 1 to 4 status and substitute in numeric
variable M1. (Input signal bits 5 to 8 remain OFF.)

Or Logical OR operation M_Outb(20)=M1 Or &H80 ’Output the numeric variable M1 value to output signal bit 20 to 27.
Output bit signal 27 is always ON at this time.

Not NOT operation M1=Not M_Inw(1) ’Reverse the status of input signal bit 1 to 16 to create a value, and
substitute in numeric variable M1.

Xor Exclusive OR
operation

N2=M1 Xor M_Inw(1) ’Obtain the exclusive OR of the states of M1 and the input signal bits 1
to 16, convert into a value and substitute in numeric variable M2.

<< Logical left shift
operation

M1=M1<<2 ’Shift numeric variable M1 two bits to the left.

>> Logical right shift
operation.

M1=M1>>1 ’Shift numeric variable M1 bit to the right.

Class Operator Meaning Statement example
 MELFA-BASIC VI functions 4-131

4

4MELFA-BASIC VI
(2) Relative calculation of position data (multiplication)
Numerical variables are calculated by the usual four arithmetic operations. The calculation of position
variables involves coordinate conversions, however, not just the four basic arithmetic operations. This is
explained using simple examples.

An example of relative calculation (multiplication)
1 P2=(10,5,0,0,0,0)(0,0)
2 P100=P1*P2
3 Mov P1
4 Mvs P100
P1=(200,150,100,0,0,45)(4,0)

In this example, the hand tip is moved relatively within the
P1 tool coordinate system at teaching position P1. The
values of the X and Y coordinates of P2 become the
amount of movement within the tool coordinate system.
The relative calculation is given by multiplication of the P
variables. Be aware that the result becomes different if the
order of multiplication is different. The variable that
specifies the amount of relative movement (P2) should be
entered lastly.
If the posture axis parts of P2 (A, B, and C) are 0, the
posture of P1 is used as is. If there are non-zero values
available, the new posture is determined by rotating the
hand around the Z, Y, and X axes (in the order of C, B,
and A) relative to the posture of P1. Multiplication
corresponds to addition within the tool coordinate system,
while division corresponds to subtraction within the tool
coordinate system.

(3) Relative calculation of position data (Addition)
An example of relative calculation(Addition)
1 P2=(5,10,0,0,0,0)(0,0)
2 P100=P1+P2
3 Mov P1
4 Mvs P100
P1=(200,150,100,0,0,45)(4,0)

In this example, the hand is moved relatively within the
robot coordinate system at teaching position P1. The
values of the X and Y coordinates of P2 become the
amount of movement within the robot coordinate system.
The relative calculation is given by addition of the P
variables.
If a value is entered for the C-axis coordinate of P2, it is
possible to change the C-axis coordinate of P100. The
resulting value will be the sum of the C-axis coordinate of
P1 and the C-axis coordinate of P2.

CAUTION)
In the example above, the explanation is made in two dimensions for the sake of simplicity. In actuality, the
calculation is made in three dimensions. In addition, the tool coordinate system changes depending on the
posture.

CAUTION)
Relative calculation cannot be used in 5-axis robots, because correct values cannot be obtained.

X

Y

X1

Y1

P1

5mm

10mm
P100

Multip lication between P variab les
(relative calculation in the tool coord inate system)

Tool coord inate system at P1

Robot coord inate system

X

Y

P1

P100

10mm

5mm

Add ition of P variab les
(relative calculation in the robot coord inate system)

Robot coord inate system
-132 MELFA-BASIC VI functions

4MELFA-BASIC VI
4.1.7 Appended statement
A process can be added to a movement command.
*Appended statement

*Statement example

*Related functions

Appended statement Explanation

Wth Unconditionally adds a process to the movement command.

WthIf Conditionally adds a process to the movement command.

Statement example Explanation
Mov P1 Wth M_Out(20)=1.. Turns output signal bit 20 ON simultaneously with the start of movement to P1.

Mov P1 WITHIF M_In(20)=1, Hlt Stops if the input signal bit 20 turns ON during movement to P1.

Mov P1 WthIf M_In(19)=1, Skip Stops movement to P1 if the input signal bit 19 turns ON during movement to P1, and
then proceeds to the next step.

Function Explanation page
Joint interpolation movement ... Page 108, "(1) Joint interpolation movement"

Linear interpolation movement... Page 109, "(2) Linear interpolation movement"

Circular interpolation movement .. Page 110, "(3) Circular interpolation movement"

Stopping... Page 127, "(6) Stopping"
 MELFA-BASIC VI functions 4-133

4

4MELFA-BASIC VI
4.2 Multitask function
4.2.1 What is multitasking?

The multitask function is explained in this section.
Multitasking is a function that runs several programs as parallel, to shorten the tact time and enable control
of peripheral devices with the robot program.
Multitasking is executed by placing the programs, to be run in parallel, in the items called "slots" (There is a
total of 32 task slots. The maximum factory default setting is 8.).

The execution of multitask operation is started by activating it from the operation panel or by a dedicated
input signal, or by executing an instruction related to multitask operation.

The execution environment for multitasking is shown in Fig. 4-1.

Fig.4-1:Multitask slot environment

User base program

Multitask slot environment

External variables, user-defined external variables

Slot 1

XRUN
XLOAD
XRST
XSTP

：：：：：
P

ro
gr

am

Slot 2 Slot n

P
ro

gr
am

P
ro

gr
am

XCLR

Execution of a program
A program is executed by placing it in an item called a "slot" and running it.
For example, when running one program (when normally selecting and running the program with the T/B
operation panel), the controller system unconditionally places the program selected with the operation
panel in slot 1 and executes it.
-134 Multitask function

4MELFA-BASIC VI
4.2.2 Executing a multitask
Table 4-2:The multitask can be executed with the following three methods.

4.2.3 Operation state of each slot
The operation state of each slot changes as shown in Fig. 4-2 according to the operations and commands.
Each state can be confirmed with the robot status variable or external output signal.

Fig.4-2:Operation state of each slot

Types of execution Explanation

1 Execution from a program This method starts parallel operation of the programs from a position in
the program using a MELFA-BASIC VI command. The programs to be
run in parallel can be designated, and a program running in parallel can
be stopped.
This method is effective when selecting the programs to be run in
parallel according to the program flow.
The related commands include the "XLoad (X Load)", "XRun (X Run)",
"XStp (X Stop)", "XRst (X Reset)" and "XClr (X Clear)" commands. Refer
to Page 180, "4.12 Detailed explanation of command words" in this
manual for details.

2 Execution from T/B
operation panel or external
input/output signal

In this execution type, depending on the setting of the information of the
"SLT*" parameter, the start operation starts concurrent execution or
constant concurrent execution, or starts concurrent execution at error
occurrence. It is necessary to set the "SLT*" parameter in advance.
This method does not rely on the program flow, and is effective for
carrying out simultaneous execution with a preset format, or for
sequential execution.

3 Executing automatically
when the power is turned
on

It is possible to start constant execution immediately after turning the
controller's power on. If ALWAYS is specified for the start condition of
the SLT* parameter, the program is executed in constant execution
mode immediately after the controller's power is turned on.
This eliminates the trouble of starting the programs in task slots used for
monitoring input/output signals from the PLC side.
In addition, it is possible to execute a program from within another
program that controls movement continuously. In this case, set the value
of the "ALWENA" parameter to 1 in order to execute X** instructions
such as XRun and XLoad, the Servo instruction, and the Reset
instruction.

Program
selection state

(PSA)

Waiting
(WAI)

Start

XRUN

Program reset

XRST

XRUN

Cycle stop

Stop

XSTP

Running
(RUN)

Start

XRst
XRun

XStp

XRun
Multitask function 4-135

4

4MELFA-BASIC VI
<About parameters related to task slots>
The parameters SLT1 to SLT32 contain information about the name of the program to be executed,
operation mode, start condition, and priority for each of the 32 task slots (set to 8 slots at the factory default
setting).
Please refer to Page 492, "5 Functions set with parameters" for details.

*Designation format
Parameter name = 1. program name, 2. operation format, 3. starting conditions, 4. order of priority

*Various setting values and meanings

*Setting example
An example of the parameter settings for designating the following items in slot 2 is shown below.
Designation details) Program name: 5

Operation format: Continuous operation
Starting conditions: Always
Order of priority: 5
SLT2=5, REP, ALWAYS, 5

Item of parameter Default value Setting value Explanation
1. Program name SLT1: Program

selected on the
operation panel.
SLT2 to 32: Name
of the program to
be specified with a
parameter.

Possible to set a registered
program

Use the parameter to specify the execution of
predetermined programs in multitask operation. If the
programs to be executed vary depending on conditions, it is
possible to specify the program using the XLoad and XRun
instructions in another program. The programs selected on
the operation panel are set if SLT1 is specified.

2. Operation format REP REP : Continuous operation If REP is specified, the program is executed again from the
top after the program ends when the final line of the
program is reached, or by execution of the End instruction.

CYC : One cycle operation If CYC is specified, the program ends after being executed
for one cycle and the selected status is canceled. Change
the SLOTON setting of the parameter if it is desired to keep
the program in the selected status. Please refer to the
section for SLOTON in Page 492, "5 Functions set with
parameters" for details.

 3. Starting conditions START START : Execution of a
program using the I/O
START signal on the
<operation panel> of the T/B

Select START when it is desired to start normally. Note1)

Note1) The start operation conducted from the <operation panel> of the T/B or by sending the dedicated
input signal START will simultaneously start the execution of all the task slot programs for which
"START" is set as the start condition.
To start the program independently, start in slot units with the dedicated input signal (S1 START to
S32START). In this case, the line No. is preassigned to the same dedicated input/output parameter.
Refer to Page 637, "6.2 PLC link I/O function" in this manual for details on the assignment of the
dedicated input/output.

ALWAYS : Execution of a
program when the
controller's power is turned
on

Use ALWAYS when it is desired to execute the program in
constant execution mode. Note, however, that it is not
possible to execute movement instructions such as Mov
during constant execution of a program. Programs in
constant execution mode can be stopped via the XStp
instruction. They cannot be stopped via the operation panel
and external input signals, or emergency stop.

Error : Execution of a
program when the controller
is in error status

Specify Error when it is desired to execute a program in
case an error occurs. It is not possible to execute
instructions for moving the robot, such as the Mov
instruction. The operation mode (REP/CYC) is one-cycle
operation (CYC) regardless of the setting value.

4. Order of priority
(number of lines
executed in priority)

1 1 to 31: Number of lines
executed at one time at
multitask operation

If this number is increased, the number of lines executed at
one time for the task slot is increased. For example, if 10 is
specified for SLT1, 5 for SLT2, and 1 for SLT3, then after 10
lines of the program specified in SLT1 have been executed,
five lines of the program specified in SLT2 are executed,
and then one line of the program specified in SLT3 is
executed. Afterward this cycle will be repeated.
-136 Multitask function

4MELFA-BASIC VI
4.2.4 Precautions for creating multitask program
(1) Relationship between number of tasks and processing time

During multitask operation, it appears as if several robot programs are being processed concurrently.
However, in reality, only one line is executed at any one time, and the processing switches from program to
program (it is possible to change the number of lines being executed at a time. See the section for the
"SLTn" parameter in Page 492, "5 Functions set with parameters"). This means that if the number of tasks
increases, the overall program execution time becomes longer. Therefore, when using multitask operation,
the number of tasks should be kept to a minimum. However, programs of other tasks executing movement
instructions (the Mov and Mvs instructions) are processed at any time.

(2) Specification of the maximum number of programs executed concurrently
The number of programs to be run in parallel is set with parameter TASKMAX. (The default value is 8.) To
run more than 8 programs in parallel, change this parameter.

(3) How to pass data between programs via external variables
Data is passed between programs being executed in multitask operation via program external variables
such as M_00 and P_00 (refer to Page 154, "4.3.22 External variables") and the user-defined external
variables (refer to Page 155, "4.3.24 User-defined external variables").
An example is shown below. In this example, the on/off status of input signal 8 is judged by the program
specified in task slot 2. Then this program notifies the program specified in task slot 1 that the signal is
turned on by means of the external variable M_00.

(4) Confirmation of operating status of programs via robot status variables
The status of the program running with multitask can be referred to from any slot using the robot status
variables (M_Run, M_Wai, M_Err).
 Example) M1 = M_Run (2) The operation status of slot 2 is obtained.
Refer to Page 167, "4.5 Robot status variables" for details on the robot status variables.

(5) The program that operates the robot is basically executed in slot 1.
The program that describes the robot arm's movement, such as with the Mov commands, is basically set
and executed in slot 1. To run the program in a slot other than slot 1, the robot arm acquisition and release
command (GetM, RelM) must be used. Refer to Page 180, "4.12 Detailed explanation of command words"
in this manual for details on the commands.

<Slot 1>
1 M_00=0 ; Substitute 0 in M_00
2 *L
3 If M_00=0 Then *L ; Wait for M_00 value to change from 0.
4 M_00=0 ; Substitute 0 in M_00
5 Mov P1 ; Proceed with the target work.
6 Mov P2
 :
10 GoTo *L ; Repeat from step 2.

<Slot 2> (Program of signals and variables)
1 If M_In(8) <> 1 Then *A1 ; Branch to line 30 if input signal 8 is not ON.
2 M_00=1 ; Substitute 1 in M_00
3 *A1
4 Mov P1 ; Proceed with the target work.

 :
Multitask function 4-137

4

4MELFA-BASIC VI
(6) How to perform the initialization processing via constantly executed programs
Programs specified in task slots whose start condition is set to ALWAYS are executed continuously
(repeatedly) if the operation mode is set to REP. Therefore, in order to perform the initialization processing
via such programs, they should be programmed in such a way that the initialization processing is not
executed more than once, for example by setting an initialization complete flag and perform a conditional
branch based on the flag's status. (This consideration is not necessary for task programs whose operation
mode is set to CYC (1 cycle operation) because they are executed only once.)

4.2.5 Precautions for using a multitask program
(1) Starting the multitask

When starting from the <operation panel> of the T/B or with the dedicated input signal START, all the task
slot programs for which "START" is set as the start condition of the task slot parameter will start
simultaneously.
When starting with the dedicated input signals S1START to S32START, the program can be started in each
slot. In this case, the line No. is preassigned to the same dedicated input/output parameter. Refer to Page
649, "6.3 Dedicated input/output" for details on the assignment of the dedicated input/output.

(2) Display of operation status
RUN and READY on the <operation panel> of the T/B and the dedicated input/output signals START and
STOP indicate the operation conditions of the task slot programs for which "START" is set as the start
condition of the "SLT*" parameter. If at least one program is operating, the operation status of the <operation
panel> of the T/B changes to RUN and the dedicated output signal START turns on. If all the programs stop,
the operation status of the <operation panel> of the T/B changes to READY and the dedicated output signal
STOP turns on.
The dedicated output signals S1START to S32START and S1STOP to S32STOP output the operation
status for each of the task slots. If it is necessary to know the individual operation status, signal numbers
can be assigned to the dedicated input/output parameters and their status checked with the status of the
external signals.
For a detailed description of assignment of dedicated input/output, please refer to Page 649, "6.3 Dedicated
input/output" of this manual.
The status of the programs for which ALWAYS or ERROR is set as the start condition does not affect the
LEDs that indicate the run and ready state on the <operation panel> of the T/B. The operation status of
programs in constant execution mode can be checked using the monitoring tool of the PC support software
(optional).

Mechanism 1 is assigned to slot 1
In the default state, mechanism 1 (robot arm of standard system) is automatically assigned to slot 1.
Because of this, slot 1 can execute the movement command even without acquiring mechanism 1
(without executing GetM command). However, when executing the movement command in a slot other
than slot 1, the slot 1 mechanism acquisition state must be released (RelM command executed), and the
mechanism must be acquired with the slot that is to execute the movement command (execute the GetM
command).
-138 Multitask function

4MELFA-BASIC VI
4.2.6 Example of using multitask
An example of the multitask execution is given in this section.

(1) Robot work details.
The robot programs are the "movement program" and "position data lead-in program".
The "movement program" is executed with slot 1, and the "position data lead-in program" is executed with
slot 2. If a start command is output to the sensor while the robot is moving, a request for data will be made to
the personal computer via the position data lead-in program. The personal computer sends the position data
to the robot based on the data request. The robot side leads in the compensation data via the position data
lead-in program.

<Process flow>

P1: Workpiece pickup position (Vacuum timer Dly 0.05)
P2: Workpiece placing position (Release timer Dly 0.05)
P3: Vision pre-position (Do not stop at penetration point Cnt)
P4: Vision shutter position (Do not stop at penetration point Cnt)
P_01: Vision compensation data
P20: Position obtained by adding P2 to vision compensation data (relative operation)

Workpiece pickup

Sensor start

Sensor recognition

Workpiece mounting

Operation program Position data lead
-in program

Data confirmation

Start

Sensor start

Personal computer

Position data
setting

Data reception

Background execution

P1

P4

P2

P20

RS-
232C

StartStart

Data reception

Data reception

Position data
transmission

Above mounting
position

<Slot1> <Slot2> <Sensor>

P1

X

Y

0

P2

P3 :No acceleration/deceleration

P4 : No acceleration/deceleration
Position to move vision
Multitask function 4-139

4

4MELFA-BASIC VI
(2) Procedures to multitask execution

*Procedure 1: Program creation
<1> Movement program (Program name: 1)
1 Cnt 1 'Validate path connected movement
2 Mov P2,10 'Move to +10mm above P2
3 Mov P1,10 'Move to +10mm above P1
4 Mov P1 'Move to P1 workpiece pickup position
5 M_Out(10)=0 'Pickup workpiece
6 Dly 0.05 'Timer 0.05 second
7 Mov P1,10 'Move to +10mm above P1
8 Mov P3 'Move to vision pre-position P3
9 Spd 500 'Set linear speed to 500mm/sec.
10 Mvs P4 'Start vision lead-in with P4 passage
11 M_02#=0 'Start data lead-in with background process at interlock variable

 (M_01=1/M_02=0)
18 M_01#=1 'Start data load-in with background process
19 Mvs P2,10 'Move to +10mm above P2
20 *L
21 If M_02#=0 Then GoTo *L 'Wait for interlock variable M_02 to reach 1
22 P20=P2*P_01 'Add vision compensation P_01 to P20, and move to +10mm above
23 Mov P20,10 'Move to +10mm above P20
24 Mov P20 'Go to P20 workpiece placing position
24 M_Out(10)=1 'Place workpiece
25 Dly 0.05 'Timer 0.05 second
26 Mov P20,10 'Move to +10mm above P20
27 Cnt 0 'Invalidate path connected movement
28 End 'End one cycle

<2> Position data lead-in program (Program name: 2)
1 *R
2 If M_01#=0 Then GoTo *R 'Wait for interlock variable M_01 to reach 1
3 Open "COM1:" AS #1 'Open Ethernet line
4 Dly M_03# 'Hypothetical process timer (0.05 second)
5 Print #1,"SENS" 'Transmit character string "SENS" to Ethernet (vision side)
6 Input #1,M1,M2,M3 'Wait to lead-in vision compensation value (relative data)
7 P_01.X=M1 'Substitute delta X coordinate
8 P_01.Y=M2 'Substitute delta Y coordinate
9 P_01.Z=0.0 '
10 P_01.A=0.0 '
11 P_01.B=0.0 '
12 P_01.C=Rad(M3) 'Substitute delta C coordinate
13 Close 'Close Ethernet line
14 M_01#=0 'Interlock variable M_01 = 0
15 M_02#=1 'Interlock variable M_02 = 0
16 End 'End process

*Procedure 2: Setting the slot parameters
Set the slot parameters as shown below.

*Procedure 3: Reflecting the slot parameters
 Turn the power OFF and ON to validate the slot parameters.

*Procedure 4: Starting
 Start the program 1 and program 2 operation by starting from the operation panel.

Parameters Program name Operation mode Operation format Order of priority

SLT1 1 REP START 1
SLT2 2 REP START 1
-140 Multitask function

4MELFA-BASIC VI
4.2.7 Program capacity
There are 3 types of areas that handle robot programs; save, edit and execution. Refer to "Table 4-3Capac-
ity of each program area" for the capacity of each area.

(1) Program save area
This area is used to save programs. Under normal circumstances, it is possible to save 920 Kbytes of
program code in total. The capacity of the program save area can be increased to 2 Mbytes, if it is
insufficient, by mounting expansion memory.

(2) Program edit area
This area is used when editing programs and checking the operation in step execution. The program edit
area has a capacity of 380 Kbytes, which is the maximum size of one program. The capacity of the program
edit area cannot be increased by mounting expansion memory.

(3) Program execution area
The program execution area is used when operating a program automatically. The capacity of the program
execution area is 400 Kbytes. The total capacity of programs loaded into the execution area at the same
time via user base programs, for multitasking purposes, or by XRun and CallP instructions, must be 400
Kbytes or less. The capacity of the program execution area cannot be increased by mounting expansion
memory.

Table 4-3:Capacity of each program area

The capacity of each program can be checked with the teaching pendant and the Program Manager window
of the Personal Computer Support Software (RT ToolBox3).

Name
Capacity

Standard memory With expansion memory
(1) Program save area 920 Kbytes 2 Mbytes
(2) Program edit area 380 Kbytes
(3) Program execution area 400 Kbytes

Total: 220 KB

179KB

Program edit area Program save area
(file system)

Program execution area

Total: 184KB

* Capacity in the case of standard memory

380 KB

400 KB

920 KB
Multitask function 4-141

4

4MELFA-BASIC VI
4.3 Detailed specifications of MELFA-BASIC VI
In this section, detailed explanations of the MELFA-BASIC VI format and syntax such as configuration are
given, as well as details on the functions of each command word. The following explains the components
that constitute a statement.

(1) Program name
A program name can be specified using up to 12 characters. Moreover, the characters that may be used are
as follows.

If the program is selected from the external input signal, specify the program name using numbers.

(2) Command statement
Example of constructing a statement
 1 Mov P1 Wth M_Out(17)=1
 1) 2) 3) 4)

1) STEP No. : Numbers for determining the order of execution within the program. steps are
executed in ascending order.

2) Command word : Instructions for specifying the robot's movement and tasks
3) Data : Variables and numerical data necessary for each instruction
4) Appended statement: Specify these as necessary when adding robot tasks.

Class Usable characters
Alphabetic
characters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
(Use uppercase characters only. If a program name is registered using lowercase characters, the program
may not be executed normally.)

Numerals 0 1 2 3 4 5 6 7 8 9
-142 Detailed specifications of MELFA-BASIC VI

 4MELFA-BASIC VI
(3) Variable
The following types of variables can be used in a program.
 Detailed specifications of MELFA-BASIC VI 4-143

4

4MELFA-BASIC VI
4.3.1 Statement
A statement is the minimum unit that configures a program, and is configured of a command word and data
issued to the word.
Example) Mov P1
 Command word Data
 Command statement

4.3.2 Appended statement
Command words can be connected with an appended statement, but this is limited to movement
commands.
This allows some commands to be executed in parallel with a movement command.
Example) Mov P1 Wth M_Out (17) = 1
 Command statement Appended statement Command statement
Please refer to Page 346, "Wth (With)" or Page 347, "WthIf (With If)", as well as each of the movement
instructions (Mov (Move), Mva (Move Arch), Mvs (Move S), Mvr (Move R), Mvr2 (Move R 2), Mvr3 (Move R
3), Mvc (Move C)) for detailed descriptions.

4.3.3 Step
A step is consisted of a step No. and one command statement. Note that if an appended statement is used,
there will be two command statements.
One step can have up to 127 characters. (This does not include the last character of the step.)

4.3.4 Step No.
Step Nos. should be in ascending order, starting from the first step, in order for the program to run properly.
When a program is stored in the memory, it is stored in the order of the step Nos.
Step Nos. can be any integer from 1 to 32767.
For MELFA-BASIC VI, a step number (line number) cannot be specified as the destination of GoTo, GoSub,
or other statements.

4.3.5 Label
A label is a user-defined name used as a marker for branching.
A label can be created by inserting an asterisk (*) followed by uppercase or lowercase alphanumeric
characters after the step No. The head of the label must be an alphabetic character, and the entire label
must be within sixteen characters long. If a label starting with the alphabetic character L is described after
the asterisk, an underscore (_) can be used immediately after the character.
* Characters that cannot be used in labels:

• Reserved words (Dly, HOpen, etc.)
• Any name that begins with a symbol or numeral
• Any name that is already used for a variable name or function name
• "_" (underscore) cannot be used as 2nd character of the label name.
Example) 1 GoTo *LBL

 ：
 10 *LBL

Only one command statement per step
Multiple command statements cannot be separated with a semicolon and described on one step as done
with the general BASIC.

Direct execution if step No. is not assigned
If an instruction statement is described without a step number on the instruction screen of the T/B, the
statement is executed as soon as it is input. This is called direct execution. In this case, the command
statement will not be saved in the memory, but the value substitution to the variable will be saved.
-144 Detailed specifications of MELFA-BASIC VI

 4MELFA-BASIC VI
4.3.6 Types of characters that can be used in program
The character which can be used within the program is shown in Table 4-4. However, there are restrictions
on the characters that can be used in the program name, variable name and label name. The characters
that can be used are indicated by O, those that cannot be used are indicated by X, and those that can be
used with restrictions are indicated by @.

Table 4-4:List of characters that can be used

Refer to Page 142, "(1) Program name" for detail of program names, refer to Page 150, "4.3.15 Variables"
for detail of variable names, and refer to Page 144, "4.3.5 Label" for detail of label names.

Class Available characters Program name Variable name Label name

Alphabetic
characters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z O O O

a b c d e f g h i j k l m n o p q r s t u v w x y z X O O

Numerals 0 1 2 3 4 5 6 7 8 9 O @Note1)

Note1) Only alphabetical characters can be used as the first character of the variable name. Numerals can
be used as the second and succeeding characters.

@Note2)

Note2) The head of the label name in the program can use only the English character. The numeral can be
used in 2nd character or later.

Symbols " ’ & () * + - . , / : ; = < > ? @ ` [\] ^ { } ~ | X X X

! # $ % & X Available for
type
specification

X

_(Underscore) X @Note3)

Note3) They can be used as the second and succeeding characters. Any variable having an underscore
(_) as the second character becomes an external variable.

@Note4)

Note4) "_" (underscore) can be used in 3rd character or later of the label name.

Spaces Space character X X X
 Detailed specifications of MELFA-BASIC VI 4-145

4

4MELFA-BASIC VI
4.3.7 Characters having special meanings
(1) Uppercase and lowercase identification

Lowercase characters will be resigned as lowercase characters when they are used in comments or in
character string data. In all other cases, they will be converted to uppercase letters when the program is
read.

(2) Underscore (_)
The underscore is used for the second character of an identifier (variable name) to identify the variable as
an external variable between programs. Refer to Page 154, "4.3.22 External variables" for details.
Example) P_Curr, M_01, M_ABC

(3) Apostrophe (')
The apostrophe (') is used at the head of all comments steps. When assigned at the head of a character it
is a substitute for the Rem statement.
Example) 1 Mov P1 'GET ;GET will be set as the comment.

 2 'GET PARTS ;This is the same as 150 Rem GET PARTS.

(4) Asterisk (*)
The asterisk is placed in front of label names used as the branch destination.
Example) 2 *CHECK

(5) Comma (,)
The comma is used as a delimiter when there are several parameters or suffixes.
Example) P1=(200, 150,)

(6) Period (.)
The period is used for obtaining certain components out of multiple data such as decimal points, position
variables and joint variables.
Example) M1 = P2.X ; Substitute the position variable P2.X coordinate element in numeric variable M1.

(7) Space
The space character, when used as part of a character string constant or within a comments step, is
interpreted as a character. The space character is required as a delimiter immediately after a step No. or a
command word, and between data items. In the [Format] given in section Page 180, "4.12 Detailed
explanation of command words", the space is indicated with a "[]" where required.
-146 Detailed specifications of MELFA-BASIC VI

 4MELFA-BASIC VI
4.3.8 Data type
In MELFA BASIC VI it is possible to use four data types: numerical values, positions, joints, and character
strings. Each of these is called a "data type." The numerical value data type is further classified into real
numbers and integers. There can be variables and constants of each data type.

Example)
Numeric value type M1 [Numeric value variables],1 [Numeric value constants] (Integer),

1.5 [Numeric value constants] (Real number)
Position type P1 [Position variables], (0,0,0,0,0,0) (0,0) [Position constants]
Joint type J1 [Joint variables], (0,0,0,0,0,0) [Joint constants]
Character type C1$ [Character string variables], "ABC" [Character string constants]

4.3.9 Constants
The constant types include the numeric value constant, character string constant, position constant, joint
constant and angle constant.

4.3.10 Numeric value constants
The syntax for numeric value constants is as follows. Numerical constants have the following
characteristics.

(1) Decimal number
Example) 1, 1.7, -10.5, +1.2E+5 (Exponential notation)
Valid range -1.7976931348623157e+308 to 1.7976931348623157e+308

(2) Hexadecimal number
Example) &H0001, &HFFFF
Valid range &H0000 to &HFFFF

(3) Binary number
Example) &B0010, &B1111
Valid range &B0000000000000000 to &B1111111111111111

(4) Types of constant
The types of constants are specified by putting symbols after constant characters.
Example) 10% (Integer), 1.0005! (Single-precision real number), 10.000000003# (Double-precision real
number)

4.3.11 Character string constants
String constants are strings of characters enclosed by double quotation marks (").
Example) "ABCDEFGHIJKLMN" "123"

Data type
Position type

Joint type

Character type

Real number type

Integer typeNumeric value type

Constants

Numeric value constants

Character string constants

Position constants

Joint constants

Angle constants

Up to 127 characters for character string
The character string can have up to 127 characters, including the step No. and double quotations.
Enter two double quotation marks successively in order to include the double quotation mark itself in a
character string. For the character string AB"CD, input "AB""CD".
 Detailed specifications of MELFA-BASIC VI 4-147

4

4MELFA-BASIC VI
4.3.12 Position constants (XYZ/work coordinate constants)
The syntax for position constants is as shown below. Variables cannot be described within position
constants.

Example)
 P1=(300, 100, 400, 180, 0, 180, 0, 0) (7, 0)
 P2=(0, 0, -5, 0, 0, 0) (0, 0) [A case where there is no traveling axis data]
 P3=(100, 200, 300, 0, 0, 90) (4, 0) [A case of a 4-axis horizontal multi-joint robot]

(1) Coordinate, posture and additional axis data types and meanings
[Format] X, Y, Z, A, B, C, L1, L2
[Meaning] X, Y, Z: Coordinate data. The position of the tip of the robot's hand in the XYZ coordinates and

the position of the work in the work coordinates. (The unit is mm.)
A, B, C: Posture data. This is the angle of the posture. The posture of the tip of the robot's hand

in the XYZ coordinates and the posture of the work in the work coordinates. (The unit is
deg.) Note1)

L1, L2: Additional axis data. These are the coordinates for additional axis 1 and additional axis
2, respectively. (The unit is mm or deg.)

Note1) The T/B and Personal computer support software display the unit in deg; however, the unit
of radian is used for substitution and calculation in the program.

(2) Meaning of structure flag data type and meanings
[Format] FL1, FL2
[Meaning] FL1: Posture data. It indicates the robot arm posture in the XYZ coordinates.

FL2: Multiple rotation data. It includes information of the rotational angle of each joint axis at the
position (XYZ) and posture (ABC) expressed as XYZ coordinates.
Default value = 0 (The range is 0 to +4294967295 ... Information for eight axes is held with a
1-axis 4-bit configuration.)Two types of screens are available for the PC: screens that
display the number of rotations for each axis (-8 to 7) in decimal and those that display the
number of rotations for each axis in hexadecimal.

(100, 100, 300, 180, 0, 180, 0, 0) (7, 0)

C axis
B axis Posture axes of the robot (degree)
A axis
Z axis
Y axis Coordinate values of the hand tip (mm)
X axis

structure flag 2 (multi-rotation data)
structure flag 1 (posture data)
L2 axis (additional axis 2)
L1 axis (additional axis 1)

 1/0=NonFlip/Flip
 7 = & B 0 0 0 0 0 1 1 1 (Binary number)

 1/0=Above/Below
 1/0=Right/Left

 1 axis
 0 = & H 0 0 0 0 0 0 0 0 (Hexadecimal number)

 2 axis
 3 axis

 4 axis
 5 axis
 6 axis (Most frequently used)
 7 axis
 8 axis
-148 Detailed specifications of MELFA-BASIC VI

 4MELFA-BASIC VI
The wrist tip axis value in the XYZ coordinates system (J6 axis of vertically articulated robots) is the same
as that after one rotation (360 degrees). For this reason, FL2 is used to count the number of rotations.

4.3.13 Joint constants
The syntax for the joint constants is as shown below

Example)
6 axis robot J1 = (0, 10, 80, 10, 90, 0)
6 axis + Additional axis J1 = (0, 10, 80, 10, 90, 0, 10, 10)
5 axis robot J1 = (0, 10, 80, 0, 90, 0)
5 axis + Additional axis J1 = (0, 10, 80, 0, 90, 0, 10, 10)
4 axis robot J1 = (10, 20, 90, 0)
4 axis + Additional axis J1 = (10, 20, 90, 0, , , 10, 10)

(1) Axis data format and meanings
[Format] J1,J2,J3,J4,J5,J6,J7,J8
[Meaning] J1 to J6: Robot axis data (Unit: mm or deg.)

J7, J8: Additional axis data, and may be omitted (optional).
(Unit: mm or deg. Depending on the parameter setting.)
The unit is mm, not degrees, if the J3 axis of a horizontally articulated robot is a direct-drive axis.

-900 -540 -180 0 180 540 900

...... -2
(E)

-1
(F) 0 1 2

Value of multiple
rotation data

Angle of each axis

Value of multiple rotation data

......

Designation of axis No.
1. There is no need to describe the coordinate, posture, and additional axis data for all eight axes.

However, if omitted, the following axis data will be processed as undefined.
For a 4-axis robot (X,Y,Z,C axis configuration), describe as (X, Y, Z, , , C) or (X,Y,Z,0,0,C).

2. To omit all axes,insert at least one ","(comma), such as (,).

Use of variables in position element data
The coordinate, position, additional axis data and structure flag data are called the position element data.
A variable cannot be contained in the position element data that configures the position constant.

Omitting the structure flag data
If the structure flag data is omitted, the default value will be applied.((7,0) Varies depending on the
machine model.)

 (10, -20, 90, 0, 90, 0, 0, 0)

J8 axis (additional axis 2)
J7 axis (additional axis 1)
J6 axis
J5 axis

J3 axis
J2 axis
J1 axis

J4 axis

Use of variables in joint element data
The axis data is called the joint element data.
A variable cannot be contained in the joint constant data that configures the joint constant.
 Detailed specifications of MELFA-BASIC VI 4-149

4

4MELFA-BASIC VI
4.3.14 Angle value
The angle value is used to express the angle in "degrees" and not in "radian".

If written as 100Deg, this value becomes an angle and can be used as an argument of trigonometric
functions.

Example) Sin(90Deg)...............A 90 degree sine is indicated.

4.3.15 Variables
A variable name should be specified using up to 32 characters.
The variable types include the numeric value type, character string type, position type, joint type and I/O
type. Each is called a "variable type". The variable type is determined by the head character of the identifier
(variable name).
The numeric value type can be further classified as integer type, single-precision real number type, or
double-precision real number type.
The following two types of data valid ranges are used.
1. Local variable valid only in one program
2. Robot status variable, program external variable and user-defined external variable valid over programs.

(The user-defined external variable has a _ for the second character of the variable name. Refer to Page
154, "4.3.22 External variables" for details.)

Note 1)

Numeric value type Integer type

Single-precision real number type
Character string type

Double-precision real number type

Position type

I/O type

Joint type

(Starts with M)

(Starts with C)

(Starts with P or W)

(Starts with J)

Variables

External variables

Types of variable

Local variable (valid only within the program)

System status variables

Program External Variables

User-defined External Variables

P_CURR, M_IN , etc.

P_00, M_00 , etc.

P1, M1 , etc.

P_100, M_100 , etc.

Note 1) The identifiers include those determined by the robot status variable
 (M_IN,M_OUT, etc.), and those declared in the program with the DEFIO command.

Variables are not initialized
The variables will not be cleared to zero when generated, when the program is loaded, or when reset.
-150 Detailed specifications of MELFA-BASIC VI

 4MELFA-BASIC VI
4.3.16 Numeric value variables
Variables whose names begin with a character other than P, J, C, or W are considered numeric value
variables. In MELFA-BASIC VI, it is often specified that a variable is an numeric value variable by placing an
M at the head. M is the initial letter of mathematics.
Example) M1 = 100
 M2! = -1.73E+10
 M3# = 0.123
 ABC = 1

1) It is possible to define the type of variable by attaching an numeric value type indicator at the end of
the variable name. If it is omitted, the variable type is assumed to be of the single-precision real
number type.

2) Once the type of a variable is registered, it can only be converted from integer to single-precision real
number. For example, it is not possible to convert the type of a variable from integer to double-
precision real number, or from single-precision real number to double-precision real number.

3) It is not possible to add an numeric value type indicator to an already registered variable. Include the
type indicator at the end of the variable name at the declaration when creating a new program.

4) If data of long-precision real number type is substituted into a numeric value variable of integer type
and the value is exceeded, an error will occur at execution (L3110).
If data of double-precision real number type is substituted into a numeric value variable of single-
precision real number type and the value is exceeded, an infinite value (signed "Inf") will be
substituted.

Table 4-5:Range of numeric value variable data

4.3.17 Character string variables
A character string variable should start with C and end with "$." If it is defined by the Def Char instruction, it
is possible to specify a name beginning with a character other than C.

Example) C1$ = "ABC"
CS$ = C1$
Def Char MOJI
MOJI = "MOJIMOJI"

Numeric value type suffix Meaning

% Integer

& Long-precsion real number type

! Single-precsion real number type

Double-precsion real number type

Type Range

Integer type -32768 to 32767

Single-precision real number type -3.40282347e+38 to 3.40282347e+38 Note)
E expresses a power of 10.Double-precision real number type -1.7976931348623157e+308 to 1.7976931348623157e+308
 Detailed specifications of MELFA-BASIC VI 4-151

4

4MELFA-BASIC VI
4.3.18 Position variables (XYZ/work coordinate variables)
Variables whose names begin with character 'P' (or 'p') or 'W' (or 'w') are considered as XYZ/work
coordinate variables. If it is defined by the Def Pos/Def Work instruction, it is possible to specify a name
beginning with a character other than 'P' (or 'p') or 'W' (or 'w'). It is possible to reference individual coordinate
data of position variables. In this case, add "." and the name of a coordinate axis, e.g. "X," after the variable
name.

P1.X, P1.Y, P1.Z, P1.A, P1.B P1.C, P1.L1, P1.L2

The unit of the angular coordinate axes A, B, and C is radians. Use the Deg function to convert it to degrees.

Example) P1 = PORG
Dim P3(10)
M1 = P1. X (Unit: mm)
M2 = Deg(P1. A) (Unit: degree)
Deg POS L10
Mov L10

4.3.19 Joint variables
A character string variable should start with J. If it is defined by the Def Jnt instruction, it is possible to
specify a name beginning with a character other than J.
It is possible to reference individual coordinate data of joint variables.
In this case, add "." and the name of a coordinate axis, e.g. "J1," after the variable name.

JDATA.J1, JDATA.J2, JDATA.J3, JDATA.J4, JDATA.J5, JDATA.J6, JDATA.J7, JDATA.J8

The unit of the angular coordinate axes A, B, and C is radians. Use the DEG function to convert it to
degrees.
Example) JSTARAT = (0, 0, 90, 0, 90, 0, 0, 0)
 JDATA = JSTART
 Dim J3 (10)
 M1 = J1.J1 (Unit: radian)
 M2 = Deg (J1.J2) (Unit: degree)
 Def Jnt K10
 Mov K 10
-152 Detailed specifications of MELFA-BASIC VI

 4MELFA-BASIC VI
4.3.20 Input/output variables
The following types of input/output variables are available. They are provided beforehand by the robot
status variables.

Please refer to the robot status variables Page 391, " M_In/M_Inb/M_In8/M_Inw/M_In16/M_In32", Page
402, " M_Out/M_Outb/M_Out8/M_Outw/M_Out16/M_Out32", and Page 376, " M_DIn/M_DOut".

4.3.21 Array variables
Numeric value variables, character string variables, position variables, and joint variables can all be used in
arrays. Designate the array elements at the subscript section of the variables. Array variables should be
declared with the Dim instruction. It is possible to use arrays of up to three dimensions.
Example) Example of definition of an array variable

Dim M1 (10) Single-precision real number type
Dim M2% (10) Integer type
Dim M3 ! (10) Single-precision real number type
Dim M4# (10) Double-precsion real number type
Dim P1 (20)
Dim J1 (5)
Dim ABC (10, 10, 10)

The subscript of an array starts from 1.
However, among the robot status variables, the subscript starts from 0 for individual input/output signal
variables (M_In, M_Out, etc.) only.
 Whether it is possible to secure sufficient memory for the variable is determined by the free memory size.

Input/output variables name Explanation

M_In For referencing input signal bits

M_Inb For referencing input signal bytes (8-bit signals)

M_Inw For referencing input signal words (16-bit signals)

M_DIn For referencing input signal double words (32-bit signals: Compatible with CC_Link)

M_Out For referencing/assigning output signal bits

M_Outb For referencing/assigning output signal bytes (8-bit signals)

M_Outw For referencing/assigning output signal words (16-bit signals)

M_DOut For referencing/assigning output signal double words (32-bit signals: Compatible with CC_Link)
 Detailed specifications of MELFA-BASIC VI 4-153

4

4MELFA-BASIC VI
4.3.22 External variables
External variables have a "_" (underscore' for the second character of the identifier (variable name). (It is
necessary to register user-defined external variables in the user base program.) The value is valid over
multiple programs. Thus, these can be used effectively to transfer data between programs.
There are four types of external variables, numeric value, position, joint and character, in the same manner
as the Page 147, "4.3.8 Data type". The following three types of external variables are available.

Table 4-6:Types of external variables

4.3.23 Program external variables
Table 4-7 lists the program external variables that have been prepared for the controller in advance.As
shown in the table, the variable name is determined, but the application can be determined by the user.

Table 4-7:Program external variables

External variables Explanation Example

Program external variables Types of external variables P_01,M_01,P_100(1), etc.

User-defined external variables The user can determine the name freely. Declare the
variables using the Def Pos, Def Jnt, Def Char, or DEF INTE/
FLOAT/DOUBLE instructions in the user base program.

P_GENTEN,M_MACHI

Robot status variables
(System status variables)

The robot status variables are controlled by the system, and
their usage is determined in advance.

M_In,M_Out,P_Curr,M_PI, etc.

Data type Variable name Note1)

Note1) When you use the extension, change the following parameter.

Qty. Remarks

Position P_00 to P_19
P_20 to P_39

20
20

Position array (No. of elements 10) P_100() to P_104()
P_105() to P_109()

5
5

Use the array element in the first dimensions.

Joint J_00 to J_19
J_20 to J_39

20
20

Joint array (No. of elements 10) J_100() to J_104()
J_105() to J_109()

5
5

Use the array element in the first dimensions.

Numeric value M_00 to M_19
M_20 to M_39

20
20

The data type of the variables is double-precision real
numbers.

Numeric value array
(No. of elements 10)

M_100() to M_104()
M_105() to M_109()

5
5

Use the array element in the first dimensions. The data
type of the variables is double-precision real numbers.

Character string C_00 to C_19
C_20 to C_39

20
20

Character string array
(No. of elements 10)

C_100() to C_104()
C_105() to C_109()

5
5

Use the array element in the first dimensions.

Parameter Value Means

PRGGBL 0:Standard (default)
1:Extension

Sets "1" to this parameter, and turns on the controller power again, then the capacity
of each program external variable will double.
However, if a variable with the same name is being used as a user-defined external
variable, an error will occur when the power is turned ON, and it is not possible to
expand. It is necessary to correct the user definition external variable.
-154 Detailed specifications of MELFA-BASIC VI

 4MELFA-BASIC VI
4.3.24 User-defined external variables
If the number of program external variables listed above is insufficient or it is desired to define variables with
unique names, the user can define program external variables using a user base program.

(1) By defining a variable having an underscore (_) for the second character of the identifier with the DEF
statement in the user base program Note), that variable will be handled as an external variable.

(2) It is not necessary to execute the user base program.
(3) Write only the lines necessary for declaring variables in the user base program.
(4) If it is desired to define array variables in a user base program and use them as external variables, it

is necessary to declare them using the Dim instruction again in the program in which they will be
used. It is not necessary to declare local variables (variables valid only within programs) again.

Example) Example of using user-defined external variables
On the main program (program name 1) side

On the user base program (program name UBP) side

Procedure before using user-defined external variables

1) First, write a user base program. Use "_" for the second character of the variables.
2) Register the program name in the "PRGUSR" parameter and turn the power off and on again.
3) Write a normal program using the user-defined external variables.

10 Dim P_200(10) ' Re-declaration of external variables
20 Dim M_200(10) ' Re-declaration of external variables
30 Mov P_100(1)
40 If M_200(1) =1 Then Hlt
50 M1=1 ' Local variable

10 Def Pos P_900, P_901, P_902, P_903
20 Dim P_200(10) ' It is necessary to declare this variable again in the

program in which they will be used.
30 Def Inte M_100
40 Dim M_200(10) ' It is necessary to declare this variable again in the

program in which they will be used.

Parameter name Value

PRGUSR UBP
 Detailed specifications of MELFA-BASIC VI 4-155

4

4MELFA-BASIC VI
4.3.25 Creating User Base Programs
Note)

User base programs can be created by using either the teaching box or Personal Computer Support
Software, in the same way as the normal programs. To create user base programs using the Personal
Computer Support Software, please follow the procedure below:

1) Store a program created as a user base program on your personal computer.
2) Start Program Manager from Program Editor of the Personal Computer Support Software.
3) Specify the program created in step 1) above as the transfer source and the robot as the transfer

destination in Program Manager, and perform a "copy" operation. At this point, uncheck the "Position
Variables" check box so that only the "Instructions" check box is checked.

4) When the copy operation is complete, perform the operation in step 3) above again. Uncheck the
"Instructions" check box and check the "Position Variables" check box this time, and then execute.

5) Write a user base program in the robot controller first when deleting a program and then register it
again in the program management window as well.

What is a user base program?
A user base program is used when user-defined external variables are used to define such variables, but
it is not necessary to actually execute the program. Simply create a program containing the necessary
declaration lines and register it in the "PRGUSR" parameter. After changing the parameter, turn the power
off and on again.

How to register a new user base program using the Personal Computer Support Software
Using the Personal Computer Support Software, write only instructions to the robot controller first, and
write only position data next.
-156 Detailed specifications of MELFA-BASIC VI

 4MELFA-BASIC VI
4.3.26 Scope
The scope of variables (accessible range) is as follows from the narrowest range: In a procedure → Outside
a procedure (In a program → Outside a program) → User-defined external variables/Program external
variables/System status variables. (Refer to Fig. 4-3.)

Fig.4-3:Scope of variables

4.3.27 Function procedure
The Function procedure is a set of instructions used as an independent function (processing). In the
Function procedure, a processing can be used as a program part because variables can be used
independently from the outside of the procedure and return values of functions can be defined. This allows a
simple program structure.

When a Function procedure is defined, the entry point Note 1) of the program is at the Function Main
procedure.
* If a procedure needs to be defined, a Function Main procedure must be defined.
* When a procedure is defined, the preprocessor Note 2) is executed before the entry point Note 1).
Note 1) When a program is started by specifying the program name, the program is executed from the first
line or the Function Main procedure (without dummy argument) in the program. A point where a program
starts its execution is called "Entry point".
Note 2) The preprocessor executes the instruction statements described outside the Function procedure.

Fig.4-4:Entry point

…In a procedure

…In a program/controller
(Include program)

…In the controller

Scope

Narrow

Wide

Variables

Global variables

Program external
variables

User-defined
external variables

Variables outside a
procedure

Local variables Variables in a
procedure

System status
variables

1 Title "Sample Program"

2 Mov P1
3 Mov P2
4 Mov P3
5 End

1 Title "Sample Program"

2 Function Main
3 MovP1
4 MovP2
5 MovP3
6 FEnd

Program of conventional form Program with a Function Main procedure

Entry
point Entry

point
 Detailed specifications of MELFA-BASIC VI 4-157

4

4MELFA-BASIC VI
The flow of processing with the Function procedure is shown in Fig. 4-5.

Fig.4-5:Flow of processing with the Function procedure

For the format of the Function procedure, refer to the section of the Function procedure in "Detailed
explanation of command words".

4.3.28 #Include statement
A specified program can be read from programs. Frequently used programs (functions) and common
programs (functions) can be managed in a library to use these programs as needed.

Fig.4-6:Reading a program (#Include statement)

* A program can be simultaneously specified and read from multiple programs.
For the details, refer to the section of Include statement in "Detailed explanation of command words".

1 Title "Sample Program"
2 Function Main
3 Mov P1
4 MRslt = FuncMov(P2)
5 Mov P3
6 FEnd

12 FEnd

7
8 Function M FuncMov(Pos)
9 Mvs Pos
10 FuncMov = 1
11 Exit Function

1) (Step 1) The Title command is executed.

2) (Step 3) Mov P1 is executed.

3) (Step 4) P2 is passed to the argument and FuncMov is called.

4) (Step 5) Mov P3 is executed.

3)-1 (Step 9) Mvs Pos(=P2) is executed.

3)-2 (Step 10) 1 is returned as the execution result of FuncMov.

3)-3 (Step 11) FuncMov ends.

3)

3)

The execution result of FuncMov is stored in MRslt.

Read

1 #Include "Common"

2 Function Main
3 Mov P10
4 Func1()
5 FEnd

100.MB6

1 Function V Func1
2 Mvs P1
3 Mvs P2
4 FEnd

Common.MB6
-158 Detailed specifications of MELFA-BASIC VI

 4MELFA-BASIC VI
4.4 Coordinate system description of the robot
4.4.1 About the robot's coordinate system

The robot's coordinate system has following four.
① World coordinate system: Origin is *1

The coordinate system as the standard for displaying the current position of robot. note 1)
② Base coordinate system: Origin is *2 (J1 axis rotation center on the bottom of the robot.)

A coordinate system established with reference to the robot mounting face. It is set by specifying
parameter MEXBS with data on a center position for robot installation (base conversion data) as
viewed from the world coordinate system or by executing a base command.
By default, because the base conversion data is set to zero (0), the world coordinate system is in
agreement with the base coordinate system.

③ Mechanical interface coordinate system: Origin is *3 (J6 axis rotation center on the tool installation surface.)
A coordinate system established with reference to the robot's mechanical interface.

④ Tool coordinate system: Origin is *4
A coordinate system established with reference to the robot's mechanical interface. Its relation to
the interface coordinate system is determined by the tool conversion data (i.e., by specified settings
for parameter MEXTL or by the execution of a tool command.)

Fig.4-7:Robot's coordinate system

Zw

Z

Zb

Yw

Y

Yb

Xb

Xw

X

① World coordinate system

②

③

Ym

Xm

Xt

Yt

Zt

Base conver-
sion data

ToolMechanical interface surface

base conversion
data

Note 1) Robot's current position

Curr
en

t

po
sit

ion

④ Tool coordinate
system

Base coordinate
system

World coordinate
system

Base coordinate system

Mechanical interface
coordinate system

*1: Origin

*2: Origin

*3: Origin

*4: Origin
 Coordinate system description of the robot 4-159

4

4MELFA-BASIC VI
4.4.2 About base conversion
The base conversion permits the world coordinate system to be moved, when required, to the reference

position of the work table or the work.
Under the control of this function, the robot's current position is treated as the one relative to the work table
or the work. Therefore, where there are a plurality of work groups involved on which the robot shares an
identical motional/positional relation, the robot can perform the same operations (sequence of motions) just
with a change being made to the world coordinate system, i.e., without the need to be taught the operations
(sequence of motions) for each work group. Change to the world coordinate system stated here are called
base conversion, which is accomplished by specifying parameter MEXBS with base conversion data
(coordinate values) or by executing a Base command.

Base conversion data to be specified should be data on the position of the origin point of the base
coordinate system as viewed from a world coordinate system which is newly established. Thus, when you
specify the data by using robot's position data (using a Fram function, etc.), do so by inversely converting
the position data [for example, Base Inv(P1)].
When you specify work coordinate system parameters WK1CRD - WK3CRD by executing a Base
command, however, you do not have to make the inverse conversion yourself as it is done in internal
processing. (Example: Base1 to Base 8)

Fig.4-8:Base conversion

Performing a base conversion changes the robot's current position to values that refer
to the newly established world coordinate system. The target position specified by the
movement command will also be treated as a position in the newly established world
coordinate system.
As a result, data taught till then may become unusable as it is. The coordinate system
when taught needs to be the same as the newly established coordinate system.
If they do not match, the robot can stray to unexpected positions, possibly resulting in
property damage or personal injury.
When using the base conversion function, be sure to maintain positive control over
relation between the base coordinate system subject to conversion and the position
which the robot is taught to take so that a proper robot operation and an effective use
of the base conversion function are insured.

Zb

Yb

Xb

Zw

Yw

Xw

New world
coordinates system

World coordinate system before con-
version (= base coordinate system)

Base conversion data
 Inv(P1)

P1

C
urrent

position

* P1 is teaching position data.

 CAUTION
-160 Coordinate system description of the robot

 4MELFA-BASIC VI
4.4.3 About position data

Positional data for the robot is comprised of six elements which indicate the position of the hand's leading
end (mechanical interface center where no tool setting is made) (X, Y, and Z) and the robot's posture (A, B,
and C), plus a structure flag.
Each element constitutes reference data for the robot's world coordinate system.

[Meaning] X, Y, Z: Coordinate data. Position of the robot hand's leading end (in mm).
A, B, C: Posture data. Angle that defines the robot's posture (in degrees)

A → Angle of rotation on X axis
B → Angle of rotation on Y axis
C → Angle of rotation on Z axis

Fig.4-9:Reference for posture angles

A, B, and C represent the robot's posture in the coordinate system of its hand's leading end (or flange
center where no tool setting is made), each indicating a angle of rotation on the X axis, Y axis, and Z axis of
the world coordinate system. Rotation corresponding to the direction of a right-handed screw when you look
at the + side of each coordinate axis is "+" rotation. Also, rotation is set to take place in a predetermined
sequence, and the amount of rotation is calculated (controlled) first for a rotation on the Z axis, followed by
one on the Y axis and one on the Z axis in the order shown.

（Z軸）

Z軸

A

B

C

X軸

（X軸）

（Y軸）

Y軸

X

Z

Y

Note) This diagram is produced by
assuming a situation in which no
base conversion data setting is
made, i.e., the robot's world
coordinate system is in agreement
with its base coordinate system.

(Z-axis)

(X-axis)

(Y-axis)

Z-axis

X-axis

Y-axis
 Coordinate system description of the robot 4-161

4

4MELFA-BASIC VI
4.4.4 About tool coordinate system (mechanical interface coordinate system)

To set the robot's control point at the leading end of the hand attached thereto, it is necessary to make tool
conversion data settings. Tool conversion data defines the position of the tool's leading end with reference
to a mechanical interface coordinate system that is established for the flange. Therefore, our explanation
deals with the mechanical interface coordinate system in the first place.

In helping you to understand the tool coordinate system, explanation here uses a vertical 6-axis robot by
way of example. For details about other models (vertical 5-axis robot, horizontal articulated arm robot, and
others), refer to Page 528, "5.6 Standard Tool Coordinates".

(1) Mechanical interface coordinate system
As shown in Fig. 4-10 , a coordinate system having its origin point chosen at the center of the flange is

called a mechanical interface coordinate system. X axis, Y axis and Z axis of the mechanical interface
coordinate system are denoted as Xm, Ym and Zm, respectively.

Zm is an axis which passes through the flange center and is perpendicular to the flange face. The
direction which goes outside from the flange face is + (plus). Xm and Ym are coplanar with the flange face.
A line joining the flange center with the positioning pin hole is represented by Xm axis. "+" direction of the
Xm axis is opposite to the pin hole as seen from the center.

Fig.4-10:Mechanical interface coordinate system

When the flange rotates, the mechanical interface coordinate system rotates, as well. (Fig. 4-11)

Fig.4-11:Rotation of flange and mechanical interface coordinate system

フランジ

フランジ中心

Ym

Zm

Xm

Flange

Flange center

Zm

Xm

Xm
Ym

Ym

Zm
-162 Coordinate system description of the robot

 4MELFA-BASIC VI
(2) Tool coordinate system
A tool coordinate system is one that is defined for the leading end of the robot hand (control point for the

robot hand).
It is obtained by shifting the origin point of a mechanical interface coordinate system to the leading end of
the robot hand (control point hand) and adding given rotational elements.
X axis, Y axis and Z axis of the tool coordinate system are denoted as Xt, Yt and Zt, respectively.

Fig.4-12:Mechanical interface coordinate system and tool coordinate system

Tool conversion data consists of the same elements as position data.
X, Y, Z: Amount of shift. Amount by which the origin point of the mechanical interface

coordinate system is shifted to agree with that of the tool coordinate system (in mm).
A, B, C: Angle of rotation of each coordinate axis (in degrees)

A → Angle of rotation on X axis
B → Angle of rotation on Y axis
C → Angle of rotation on Z axis

ツール座標系

メカニカルインタフェース
座標系

Ym

Xm

Zm
Zt

Yt

Xt

Mechanical interface
coordinate system

Tool coordinate
system
 Coordinate system description of the robot 4-163

4

4MELFA-BASIC VI
(3) Effects of use of tool coordinate system

1) Jogging and teaching operations
When placing the robot into tool-jog mode, you can let it operate in the direction of the face of the robot
hand. This makes it easier to adjust the posture of the robot hand toward the work concerned or the
posture of the work being held by the robot hand.

Fig.4-13:Tool jogging operation with/without tool conversion data

 Ym

Ym

Zm

Zm

Xm

Ym

Xm

Zm

Zm

Yt

Yt

Zt

Zt

Xt

Yt

Yt

Zt

Zt

Xt

Ym

In the case of tool conversion data setting
being not made

In the case of tool conversion data setting
being made

Travel in the direction of X axis Travel in the direction of X axis

Travel in the direction of A axis Travel in the direction of A axis

The robot hand rotates on the
Xm axis of the mechanical
interface coordinate system,
thus having a wide range of
motion at its leading end.

The robot hand rotates on the Xt
axis of the tool coordinate system.
Rotational motion on the leading
end of the robot hand permits a
change of posture without the
need to displace the work from its
original position.

Motion along the Xm axis of
the mechanical interface
coordinate system

Motion along the Xt axis of
the tool coordinate system.
Motion parallel/
perpendicular to the face of
the robot hand assures a
register with the orientation
of the work.
-164 Coordinate system description of the robot

 4MELFA-BASIC VI
2) Automatic operation
Travel command permits you to set robot motion during the removal or transfer of processed work by
specifying approach/pullout distance settings. Approach or pullout takes place in the direction of the Z
axis of the robot's tool coordinate system.
To move the robot hand to a point 50mm over the work transfer position as shown in Fig. 4-14, the
following indication is used:

Mov P1,50
This means that the robot hand should move +50mm in the direction of the Z axis at P1 (tool
coordinate system).
Setting the direction of the Z axis of the tool coordinate system to suit the orientation of work being
process and/or the operating condition of the robot leads to an improved workability.
In the example shown in Fig. 4-14, because the robot hand is oriented laterally to insert or remove the
work, the direction of the Z axis of the tool coordinate system is chosen to agree with the orientation of
the work.

Fig.4-14:Approach/pullout motion

Making tool conversion data settings will come in useful when you have to make changes to the posture of
your work as in work phasing, as well.

To achieve work phasing by turning the work on its center axis as shown in Fig. 4-15, the following
indication is used:

Mov P1*(0,0,0,0,0,45)
"*(0, 0, 0, 0, 0, 45)" means that a position calculation should be carried out at "*" and that C out of (X, Y, Z,
A, B, C) should be rotated 45 degree. As C represents a rotation on the Z axis, the robot comes to rotate 45
degree on the Z axis (Zt axis of tool coordinate system) at P1.

Zt

Yt

Xt 50mm

Work

Work transfer
position
(position: P1)
 Coordinate system description of the robot 4-165

4

4MELFA-BASIC VI
Fig.4-15:Rotational motion in tool coordinate system

Zt

Yt

Xt

(a) Position of P1 (b) Position of Mov P1* (0, 0, 0, 0, 0, 45)

+45°
-166 Coordinate system description of the robot

 4MELFA-BASIC VI
4.5 Robot status variables
The available robot status variables are shown in Table 4-8. As shown in the table, the variable name and
application are predetermined.
The robot status can be checked and changed by using these variables.

Table 4-8:Robot status variables

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page

1 P_Curr Mechanism No.(1 to 3) Current position (XYZ) R Position type 435

2 J_Curr Mechanism No.(1 to 3) Current position (joint) R Joint type 361

3 J_ECurr Mechanism No.(1 to 3) Current encoder pulse position R Joint type 365

4 J_Fbc Mechanism No.(1 to 3) Joint position generated based on the feedback
value from the servo

R Joint type 366

5 J_AmpFbc Mechanism No.(1 to 3) Current feedback value R Joint type 366

6 P_Fbc Mechanism No.(1 to 3) XYZ position generated based on the feedback
value from the servo

R Position type 438

7 M_Fbd Mechanism No.(1 to 3) Distance between commanded position and
feedback position

R Position type 382

8 M_CmpDst Mechanism No.(1 to 3) Amount of difference between a command value
and the actual position when the compliance
function is being performed

R Single-precision
real number type,

mm

372

9 M_CmpLmt Mechanism No.(1 to 3) This is used to recover from the error status by
using interrupt processing when an error has
occurred while the command value in the
compliance mode attempted to exceed the limit.

R Integer type 373

10 P_Tool Mechanism No.(1 to 3) Currently designated tool conversion data R Position type 445

11 P_Base Mechanism No.(1 to 3) Currently designated base conversion data R Position type 431

12 P_NTool Mechanism No.(1 to 3) System default value (tool conversion data) R Position type 445

13 P_NBase Mechanism No.(1 to 3) System default value (base conversion data) R Position type 431

14 M_Tool Mechanism No.(1 to 3) Tool No. (1 to 16) RW Integer type 416

15 J_ColMxl Mechanism No.(1 to 3) Difference between estimated torque and actual
torque

R Joint type, % 362

16 M_ColSts Mechanism No.(1 to 3) Collision detection status (1: Colliding, 0: Others) R Integer type 374

17 P_ColDir Mechanism No.(1 to 3) Movement direction at collision R Position type 433

18 P_CordR Mechanism No.(1 to 3) In interference avoidance function, The robot’s
base coordinate system origin point looking from
common coordinate system.

R Position type 434

19 P_CurrR Mechanism No.(1 to 3) In interference avoidance function, Local robot’s
current position looking from the common
coordinate system.

R Position type 436

20 M_Cavsts Mechanism No.(1 to 3) In interference avoidance function, The CPU
number of interfering robot when interference is
detected.

RW Integer type 371

21 P_CavDir Mechanism No.(1 to 3) In interference avoidance function, The direction
which the robot was moving when interference is
detected.

R Position type 432

22 M_OPOvrd None Speed override on the operation panel (0 to 100%) R Integer type, % 393

23 M_Ovrd Slot No.(1to 32) Override in currently designated program (0 to
100%)

R Integer type, % 393

24 M_JOvrd Slot No.(1to 32) Currently designated joint override (0 to 100%) R Integer type, % 393

25 M_NOvrd Slot No.(1to 32) System default value (default value of M_Ovrd)
(%)

R Single-precision
real number type, %

393

26 M_NJovrd Slot No.(1to 32) System default value (default value of M_JOvrd)
(%)

R Single-precision
real number type, %

393

27 M_Wupov Mechanism No.(1 to 3) Warm-up operation override (50 to 100%) R Single-precision
real number type, %

423
 Robot status variables 4-167

4

4MELFA-BASIC VI
28 M_Wuprt Mechanism No.(1 to 3) Time until the warm-up operation status is
canceled (sec.)

R Single-precision
real number type,

sec

424

29 M_Wupst Mechanism No.(1 to 3) Time until the warm-up operation status is set
again (sec.)

R Single-precision
real number type,

sec

425

30 M_Ratio Slot No.(1to 32) Fraction of the current movement left before
reaching the target position (%)

R Integer type, % 406

31 M_RDst Slot No.(1to 32) Remaining distance left of the current movement
(only the three dimensions of X, Y, and Z are taken
into consideration: mm)

R Single-precision
real number type,

mm

408

32 M_Spd Slot No.(1to 32) Current specified speed (valid only for linear/
circular interpolation)

R Single-precision
real number type,

mm/s

411

33 M_NSpd Slot No.(1to 32) System default value (default value of M_Spd)
(mm/s)

R Single-precision
real number type,

mm/s

411

34 M_RSpd Slot No.(1to 32) Current directive speed (mm/s) R Single-precision
real number
type,mm/s

411

35 M_Acl Slot No.(1to 32) Current specified acceleration rate (%) R Single-precision
real number type, %

367

36 M_DAcl Slot No.(1to 32) Current specified deceleration rate (%) R Single-precision
real number type, %

367

37 M_NAcl Slot No.(1to 32) System default value (default value of M_Acl) (%) R Single-precision
real number type, %

367

38 M_NDAcl Slot No.(1to 32) System default value (default value of M_DAcl)
(%)

R Single-precision
real number type, %

367

39 M_AclSts Slot No.(1to 32) Current acceleration/deceleration status
0 = Stopped, 1 = Accelerating, 2 = Constant
speed, 3=Decelerating

R Integer type 367

40 M_SetAdl Axis No.(1 to 8) Specify the acceleration/deceleration time ratio
(%) of each axis.

RW Single-precision
real number type, %

409

41 M_LdFact Axis No.(1 to 8) The load factor of the servo motor of each axis.
(%)

R Single-precision
real number type, %

394

42 M_Run Slot No.(1to 32) Operation status (1: Operating, 0: Not operating) R Integer type 408

43 M_Wai Slot No.(1to 32) Pause status (1: Pausing, 0: Not pausing) R Integer type 422

44 M_Psa Slot No.(1to 32) Specifies whether or not the program selection is
possible in the specified task slot. (1: Selection
possible, 0: Selection not possible, in pause
status)

R Integer type 405

45 M_Cys Slot No.(1to 32) Cycle operation status (1: Cycle operation, 0: Non-
cycle operation)

R Integer type 375

46 M_Cstp None Cycle stop operation status (1: Cycle stop, 0: Not
cycle stop)

R Integer type 375

47 C_Prg Slot No.(1to 32) Execution program name R Character string
type

359

48 M_Line Slot No.(1to 32) Currently executed line No. R Integer type 396

49 M_SkipCq Slot No.(1to 32) A value of 1 is input if execution of an instruction is
skipped as a result of executing the line that
includes the last executed Skip command,
otherwise a value of 0 is input.

R Integer type 410

50 M_BrkCq None Result of the BREAK instruction
(1: BREAK, 0: None)

R Integer type 370

51 M_Err None Error occurring (1: An error has occurred, 0: No
errors have occurred)

R Integer type 380

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page
-168 Robot status variables

 4MELFA-BASIC VI
52 M_ErrLvl None Reads an error level.
・ S/W version R1c or before (SQ series) / S1c or

before (SD series)
No error / Caution / Low / High = 0/1/2/3

・ S/W version R1d or later(SQ series) / S1d or
later(SD series)

No error / Caution / Low / High / Caution1
/ Low1 / High1 = 0/1/2/3/4/5/6

R Integer type 380

53 M_Errno None Reads an error number. R Integer type 380

54 M_Svo Mechanism No.(1 to 3) Servo motor power on (1: Servo power on, 0:
Servo power off)

R Integer type 414

55 M_Uar Mechanism No.(1 to 3) Bit data.
(1: Within user specified area, 0: Outside user
specified area)
(Bit 0:area 1 to Bit 7:area 8)

R Integer type 417

56 M_Uar32 Mechanism No.(1 to 3) Bit data.
(1: Within user specified area, 0: Outside user
specified area)
(Bit 0:area 1 to Bit 31:area 32)

R Integer type 418

57 M_In Input No.(0 to 32767) Use this variable when inputting external input
signals (bit units).
General-purpose bit device: bit signal input 0=off
1=on
The signal numbers will be 6000s for CC-Link

R Integer type 391

58 M_Inb/
M_In8

Input No.(0 to 32767) Use this variable when inputting external input
signals (8-bit units)
General-purpose bit device: byte signal input
The signal numbers will be 6000s for CC-Link

R Integer type 391

59 M_Inw/
M_In16

Input No.(0 to 32767) Use this variable when inputting external input
signals (16-bit units)
General-purpose bit device: word signal input
The signal numbers will be 6000s for CC-Link

R Integer type 391

60 M_In32 Input No.(0 to 32767) Use this variable when inputting external input
signals (32-bit units) numerically
General-purpose bit device: double word signal
input
The signal numbers will be 6000s for CC-Link

Ｒ Integer type 391

61 M_Out Output No.(0 to 32767) Use this variable when outputting external output
signals (bit units).
General-purpose bit device: bit signal input 0=off
1=on
The signal numbers will be 6000s for CC-Link

RW Integer type 402

62 M_Outb/
M_Out8

Output No.(0 to 32767) Use this variable when outputting external output
signals (8-bit units)
General-purpose bit device: byte signal input
The signal numbers will be 6000s for CC-Link

RW Integer type 402

63 M_Outw/
M_Out16

Output No.(0 to 32767) Use this variable when outputting external output
signals (16-bit units)
General-purpose bit device: word signal input
The signal numbers will be 6000s for CC-Link

RW Integer type 402

64 M_Out32 Output No.(0 to 32767) Use this variable when outputting numerical
value to external output signals (32-bit units)
General-purpose bit device: double word
signal input
The signal numbers will be 6000s for CC-Link

ＲＷ Integer type 402

65 M_DIn Input No.(from 6000) Use this variable when reading word data from the
CC-Link or EtherCAT input register.
It is not available for the CR800-R/Q series.
(CC-Link remote register: Input register reading)

R Integer type 376

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page
 Robot status variables 4-169

4

4MELFA-BASIC VI
66 M_DOut Output No.(from 6000) Use this variable when writing/reading word data
to/from the CC-Link or EtherCAT output register.
It is not available for the CR800-R/Q series.
(CC-Link remote register: Output register writing
and reading)

RW Integer type 376

67 M_DIn32 Input No.
(6000 to 6254)

Use this variable when reading double-word data
from the CC-Link or EtherCAT input register.

R Integer type 377

68 M_DOut32 Output No.
(6000 to 6254)

Use this variable when writing/reading double-
word data to/from the CC-Link or EtherCAT output
register.

RW Integer type 378

69 M_HndCq Input No.(1 to 8) Returns a hand check input signal. R Integer type 390

70 P_Safe Mechanism No.(1 to 3) Returns an safe point position. RW Position type 445

71 J_Origin Mechanism No.(1 to 3) Returns the joint coordinate data when setting the
origin.

R Joint type 366

72 M_Open File No.(1 to 8) Returns the open status of the specified file
or the communication line.

R Integer type 401

73 M_NvOpen Vision sensor No.(1 to
8)

Returns the line connection status of the vision
sensor.

R Integer type 399

74 C_Mecha Mechanism No.(1 to 3) Returns the type name of the robot. R Character string
type

359

75 C_Maker None Shows manufacturer information (a string of up to
64 characters).

R Character string
type

358

76 C_User None Returns the content of the parameter "USERMSG"
(a string up to 32 characters).

R Character string
type

360

77 C_Date None Current date expressed as "year/month/date". R Character string
type

358

78 C_Time None Current time expressed as "time/minute/second". R Character string
type

360

79 M_BTime None Returns the remaining battery capacity time
(hours).

R Integer type, Time 370

80 M_Timer Timer No. (1 to 8) Constantly counting. Value can be set. [ms]
It is possible to measure the precise execution
time by using this variable in a program.

RW Single-precision
real number type

415

81 P_Zero None A variable whose position coordinate values (X, Y,
Z, A, B, C, FL1, FL2) are all 0

R Position type 449

82 M_PI None Circumference rate (3.1415...) R Double-precision
real number type

405

83 M_Exp None Base of natural logarithm (2.71828...) R Double-precision
real number type

382

84 M_G None Specific gravity constant (9.80665) R Double-precision
real number type

383

85 M_On None 1 is always set R Integer type 400

86 M_Off None 0 is always set R Integer type 400

87 M_Mode None Contains the status of the mode selector switch.
MANUAL/AUTOMATIC (O/P)/AUTOMATIC
(External)=(1/2/3)

R Integer type 397

88 M_SplPno Mechanism No.(1 to 3) During the spline interpolation movement, the
transit point No. passed through most recently is
returned.

R Integer type 412

89 M_SplVar Mechanism No.(1 to 3) During the spline interpolation movement, a
random numeric value set for the transit point is
returned. The random value can be held until the
value is set again.

RW Integer type 413

90 P_WkCord Work coordinates No.
(1 to 8)

By designating a work coordinates number, work
coordinates values concerned are read, or work
coordinate values are specified.

RW Position type 448

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page
-170 Robot status variables

 4MELFA-BASIC VI
4.5.1 Logic numbers
Logic numbers indicate the results of such things as comparison and input/output.
If not 0 when evaluated with an Integer, then it is true, and if 0, it is false. When substituted, if true, 1 is
assigned. The processes that can use logic numbers are shown in Table 4-9.

Table 4-9:Values corresponding to true or false logic number

91 M_ESpd Mechanism No.(1 to 3) During the Ex-T control/Ex-T spline interpolation
movement, the transit speed at current Ex-T
coordinate system is returned.

R Single-precision
real number
type,mm/s

381

92 P_ECord Mechanism No.(1 to 3) During the Ex-T control/Ex-T spline interpolation
movement, the Ex-T coordinate system origin data
currently used is returned.

R Position type 437

93 M_Mxt Target CPU No.
(2 to 4)

Used for inter-robot synchronization RW Integer type 398

94 P_GCurr Target CPU No.
(2 to 4)

Master robot current position R Position type 439

95 M_Gps Monitoring No. (1 to 8) Returns the number of the position data stored in
the P_GpsX() for the monitoring number defined in
the Def Gps command, using the get-position-
quick function (GPS function). ("X" indicates the
same number as the target monitoring number
from 1 to 8.)

R Integer type 387

96 P_Gps1 to
P_Gps8

Position number (1 to
400)

Returns XYZ coordinate data for the current
position data when the condition defined in the Def
Gps command is met, using the get-position-quick
function (GPS function). (Up to 400 position data
can be saved.)

R Integer type 442

97 M_Map1 to
M_Map8

Number of segments
(1 to 130)

Returns the segment number in which a workpiece
is present in the condition defined in the Def Map
command, using the get-position-quick function
(GPS function).

R Integer type 396

Note1) Mechanism No.1 to 3, Specifies a mechanism number corresponding to the multitask processing function.
Slot No........................1 to 32, Specifies a slot number corresponding to the multitask function.
Input No.0 to 32767: (theoretical values). Specifies a bit number of an input signal.
Output No.0 to 32767: (theoretical values). Specifies a bit number of an output signal.

Note2) ROnly reading is possible.
RW.Both reading and writing are possible.

Items expressed with logic number "1" Items expressed with logic number "0"
*Result of comparison operation (if true)
*Result of logic operation (if true)
*Switch ON
*Input/output signal ON
*Hand open (supply current to the hand)
*Settings for enable/valid such as for interrupts

*Result of comparison operation (if false)
*Result of logic operation (if false)
*Switch OFF
*Input/output signal OFF
*Hand close (do not supply current to the hand)
*Settings for disable/invalid such as for interrupts

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page
 Robot status variables 4-171

4

4MELFA-BASIC VI
4.6 Functions
A function carries out a specific operation for an assigned argument, and returns the result as a numeric
value type or character string type. There are built-in functions, that are preassembled, and user-defined
functions, defined by the user.

(1) User-defined functions
The function is defined with the Def FN statement.

Example) Def FNMADD(MA, MB)=MA+MB
...........The function to obtain the total of two values is defined with FNMADD.

The function name starts with FN, and the data type identification character (C: character string, M: numeric
value, P: position, J: joint) is described at the third character. The function is designated with up to eight
characters.

(2) Built-in functions
A list of assembled functions is given in Table 4-10.

Table 4-10:List of built-in functions
Class Function name (format) Functions Page Result

Numeric
functions

Abs (<Numeric expression>) Produces the absolute value 451 Numeric
valueCint (<Numeric expression>) Rounds off the decimal value and converts into an integer. 458

Deg (<Numeric expression:radian>) Converts the angle unit from radian (rad) to degree (deg). 461
Exp (<Numeric expression>) Calculates the value of the expression's exponential function 462
Fix (<Numeric expression>) Produces an integer section 463
Int (<Numeric expression>) Produces the largest integer that does not exceed the value in the

expression.
465

Len(<Character string expression>) Produces the length of the character string. 467
Ln (<Numeric expression>) Produces the logarithm. 468
Log (<Numeric expression>) Produces the common logarithm. 468
Max (<Numeric expression>...) Obtains the max. value from a random number of arguments. 469
Min (<Numeric expression>...) Obtains the min. value from a random number of arguments. 470
Rad (<Numeric expression: deg.>) Converts the angle unit from radian (rad) to degree (deg). 474
Sgn (<Numeric expression>) Checks the sign of the number in the expression 481
Sqr (<Numeric expression>) Calculates the square root 485
Rnd (<Numeric expression>) Produces the random numbers. 476
SplSpd(<Spline No.>) Obtains the maximum speed which can be specified without an

error from the path point data registered in a random spline file.
484

Trigonometric
functions

ACos(<Numeric expression>) Calculates the arc cosine. Unit: radian
Definition range: -1.0 to +1.0, Value range: 0 to PI

452 Numeric
value

ASin(<Numeric expression>) Calculates the arc sine. Unit: radian
Definition range: -1.0 to +1.0, Value range: -PI/2 to +PI/2

455

Atn(<Numeric expression>) Calculates the arc tangent. Unit: radian
Definition range: Numeric value, Value range: -PI/2 to +PI/2

455

Atn2(<Numeric
expression>,<Numeric expression>)

Calculates the arc tangent. Unit: radian
 THETA=Atn2(delta y, deltax)
 Definition range: Numeric value of delta y or delta x that is not 0
 Value range: -PI to +PI

455

Cos(<Numeric expression>) Calculates the cosine Unit: radian
 Definition range: Numeric value range, Value range: -1 to +1

459

Sin(<Numeric expression>) Calculates the sine Unit: radian
 Definition range: Numeric value range, Value range: -1 to +1

481

Tan(<Numeric expression>) Calculates the tangent. Unit: radian
 Definition range: Numeric value range, Value range: Range of numeric
value

487
-172 Functions

 4MELFA-BASIC VI
Character
string
functions

Asc(<Character string expression>) Provides a character code for the first character of the character
string in the expression.

454 Numeric
value

Bin$(<Numeric expression>) Converts numeric expression value into binary character string. 456 Character
stringChr$(<Numeric expression>) Provides character having numeric expression value character

code.
458

Cvi(<Character string expression>) Converts a 2-byte character string into integers. 460 Numeric
valueCvs(<Character string expression>) Converts a 4-byte character string into a single-precision real number. 460

Cvd(<Character string expression>) Converts an 8-byte character string into a double-precision real number. 461
Hex$(<Numeric expression>) Converts numeric expression value into hexadecimal character

string.
465 Character

string
Left$(<Character string
expression>,<Numeric expression>)

Obtains character string having length designated with 2nd
argument from left side of 1st argument character string.

467

Mid$(<Character string expression>,
<Numeric expression>
<Numeric expression>)

Obtains character string having length designated with 3rd
argument from the position designated with the 2nd argument in the
1st argument character string.

469

Mirror$(<Character string
expression>)

Mirror reversal of the character string binary bit is carried out. 470

Mki$(<Numeric expression>) Converts numeric expression value into 2-byte character string. 471
Mks$(<Numeric expression>) Converts numeric expression value into 4-byte character string. 471
Mkd$(<Numeric expression>) Converts numeric expression value into 8-byte character string. 472
Right$(<Character string
expression>,<Numeric expression>)

Obtains character string having length designated with 2nd
argument from right side of 1st argument character string.

476

Val(<Character string expression>) Converts a character string into a numeric value. 488 Numeric
value

Str$(<Numeric expression>) Converts the numeric expression value into a decimal character string. 487 Character
string

Strpos(<Character string
expression>, <Character string
expression>)

Obtains the 2nd argument character string position in the 1st
argument character string.

486 Numeric
value

StrLwr(<Character string>) Decapitalizes a <Character string>. 485 Character
stringStrUpr(<Character string>) Capitalizes a <Character string>. 486

CkSum(<Character string
expression>,<Numeric expression>,
<Numeric expression>)

Creates the checksum of a character string.
Returns the value of the lower byte obtained by adding the character
value of the second argument position to that of the third argument
position, in the first argument character string.

459 Numeric
value

Position
variables

Dist(<Position>,<Position>) Obtains the distance between two points. 462 Position
Fram
(<Position 1>,<Position 2>,
<Position 3>)

Calculates the coordinate system designated with three points. Position
1 is the plane origin, position 2 is the point on the +X axis, and position
3 is the point on the +Y axis direction plane. The plane origin point and
posture are obtained from the XYZ coordinates of the three position,
and is returned with a return value (position). This is operated with 6-
axis three dimensions regardless of the mechanism structure.
This function cannot be used in 5-axis robots, because the A, B, and
C posture data has different meaning.

464

Rdfl1(<Position>,<Numeric value>) Returns the structure flag of the designated position as character data.
Argument <numeric value>) 0 = R/L, 1 = A/B , 2 = F/N is returned.

474 Character

Setfl1(<Position>,<Character>) Changes the structure flag of the designated position. The data to
be changed is designated with characters.(R/L/A/B/F/N)

477

Rdfl2(<Position>,<Numeric value>) Returns the multi-rotation data of the designated position as a
numeric value (-2 to 1).
The argument <numeric expression> returns the axis No. (1 to 8).

475 Numeric
value

Setfl2
(<Position>>,<Numeric value>,
<Numeric value>)

Changes the multi-rotation data of the designated position as a
numeric value (-2 to 1). The left side of the expression is the axis
No. to be changed; the right side is the value to be set.

478

Align(<Position>) Returns the value of the XYZ position (0,+/-90, +/-180) closest to the
position 1 posture axis (A, B, C).
This function cannot be used in 5-axis robots, because the A, B, and
C posture data has different meaning.

453

Class Function name (format) Functions Page Result
 Functions 4-173

4

4MELFA-BASIC VI
4.7 List of Command
A list of pages with description of each command is shown below. They are listed in the order of presumed
usage frequency.

(1) Command related to movement control

Position
variables

Inv(<Position>) Obtains the reverse matrix. 466 Position
PtoJ(<Position>) Converts the position data into joint data. 473 Joint
JtoP(<Position>) Converts the joint data into position data. 466 Position
Zone
(<Position 1>,<Position 2>,<Position 3>)

Checks whether position 1 is within the space (Cube) created by the
position 2 and position 3 points.
 Outside the range=0, Within the range=1
For position coordinates that are not checked or non-existent, the
following values should be assigned to the corresponding position
coordinates:
If the unit is degrees, assign -360 to position 2 and 360 to position 3
If the unit is mm, assign -10000 to position 2 and 10000 to position 3

489 Numeric
value

Zone2
(<Position 1>,<Position 2>,<Position 3>
<Numeric value1>, <Numeric value2>,
<Numeric value3>,<Position 4>)

Checks whether position 1 is within the space (cylinder) created by
the position 2 and position 3 points.
 Outside the range=0, Within the range=1
Only the X, Y, and Z coordinate values are considered; the A, B, and
C posture data is ignored.

490 Numeric
value

Zone3
(<Position 1>,<Position 2>,<Position
3>,<Position 4>
<Numeric value1>, <Numeric value2>,
<Numeric value3>)

Checks whether position 1 is within the space (cube) created by four
positions (position 2, position 3, position 4) and three values (integer
1, integer 2, integer 3).
 Outside the range=0, Within the range=1
Only the X, Y, and Z coordinate values are considered; the A, B, and
C posture data is ignored.

491 Numeric
value

PosCq(<Position>) Checks whether <position> is within the movement range. 472 Numeric
value

PosMid
(<Position1>,<Position2>,
<Numeric value1>, <Numeric value2>)

Calculates the middle position between <position 1> and <position
2>.

473 Position

CalArc
(<Position 1>,<Position 2>,<Position 3>
<Numeric value1>, <Numeric value2>,
<Numeric value3>,<Position 4>)

Returns information of an arc created from <position 1>, <position
2>, and <position 3>.

457 Numeric
value

SetJnt
(<J1 axis>,<J2 axis>,<J3 axis>,<J4 axis>
<J5 axis>,<J6 axis>,<J7 axis>,<J8 axis>)

Sets values in joint variables. 479 Joint

SetPos
(<X axis>,<Y axis>,<Z axis>,<A axis>
<B axis>,<C axis>,<L1 axis>,<L2 axis>)

Sets values in position variables. 480 Position

SplPos
(<Spline No.>, <Frame
transformation>, <Path point No.>)

Loads the path point data registered in a random spline file. 483 Position

SplECord
(<Spline No.>, <Frame
transformation>

Loads the Ex-T coordinate system origin data registered in a
random spline file.

482 Position

Command Explanation Page

Mov (Move) Joint interpolation 276

Mvs (Move S) Linear interpolation 289

Mvr (Move R) Circular interpolation 283

Mvr2 (Move R 2) Circular interpolation 2 285

Mvr3 (Move R 3) Circular interpolation 3 287

Mvc (Move C) Circular interpolation 282

Mva (Move Arch) Arch motion interpolation 277

MvSpl (Move Spline) Spline interpolation 292

Mxt (Move External) Optimum acceleration/deceleration rate specification 297

Class Function name (format) Functions Page Result
-174 List of Command

 4MELFA-BASIC VI
(2) Command related to program control

Mv Tune (Move Tune) Specification of the moving characteristics mode 295

Ovrd (Override) Overall speed specification 313

Spd (Speed) Speed specification during linear or circular interpolation
movement

334

JOvrd (J Override) Speed specification during joint interpolation movement 272

Cnt (Continuous) Continuous path mode specification 202

Accel (Accelerate) Acceleration/deceleration rate specification 181

ColChk (Col Check) Collision detection function 205

CavChk On (CavChk On) Interference avoidance function 191

Cmp Jnt (Compliance Joint) Specification of compliance in the JOINT coordinate system 194

Cmp Pos (Compliance Posture) Specification of compliance in the XYZ coordinate system 196

Cmp Tool (Compliance Tool) Specification of compliance in the Tool coordinate system 198

Cmp Off (Compliance OFF) Compliance setting invalid 200

CmpG (Compliance Gain) Compliance gain specification 201

Oadl (Optimal Acceleration) Sets the optimum acceleration/deceleration 306

Loadset (Load Set) Hand's optional condition specification 275

Prec (Precision) High accuracy mode specification 315

Torq (Torque) Torque specification of each axis 343

JRC (Joint Roll Change) Enables multiple rotation of the tip axis 273

Fine (Fine) Robot's positioning range specification 254

Fine J (Fine Joint) Robot's positioning range specification by joint interpolation 255

Fine P (Fine Pause) Robot's positioning range specification by distance in a straight
line

256

Servo (Servo) Servo motor power ON/OFF 330

Wth (With) Addition instruction of movement instruction 346

WthIf (With If) Additional conditional instruction of movement instruction 347

EMvs (E Move S) Ex-T control linear interpolation 246

EMvc (E Move C) Ex-T control circular interpolation 238

EMvr (E Move R) Ex-T control circular arc interpolation 240

EMvr2 (E Move R 2) Ex-T control circular arc interpolation 2 242

EMvr3 (E Move R 3) Ex-T control circular arc interpolation 3 244

EMvSpl (E Move Spline) Ex-T spline interpolation 248

Command Explanation Page

Rem (Remarks) Comment(') 322

If...Then...ElseIf...Else...EndIf (If Then Else) Conditional branching 268

Select Case (Select Case) Enables multiple branching 328

GoTo (Go To) Jump 264

GoSub (Return)(Go Subroutine) Subroutine jump 263

Reset Err (Reset Error) Resets an error (use of default is not allowed) 324

CallP (Call P) Program call 188

FPrm (FPRM) Program call argument definition 258

Dly (Delay) Timer 232

Function... FEnd Function procedure definition 259

Exit Exits the procedure/repeat processing 253

Hlt (Halt) Suspends a program 266

Include #Include statement declaration 270

End (End) End a program 251

Command Explanation Page
 List of Command 4-175

4

4MELFA-BASIC VI
(3) Definition commands

On ... GoSub (ON Go Subroutine) Subroutine jump according to the value 309

On ... GoTo (On Go To) Jump according to the value 310

For - Next (For-next) Repeat 257

While-WEnd (While End) Conditional repeat 345

Open (Open) Opens a file or communication line 311

Print (Print) Outputs data 316

Input (Input) Inputs data 271

Close (Close) Closes a file or communication line 192

Remove (Remove) Deletes a file. 323

Save Saves a program 327

ColChk (Col Check) Enables or disables the collision detection function 205

On Com GoSub (ON Communication Go Subrou-
tine)

Communication interrupt subroutine jump 308

Com On/Com Off/Com Stop (Communication ON/
OFF/Stop)

Allows/prohibits/stops communication interrupts 209

HOpen / HClose (Hand Open/Hand Close) Hand's open/close 267

Error (error) User error 252

Skip (Skip) Skip while moving 333

Wait (Wait) Waiting for conditions 344

Clr (Clear) Signal clear 193

SplWrt (Spline Write) Creates the spline file 338

SplFWrt (Spline Frame Write) Rewrites the frame transportation information registered into the
spline file.

337

GpsChk (Get position check) Starts/stops monitoring the condition defined in the Def Gps
command or Def Map command

265

Command Explanation Page

Dim (Dim) Array variable declaration 230

Def Plt (Define pallet) Pallet declaration 226

Plt (Pallet) Pallet position calculation 314

Def Act (Define act) Interrupt definition 212

Act (Act) Starts or ends interrupt monitoring 183

Def Arch (Define arch) Definition of arch shape for arch motion 215

Def Jnt (Define Joint) Joint type position variable definition 222

Def Pos (Define Position) XYZ type position variable definition 228

Def Work Work coordinate variable definition 229

Def Inte/Def Long/Def Float/Def Double (Define
Integer/Long/Float/Double)

Integer or real number variable definition 220

Def Char (Define Character) Character variable definition 216

Def IO (Define IO) Signal variable definition 221

Def FN (Define function) User function definition 217

Const Constant definition 210

Static Static variable declaration 340

Title (Title) Program title setting 341

Base (Base) Robot base position setting 185

Tool(Tool) Tool length setting 342

SetCalFrm (Set Calibration Frame) Coordinate system setting used for frame transformation 331

Def Gps (Define get position) Definition of the monitored condition for the position data
acquisition using the get-position-quick function (GPS function)

218

Command Explanation Page
-176 List of Command

 4MELFA-BASIC VI
(4) Multi-task related

(5) Communications

(6) Others

Def Map (Define mapping) Definition of the monitored condition for the mapping (the
workpiece presence recognition) in a cassette using the get-
position-quick function (GPS function)

223

Command Explanation Page

XLoad (X Load) Loads a program to another task slot 349

XRun (X Run) Execute the program in another task slot 351

XStp (X Stop) Stop the program in another task slot 352

XRst (X Reset) Resets the program in another task slot being suspended 350

XClr (X Clear) Cancels the loading of the program from the specified task slot 348

GetM (Get Mechanism) Obtains mechanical control right 262

RelM (Release Mechanism) Releases mechanical control right 321

Priority (Priority) Changes the task slot priority 317

Reset Err (Reset Error) Resets an error (use of default is not allowed) 324

Command Explanation Page

Com Off (Communication OFF) Prohibits an interruption from the communication line. 209

Com On (Communication ON) Allows an interruption from the communication line. 209

Com Stop (Communication Stop) Suspends an interruption from the communication line. (Data is
received.)

209

On Com GoSub (ON Communication Go Subrou-
tine)

Communication interruption definition 308

Open (Open) Opens a file. 311

Close (Close) Closes a file. 192

Input (Input) Inputs text data. 271

Print (Print) Outputs text data. 316

NVOpen (network vision sensor line open) Connects with the vision sensor and logs on to the vision sensor. 300

NVClose (network vision sensor line close) Cuts off the connection with vision sensor. 298

NVLoad (network vision sensor load) Puts the specified vision program into the state in which it can be
started.

299

NVRun (network vision sensor run) Starts the specified vision program. 302

NVTrg (network vision sensor trigger) Requests the vision sensor to capture an image and acquires the
encoder value after the specified time.

304

EBRead (EasyBuilder read) Reads the data for which the tag name of the vision sensor is
specified.

233

EBWrite (EasyBuilder write) Writes the data for which the tag name of the vision sensor is
specified.

236

Command Explanation Page

ChrSrch (Character search) Searches the character string out of the character array. 190

PrmRead (Parameter Read) Reads a parameter value 318

PrmWrite (Parameter Write) Writes a parameter 319

Get Pos (Get Position) Reserved. -

PVSCal (PVS calibration) Changes the vision sensor image coordinate to the robot world
coordinate using the vision sensor calibration data.

320

Command Explanation Page
 List of Command 4-177

4

4MELFA-BASIC VI
4.8 Operators
The value's real number or integer type do not need to be declared. Instead, the type may be forcibly
converted according to the operation type. (Refer to Table 4-11.) The operation result data type is as follows
according to the combination of the left argument and right argument data types.

Example) Left argument Operation Right argument Operation results
15 AND 256 15

(Numeric value type) (Numeric value type) (Numeric value type)
P1 * M1 P2

(Position type) (Numeric value type) (Position type)
M1 * P1

(Numeric value type) (Position type) Description error

Table 4-11:Table of data conversions according to operations

Reversal: Sign reversal, Negate: Logical negate, Substitute: Substitute operation, Remainder: Remainder
operation, Comparison: Comparison operation, Logic: Logical Operation (excluding logical negate).

Left argument
type Operation

Left argument type

Character string
Numeric value

Position Joint
Integer Real number

Character
string

Substitution=
Addition +
Comparison
(Comparison operators)

Character string
Character string

Integer

-
-
-

-
-
-

-
-
-

-
-
-

Integer

Addition +
Subtract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison
(Comparison operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-

-

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Integer

Real number
Real number
Real number
Real number

Integer
Integer

Real number
Integer
Integer

Integer

-
-
-
-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-

-

Real number

Addition +
Subtract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison
(Comparison operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-

-

Real number
Real number
Real number
Real number

Integer
Integer

Real number
Integer
Integer

Integer

Real number
Real number
Real number
Real number

Integer
Integer

Real number
Real number

Integer

Integer

-
-
-
-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-

-

Position

Addition +
Subtract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison
(Comparison operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-

-

-
-

Position
Position

-
-
-
-
-

-

-
-

Position
Position

-
-
-
-
-

-

Position
Position
Position
Position

-
-
-

Position
-

-

-
-
-
-
-
-
-
-
-

-

Joint

Addition +
Subtract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison
(Comparison operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-

-

-
-

Joint
Joint

-
-
-
-
-

-

-
-

Joint
Joint

-
-
-
-
-

-

-
-
-
-
-
-
-
-
-

-

Joint
Joint

-
-
-
-
-

Joint
-

-
Right argument
only (Single
arugument)

eversal -
Negate NOT

-
-

Integer
Integer

Integer
Integer

Position
-

Joint
-

-178 Operators

 4MELFA-BASIC VI
[Caution]
•The operation of the section described with a "-" is not defined.
•The results of the integer and the integer multiplication/division is an integer type for multiplication, and a

real number type for division.
•If the right argument is a 0 divisor (divide by 0), an operation will not be possible.
•During exponential operation, remainder operation or logical operation (including negate), all real numbers

will be forcibly converted into integers (rounded off), and operated.

4.9 Priority level of operations
In the event there are many operators within an expression being calculated, the order of operations is as
shown in Table 4-12.
Table 4-12:Priority level of operations

4.10 Depth of program's control structure
When creating a program, the depth of the control structure must be considered.
When using the commands in the Table 4-13, the program's level of control structure becomes one level
deeper. Each command has a limit to the depth of the control structure. Exceeding these limits will cause an
error.
Table 4-13:Limit to control structure depth

4.11 Reserved words
Reserved words are those that are already used for the system.
A name that is the same as one of the reserved words cannot be used in the program.
Instructions, functions, and system status variables, etc. are considered reserved words.

Operations, (operators) Type of operation Priority level

1) Operations inside parentheses ()
2) Functions
3) Exponents
4) Single argument operator (+, -)
5) * /
6) \
7)MOD
8) + -
9)<< >>
10) Comparison operator
 (=,<>,><,<,<=,=<,>=,=>)
11)Not
12)And
13)Or
14)Xor

Functions
Numeric value operation
Numeric value operation
Numeric value operation
Numeric value operation
Numeric value operation
Numeric value operation
Logic operation
Comparison operation

Logic operation
Logic operation
Logic operation
Logic operation

High
:
:
:
:
:
:
:
:
:
:
:
:
:

Low

No. of levels Applicable commands

User stack in program 16 levels Repeated controls (For-Next,While-WEnd)

8 levels Function calling (CallP)

800 levels max. Subroutine calling (GoSub)
The number decreases by usage frequency of For-Next, While-WEnd, and CallP
instructions.
 Priority level of operations 4-179

4

4MELFA-BASIC VI
4.12 Detailed explanation of command words
4.12.1 How to read the described items

[Function] : Indicates the command word functions.
[Format] : Indicates how to input the command word argument.

The argument is shown in <>.
[] indicates that the argument can be omitted.
[] indicates that a space is required.

[Terminology] : Indicates the meaning and range, etc. of the argument.
[Reference Program] : Indicates a program example.
[Explanation] : Indicates detailed functions and cautions, etc.
[The available robot type] : Indicates the available robot type.
[Related parameter] : Indicates the related parameter.
[Related system variables] : Indicates the related system variables.
[Related instructions] : Indicates the related instructions.

4.12.2 Explanation of each command word
Each instruction is explained below in alphabetical order.
-180 Detailed explanation of command words

 4MELFA-BASIC VI
Accel (Accelerate)

[Function]
Designate the robot's acceleration and deceleration speeds as a percentage (%).
It is valid during optimum acceleration/deceleration.

* The acceleration/deceleration time during optimum acceleration/deceleration refers to the optimum time
calculated when using an Oadl instruction, which takes account of the value of the M_SetAdl variable.

[Format]

[Terminology]
<Acceleration/Deceleration>

1 to 100(%). Designate the acceleration/deceleration to reach the maximum speed from
speed 0 as a percentage. This can be described as a constant or variable. A default value
of 100 is set if the argument is omitted. A value of 100 corresponds to the maximum rate
of acceleration/deceleration. Unit:%

<Acceleration/Deceleration rate when moving upward>
Specify the acceleration/deceleration rate when moving upward in an arch motion due
to the Mva instruction.
A default value of 100 is set if the argument is omitted. It is possible to specify the argument
either by a constant or variable.

<Acceleration/Deceleration rate when moving downward>
Specify the acceleration/deceleration rate when moving downward in an arch motion due
to the Mva instruction.
A default value of 100 is set if the argument is omitted. It is possible to specify the argument
either by a constant or variable.

[Reference Program]
 1 Accel 50,100 ' Heavy load designation (when acceleration/deceleration is 0.2

seconds, the acceleration will be 0.4, and the deceleration will be 0.2
seconds).

 2 Mov P1
 3 Accel 100,100 ' Standard load designation.
 4 Mov P2
 5 Def Arch 1,10,10,25,25,1,0,0
 6 Accel 100,100,20,20,20,20 ' Specify the override value to 20 when moving upward or downward due

to the Mva instruction.
 7 Mva P3,1

[Explanation]
(1) The maximum acceleration/deceleration is determined according to the robot being used. Set the

corresponding percentage(%). The system default value is 100,100.
(2) The acceleration percentage changed with this command is reset to the system default value when the

program is reset or the End statement executed.
(3) The smooth operation when Cnt is valid will have a different locus according to the acceleration speed or

operation speed. To move smoothly at a constant speed, set the acceleration and deceleration to the
same value. Cnt is invalid in the default state.

(4) It is also valid during optimum acceleration/deceleration control (Oadl On).

Accel[] [<Acceleration rate>] [, <Deceleration rate>]
,[<Acceleration rate when moving upward>], [<Deceleration rate when moving upward>]
,[<Acceleration rate when moving downward>], [<Deceleration rate when moving downward>]
 Detailed explanation of command words 4-181

4

4MELFA-BASIC VI
[Related instructions]
Oadl (Optimal Acceleration), Loadset (Load Set)

[Related system variables]
M_Acl/M_DAcl/M_NAcl/M_NDAcl/M_AclSts

[Related parameter]
JADL
-182 Detailed explanation of command words

 4MELFA-BASIC VI
Act (Act)

[Function]
This instruction specifies whether to allow or prohibit interrupt processing caused by signals, etc. during
operation.

[Format]

[Terminology]
<Priority No.> 0: Either enables or disables the entire interrupt.

1 - 8: Designate the priority No. for the interrupt defined in the Def Act statement.
When entering the priority No., always leave a space (character) after the Act command.
If described as Act1, it will be a variable name declaration statement.

<1/0/-1> 1: Allows interrupts
0:Prohibits interrupts.
-1: If the <Priority No.> is 1 to 8, the interrupt in progress is canceled.
 And interrupt monitoring function is stopped.

[Reference Program]
(1) When the input signal 1 turns on (set to 1) while moving from P1 to P2, it loops until that signal is set to 0.

 1 Def Act 1,M_In(1)=1 GoSub *INTR ' Assign input signal 1 to the interrupt 1 condition
 2 Mov P1
 3 Act 1=1 ' Enable interrupt 1.
 4 Mov P2
 5 Act 1=0 ' Disable interrupt 1.
 :
10 *INTR '
11 IF M_In(1)=1 GoTo 110 ' Loops until the M_In(1) signal becomes 0.
12 Return 0 '

(2) When the input signal 1 turns on (set to 1)while moving from P1 to P2, Operation is interrupted and the
output signal 10 turns on.

1 Def Act 1,M_In(1)=1 GoSub *INTR 'Assign input signal 1 to the interrupt 1 condition
2 Mov P1
3 Act 1=1 ' Enable interrupt 1.
4 Mov P2
 :
10 *INTR
11 Act 1=0 ' Disable interrupt 1.
12 M_Out(10)=1 ' Turn on the output signal 10
13 Return 1 ' Returns to the next step which interrupted

(3) When the input signal 1 turns on (set to 1)while moving from P1 to P2, Operation is interrupted and wait
until the signal 0 turns on then return to the first step of the program.

1 *Start
 :
11 Def Act1, M_In(1)=1 Goto *INTR2 ' Assign input signal 1 to the interrupt 1 condition
12 Mov P1
13 Act 1=1 ' Enable interrupt 1.
14 Mov P2
 :
21 *INTR2
22 Act 1=0 ' Disable interrupt 1.
23 *Loop

Act[]<Priority No.> = <1/0/-1>
 Detailed explanation of command words 4-183

4

4MELFA-BASIC VI
24 If M_In(1) <> 0 Then Goto *Loop
25 Act 1=-1 ' The interrupt in progress is canceled. And interrupt

monitoring function is stopped.
26 Goto *Start

[Explanation]
(1) When the program starts, the status of <Priority No.> 0 is "enabled." When <Priority No.> 0 is "disabled,"

even if <Priority No.> 1 to 8 are set to "enabled," no interrupt will be enabled.
(2) The statuses of <Priority No.> 1 to 8 are all "disabled" when the program starts.
(3) An interrupt will occur only when all of the following conditions have been satisfied:

*<Priority No.> 0 is set to "enabled."
*The status of the Def Act statement has been defined.
*When the <Priority No.> designated by Def Act is made valid by an Act statement.

(4) The return from an interrupt process should be done by describing either RETURN 0 or RETURN 1.
However when returning from interruption processing to the next step by RETURN1, execute the statement
to disable the interrupt. When that is not so, if interruption conditions have been satisfied, because
interruption processing will be executed again and it will return to the next step, the step may be skipped.

(5) Even if the robot is in the middle of interpolation, an interrupt defined by a Def Act statement will be
executed.

(6) During an interrupt process, that <Priority No.> will be executed with the status as "disable".
(7) A communications interrupt (COM) has a higher priority than an interrupt defined by a Def Act statement.
(8) The relationship of priority rankings is as shown below:

 COM > Act > WthIf (Wth)
(9) The error L3110 will occur when Act 0=-1.

[Related instructions]
Def Act (Define act), Return (Return)
-184 Detailed explanation of command words

 4MELFA-BASIC VI
Base (Base)

[Function]
Changes (relocation and rotation) can be made to the world coordinate system which is the basis for the
control of the robot's current position. There are two alternative methods to achieve this. One is to directly
specify base conversion data and the other, to specify a predefined work coordinate system number. This
function has significant influences on teaching data for and jog operation of the robot. Read instructions
given in "4.4Coordinate system description of the robot" and proceed with care.

[Format]

[Terminology]
<Base conversion data> Base conversion data is specified with a position constant or a position

variable.
Values to be specified (coordinate values) represent position data for the
origin point of the base coordinate system as viewed from a world coordinate
system which is newly furnished.

<Base coordinate number> The system's initial value or value set in the parameter concerned (work
coordinate system) is designated as base conversion data.
This value is a constant in numerical form or a variable which is chosen from
0 through 8.

0: P_NBase (system's initial value) is specified.
(Because P_NBase = (0, 0, 0, 0, 0, 0), this value clears base conversion
settings.)

1 - 8:Each value corresponds to parameter/work coordinate system
(WK1CORD~WK8CORD).

Note) When a real number or a double-precision real number is specified,
the fractional portion is round down.

[Reference Program]
Specify by base conversion data

 1 Base (50,100,0,0,0,90) ' A new world coordinate system is defined by conversion data in the
form of a constant.

 2 Mvs P1 'A move to P1 is made in the new world coordinate system.
 3 Base P2 ' A new world coordinate system is defined by conversion data in the

form of a constant.
 4 Mvs P1 ' move to P1 is made in the new world coordinate system.
 5 Base 0 ' World coordinate system is returned to an initial value.

(P_NBase(ÉVsystem's initial value)is set for base conversion data)
Specify by the base coordinates number

 1 Base 1 ' Work coordinate system 1 (parameter: WK1CORD) is defined as a new
world coordinate system.

 2 Mvs P1 'A move to P1 is made in the new world coordinate system.
 3 Base 2 ' Work coordinate system 2 (parameter: WK2CORD) is defined as a new

world coordinate system.
 4 Mvs P1 'A move to P1 is made in the new world coordinate system.
 5 Base 0 ' World coordinate system is returned to an initial value.

(P_NBase(ÉVsystem's initial value)is set for base conversion data)

Base[]<Base conversion data> ’ Specifying base conversion data directly

Base[]<Base coordinate number> ’ Specifying base conversion data indirectly by a base
coordinate number (work coordinate system number).
 Detailed explanation of command words 4-185

4

4MELFA-BASIC VI
[Explanation]
(1) Values subject to base conversion (coordinate values) represent position data for the origin point of the

base coordinate system as viewed from a world coordinate system which is newly defined. Therefore,
when you use the robot's current position to specify base conversion data with coordinate values defined
by a Fram function or the like, do so by inversely converting the coordinate values [for example, Base
Inv(P1)]. [for example, Base Inv(P1)].
Note that when you specify a work coordinate system number, the above inverse conversion is
accomplished automatically in an internal process.
Elements X, Y and Z of position data indicate the amount of translation from the origin point of the world
coordinate system to that of the base coordinate system. Also, elements A, B and C indicate how much
the base coordinate system is tilted relative to the robot's coordinate system.

X Distance to move parallel to X axis
Y Distance to move parallel to Y axis
Z Distance to move parallel to Z axis
A Angle to turn toward the X axis
B Angle to turn toward the Y axis
C............ Angle to turn toward the Z axis

Elements A, B, and C are set to take a clockwise move as a forward rotation looking at the plus side from
the origin point of the world coordinate system.

(2) The contents of the structural flag have no meaning.
(3) "Base conversion data" changed with this command is saved in parameter MEXBS, and "base

coordinate number" in parameter MEXBSNO. The saved values are retained even after the controller is
turned off.
For programs in which Base command, Tool command, and M_Tool are executed repeatedly,
parameters may not be saved in time, causing error C7091 (parameter save error). If error C7091
occurs, change the order of Base command and Tool command as shown in the following example.

(4) Performing a base conversion changes the robot's current position to values that refer to the newly
established world coordinate system or work coordinate system. The target position specified by the
movement command will also be treated as a position in the newly established world coordinate system
or work coordinate system.

(5) You should note that the base conversion data differs in the valid axial elements depending on the
robot's type (structure of the robot arm). Refer to Page 528, "5.6 Standard Tool Coordinates".
Also, refer to the following sections for more information relative to this command.
Page 159, "4.4.1 About the robot's coordinate system"
Page 160, "4.4.2 About base conversion".

(6) The system's default value for this data is P_NBase=(0,0,0,0,0,0) (0,0).

Fig.4-16:Conceptual diagram of the base coordinate system

Example)
*MAIN
Base PB
Tool PT
If M_In(20)=1 Then
 GoSub *SUB1
EndIf
GoTo *MAIN

Base PB
Tool PT
*MAIN
If M_In(20)=1 Then
 GoSub *SUB1
EndIf
GoTo *MAIN

Zw

Xw
YwXb

Zb

Yb50

90

Base (50,100,0,0,0,90)

World coordinate system: Xw, Yw, Zw
Base coordinate system: Xb, Yb, Zb

100
-186 Detailed explanation of command words

 4MELFA-BASIC VI
Fig.4-17:Base conversion with a work coordinate system number being specified

Performing a base conversion changes the robot's current position to values that
refer to the newly established world coordinate system or work coordinate system.
The target position specified by the movement command will also be treated as a
position in the newly established world coordinate system or work coordinate
system.
As a result, data taught till then may become unusable as it is. The coordinate
system when taught needs to be the same as the newly established coordinate
system.
If they do not match, the robot can stray to unexpected positions, possibly
resulting in property damage or personal injury.
When using the base conversion function, be sure to maintain positive control
over relation between the base coordinate system subject to conversion and the
position which the robot is taught to take so that a proper robot operation and an
effective use of the base conversion function are insured.

[Related parameter]
MEXBS,WKnCORD ("n" is 1 to 8), MEXBSNO

[Related system variables]
M_BsNo, P_Base/P_NBase, P_WkCord

Work

coordinates 1

Work
coordinates 2

New world coordinate 1
(Work coordinate 1)

New world coordinate 2
(Work coordinate 2)

Current world coordinate (=Base coordinate)

Xw1

Yw1

Zw1

Yw2

Zw2

Xw2

Xw

Yw

Zw

 CAUTION
 Detailed explanation of command words 4-187

4

4MELFA-BASIC VI
CallP (Call P)

[Function]
This instruction executes the specified program (by calling the program in a manner similar to using GoSub
to call a subroutine). The execution returns to the main program when the End instruction or the final step in
the sub program is reached.

[Format]

[Terminology]
<Program name> Designate the program name with a character string constant or character string variable.

For the standards for program names, please refer to Page 142, "(1) Program name".
<Argument> Designate the variable to be transferred to the program when the program is called. Up

to 16 variables can be transferred.

[Reference Program]
(1) When passing the argument to the program to call.
Main program
 1 M1=0
 2 CallP "10" ,M1,P1,P2
 3 M1=1
 4 CallP "10" ,M1,P1,P2
 :
10 CallP "10", M2,P3,P4
 :
15 End

Sub program side
 1 FPrm M01, P01,P02
 2 If M01<>0 Then GoTo *LBL1
 3 Mov P01
 4 *LBL1
 5 Mvs P02
 6 End 'Return to the main program at this point.

* When step 2 and 4 of the main program are executed, M1, P1 and P2 are set in M01, P01 and P02 of
the sub program, respectively. When step 10 of the main program is executed, M2, P3 and P4 are set in
M01, P01 and P02 of the sub program, respectively.

(2) When not passing the argument to the program to call.
Main program
 1 Mov P1
 2 CallP "20"
 3 Mov P2
 4 CallP "20"
 5 End

"200" sub program side
 201 Mov P1 'P1 of the sub program differs from P1 of the main program.
 202 Mvs P002
 203 M_Out(17)=1
 204 End 'Return to the main program at this point.

CallP[] "<Program name> " [, <Argument> [, <Argument>
-188 Detailed explanation of command words

 4MELFA-BASIC VI
[Explanation]
(1) A program (sub program) called by the CallP instruction will return to the parent program (main

program) when the End instruction (equivalent to the Return instruction of GoSub) is reached. If there is
no End instruction, the execution is returned to the main program when the final step of the sub program
is reached.

(2) If arguments need to be passed to the sub program, they should be defined using the FPrm instruction
at the beginning of the sub program.

(3) If the type or the number of arguments passed to the sub program is different from those defined (by the
FPrm instruction) in the sub program, an error occurs at execution.

(4) If a program is reset, the control returns to the beginning of the top main program.
(5) Definition statements (Def Act, Def FN, Def Plt, and Dim instructions) executed in the main program are

invalid in a program called by the CallP instruction. They become valid when the control is returned to
the main program from the program called by the CallP instruction again.

(6) Tool conversion data is valid in a sub program. Values of Accel, Spd, Ovrd, and JOvrd are invalid. The
mode of Oadl is valid.

(7) Another sub program can be executed by calling CallP in a sub program. However, a main program or a
program that is currently being executed in another task slot cannot be called. In addition, own program
cannot be called, either.

(8) Eight levels (in a hierarchy) of sub programs can be executed by calling CallP in the first main program.
(9) Variable values may be passed from a main program to a sub program using arguments, however, it is

not possible to pass the processing result of a sub program to a main program by assigning it in an
argument. To use the processing result of a sub program in a main program, pass the values using
external variables.

When a sub program is executed with a CallP instruction, data is written to the
non-volatile memory of the controller each time the program returns to the main
program.
For this reason, the number of writes to the non-volatile memory increases and it
may cause the controller to fail. Set the parameter AUTOSAVE to 0 (Not saved).
For details, refer to AUTOSAVE in "5.4Command parameter".

Example: The program 1 calls and executes the program 2 repeatedly at high
speed.
<Program 1>
1 *LOOP
2 CallP "2"
3 Goto *LOOP

<Program 2>
1 PS=P_Curr
2 End

[Related instructions]
FPrm (FPRM)

 CAUTION
 Detailed explanation of command words 4-189

4

4MELFA-BASIC VI
ChrSrch (Character search)

[Function]
Searches the character string out of the character array.

[Format]

[Terminology]
<Character string array variable> Specify the character string array to be searched.
<Character string> Specify the character string to be searched.
<Search result storage destination> The number of the element for which the character string to be searched

is found is set.

[Reference Program]
1 Dim C1$(10)
2 C1$(1)="ABCDEFG"
3 C1$(2)="MELFA"
4 C1$(3)="BCDF"
5 C1$(4)="ABD"
6 C1$(5)="XYZ"
7 C1$(6)="MELFA"
8 C1$(7)="CDF"
9 C1$(8)="ROBOT"
10 C1$(9)="FFF"
11 C1$(10)="BCD"
12 ChrSrch C1$(1), "ROBOT", M1 ' 8 is set in M1.
13 ChrSrch C1$(1), "MELFA", M2 ' 2 is set in M2.

[Explanation]
(1) The specified character string is searched from the character string array variables, and the element

number of the completely matched character string array is set in <search result storage destination>.
Partially matched character strings are not searched.
Even if ChrSrch C1$(1), "ROBO", M1 are described in the above statement example, the matched
character string is not searched.

(2) If the character string to be searched is not found, 0 is set in <search result storage destination>.
(3) Character string search is performed sequentially beginning with element number 1, and the element

number found first is set.
Even if ChrSrch C1$(3), "MELFA", M2 are described in the above statement example, 2 is set in M2.
(The same character string is set in C1$(2) and C1$(6).)

(4) The <character string array variable> that can be searched is the one-dimensional array only. If a two-
dimensional or higher array is specified as a variable, an error will occur at the time of execution.

ChrSrch[]<Character string array variable>,<Character string>,<Search result storage destination>
-190 Detailed explanation of command words

 4MELFA-BASIC VI
CavChk On (CavChk On)

[Function]
Activates the stop function of the interference avoidance function.
This function is only available for certain models. For details, refer to Page 578, "5.24 Interference
avoidance function".

[Format]

[Terminology]
<On/Off> On: Activates the stop function of the interference avoidance function.

Off: Deactivates the stop function of the interference avoidance function.
<Robot CPU No.> Specifies the target robot CPU for the activation/deactivation of the interference avoidance.

When this argument is omitted or 0 is specified, all connected robots are the target.
Specify as a value 0 to 3, constant, or variable.
Specify 0 for the CR800-D series. An alarm (L4930) would occur if a value other than
0 is specified.

NOErr Disables the interference prediction alarm.
An alarm (L240n) would occur if this argument is omitted.

[Reference Program]
Refer to Page 600, "5.24.10 Sample programs".

[Explanation]
(1) This command activates the stop function of the interference avoidance function. The parameter: CAV

setting determines the initial status of the interference avoidance function.
Activating the interference avoidance function while the function is set disabled by the parameter: CAV
will cause an alarm (L4930).

(2) If the robot CPU number is omitted, interference avoidance operation is performed for the avoidance-
function-enabled CPUs only.

(3) Specifying the robot CPU number of the robot CPU where the interference avoidance function is set
disabled will cause an alarm (L4930).

(4) Use the LoadSet command to specify hand and workpiece models.
(5) The interference avoidance function cannot be activated during tracking. (Alarm (L4936) would occur.)

CavChk[]<On/Off>[,<Robot CPU No>[,NOErr]]
 Detailed explanation of command words 4-191

4

4MELFA-BASIC VI
Close (Close)

[Function]
Closes the designated file.(including communication lines)

[Format]

[Terminology]
<File No.> Specify the number of the file to be closed (1 to 8). Only a numerical constant is allowed.

If this argument is omitted, all open files are closed.

[Reference Program]
 1 Open "COM1:" AS #1 ' "Open "COM1:" as file No. 1.
 2 Print #1,M1
 :
10 Input #1,M2
11 Close #1 ' Close file No. 1, "COM1:".
 :
20 Close ' Close all open files.

[Explanation]
(1) This instruction closes files (including communication lines) opened by the Open instruction. Data

remaining in the buffer is flushed.
The data left in the buffer will be processed as follows when the file is closed:
Table 4-14:Processing of each buffer when the file is closed

(2) Executing an End statement will also close a file.
(3) If the file number is omitted, all files will be closed.

[Related instructions]
Open (Open), Print (Print), Input (Input)

Close[] [[#]<File No.>[, [[#]<File No.> ...]]]

Buffer types Processing when the file is closed
Communication line reception buffer The contents of the buffer are destroyed
Communication line transmission buffer (No data remains in the transmission buffer since the data in the transmission buffer

is sent immediately by executing the Print instruction.)
File load buffer The contents of the buffer are destroyed.
File unload buffer The contents of the buffer are written into the file, and then the file is closed.
-192 Detailed explanation of command words

 4MELFA-BASIC VI
Clr (Clear)

[Function]
This instruction clears general-purpose output signals, local numerical variables in a program, and
numerical external variables.

[Format]

[Terminology]
<Type> It is possible to specify either a constant or a variable.

0 : All steps 1 to 3 below are executed.
1 : The general-purpose output signal is cleared based on the output reset pattern.

The output reset pattern is designated with parameters ORST0 to ORS18160.
Refer to Page 543, "5.14 About the output signal reset pattern".
(0: OFF, 1: ON, *: Hold)
2 : All local numeric variables and numeric array variables used in the program are cleared

to zero
3 : Clears all external numerical variables (External system variables and user-defined

external variables) and external numerical array variables, setting them to 0. External
position variables are not cleared.

[Reference Program]
(1) The general-purpose output signal is output based on the output reset pattern.
 1 Clr 1

(2) The local numeric variables and numeric array variables in the program are cleared to 0.
 1 Dim MA(10)
 2 Def Inte IVAL
 3 Clr 2 ' Clears MA(1) through MA(10), IVAL and local numeric variables in the program to 0.

(3) All external numeric array variables and external numeric array variables are cleared to 0
 1 Clr 3

(4) (1) though (3) above are performed simultaneously.
 1 Clr 0

[Related parameter]
ORST0 to ORS18160

[Related system variables]
M_In/M_Inb/M_In8/M_Inw/M_In16/M_In32, M_Out/M_Outb/M_Out8/M_Outw/M_Out16/M_Out32

Clr[]<Type>
 Detailed explanation of command words 4-193

4

4MELFA-BASIC VI
Cmp Jnt (Compliance Joint)

[Function]
Start the soft control mode (compliance mode) of the specified axis in the JOINT coordinates system.
Note) The available robot type is limited. Refer to "[Available robot type]".

[Format]

[Terminology]
<Axis designation> Specify the axis to be controlled in a pliable manner with the bit pattern.

1: Enable, 0: Disable &B00000000
This corresponds to axis 87654321.

[Reference Program]
1 Mov P1
2 CmpG 0.0,0.0,1.0,1.0, , , , ' Set softness.
3 Cmp Jnt,&B11 ' The J1 and J2 axes are put in the state where they are controlled in a

pliable manner.
4 Mov P2
5 HOpen 1
6 Mov P1
7 Cmp Off ' Return to normal state.

[Explanation]
(1) It is possible to control each of the robot's axes in the joint coordinate system in a pliable manner. For

example, if using a horizontal multi-joint robot to insert pins in a workpiece by moving the robot's hand
up and down, it is possible to insert the pins more smoothly by employing pliable control of the J1 and J2
axes (see the statement example above).

(2) The degree of compliance can be specified by the CmpG instruction, which sets the spring
constant. If the RH-FRH/RH-CRH series robot is used, specify 0.0 for the horizontal axes J1 and J2
to make the robot behave equivalently to a servo free system (the spring constant is zero). (Note
that the vertical axes cannot be made to behave equivalently to a servo free system even if 0.0 is
set. Also, be careful not to let these axes reach a position beyond the movement limit or where the
amount of diversion becomes too large.) Note that the following "(4)" and "(5)" will not work when
this servo free equivalent system is in use.

(3) The soft state is maintained even after the robot program execution is stopped. To cancel the soft status,
execute the "Cmp Off" command or turn Off the power.

(4) When pressing in the soft state, the robot cannot move to positions that exceed the operation limit of
each joint axis.

(5) If the amount of difference between the original target position and the actual robot position becomes
greater than 200 mm by pushing the hand, etc., the robot will not move any further and the operation
shifts to the next step of the program.

(6) It is not possible to use Cmp Jnt, POS, and Tool at the same time. In other words, an error occurs if the
Cmp Pos or Cmp Tool instruction is executed while the Cmp Jnt instruction is being performed. Cancel
the Cmp Jnt instruction once using the Cmp Off instruction to execute these instructions.

(7) Be aware that the position of the robot may change if the servo status is switched on while this
instruction is active.

(8) It is possible to perform jog operations while the robot is in compliance mode. However, the setting of the
compliance mode cannot be canceled by the T/B; in order to do so, execute this instruction in a program
or execute it directly via the program edit screen of the T/B.

(9) To change the axis specification, cancel the compliance mode with the Cmp Off instruction first, and then
execute the Cmp Jnt instruction again.

(10) The compliance mode is valid only for the robot arm axes. It is not valid for additional axes, even if
specified.

Cmp[]JNT, <Axis designation>
-194 Detailed explanation of command words

 4MELFA-BASIC VI
(11) If a positioning completion condition is specified using the Fine instruction while the compliance mode is
activated, depending on the operation the robot may be unable to reach the positioning completion
pulse of the target position, and will wait indefinitely for the completion of the operation instruction. As a
result, the program execution comes to a halt. Do not use the compliance mode and the Fine instruction
at the same time.

(12) While operation is performed in the compliance mode of the joint coordinate system, if the Excessive
error 1 (H096n) occurs, increase the set value of parameter CMPJCLL to suppress the error.
(Setting range: 1 to 10)
Gradually increase the set value of this parameter until no Excessive error 1 occurs.

The compliance mode is in effect continuously until the Cmp Off instruction is
executed, or the power is turned off.

To execute a jog operation after setting the compliance mode with the Cmp Jnt
instruction, use the JOINT jog mode.
If any other jog mode is used, the robot may operate in a direction different from
the expected moving direction because the directions of the coordinate systems
controlled by the jog operation and the compliance mode differ.

When performing the teaching of a position while in the compliance mode, perform
servo OFF first.
Be careful that if teaching operation is performed with Servo ON, the original
command position is taught, instead of the actual robot position. As a result, the
robot may move to a location different from what has been taught.

Start the compliance mode when the robot is in stop. If the compliance mode is
started while the robot is operating, the control may be disabled when the
compliance mode is canceled.

[Available robot type]

[Related system variables]
M_CmpDst

[Related instructions]
Cmp Off (Compliance OFF), CmpG (Compliance Gain), Cmp Pos (Compliance Posture), Cmp Tool
(Compliance Tool)

[Related parameter]
CMPJCLL

RH-FRH series, RH-CRH series

 CAUTION

 CAUTION

 CAUTION

 CAUTION
 Detailed explanation of command words 4-195

4

4MELFA-BASIC VI
Cmp Pos (Compliance Posture)

[Function]
Start the soft control mode (compliance mode) of the specified axis in the XYZ coordinates system.

[Format]

[Terminology]
<Axis designation> Designate axis to move softly with a bit pattern.

1 : Enable, 0 : Disable &B00000000
 This corresponds to axis L2L1CBAZYX

[Reference Program]
1 Mov P1 ' Move in front of the part insertion position.
2 CmpG 0.5, 0.5, 1.0, 0.5, 0.5, , , ' Set softness
3 Cmp Pos, &B011011 ' The X, Y, A, and B axes are put in the state where they are

controlled in a pliable manner.
4 Mvs P2 ' Moves to the part insertion position.
5 M_Out(10)=1 ' Instructs to close the chuck for positioning.
6 Dly 1.0 ' Waits for the completion of chuck closing. (1 sec.)
7 HOpen 1 ' Open the hand.
8 Mvs, -100 ' Retreats 100 mm in the Z direction of the Tool coordinate

system.
9 Cmp Off ' Return to normal state.

[Explanation]
(1) The robot can be moved softly with the XYZ coordinate system.

For example, when inserting a pin in the vertical direction, if the X, Y, A and B axes are set to soft
operation, the pin can be inserted smoothly.

(2) The degree of softness can be designated with the CmpG command.
(3) The soft state is maintained even after the robot program execution is stopped. To cancel the soft status,

execute the "Cmp Off" command or turn Off the power.
(4) When pressing in the soft state, the robot cannot move to positions that exceed the operation limit of

each joint axis.
(5) The deviation of the command position and actual position can be read with M_CmpDst. The success/

failure of pin insertion can be checked using this variable.
(6) If the amount of difference between the original target position and the actual robot position becomes

greater than 200 mm by pushing the hand, etc., the robot will not move any further and the operation
shifts to the next step of the program.

(7) It is not possible to use Cmp Jnt, POS, and Tool at the same time. In other words, an error occurs if the
Cmp Pos or Cmp Tool instruction is executed while the Cmp Jnt instruction is being performed. Cancel
the Cmp Jnt instruction once using the Cmp Off instruction to execute these instructions.

(8) If the servo turns from Off to On while this command is functioning, the robot position could change.
(9) It is possible to perform jog operations while the robot is in compliance mode. However, the setting of the

compliance mode cannot be canceled by the T/B; in order to do so, execute this instruction in a program
or execute it directly via the program edit screen of the T/B.

(10) To change the axis specification, cancel the compliance mode with the Cmp Off instruction first, and
then execute the Cmp Pos instruction again.

(11) If the robot is operated near a singular point, an alarm may be generated or control may be disabled.
Do not operate the robot near a singular point. If this situation occurs, cancel the compliance mode by
executing a Cmp Off instruction once with servo Off (or turning Off and then On the power again), keep
the robot away from a singular point, and then make the compliance mode effective again.

(12) The compliance mode is valid only for the robot arm axes. It is not valid for additional axes, even if
specified.

(13) If a positioning completion condition is specified using the Fine instruction while the compliance mode
is activated, depending on the operation the robot may be unable to reach the positioning completion

Cmp[]Pos, <Axis designation>
-196 Detailed explanation of command words

 4MELFA-BASIC VI
pulse of the target position, and will wait indefinitely for the completion of the operation instruction. As a
result, the program execution comes to a halt. Do not use the compliance mode and the Fine instruction
at the same time.

Fig.4-18:The example of compliance mode use

The compliance mode is in effect continuously until the Cmp Off instruction is
executed, or the power is turned off. Exercise caution when changing the
executable program number or operating the jog.

To execute a jog operation after setting the compliance mode with the Cmp Pos
instruction, use the XYZ jog mode.
If any other jog mode is used, the robot may operate in a direction different from
the expected moving direction because the directions of the coordinate systems
controlled by the jog operation and the compliance mode differ.

When performing the teaching of a position while in the compliance mode,
perform servo OFF first.
Be careful that if teaching operation is performed with Servo ON, the original
command position is taught, instead of the actual robot position. As a result, the
robot may move to a location different from what has been taught.

Start the compliance mode when the robot is in stop. If the compliance mode is
started while the robot is operating, the control may be disabled when the
compliance mode is canceled.

[Related system variables]
M_CmpDst

[Related instructions]
Cmp Off (Compliance OFF), CmpG (Compliance Gain), Cmp Tool (Compliance Tool), Cmp Jnt (Compliance
Joint)

Positioning device

+Y

+X

+Z

P2

Robot hand CMP POS, &B000011
 CBAZYX

Soften the control of
axis X and Y in the
XYZ coordinates
system.

J2

+Y

+X

J4

J1
OP2

Positioning device

J2

+Y

+X

J4

J1
OP2

Positioning device

000011

CBAZYX

 CAUTION

 CAUTION

 CAUTION

 CAUTION
 Detailed explanation of command words 4-197

4

4MELFA-BASIC VI
Cmp Tool (Compliance Tool)

[Function]
Start the soft control mode (compliance mode) of the specified axis in the Tool coordinates system.

[Format]

[Terminology]
<Axis designation> Designate axis to move softly with a bit pattern.

1 : Enable, 0 : Disable &B00000000
 This corresponds to axis L2L1CBAZYX

[Reference Program]
1 Mov P1 ' Moves to in front of the part insertion position.
2 CmpG 0.5, 0.5, 1.0, 0.5, 0.5, , , ' Set softness.
3 Cmp Tool, &B011011 ' The X, Y, A, and B axes are put in the state where they are

controlled in a pliable manner.
4 Mvs P2 ' Moves to the part insertion position.
5 M_Out(10)=1 ' Instructs to close the chuck for positioning.
6 Dly 1.0 ' Waits for the completion of chuck closing.(1 sec.)
7 HOpen 1 ' Open the hand.
8 Mvs, -100 ' Retreats 100 mm in the Z direction of the Tool coordinate

system.
9 Cmp Off ' Return to normal state.

[Explanation]
(1) The robot can be moved softly with the tool coordinate system. For the tool coordinate system, please

refer to Page 528, "5.6 Standard Tool Coordinates".
(2) For example, when inserting a pin in the tool coordinate Z axis direction, if the X, Y, A and B axes are set to

soft operation, the pin can be inserted smoothly.
(3) The degree of softness can be designated with the Cmp G command.
(4) The soft state is maintained even after the robot program execution is stopped. To cancel the soft status,

execute the "Cmp Off" command or turn Off the power.
(5) When pressing in the soft state, the robot cannot move to positions that exceed the operation limit of each

joint axis.
(6) The deviation of the command position and actual position can be read with M_CmpDst. The success/

failure of pin insertion can be checked using this variable.
(7) If the amount of difference between the original target position and the actual robot position becomes

greater than 200 mm by pushing the hand, etc., the robot will not move any further and the operation shifts
to the next step of the program.

(8) It is not possible to use Cmp Jnt, POS, and Tool at the same time. In other words, an error occurs if the
Cmp Pos or Cmp Tool instruction is executed while the Cmp Jnt instruction is being performed. Cancel the
Cmp Jnt instruction once using the Cmp Off instruction to execute these instructions.

(9) If the servo turns from Off to On while this command is functioning, the robot position could change.
(10) It is possible to perform jog operations while the robot is in compliance mode. However, the setting of the

compliance mode cannot be canceled by the T/B; in order to do so, execute this instruction in a program
or execute it directly via the program edit screen of the T/B.

(11) To change the axis specification, cancel the compliance mode with the Cmp Off instruction first, and then
execute the Cmp Tool instruction again.

(12) For vertical 5-axis type robot (such as the RV-4FRJL), only the X and Z axes can be used for axis
specification.

(13) If the robot is operated near a singular point, an alarm may be generated or control may be disabled. Do
not operate the robot near a singular point. If this situation occurs, cancel the compliance mode by
executing a Cmp Off instruction once with servo Off (or turning Off and then On the power again), keep
the robot away from a singular point, and then make the compliance mode effective again.

Cmp[]Tool, <Axis designation>
-198 Detailed explanation of command words

 4MELFA-BASIC VI
(14) The compliance mode is valid only for the robot arm axes. It is not valid for additional axes, even if
specified.

(15) If a positioning completion condition is specified using the Fine instruction while the compliance mode
is activated, depending on the operation the robot may be unable to reach the positioning completion
pulse of the target position, and will wait indefinitely for the completion of the operation instruction. As a
result, the program execution comes to a halt. Do not use the compliance mode and the Fine instruction
at the same time.

Fig.4-19:The example of using the compliance mode

The compliance mode is in effect continuously until the Cmp Off instruction is
executed, or the power is turned off. Exercise caution when changing the
executable program number or operating the jog.

To execute a jog operation after setting the compliance mode with the Cmp Tool
instruction, use the Tool jog mode.
If any other jog mode is used, the robot may operate in a direction different from
the expected moving direction because the directions of the coordinate systems
controlled by the jog operation and the compliance mode differ.

When performing the teaching of a position while in the compliance mode,
perform servo Off first.
Be careful that if teaching operation is performed with Servo On, the original
command position is taught, instead of the actual robot position. As a result, the
robot may move to a location different from what has been taught.

Start the compliance mode when the robot is in stop. If the compliance mode is
started while the robot is operating, the control may be disabled when the
compliance mode is canceled.

[Related system variables]
M_CmpDst

Positioning device

+Y
+X

+Z

Robot hand

P2

 Tool coordinate system
CMP TOOL, &B000011
 CBAZYX

Softens the X
and Y axis of the
tool coordinate
system.

000011
CBAZYX

 CAUTION

 CAUTION

 CAUTION

 CAUTION
 Detailed explanation of command words 4-199

4

4MELFA-BASIC VI
[Related instructions]
Cmp Off (Compliance OFF), CmpG (Compliance Gain), Cmp Pos (Compliance Posture), Cmp Jnt
(Compliance Joint)

Cmp Off (Compliance OFF)

[Function]
Release the soft control mode (compliance mode).

[Format]

[Reference Program]
1 Mov P1 ' Moves to in front of the part insertion position.
2 CmpG 0.5, 0.5, 1.0, 0.5, 0.5, , , ' Set softness.
3 Cmp Pos, &B011011 ' The X, Y, A, and B axes are put in the state where they are

controlled in a pliable manner.
4 Mvs P2 ' Moves to the part insertion position.
5 M_Out(10110)=1 ' Instructs to close the chuck for positioning.
6 Dly 0.5 ' Waits for the completion of chuck closing.
7 HOpen 1 ' Open the hand.
8 Mvs, -100 ' Retreats 100 mm in the Z direction of the Tool coordinate

system.
9 Cmp Off ' Return to normal state

[Explanation]
(1) This instruction cancels the compliance mode started by the Cmp Tool, Cmp Pos, or Cmp Jnt instruction.
(2) In order to cancel jog operations in the compliance mode, either execute this instruction in a program or

execute it directly via the program edit screen of the T/B.
(3) If the error H115n (Large command position) occurs at the time of execution of the Cmp Off command,

executing Mov P_Fbc before the Cmp Off may prevent the error occurrence.
(4) If the compliance mode is started when the robot is operating, the control may be disabled when the

Cmp Off command is executed. Start the compliance mode when the robot is in stop.

[Related instructions]
CmpG (Compliance Gain), Cmp Tool (Compliance Tool), Cmp Pos (Compliance Posture), Cmp Jnt
(Compliance Joint)

Cmp[]Off
-200 Detailed explanation of command words

 4MELFA-BASIC VI
CmpG (Compliance Gain)

[Function]
Specify the softness of robot control.

[Format]
Cmp Pos, Cmp Tool

Cmp Jnt

[Terminology]
<X to C axis gain>
<J1 to J6 axis gain> Specify this argument using a constant.

The softness can be set for each axis.
Value 1.0 indicates the normal status, and the 0.2 is the softest.
If the value is omitted, the current setting value will be applied.

[Reference Program]
1 CmpG , ,0.5, , , , , ' This statement selects only the Z-axis. For axes that are omitted, keep the

corresponding entries blank and just enter commas.

[Explanation]
(1) The softness can be designated in each axis units.
(2) The soft state will not be entered unless validated with the Cmp Pos or Cmp Tool commands.
(3) A spring-like force will be generated in proportion to the deviation of the command position and actual

position. CmpG designates that spring constant.
(4) The deviation of the command position and actual position can be read with M_CmpDst. The success/

failure of pin insertion can be checked using this variable.
(5) If a small gain is set, and the soft state is entered with the Cmp Pos, Cmp Tool, and Cmp Jnt commands,

the robot position could drop. Set the softness state gradually while checking it.
(6) The softness can be changed halfway when this command executed under the soft control status.
(7) Even if value of less than minimum is set up, the gain is minimum value. Also, two or more decimal

positions can be set for gain values.

(8) The compliance mode is valid only for the robot arm axes. It is not valid for additional axes (J7, J8 or L1,
L2), even if specified.

CmpG[] [<X axis gain>], [<Y axis gain>], [<Z axis gain>], [<A axis gain>],

 [<B axis gain>], [<C axis gain>], ,

CmpG[] [<J1 axis gain>], [<J2 axis gain>], [<J3 axis gain>], [<J4 axis gain>],

 [<J5 axis gain>], [<J6 axis gain>], ,

Type Cmp Pos, Cmp Tool Cmp Jnt

RH-FRH/RH-CRH series 0.20, 0.20, 0.20, 0.20, 0.20, 0.20 0.00, 0.00, 0.20, 0.00, 1.00, 1.00

RV-FR series 0.01, 0.01, 0.01, 0.01, 0.01, 0.01 -
 Detailed explanation of command words 4-201

4

4MELFA-BASIC VI
Cnt (Continuous)

[Function]
Designates continuous movement control for interpolation. Shortening of the operating time can be
performed by carrying out continuous movement.

[Format]

[Terminology]
<1/0> Designate the continuous operation or acceleration/deceleration operation mode.

1 : Continuous movement.
0 : Acceleration/deceleration movement.(default value.)

<Numeric value 1> Specify the maximum proximity distance in mm for starting the next interpolation when
changing to a new path segment.
The default value is the position where the acceleration/deceleration is started.

<Numeric value 2> Specify the maximum proximity distance in mm for ending the previous interpolation when
changing to a new path segment.
The default value is the position where the acceleration/deceleration is started.

[Reference Program]
When the maximum neighborhood distance is specified when changing a locus.
1 Cnt 0 ' Invalidate Cnt (Continuous movement).
2 Mvs P1 ' Operate with acceleration/deceleration
3 Cnt 1 ' Validate Cnt (Continuous movement).

 (Operate with continuous movement after this step.)
4 Mvs P2 ' The connection with the next interpolation is continuous movement.
5 Cnt 1,100,200 ' Continuous operation specification at 100 mm on the starting side and at 200

mm on the end side.
6 Mvs P3 ' Continuous operation at a specified distance before and after an interpolation.
7 Cnt 1,300 ' Continuous operation specification at 300 mm on the starting side and at 300

mm on the end side.
8 Mov P4 ' Continuous operation specification at 300 mm on the starting side.
9 Cnt 0 ' Invalidate Cnt (Continuous movement).
10 Mov P5 ' Operate with acceleration/deceleration

Fig.4-20:Example of continuous path operation

Cnt[] <Continuous movement mode/acceleration/deceleration movement mode>]

 [, <Numeric value 1>] [, <Numeric value 2>]

P1

P2

P3

P4P5

Start position of movement

Although the neighborhood
distance (300 mm) when
moving to P4 has been set,
continuous operation when
moving to P5 has been
canceled. Therefore, it moves to
P4 first, and then moves to P5.

It moves to P1 first and then to
P2 since continuous operation
is not set up.

Continuous operation is performed at
a distance shorter than the smaller of
the neighborhood distance (the initial
setting value in the robot controller)
when moving to P2 and the fulcrum
neighborhood point (100 mm) when
moving to P3.

Continuous operation is performed at a distance
shorter than the smaller of the neighborhood distance
(200 mm) when moving to P3 and the fulcrum
neighborhood point (300 mm) when moving to P4.
-202 Detailed explanation of command words

 4MELFA-BASIC VI
The robot's locus of movement may change with specified speed.
Especially as for the corner section, short cut distance may change. Therefore,
when beginning automatic operation, moves at low speed at first, and you should
gather speed slowly with being careful of interference with peripheral equipment.

[Explanation]
(1) The interpolation (4 step to 8 step of the example) surrounded by Cnt 1 - Cnt 0 is set as the target of

continuous action.
(2) The system default value is Cnt 0 (Acceleration/deceleration movement).
(3) If values 1 and 2 are omitted, the connection with the next path segment is started from the time the

deceleration is started.
(4) As shown in Fig. 4-21, in the acceleration and deceleration operating mode, the speed is reduced in front

of the target position. After moving to the target position, the speed for moving to the next target position
starts to be accelerated. On the other hand, in the continuous operating mode, the speed is reduced in
front of the target position, but it does not stop completely. The speed for moving to the next target
position starts to be accelerated at that point. Therefore, it does not pass through each target position,
but it passes through the neighborhood position.

Fig.4-21:Acceleration/deceleration movement and continuous movement

 CAUTION

10 MOV P1
20 MVS P2
30 MOV P3

It decelerates and accelerates to P1, P2
and P3. After moving to the target position,
it moves to the next target position.

10 CNT 1
20 MOV P1
30 MVS P2
40 MOV P3
50 CNT 0

It passes through the neighborhood of P1
and P2, and then moves to P3.

P1 P2

P3
Start position of

movement

Acceleration/deceleration movement

P1 P2

P3

Continuous movement

P3P2

t (Time)

P1
v (Speed)

P3P2P1

*The above graph shown an example.
Depending on the moving distance and/or
speed, acceleration and deceleration may
occur during interpolation connection.

Start position of
movement

v (Speed)

t (Time)

1 Mov p1
2 Mvs P2
3 Mov P3

1 Cnt 1
2 Mov P1
3 Mvs P2
4 Mov P3
5 Cnt 0
 Detailed explanation of command words 4-203

4

4MELFA-BASIC VI
(5) The neighborhood distance denotes the changing distance to the interpolation operation at the next
target position. If this neighborhood distance (numerical value 1, numerical value 2) is omitted, the
accelerate and deceleration starting position will be the changing position to the next interpolation. In
this case, it passes through a location away from the target position, but the operating time will be the
shortest. To pass through a location closer to the target position, set this neighborhood distance
(numerical value 1, numerical value 2).

Fig.4-22:Setting Up the Neighborhood Distance

(6) If the specifications of numerical value 1 and numerical value 2 are different, continuous operation will be
performed at the position (distance) that is the smaller of these two.

(7) If numeric value 2 is omitted, the same value as numeric value 1 will be applied.
(8) When continuous operation is specified, the positioning completion specification by the Fine command

will be invalid.
(9) If the proximity distance (value 1, value 2) is set small, the movement time may become longer than in

the status where Cnt 0.
(10) Even when continuous operation is specified, acceleration/deceleration is performed for the

interpolation instruction that specifies singular point passage as the interpolation method.

P1

P2

P3

If the neighborhood
distance is not specified,
dotted line operation will
be performed.
10 CNT 1
20 MOV P1
30 MVS P2
40 MOV P3
50 CNT 0

If the neighborhood distance
is specified, solid line
operation will be performed.
10 CNT 1, MA, MB
20 MOV P1
30 CNT 1, MC, MD
40 MVS P2
50 MOV P3
60 CNT 0

Deceleration start
position

Acceleration end
position

MB

MC

MC

MD
If the MB and MC values
are different, connection
is made using a value
lower than the smaller of
these two values.

*If "30 CNT 1, MC, MD" are
not described, the value of
MC in the figure will be MA,
and the value of MD will be
MB.

Acceleration end
position

Deceleration start
position

If the MB and MC values
are different, connection
is made using a value
lower than the smaller of
these two values.

1 Cnt 1,MA,MB
2 Mov P1
3 Cnt 1,MC,MD
4 Mvs P2
5 Mov P3
6 Cnt 0

1 Cnt 1
2 Mov P1
3 Mov P2
4 Mov P3
5 Cnt 0

 "3 Cnt 1, MC, MD"
-204 Detailed explanation of command words

 4MELFA-BASIC VI
ColChk (Col Check)

[Function]
Set to enable/disable the collision detection function in automatic operation.
The collision detection function quickly stops the robot when the robot's hand and/or arm interferes with
peripheral devices so as to minimize damage to and deformation of the robot's tool part or peripheral
devices. However, it cannot completely prevent such damage and deformation.

[Format]

[Terminology]
On Enable the collision detection function.

Once an collision is detected, it immediately stops the robot, issues an error numbered
in 1010's, and turns OFF the servo.

Off Disable the collision detection function
NOErr Even if an collision is detected, no error is issued. (If omitted, an error will occur.)

[Reference Program 1]
If an error is set in the case of collision
1 ColLvl 80,80,80,80,80,80,, 'Specify the allowable level for collision detection.
2 ColChk On 'Enable the collision detection function.
3 Mov P1
4 Mov P2
5 Dly 0.2 'Wait until the completion of operation

 (Fine instruction can also be used).
6 ColChk Off 'Disable the collision detection function.
7 Mov P3

[Reference Program 2]
If interrupt processing is used in the case of collision
1 Def Act 1,M_ColSts(1)=1 GoTo *HOME,S 'Define the processing to be executed when an collision is

detected using an interrupt.
2 Act 1=1
3 ColChk On,NOErr 'Enable the collision detection function in the error non-

occurrence mode.
4 Mov P1
5 Mov P2 'If an collision is detected while executing steps 4 through 7, it

jumps to interrupt processing.
6 Mov P3
7 Mov P4
8 Act 1=0
 :
10 *HOME 'Interrupt processing during collision detection
11 ColChk Off 'Disable the collision detection function.
12 Servo On 'Turn the servo on.
13 PESC=P_ColDir(1)*(-2) 'Create the amount of movement for escape operation.
14 PDst=P_Fbc(1)+PESC 'Create the safe position.
15 Mvs PDst 'Move to the safe position.
16 Error 9100 'Stop operation by generating a user-defined L level error.

ColChk[]On [, NOErr] / Off
 Detailed explanation of command words 4-205

4

4MELFA-BASIC VI
[Explanation]
(1) The collision detection function estimates the amount of torque that will be applied to the axes during

movement executed by a Move instruction. It determines that there has been an collision if the difference
between the estimated torque and the actual torque exceeds the tolerance, and immediately stops the
robot.

(2) Immediately after power ON, the collision detection function is disabled. Enable the Col parameter
before using. This instruction specifies whether to enable or disable the collision detection function
during program operation (including step feed and step jump). The enable/disable status when no
program is executed, such as pause status and during jog operation, depends on the setting of element
3 of the Col parameter.

(3) The detection level can be adjusted by a ColLvl instruction. The initial value of the detection level is the
setting value of the ColLvl parameter.

(4) After the collision detection function is enabled by this instruction, that state is maintained continuously
until it is disabled by the ColChk Off instruction, the program is reset, an End instruction is executed or
the power is turned OFF.

(5) Even if the collision detection function is disabled by this instruction, the collision detection level set by a
ColLvl instruction is retained.

(6) Error 3950 occurs if an interrupt by the M_ColSts status variable (an interrupt with the interrupt condition
of M_ColSts(*)=1 and * denotes a machine number) is not enabled when specifying NOErr (error non-
occurrence mode). See [Syntax Example 2]. Error 3960 also occurs if this interrupt processing is
disabled while in the error non-occurrence mode.

(7) If an collision is detected while in the error non-occurrence mode, the robot turns OFF the servo and
stops. Therefore, no error occurs and operation also continues. However, it is recorded in the error log
that an collision was detected. (The recording into the log is done only if no other errors occur
simultaneously.)

(8) If an attempt is made to execute ColChk On and ColChk On,NOErr on a robot that cannot use the
collision detection function, low level error 3970 occurs. In the case of ColChk Off, neither error occurs
nor processing is performed.

(9) The collision detection function cannot be enabled while compliance is being enabled by a Cmp
instruction or the torque limit is being enabled by a Torq instruction. In this case, error 3940 will occur if
an attempt is made to enable the collision detection function. Conversely, error 3930 will occur if an
attempt is made to enable a Cmp or Torq instruction while collision detection is being enabled.

(10) If ColChk Off is described immediately after an operation instruction, collision detection may not work
near the last stop position of a given operation. As shown in reference program 1, execute ColChk Off
upon completion of positioning by a Dly or Fine instruction between an operation instruction and a
ColChk Off instruction.

(11) The collision detection function may not work properly if the hand weight (HNDDATn parameter) and
workpiece weight (WRKDATn parameter) are not set correctly. Be sure to set these parameters correctly
before using.

推定トルク

検知レベル(ColLvl)が100%の場合

実際のトルク
衝突を検知(100%時)

衝突を検知(60%時)

トルク

時間

検知レベル+側

検知レベル-側

検知レベル(ColLvl)が60%の場合

検知レベル(ColLvl)が60%の場合

検知レベル(ColLvl)が100%の場合

Torque

Detection level + side

Detection level - side

Detects an collision (at 100%)

Detects an collision (at 60%)

Actual torque

Detection level (ColLvl) is 100%

Detection level (ColLvl) is 60%

Estimated torque

Detection level (ColLvl) is 60%

Detection level (ColLvl) is 100%
-206 Detailed explanation of command words

 4MELFA-BASIC VI
(12) If the collision detection function is enabled by this instruction, the execution time (tact time) may
become long for some programs. Use the collision detection function only for operations that may
interfere with peripheral devices, rather than enabling it for the entire program.

(13) This function cannot be used together with the multi-mechanism control function.
(14) To continue the servo-on after the detection, set "1" in the parameter COLSERVO and designate NOErr

(error non-occurrence mode). However, an overload error may be generated depending on the pressing
amount at collision.

[Related variables]
M_ColSts, J_ColMxl, P_ColDir

[Related instructions]
ColLvl (Col Level)

[Related parameter]
COL, COLLVL, COLLVLJG, HNDDATn, WRKDATn, COLSERVO
 Detailed explanation of command words 4-207

4

4MELFA-BASIC VI
ColLvl (Col Level)

[Function]
Set the detection level of the collision detection function in automatic operation.

[Format]

[Terminology]
<J1 to J6 axis> Specify the detection level in a range between 1 and 500%.

If omitted, the previously set value is retained.
This instruction is invalid for the J7 and J8 axes.
The initial value is the setting value of the COLLVL parameter.

[Reference Program]
1 ColLvl 80,80,80,80,80,80,, 'Specify the allowable level for collision detection.
2 ColChk On 'Enable the collision detection function.
3 Mov P1
4 ColLvl ,50,50,,,,, 'Change the allowable level of the J2 and J3 axes for collision detection.
5 Mov P2
6 Dly 0.2 'After arriving at P2, disable collision detection.
7 ColChk Off 'Disable the collision detection function.
8 Mov P3

[Explanation]
(1) Set the allowable level of each axis for the collision detection function during program operation.
(2) This instruction affects the collision detection function in automatic operations (including step feed and

step jump operations). If a program is not running (pause status or during jog operation), the setting level
of the ColLvlJG parameter is used.

(3) Normally, the setting value of the allowable level immediately after power ON is the setting value of the
ColLvl parameter. The initial value of parameter differ by each type.

(4) If this value is increased, the detection level (sensitivity) lowers; if this value is lowered, the detection
level increases.

(5) If the detection level is increased, the probability of erroneous detection becomes high. Adjust the level
such that it does not become too high. Depending on the posture and operation speed, erroneous
detection may also occur with the initial value. In this case, the detection level should be lowered.

(6) It is possible to choose "Ref. value of COL level" (reference value of the collision detection level) with the
oscillograph function of RT ToolBox3. This function can be easy to adjust the detection level of ColLvl
instruction. Refer to Page 568, "5.21 About the collision detection function" for details.

(7) The collision detection function may not work properly if the hand weight (HNDDATn parameter) and
workpiece weight (WRKDATn parameter) are not set correctly. Be sure to set these parameters correctly
before using.

(8) The allowable level is reset to the setting value of the COLLVL parameter when a program reset or an
End instruction is executed.

(9) Even if an attempt is made to execute this instruction on robots that cannot use the collision detection
function, the instruction is ignored and thus no error occurs.

(10) The collision detection function is not valid for the J7 and J8 axes.
(11) The correct setting value may vary even among robots of the same type due to individual differences of

units. Check the operation with each robot.

[Related variables]
M_ColSts, J_ColMxl, P_ColDir

[Related instructions and variables]
ColChk (Col Check)

[Related parameter]
COL,COLLVL, HNDDATn, WRKDATn

* Refer to Page 568, "5.21 About the collision detection function" for details.
And, the sample program which automatically sets up the collision detection level is shown in J_ColMxl.

ColLvl[] [<J1 axis>],[<J2 axis>],[<J3 axis>],[<J4 axis>],[<J5 axis>],[<J6 axis>],,
-208 Detailed explanation of command words

 4MELFA-BASIC VI
Com On/Com Off/Com Stop (Communication ON/OFF/Stop)

[Function]
Com On :Allows interrupts from a communication line.
Com Off :Prohibits interrupts from a communication line.
Com Stop :Prevents interrupts from a communication line temporarily (data is received).

Jump immediately to the interrupt routine the next time the Com On instruction is executed.

[Format]

[Terminology]
<Communication Line No.> Describes numbers 1 to 3 assigned to the communication line.

(If the argument is omitted, 1 is set as the default value.)

[Reference Program]
 Refer to Page 308, "On Com GoSub (ON Communication Go Subroutine)".

[Explanation]
(1) When Com On Off is executed, even if communications are attempted, the interrupt will not be

generated.
(2) For information on communication line Nos., refer to the Page 311, "Open (Open)".
(3) After Com Stop is executed, even if communication is attempted, the interrupt will not be generated.

Note that the receiving data and the fact of the interrupt will be recorded, and be executed the next time
the line is reopened.

Com[(<Communication Line No.>)][]On

Com[(<Communication Line No.>)][]Off

Com[(<Communication Line No.>)][]Stop
 Detailed explanation of command words 4-209

4

4MELFA-BASIC VI
Const

[Function]
Defines a constant (unchangeable variable).

[Format]

<Numeric value variable name> Designate a variable name.
<Numeric value> Designate a value to be set to the numeric value variable.

<Character string variable name> Designate a variable name.
<Character string> Designate a character string to be set to the character string variable.

<Joint variable name> Designate a variable name.
<XYZ variable name> Designate a variable name.
<Work coordinate variable name> Designate a variable name.

Const[]Def[]Inte[]<Numeric value variable name>[= <Numeric value>]

 [, <Numeric value variable name>[= <Numeric value>][, ...]]

Const[]Def[]Long[]<Numeric value variable name>[= <Numeric value>]

 [, <Numeric value variable name>[= <Numeric value>][, ...]]

Const[]Def[]Float[]<Numeric value variable name>[= <Numeric value>]

 [, <Numeric value variable name>[= <Numeric value>][, ...]]

Const[]Def[]Double[]<Numeric value variable name>[= <Numeric value>]

 [, <Numeric value variable name>[= <Numeric value>][, ...]]

Const[]Def[]Char[]<Character string variable name>[= <Character string>]

 [, <Character string variable name>[= <Character string>][, ...]]

Const[]Def[]Jnt[]<Joint variable name>[, <Joint variable name>[, ...]]

Const[]Def[]Pos[]<XYZ variable name>[, <XYZ variable name>[, ...]]

Const[]Def[]Work[]<Work coordinate variable name>[, <Work coordinate variable name>[, ...]]
-210 Detailed explanation of command words

 4MELFA-BASIC VI
<Variable name> Designate an array variable name.
<Eelement Value> Designate the number of elements in an array variable with a constant.

<Variable name> Designate a variable name.
<Expression> Designate a substitution value and a numeric operation expression.

[Reference Program]
1 Const Def Inte M1 = 10000, M2 = 200 ' Define M1 with the constant 10000 and M2 with the

constant 200.
2 Const Def Float M3 = 3.3 ' Define M3 with the constant 3.3.
3 Const Def Char Message = "Error" ' Define Message with the character string constant "Error".
4 Const Dim cmd$(5) ' Define cmd$ with a constant.
5 Const cmd$(1) = "Cmd01" ' Define cmd$(1) with the character string constant

"Cmd01".
6 Const Def P1 ' Define P1 with a constant.
7 Const P1 = (100, 0, 0) ' Define P1 with the XYZ constant (100.00, 0.00, 0.00).

[Explanation]
(1) The Const variables are regarded as unchangeable variables (constants).

Writing any value to a Const variable causes the error L4320 (00000). However, a substitution (writing)
can be performed without an error when Const is described.

(2) As is the case with variable substitution, the range check is performed according to the type when a
Const variable is defined.
When a variable of integer type is initialized with a real number, the rounded value is defined.

(3) Const variables are not cleared to zero even if the Clr instruction is executed.
(4) User-defined external variables can also be defined with Const.

To set a value to a user-defined external variable in a user base program, Def specification is required.
Substitution of values in array or XYZ/joint/work coordinate variables needs to be executed in a program
other than the user base program.

(5) If single variables are defined with Const in a user base program, they can be used as Const variables
without definition in the referenced program.

(6) If array variables are defined with Const in a user base program, they are handled as Const variables
without definition in the referenced program.

[Related instructions]
Def Inte/Def Long/Def Float/Def Double (Define Integer/Long/Float/Double), Def Char (Define Character),
Def Jnt (Define Joint), Def Pos (Define Position), Def Work, Dim (Dim), Static

Const[]Dim[]<Variable name>(<Eelement Value>[, <Eelement Value>[, <Eelement Value>]])

 [, <Variable name>(<Eelement Value>[, <Eelement Value>[, <Eelement Value>]])[, ...]]

Const[]<Variable name> = <Expression>
 Detailed explanation of command words 4-211

4

4MELFA-BASIC VI
Def Act (Define act)

[Function]
This instruction defines the interrupt conditions for monitoring signals concurrently and performing interrupt
processing during program execution, as well as the processing that will take place when an interrupt
occurs.

[Format]

[Terminology]
<Priority No.> This is the priority No. of the interrupt. It can be set with constant Nos. 1 to 8.
<Expression> For the interrupt status, use the formats described below: (Refer to the syntax diagram)

<Numeric type data> <Comparison operator> <Numeric type data> or
<Numeric type data> <Logical operator> <Numeric type data>
<Numeric type data> refers to the following:
<Numeric type constant>| <Numeric variable>|<Numeric array variable>|
<Component data>

<Process> Describe a GoTo statement or GoSub statement to process an interrupt.
<Type> When omitted: Stop type 1

The robot stops at the stop position, assuming 100% execution of the external override.
If the external override is small, the time required for the robot to stop becomes longer, but
it will always stop at the same position.
S : Stop type 2

The robot decelerates and stops in the shortest time and distance possible,
independently of the external override.

L : Execution complete stop
The interrupt processing is performed after the robot has moved to the target position
(the step being executed is completed).

[Reference Program]
1 Def Act 1, M_In(17) = 1 GoSub *L100, S ' Calls the subroutine of *L100 when the general
2 ' purpose input signal No. 17 turns on.
3 Def Act 2, MFG1 AND MFG2 GoTo *L200 ' Jumps to *L200 when the AND operation of MFG1
4 ' and MFG2 results in "true".
5 Def Act 3, M_Timer(1) > 10500 GoSub *L300, S ' Calls the subroutine of *L300 after 10.5 seconds
6 ' have passed.
7 Act 1=1 ' Enables Act 1.
8 Act 2=1 ' Enables Act 2.
9 Dly 10
10 End
11 ' Process of the priority No. 1
12 *L100: M_Timer(1) = 0 ' Resets the timer to zero.
13 Act 3 = 1 ' Enables Act 3.
14 Return 0
15 ' Process of the priority No. 2
16 *L200: Mov P_Safe
17 End
18 ' Process of the priority No. 3
19 *L300: M_Timer(1) = 0 ' Resets the timer to zero.
20 Act 3 = 0 ' Disables Act 3.
21 Return 0

Def[]Act[]<Priority No.>, <Expression>[]<Process> [, <Type>]
-212 Detailed explanation of command words

 4MELFA-BASIC VI
[Explanation]
(1) Writes the Return command at the end of the jump destination processing called up in the interrupt.
(2) When returning from interruption processing to the next step by Return1, execute the statement to

disable the interrupt. When that is not so, if interruption conditions have been satisfied, because
interruption processing will be executed again and it will return to the next step, the step may be skipped.
Please refer to Page 183, "Act (Act)" for the interrupt processing.

(3) The priority level for the interrupts is decided by the <Priority No.>, and the priority level, from the highest
ranges from 1 to 8.

(4) There can be up to 8 settings for the interrupts. Use the <Priority No.> to differentiate them.
(5) An <expression> should be either a simple logical operation or a comparison operation (one operator).

Parentheses cannot be used either.
(6) If two Def Act commands with the same priority number are included in a program, the latter one defined

becomes valid.
(7) Since Def Act defines only the interrupt, always use the Act command to designate the enable/disable

status of the interrupt.
(8) The communications interrupt (Com) has a higher priority level than any of the interrupts defined by Def

Act.
(9) The Def Act command is only enabled in the defined program. Def Act must be redefined with a sub

program or specified program when using an interrupt process in a program (sub program) called with
the CallP command (call between program), or while a defined function is being executed by a program
specified by the #Include statement.

(10) If an interrupt is generated when a GoTo command is designated by <Process> for a Def Act
command, during execution of the remaining program, the interrupt in progress will remain, and only
interrupts of a higher level will be accepted. The interrupt in progress for a GoTo statement can be
canceled with the execution of an End statement.

(11) Expressions containing conditional expressions combined with logical operations, such as (M1 AND
&H001) = 1, are not allowed.

(12) When an interrupt occurs during execution of the circular or the arc interpolation (Mvc, Mvr, Mvr2,
Mvr3), and then control returns to the interrupted step by Return 0, the robot returns to the start point of
the circle or the arc before executing the circular or the arc interpolation again.

(13) When an interrupt occurs during execution of the arch interpolation, and then control returns to the
interrupted step by Return 0, the robot executes the arch interpolation from the current position.

Specify the proper interrupt stop type according to the purpose. Specify "S" for the
stop type if it is desired to stop the robot in the shortest time and distance possible
by an interrupt while the robot is executing a movement instruction.

 CAUTION
 Detailed explanation of command words 4-213

4

4MELFA-BASIC VI
Table 4-15 shows conceptual diagrams that illustrate the effects of the 3 types of program execution stop
commands when the interrupt conditions are met while the robot is moving according to a movement
instruction.

Table 4-15:Conceptual diagram showing the effects of different stop commands

[Related instructions]
Act (Act)

External override 100% (maximum speed) External override 50%

Stop type 1
(If the argument is
omitted)
S1=S2

Stop type 2(S)

Execution
complete stop(L)
S3=S4

 Speed

Time

Interrupt

Stop distance S1

Time

Speed

Interrupt

Stop distance S2

 Speed

Time

Interrupt

 Speed

Time

Interrupt

Decelerate and stop immediately

Speed

Time

Interrupt

Total travel distance S3

Speed

Time

Interrupt
Total travel distance S4
-214 Detailed explanation of command words

 4MELFA-BASIC VI
Def Arch (Define arch)

[Function]
This instruction defines an arch shape for the arch motion movement corresponding to the Mva instruction.

[Format].

[Terminology]
<Arch number> Arch motion movement pattern number. Specify a number from 1 to 4 using a

constant or a variable.
<Upward movement increment>,
<Downward movement increment >,
<Upward evasion increment>,
<Downward evasion increment>

Refer to figure at right.
It is possible to specify either
a constant or a variable.

<Interpolation type> Interpolation type for upward
and downward movements.
Linear/joint = 1/0

<Interpolation type 1> Detour/short cut = 1/0,
<Interpolation type 2> 3-axis XYZ/Equivalent rotation = 1/0

If any of the arguments besides the arch number is omitted, the default value is employed.
The default values are set by the following parameters. Check the corresponding parameters to see the values;
it is also possible to modify the values.

Vertical multi-joint robot (RV-FR series) Horizontal multi-joint robot (RH-FRH/RH-CRH series)

[Reference Program]
1 Def Arch 1,5,5,20,20
2 Mva P1,1 'Performs the arch motion movement defined in the shape definition in step 1.
3 Dly 0.3
4 Mva P2,2 'The robot moves according to the default values specified by the parameters.
5 Dly 0.3

[Explanation]
(1) If the Mva instruction is executed without the Def Arch command, the robot moves according to the arch

shape specified by the parameters.
(2) Used to change the increments in a program, etc.

Def[]Arch[]<Arch number>, [<upward movement increment>][<downward movement increment >],
[<Upward evasion increment>], [<downward evasion increment>],
[<interpolation type>], [<interpolation type 1>, <interpolation type 2>]

Parameter name Arch number Upward movement
increment (mm)

Downward movement
increment (mm)

Upward evasion
increment (mm)

Downward evasion
increment (mm)

ARCH1S 1 0.0 0.0 30.0 30.0
ARCH2S 2 10.0 10.0 30.0 30.0
ARCH3S 3 20.0 20.0 30.0 30.0
ARCH4S 4 30.0 30.0 30.0 30.0

Parameter
name

Arch
number

Interpolation
type

Interpolation
type 1

Interpolation
type 2

Parameter
name

Arch
number

Interpolation
type

Interpolation
type 1

Interpolation
type 2

ARCH1T 1 1 0 0 ARCH1T 1 0 0 0
ARCH2T 2 1 0 0 ARCH2T 2 0 0 0
ARCH3T 3 1 0 0 ARCH3T 3 0 0 0
ARCH4T 4 1 0 0 ARCH4T 4 0 0 0

× ●

Downward
movement
increment

Downward
evasion

increment

Upnward
evasion

increment

Upnward
movement
increment
 Detailed explanation of command words 4-215

4

4MELFA-BASIC VI
The robot's locus of movement may change with specified speed.
Especially as for the corner section, short cut distance may change. Therefore,
when beginning automatic operation, moves at low speed at first, and you should
gather speed slowly with being careful of interference with peripheral equipment.

[Related instructions]
Mva (Move Arch), Accel (Accelerate), Ovrd (Override), Mvs (Move S) (Used as a reference for interpolation
types 1 and 2)

Def Char (Define Character)

[Function]
Declares a character string variable. It is used when using a variable with a name that begins with a
character other than "C." It is not necessary to declare variables whose names begin with the character "C"
using the Def Char instruction.

[Format]

[Terminology]
<Character string variable name> Designate a variable name.

[Reference Program]
 1 Def Char MESSAGE ' Declare "MESSAGE" as a character string variable.
 2 MESSAGE = "WORKSET" ' Substitute "WORKSET" in the MESSAGE variable.
 3 CMSG = "ABC" ' Substitute "ABC" for variable CMSG. For variables starting with

C, the definition of "Def Char" is not required.

[Explanation]
(1) The variable name can have up to 16 characters. Refer to the Page 145, "4.3.6 Types of characters that

can be used in program" for the characters that can be used.
(2) When designating multiple variable names, the maximum value (240 characters including command)

can be set on one step.
(3) A variable becomes a global variable that is shared among programs by placing "_" after C in the

variable name and writing it in a base program.
Refer to Page 155, "4.3.24 User-defined external variables" for details.

Def[]Char[]<Character string variable name> [, <Character string variable name>...

 CAUTION
-216 Detailed explanation of command words

 4MELFA-BASIC VI
Def FN (Define function)

[Function]
Defines a function and gives it name.

[Format]

[Terminology]
<Identification character> The identification character has the following four type.

Numeric value type: M
Character string type: C
Position type: P
Joint type: J
Work coordinate type: W or w

<Name> Describe a user-selected character string. (5 is the maximum)
<Dummy argument> When a function has been called up, it is transferred to the function.

It is possible to describe all the variables, and up to 16 variables can be used.
<Function Definition Expression>

Describe the expression for what operation to use as a function.

[Reference Program]
1 Def FNMAve(MA,MB)=(MA+MB)/2 ' Define FNMAve to obtain the average of two numeric

values.
2 MDATA1=20
3 MDATA2=30
4 MAVE=FNMAve(MDATA1,MDATA2) ' Substitute average value 25 of 20 and 30 in numeric

variable MAVE.
5 Def FNpAdd(PA,PB)=PA+PB ' Position type addition.
6 P10=FNpAdd(P1,P2)

[Explanation]
(1) FN + <Name> becomes the name of the function. The function name can be up to 8 characters long.
 Example) Numeric value type FNMMAX Identification character: M
 Character string type ... FNCAME$ Identification character: C (Describe $ at the end of the name)
(2) A function defined with Def FN is called a user-defined function. A function as long as one step can be

described.
(3) Built-in functions and user-defined functions that have already been defined can be used in the function

definition expression. In this case, up to 16 levels of user-defined functions can be written.
(4) If the variables used in <Function Definition Expression> are not located in <Dummy Argument>, then

the value that the variable has at that time will be used. Also, an error will occur if during execution, the
number or argument type (numeric value or character string) of arguments differs from the number or
type declared.

(5) A user-defined function is valid only in the program where it is defined. It cannot be used by a CallP
designation program.
Similarly, a user-defined function which is defined in a procedure is valid only in the procedure where it is
defined. When using a user-defined function common in multiple procedures, define the function in the
global scope (out of the procedure).

Def[]FN <Identification character><Name> [(<Dummy Argument> [, <Dummy Argument>]...)]

 = <Function Definition Expression>
 Detailed explanation of command words 4-217

4

4MELFA-BASIC VI
Def Gps (Define get position)

[Function]
This command defines the monitored condition for the position data acquisition using the fast-response
position data import function (GPS function) for the monitoring.

[Format]

[Terminology]
<Monitoring No.> The target monitoring number. Set it with a constant number from 1 to 8.
<Input No.> Set the target input signal number for the monitoring.

 SKIP input: 801 to 803
<Condition> Specify the signal-on/off status as a trigger.

The robot position data is stored when the signal set in <Input No.> is turned on/off.

<Mechanism No.> Set the target mechanism number for the position data acquisition. (If the argument
is omitted, 1 is set as the default value.)

[Reference Program]
1 Def Gps 1,801,On,1 ‘ The position data of the mechanism No. 1 is recorded for the monitoring No. 1

when the signal No. 801 is turned on.
2 GpsChk On,1 ‘ Monitoring a condition for the monitoring No. 1 is started.
3 Mvs P1 ‘ Moves to P1
4 GpsChk Off,1 ‘ Monitoring a condition for the monitoring No. 1 is stopped (the position data

obtained is stored).
5 M1 = M_Gps(1) ‘ The number of the position data recorded in the P_Gps1 is stored.
6 If M1 = 0 Then Error 9000 ‘ The error 9000 is generated if no position data is recorded.
7 Mvs P_Gps1(1) ‘ The robot moves its arm to the position at the first time when the signal No.

801 is turned on.
8 Hlt ‘ Halt program

[Explanation]
(1) The current position data of the robot set in <Mechanism No.> is imported when the signal set in <Input

No.> satisfies the condition specified in <Condition>. However, the monitoring of the condition defined
in this command is not started until the GpsChk On command is executed.

(2) The imported position data of the robot is stored in the P_GpsX() ("X" indicates the same number as the
target monitoring number from 1 to 8) when the GpsChk Off command is executed.

(3) The position data stored in the P_GpsX() is cleared to zero when the GpsChk On command for the
target monitoring number is executed.

(4) During multitask operation, the monitored condition is independently defined for each task slot. Each
defined condition is valid for the target slot only. Up to 8 conditions including the one defined in the Def
Map command can be defined for all slots.

(5) This command is not available for the programs in which the starting condition is set to ALWAYS or
ERROR.

(6) If several conditions are set for one monitoring number, the previously-executed condition is overwritten
by the condition to be executed subsequently.

(7) The condition setting defined in this command is cleared to zero when the program is reset, the End
command is executed, or the controller is turned on next time.

(8) The condition defined in this command is retained in a sub program called up by the CallP command.
When a new setting for this condition is defined in a sub program, it overwrites the previous setting.

Def[]Gps[] <Monitoring No.>, <Input No.>, <Condition>, [<Mechanism No.>]

Set value Conditions

On On the rising edge of target input signal

Off On the falling edge of target input signal
-218 Detailed explanation of command words

 4MELFA-BASIC VI
(9) When the same number is set in <Monitoring No.> of this command as in <Monitoring No.> of the Def
Map command, the monitored condition set in the command which is executed last is valid (the one set
in the command which was executed previously is deleted).

(10) During monitoring by executing the GpsChk On command, the setting of target condition cannot be
changed in this command. The setting of condition can be changed after stopping monitoring by
executing the GpsChk Off command.

[Related instructions]
GpsChk (Get position check), Def Map (Define mapping)

[Related system status variables]
M_Gps, P_Gps1 to P_Gps8
 Detailed explanation of command words 4-219

4

4MELFA-BASIC VI
Def Inte/Def Long/Def Float/Def Double (Define Integer/Long/Float/Double)

[Function]
Use this instruction to declare numerical values. Inte stands for integer, Float stands for single-precision real
number, and Double stands for double-precision real number.

[Format]

[Terminology]
<Numeric value variable name> Designate the variable name.

[Reference Program]
(1) Definition of the integer type variable.
 1 Def Inte WORK1, WORK2 ' Declare WORK 1 and WORK 2 as an numeric value variable name.
 2 WORK1 = 100 ' Substitute the value 100 in WORK 1.
 3 WORK2 = 10.562 ' Numerical "11" is set to WORK2.
 4 WORK2 = 10.12 ' Numerical "10" is set to WORK2.

(2) Definition of long precision integer type variable
 1 Def Long WORK3
 2 WORK3 = 12345

(3) Definition of the single precision type real number variable.
 1 Def Float WORK3
 2 WORK4 = 123.468 ' Numerical "123.468000" is set to WORK4.

(4) Definition of the double precision type real number variable.
 1 Def Double WORK4
 2 WORK5 = 100/3 ' Numerical "33.333332061767599" is set to WORK5.

[Explanation]
(1) The variable name can have up to 16 characters. Refer to the Page 145, "4.3.6 Types of characters that

can be used in program" for the characters that can be used.
(2) When designating multiple variable names, the maximum value (240 characters including command)

can be set on one step.
(3) The variable declared with Inte will be an integer type.(-32768 to +32767)
(4) The variable declared with Long will be a long precision integer type (-2147483648 to 2147483647)
(5) The variable declared with Float will be a single-precision type.(+/-1.70141E+38)
(6) The variable declared with Double will be a double-precision type.(+/-1.701411834604692E+308)

Def[]Inte[] <Numeric value variable name> [, <Numeric value variable name>]...

Def[] Long[] <Numeric value variable name> [, <Numeric value variable name>]...

Def[] Float[] <Numeric value variable name> [, <Numeric value variable name>]...

Def[]Double[] <Numeric value variable name> [, <Numeric value variable name>]...
-220 Detailed explanation of command words

 4MELFA-BASIC VI
Def IO (Define IO)

[Function]
Declares an input/output variable. Use this instruction to specify bit widths. M_In and M_Out variables are
used for normal single-bit signals, M_Inb and M_Outb are used in the case of 8-bit bytes, M_Inw and
M_Outw are used in the case of 16-bit words, and M_In32, M_Out32 are used in the case of 32-bit words.
Be aware that it is not allowed to reference output signals with variables declared using this instruction.

[Format]

[Terminology]
<Input/output variable name> Designate the variable name.
<Type designation> Designate Bit(1bit), Byte(8bit), Word(16bit) or DWord(32bit).
<Input/output bit No.> Designate the input (when referencing) or output (when assigning) bit No.
<Mask information> Designate when only a specific signal is to be validated.

[Reference Program]
(1) Assign the input variable named PORT1 to input/output signal number 6 in bit type.

 1 Def IO PORT1 = Bit,6
 :
 10 PORT1 = 1 ' Output signal number 6 turns on.
 :
 20 PORT1 = 2 ' Output signal number 6 turns off.(Because the lowest bit of the numerical value 2 is

0.)
 21 M1 = PORT1 ' Substitute the state of the input signal number 6 for M11.

(2) Assign the input variable named PORT2 to input/output signal number 5 in byte type, and specify the
mask information as 0F in hexadecimal.

 1 Def IO PORT2 = Byte, 5, &H0F
 :
 10 PORT2 = &HFF ' Output signal number 5 to 8 turns on.
 :
 20 M2 = PORT2 ' Substitute the value of the input signals 5 to 8 for the variable M2.

(3) Assign the input variable named PORT3 to input/output signal number 8 in word type, and specify the
mask information as 0FFF in hexadecimal.

 1 Def IO PORT3 = Word, 8, &H0FFF
 :
 10 PORT3 = 9 ' Output signal number 8 and 11 turns on.
 :
 20 M3 = PORT3 ' Substitute the value of the input signals 8 to 19 for the variable

M3.

(4) Assign the input variable named PORT4 to input/output signal number 16 in dword type, and specify the
mask information as 3FFFFF in hexadecimal.

 1 Def IO PORT4 = DWord, 16, &H3FFFFF
 :
 10 PORT4 = 65536 ' Output signal number 32 turns on.

Def[]IO[]<Input/output variable name> = <Type designation>, <Input/output bit No.>

 [, <Mask information>]
 Detailed explanation of command words 4-221

4

4MELFA-BASIC VI
[Explanation]
(1) An input signal is read when referencing this variable.
(2) An output signal is written when assigning a value to this variable.
(3) It is not allowed to reference an output signal by this variable. Use the M_Out variable in order to

reference an output signal.
(4) The variable name can have up to 16 characters. Refer to the Page 145, "4.3.6 Types of characters that

can be used in program" for the characters that can be used.
(5) When mask information is designated, only the specified signal will be validated.

 Example) In the reference program (2) the 20th step, the input/output data with a bit width of eight is
masked by 0F in hexadecimal. Thus, if PORT 2 is used thereafter;
• When used as an input signal (M1 = PORT 2):

Numbers 5 to 8 are used for input, and numbers 9 to 12 are always treated as 0.
No. 12 No.5 (Input/output bit No.)

0 0 0 0 1 1 1 1
Invalid Valid

• When used as an output signal (PORT 2 = M1):
Data to be output this time is output to numbers 5 to 8, and the status currently being output
is retained at numbers 9 to 12.

 No. 12 No.5 (Input/output bit No.)
* * * * 1 1 1 1
(a) (b)

(a) Retains the current output status
(b) Output data of this time

Def Jnt (Define Joint)

[Function]
This instruction declares joint type position variables. It is used when using a variable with a name that
begins with a character other than "J." It is not necessary to declare variables whose names begin with the
character "J" using the Def Jnt instruction.

[Format]

[Terminology]
<Joint variable name> Designate a variable name.

[Reference Program]
 1 Def Jnt SAFE ' Declare "SAFE" as a joint variable.
 2 Mov J1 ' For joint type position variables starting with J, the definition of

"Def Jnt" is not required.
 3 SAFE = (-50,120,30,300,0,0,0,0)
 4 Mov SAFE ' Move to SAFE.

[Explanation]
(1) Use this instruction to define a joint position variable by a name beginning with a character other than J.
(2) The variable name can have up to 16 characters. Refer to the Page 145, "4.3.6 Types of characters that

can be used in program" for the characters that can be used. When designating multiple variable
names, the maximum value (240 characters including command) can be set on one step.

(3) A variable becomes a global variable that is shared among programs by placing "_" after J in the variable
name and writing it in a base program.
Refer to Page 155, "4.3.24 User-defined external variables" for details.

Def[]Jnt[] <Joint variable name> [, <Joint variable name>]...
-222 Detailed explanation of command words

 4MELFA-BASIC VI
Def Map (Define mapping)

[Function]
This command defines the monitored condition for the mapping (the workpiece presence recognition) in a
cassette, using the get-position-quick function (GPS function).

[Format]

[Terminology]
<Monitoring No.> The target monitoring number. Set it with a constant number from 1 to 8.
<Input No.> Set the target input signal number for the monitoring.

 SKIP input: 801 to 803
<Condition> Specify the signal-on/off status as a trigger.

The robot position data is stored when the signal set in <Input No.> is turned on/off.

<Mechanism No.> Set the target mechanism number for the position data acquisition. (If the argument
is omitted, 1 is set as the default value.)

<Lowest position>/<Highest position>Set the lowest/highest position to detect a workpiece in a cassette in
<Lowest position>/<Highest position>.
The set positions must be in the path of robot's linear movement for detection.
The position set in <Lowest position> is defined as the first segment in the
cassette. If the lowest/highest position is set oppositely, the highest position
set in <Lowest position> is defined as the first segment.

<Number of segments> Set the number of segments in the cassette.
Based on the set number of segments, each space divided equally between the
lowest and highest positions is regarded as a segment.
Setting range: 1 to 130 (segments)

<Sensitivity> Set the sensitive area of a sensor for improvements in accuracy to detect the
presence of a workpiece. (Refer to Fig. 4-23.)
When a position outside the set sensitive area is detected, the detection data is
not used for the workpiece presence recognition because the detection information
is canceled.
Setting range: 0.1 to 100 (mm)
(0.1 to 100 (deg.) for a multi-mechanism with single axis of rotation)

Def[]Map[] <Monitoring No.>, <Input No.>, <Condition>, [<Mechanism No.>],

<Lowest position>, <Highest position>, <Number of segments>, <Sensitivity>

Set value Conditions

On On the rising edge of target input signal

Off On the falling edge of target input signal
 Detailed explanation of command words 4-223

4

4MELFA-BASIC VI
Fig.4-23: Sensitive area of a sensor

[Reference Program]
1 Def Map 3,801,On,1,PC1,PC2,20,10 ‘ The position data of the mechanism No. 1 is recorded for the

monitoring No. 3 when the signal No. 801 is turned on, and the
mapping is executed according to the defined condition.
PC1: Lowest position (first segment) in a cassette, PC2: Highest
position (last segment) in a cassette, 20: the number of
segments in a cassette (20 segments), 10: a sensitive area of a
sensor (10 mm)

2 Mov PM1 ‘ The robot moves its arm to the mapping start position.
3 GpsChk On,3 ‘ Monitoring a condition for the monitoring No. 3 is started.

‘ The position data of the mechanism No. 1 is recorded when the
signal No. 801 is turned on.
Based on the position data, the segment number in which the
workpiece is present is shown as "M_Map3(130)".

4 Mvs PM2 ‘ The robot moves its arm to the mapping stop position.
5 GpsChk Off,3 ‘ Monitoring a condition for the monitoring No. 1 is stopped. Using

the recorded position data, the segment number in which the
workpiece is present is stored in the M_Map3.

6 M1=M_Gps(3) ‘ The number of the position data recorded in the P_Gps3 is
stored.

7 If M1 = 0 Then Error 9000 ‘ The error 9000 is generated if no position data is recorded.
8 For M2=1 To 20
9 M_Out(6100+M2)=M_Map3(M2) ‘ The results of the mapping are output with a signal (the signal

number "6101" is assigned for the first result).
10 Next M2 ‘ The process performed for the first segment is repeated for the

remaining segments.

[Explanation]
(1) When the GpsChk Off command is executed, the segment number in which the workpiece is present is

calculated from the position data at the time when the target signal is inputted, based on the values set
in <Lowest position>, <Highest position>, <Number of segments>, and <Sensitivity>. As a result of the
calculation, "1" (the presence of the workpiece) or "0" (the absence of the workpiece) is stored in the
status variable M_MapX() ("X" indicates the same number as the target monitoring number from 1 to 8).
The segment number, an element in the M_MapX(), is counted from the position set in <Lowest
posiiton>, and "1" is output for the first segment (Data of the first segment is shown as "M_MapX(1)".)

<Highest position>
(XYZ coordinate values)

<Lowest position>
(XYZ coordinate values)

Hand lifter

Hand lifter

Sensor

Board (workpiece) thickness: 1.5mm

Sensitive area (within the range set in
<Sensitivity>)
Insensitive area (out of the range set in
<Sensitivity>)
(Data of a position detected in the insensitive
area is canceled.)Sensor

Pitch: 18mm

Workpiece

<Number of
segments>

Workpiece

<Sensitivity> Setting range: 0.1 to 100mm
Set the distance from the center position of a workpiece thickness to the boundary of sensitive
and insensitive areas.
-224 Detailed explanation of command words

 4MELFA-BASIC VI
(2) The current position data of the robot set in <Mechanism No.> is recorded in the P_GpsX(), and the
number of the position data obtained is recorded in the in the M_Gps(n), when the signal set in <Input
No.> satisfies the condition specified in <Condition>. However, monitoring the condition defined in this
command is not started until the GpsChk On command is executed.
(All of the position data and the number of its data responding to the input signal is stored in the
P_GpsX() and M_Gps(n), respectively. They are not linked to the settings in <Sensitivity> and <Number
of segments>.)

(3) The position data stored in the P_GpsX(), M_MapX(), and M_Gps(n) is cleared to zero when the GpsChk
On command for the target monitoring number is executed.

(4) When the position settings in <Lowest position> and <Highest position> are equal, the number of
segments is defined as one, and the presence or absence of the workpiece in that segment is checked
(calculated).

(5) During multitask operation, the monitored condition is independently defined for each task slot. Each
defined condition is valid for the target slot only. Up to 8 conditions including the one defined in the Def
Gps command can be defined for all slots.

(6) This command is not available for the programs in which the starting condition is set to ALWAYS or
ERROR.

(7) If several conditions are set for one monitoring number, the previously-executed condition is overwritten
by the condition to be executed subsequently.

(8) The condition setting defined in this command is cleared to zero when the program is reset, the End
command is executed, or the controller is turned on next time.

(9) The condition defined in this command is retained in a sub program called up by the CallP command.
When a new setting for this condition is defined in a sub program, it overwrites the previous setting.

(10) When the same number is set in <Monitoring No.> of this command as in <Monitoring No.> of the Def
Gps command, the monitored condition set in the command which is executed last is valid (the one set
in the command which was executed previously is deleted).

(11) During monitoring by executing the GpsChk On command, the setting of target condition cannot be
changed in this command. The setting of condition can be changed after stopping monitoring by
executing the GpsChk Off command.

[Related instructions]
GpsChk (Get position check), Def Gps (Define get position)

[Related system status variables]
M_Gps, P_Gps1 to P_Gps8, M_Map1 to M_Map8
 Detailed explanation of command words 4-225

4

4MELFA-BASIC VI
Def Plt (Define pallet)

[Function]
Defines the pallet. (3-point pallet, 4-point pallet)

[Format]

[Terminology]
<Pallet No.> This is the selection No. of the set pallet. (Constants from 1 to 8 only).
<Start Point> Refers to the pallet's start point.
<End Point A> One of the ending points for the pallet. Transit point of arc for arc pallet.
<End Point B> Another ending point for the pallet. Ending point of arc for arc pallet.
<Diagonal Point> The diagonal point from the pallet's start point. Insignificant for arc pallet.
<Quantity A> The No. of workpieces from the pallet's start point to the end point A.

The No. of workpieces between the pallet start point and arc end point when using an
arc pallet.

<Quantity B> The No. of workpieces from the pallet's start point to the end point B.
Insignificant for an arc pallet. (1, etc., must be designated.)

<Pallet Pattern> Specify the pallet pattern and fixation/equal division of the posture when numbering divided
grid points. Constant only.
1: Zigzag (posture equal division)
2: Same direction (posture equal division)
3: Arc pallet (posture equal division)
11: Zigzag (posture fixation)
12: Same direction (posture fixation)
13: Arc pallet (posture fixation)

[Reference Program]
1 Def Plt 1,P1,P2,P3, ,4,3,1 ' Define a 3-point pallet.
2 Def Plt 1,P1,P2,P3,P4,4,3,1 ' Define a 4-point pallet.

[Explanation]
(1) The accuracy of the position calculation will be higher for a 4-point pallet than for a 3-point pallet.
(2) The command is valid only within the program being executed. The command is invalid in the program

that calls up the command from another program. If necessary, redefine.
(3) Quantity A and B should be a non-zero positive number, while if 0 or a negative number is assigned, an

error will occur.
(4) If Quantity A x Quantity B exceeds 32,767, an error will occur when operation starts.
(5) The value of Quantity B is insignificant for the arc pallet, but it must not be omitted. Set 0 or a dummy

value. The diagonal point will be insignificant even if specified.

Def[]Plt[] <Pallet No.>, <Start Point>, <End Point A>, <End Point B>, [<Diagonal Point>],
<Quantity A>, <Quantity B>, <Pallet Pattern>

12

7

6

1

11

8

5

2

10

9

4

3

End point B

Start point End point A

Diagonal point

Start point
10

7

4

1

11

8

5

2

12

9

6

3

１

２
３

４

５

End point

Transit point
End point B Diagonal point

Start point End point A

Zigzag Same direction Arc pallet
-226 Detailed explanation of command words

 4MELFA-BASIC VI
(6) If the hand is facing downward, the sign of the A, B and C axis coordinates at the start point, end point A,
end point B and diagonal point must match. If the hand is facing downward, A = 180 (or -180), B = 0, and
C = 180 (or -180). If the signs of the A and C axis coordinates at the three positions do not match, the
hand may rotate in the middle position. In this case, modify the signs so that they match in the position
edit screen of the T/B. +180 and -180 result in the same posture; modifying signs poses no problem.

(7) If a value from 11 to 13 is specified for the pallet pattern, the posture at <Start Point> is assigned to the
posture data of the position variable obtained by the pallet operation. If a value from 1 to 3 is specified,
the distance between <Start Point> and <End Point> is divided equally and assigned to the posture data.

(8) In the robot types in which the J1 axis or the J4 axis can exceed the +/-180 degrees, the palette that the
joint angle of the J1 axis or the J4 axis straddles the +/-180 degrees cannot be specified. The alarm will
occur, if such position were defined.
If you use the pallet in such a position, please divide and define the palette. Refer to Page 118, "4.1.2
Pallet operation" for details.
To operate the robot in the operating range over ±180 degrees, change the parameter setting. For
details, refer to the description of the parameter PLTSPEC.

(9) When this command is executed, a check is performed to determine whether the rectangle composed of
the <End Point A> and <End Point B> for the specified <Start Point>, and their diagonal points (optional)
falls within the robot movement range.
If alarm L.3110 occurs when executing the command, ensure that the above mentioned quadrilaterals lie
within the movement range.

(10) If using as a line pallet, define with <Start Point> and <End Point B> as the same point (or with <Start
Point> and <End Point A> as the same point).

If position data whose posture components (A, B and C) are close to +/-180
degrees is set to <Start Point>, <End Point A>, <End Point B> and <Diagonal
Point> of the pallet definition, the hand will rotate and move in unexpected ways if
different signs are used for the same posture component of the position data.
To use position data whose posture components are close to +/-180 degrees,
please read <Precautions on the posture of position data in a pallet definition> in
Page 118, "4.1.2 Pallet operation".

The value of the start point of the pallet definition is employed for the structure flag
of grid points (FL1 of position data) calculated during pallet operation (Plt
instruction). For this reason, if position data with different structure flags are used
for each point of the pallet definition, the desired pallet operation cannot be
obtained.
Use position data whose structure flag values are all the same for the start point,
end points A and B and the diagonal point of the pallet definition. The value of the
start position of the pallet definition is employed for the multi-rotation flag of grid
points (FL2 of position data) as well. If position data with different multi-rotation
flags are used for each point of the pallet definition, the hand will rotate and move in
unexpected ways depending on the robot positions the pallet operation goes
through and the type of interpolation instruction (joint interpolation, line
interpolation, etc.). In such cases, use the TYPE argument of the interpolation
instruction to set the detour/short cut operation of the posture properly and ensure
that the hand moves as desired.

Please refer to the illustrations in Page 118, "4.1.2 Pallet operation", which explain this concept.

[Related instructions]
Plt (Pallet)

 CAUTION

 CAUTION
 Detailed explanation of command words 4-227

4

4MELFA-BASIC VI
Def Pos (Define Position)

[Function]
This instruction declares XYZ type position variables. It is used when using a variable with a name that
begins with a character other than "P." It is not necessary to declare variables whose names begin with the
character "P" using the Def Pos instruction.

[Format]

[Terminology]
<Position variable name> Designate a variable name.

[Reference Program]
 1 Def Pos WORKSET ' Declare "WORKSET" as the XYZ type position variable.
 2 Mov P1 ' For XYZ type position variables starting with P, the

definition of "Def Pos" is not required.
 3 WORKSET=(250,460,100,0,0,-90,0,0)(0,0)
 4 Mov WORKSET ' Move to WORKSET.

[Explanation]
(1) Use this instruction to define a XYZ type position variable by a name beginning with a character other

than "P".
(2) The variable name can have up to 16 characters. Refer to the Page 145, "4.3.6 Types of characters that

can be used in program" for the characters that can be used.
(3) When designating multiple variable names, the maximum value (240 characters including command)

can be set on one step.
(4) A variable becomes a global variable that is shared among programs by placing "_" after "P" in the

variable name and writing it in a base program.
Refer to Page 155, "4.3.24 User-defined external variables" for details.

Def[]Pos[] <Position variable name> [, <Position variable name>]...
-228 Detailed explanation of command words

 4MELFA-BASIC VI
Def Work

[Function]
Declares a work coordinate variable. Use this instruction when the variable name starts with a character
other than 'W' (or 'w').

[Format]

[Terminology]
<Work coordinate variable name> Designate a variable name.

[Reference Program]
 1 Def Work Box1 ' Defines Box1 as a work coordinate variable.

[Explanation]
(1) Use this instruction to define a work coordinate variable with a name starting with a character other than

'W' (or 'w').
(2) The variable name can have up to 32 characters. Refer to the Page 145, "4.3.6 Types of characters that

can be used in program" for the characters that can be used.
(3) A variable becomes a user-defined external variable (shared among programs) by adding '_' after 'W' (or

'w') in the variable name and registering it in a user base program.
When using this variable, define it with this instruction.
Refer to "4.3.24User-defined external variables" for details.

Def[]Work[]<Work coordinate variable name>[, <Work coordinate variable name>[, ...]]
 Detailed explanation of command words 4-229

4

4MELFA-BASIC VI
Dim (Dim)

[Function]
Declares the quantity of elements in the array variable. (Arrays up to the third dimension are possible.)

[Format]

[Terminology]
<Variable name> Describe the name of the array variable.
<Eelement Value> Describe in terms of constants, the number of elements in an array variable. (1 to 2500)

[Reference Program]
1 Dim PDATA(10) ' Define the position array variable PDATA having ten elements.
2 Dim MDATA#(5) ' Define double-precision type array variable MDATA# having the five

elements.
3 Dim M1%(6) ' Define integer-type array variable M1% having the six elements.
4 Dim M2!(4) ' Define single-precision real number type array variable M2! having the

four elements.
5 Dim M3&(5) ' Define long-precision real number type array variable M3& having the

five elements.
6 Dim CMOJI(7) ' Define the character-string type variable CMOJI having the seven

elements.
7 Dim MD6(2,3), PD1(5,5) ' Define the 2-dimensional single precision real number type array

variable MDATA having the element of 2x3.
' Define the 2-dimensional position array variable PD 1 having the

element of 5x5.

[Explanation]
(1) A one-dimensional, two-dimensional or three-dimensional array can be used.
(2) In the case of numeric variables, it is possible to use integer, single-precision real and double-precision

real variables differently by adding a symbol that indicates the type of each variable to the variable name.
If the variable type is omitted, a single-precision real variable will be assumed.
 Dim MABC(10) ' Define the single-precision real number type array
 variable MABC having ten elements.

(3) Eelement number start from 1 when actually referencing array variables. For PDATA on step 1 of the
statement example, the element number will be 1 to 10.

(4) <Eelement Value> can be described with numeric constants from 1 to 2500. It is not allowed to use a
numerical value operation expression.
If the number of elements is specified using a real number, an integer with rounded decimal part will be
assumed. Depending on the system memory's free space, arrays may not be allocated for the number of
specified elements. In this case, an error will occur when lines are registered.

(5) If the specified number of elements is larger than the defined number of elements, the error L4370 will
occur at execution.

(6) At the point when array variables are defined, variable values are indeterminate.
(7) To use array variables, it is necessary to define them using the Dim command.
(8) The arrays defined by the Dim command are valid only in the program where they are defined. To use

these arrays by a sub program called by the CallP command, it is necessary to define them again.
(9) Array variables can be used similar to normal variables. However, note that variables of which variable

names and/or the number of characters for specifying element numbers exceed eight characters
cannot be used on the monitor variable screen and position edit screen of the teaching pendant.

(10) If a variable name whose second character is underlined "_" is registered in a user program, a user
defined external variable (a variable common among programs) will be assumed.
Refer to Page 155, "4.3.24 User-defined external variables" for details.

Dim[]<Variable name> (<Eelement Value> [, <Eelement Value> [, <Eelement Value>]])

 [, <Variable name> (<Eelement Value> [, <Eelement Value> [, <Eelement Value>]])]...
-230 Detailed explanation of command words

 4MELFA-BASIC VI
[Related instructions]
Const
 Detailed explanation of command words 4-231

4

4MELFA-BASIC VI
Dly (Delay)

[Function]
1) When used as a single command:
 At a designated time, it causes a wait. It is used for positioning the robot and timing input/output signals.
2) When used as an additional pulse output:
 Designates an output time for a pulse.

[Format]
1) When used as a single command

2) When used as an additional pulse output

[Terminology]
<Time> Describes the waiting time or the output time for the pulse output, in terms of a numeric operation

expression. Unit: [Seconds]
The minimum value that can be set is 0.01 seconds. It is allowed to specify 0.00 as well.
The maximum value is the maximum single-precision real number.

[Reference Program]
(1) Waiting for time
 1 Dly 30 ' Wait for 30 seconds
(2) Pulse output of the signal
 2 M_Out(17)=1 Dly 0.5 ' Send the signal output to the general-purpose output signal 17

for 0.5 seconds.
 3 M_Outb(18)=1 Dly 0.5 ' Among general-purpose output signals 18 to 25, only signal 18 is

output (on) for the first 0.5 seconds, and signals 19 to 25 are
output (on) after 0.5 seconds have passed.

(3) Wait for the completion of positioning.
 1 Mov P1 ' Moves to P1.
 2 Dly 0.1 ' Positions to 1.
(4) Wait for completion of hand opening. (closing)
 1 HOpen 1 ' Open the hand 1.
 2 Dly 0.5 ' Wait for hand 1 to open securely.

[Explanation]
(1) This instruction sets the wait time in a program. It is used for timing input/output signals, positioning

movement instructions, and for specifying pulse output times when used in a signal output statement
(such as (2) in [Reference Example] above).

(2) The pulse output will be executed simultaneously as the next command in the steps that follow.
(3) Up to 50 pulse outputs can be issued of all programs simultaneously. Exceeding this, an error will occur

when the program tries to execute it.
(4) A pulse output reverses each of its bits after the specified time. This means that if M_Outb (8-bit signal)

or M_Outw (16-bit signal) is used, the corresponding number of bits are reversed.
(5) As for pulse output, the execution of a program ends without waiting the elapse of the specified duration

if the End instruction or the last step of the program is executed during the specified duration. However,
output turns off after the specified duration.

(6) The relation of the priority levels for other interrupts is as shown below:
 Com > Act > WthIf (Wth) >Pulse output (Time setting ON)

(7) Even if stop is input during the execution of a pulse output, the pulse output operation will not stop.
Note1) If stop is input at step 2 in the following program, the output signal state will be held, and the

execution is stopped.
1 M_Out(17)=1
2 Dly 10
3 M_Out(17)=0

Note2) If a pulse output by the M_Outb (8-bit signal) or the M_Outw (16-bit signal) is used, each bits in
the corresponding bit width are reversed after the designated time.

M_Outb(1)=1 Dly 1.0
In this case the bit pattern 00000001 is output for one second, and the bit pattern 11111110 is
output thereafter.

Dly[]<Time>

Example) M_Out(1) = 1 Dly[]<Time>
-232 Detailed explanation of command words

 4MELFA-BASIC VI
EBRead (EasyBuilder read)

[Function]
Reads out the data by specifying the tag name of the vision sensor.

The data read from the vision sensor is stored in the specified variable.
Please read out data specifying the tag name by using this command when the vision program (job) is made
with the vision tool EasyBuilder made by Cognex Corporation.

[Format]
1) When used as a single command

[Terminology]
<Vision sensor number>(Can not be omitted) This specifies the number of the vision sensor to control.

Setting range:1 - 8
<Tag name> (Can be omitted) Specifies the name of symbolic tag where data read out by the

vision sensor is stored.
When omitting it, the value of paraemter EBRDTAG (initial
value is the custom format tag name
"Job.Robot.FormatString") is set to it.

<Variable name>(Can not be omitted) Specifies the variable where the data read from the vision
sensor is stored.
It is possible to use two or more variables by delimited with
commas.
It is possible to specify the Numeric value variable, Position
variable or String variable.
When the Position variable is specified, the value is set to X,
Y, and C element, and 0 is set to other elements.

<Time out> (If omitted, 10) Specifies the time-out time (in seconds).
Specification range: Integer 1-32767

[Reference Program]
100 If M_NvOpen(1)<>1 Then ' If vision sensor number 1 log on is not complete
110 NVOpen "COM2:" As #1 ' Connects with the vision sensor connected to COM2.
120 End If
130 Wait M_NvOpen(1)=1 ' Connects with vision sensor number 1 and waits for logon to be

completed.
140 NVLoad #1,"TEST" ' Loads the "Test" program.
150 NVRun #1,"TEST" ' Starts the "Test" program.
160 EBRead #1,,MNUM,PVS1,PVS2 ' The data of "Job.Robot.FormatString" tag is read, and they are

preserved in the variable MNUM, PVS1, and PVS2.
170 --------
 :
300 NVClose #1 ' Cuts the line with the vision sensor connected to COM2.

[Explanation]
(1) Gets the data by specifying the tag name from an active vision program in the specified vision sensor.
(2) The data read from the vision sensor is stored in the specified variable.
(3) When the specified variable identifier is delimited by comma and enumerated when the data of the vision

sensor is two or more values (character string) delimited by comma, data is stored in order of describing
the variable identifier. In this case, the type of the object data should be the same as the type of the
variable.

(4) When the position variable is specified, the vision data is stored in X, Y, and C element. And the value of
other elements are 0.
The value converted into the radian is set to C element.

(5) The value of receiving data are set only to the specified variables when the number of specified variables
is less than that of receive data.

(6) The variable more than the number of receiving data is not updated when the number of specified
variables is more than that of receive data.

(7) When the tag name is omitted, the value of parameter EBRDTAG is set instead of the tag name. (The
factory shipment setting is " Job.Robot.FormatString".)

EBRead[]#<Vision sensor number>,[<Tag name>],<variable name 1> [,<variable name 2>]..[,<Time out>]
 Detailed explanation of command words 4-233

4

4MELFA-BASIC VI
(8) It is possible to specify the timeout time by the numerical value. Within the timeout time, does not move
to the next step until the results are received from the vision sensor. However, if the robot program is
stopped, this command is immediately cancelled. Processing is continued with a restart.

(9) When this command is used with multi-tasking, it is necessary to execute the NVOpen command and the
NVRun command in the task using this command. In this case, use the <vision sensor number>
specified with the NVOpen command.

(10) A program start condition of "Always" is not supported.
(11) If an interrupt condition is established while this command is being executed, the interrupt processing is

executed immediately even during processing of this command. The processing is executed after
completing the interrupt processing.

(12) In order to shorten the tact time, it is possible to do other work after executing the NVRun command
and execute EBRead when it is required.

(13) Please set 1 to the parameter NVTRGTMG if the EBRead command is executed immediately
after the NVRun command.
When parameter NVTRGTMG is factory shipment setting,the next process of the NVRun
command is executed without waiting for the completion of the vision recognition processing.
Therefore, the last recognition might be taken when the EBRead command is continuously
executed.

(14) Note that if the program stops between NVRun and EBRead, the results when NVRun is executed and
the results when EBRead is executed may be different.

<Value of the variable>
The variable by executing the EBRead command is as follows.
(1) Content of specified tag (Pattern_1.Number_Found) is 10

(a) The value when "EBRead #1,"Pattern_1.Number_Found",MNUM" is executed is :
-> MNUM=10

(b) The value when "EBRead #1,"Pattern_1.Number_Found",CNUM" is executed is :
-> CMNUM="10"

(2) Content of specified tag (Job.Robot.FormatString) is 2, 125.75, 130.5, -117.2, 55.1, 0, 16.2
(a) The value when "EBRead #1,,MNUM,PVS1,PVS2" is executed is :

-> MNUM=2
PVS1.X=125.75 PVS1.Y=130.5 PVS1.C=-117.2
PVS2.X=55.1 PVS2.Y=0, PVS2.C=16.2

* The element (Excluding X and Y element) that the vision data is not set is 0.

(b) The value when "EBRead #1,,MNUM,MX1,MY1,MC1,MX2,MY2,MC2" is executed is :
-> MNUM=2

MX1=125.75 MY1=130.5 MC1=-117.2
MX2=55.1 MY2=0 MC2=16.2

(c) The value when "EBRead #1,,CNUM,CX1,CY1,CC1,CX2,CY2,CC2" is executed is :
-> CNUM="2"

CX1="125.75" CY1="130.5" CC1="-117.2"
CX2="55.1" CY2="0" CC2="16.2"

(3) Content of specified tag (Job.Robot.FormatString) is 2, 125.75, 130.5
(a) The value when "EBRead #1,,MNUM,PVS1" is executed is :

-> MNUM=2
PVS1.X=125.75 PVS1.Y=130.5

* The element (Excluding X and Y element) that the vision data is not set is 0.
-234 Detailed explanation of command words

 4MELFA-BASIC VI
[Errors]
(1) If data type for an argument is incorrect, a "syntax error in input command statement" error is generated.
(2) If there is an abnormal number of command arguments (too many or too few), an "incorrect argument

count" error occurs.
(3) If the <vision sensor number> is anything other than "1" through "8", an "argument out of range" error

occurs.
(4) If the NVOpen command is not opened with the number specified as the <vision sensor number>, an

"The NVOpen command is not executed." error occurs.
(5) If data type of the strings data received from the vision sensor and the variable substituted for it is

difference, a " Illegal Receive data(EBREAD) " error is generated.
(6) If the <Timeout> is other than "1" - "32767", an "argument out of range" error occurs.
(7) If the vision sensor does not respond without the time specified as the <Timeout> or within the first 10

seconds if the <Timeout> parameter is omitted, a "vision sensor response timeout" error occurs.
(8) If the communications line is cut while this command is being executed, an "abnormal communications"

error occurs and the robot controller side line is closed.
(9) If the specified tag name does not exist in the active vision program, a “Vision Tag name is abnormal”

error is generated.
(10) Please specify 31 variables or less

('number of the recognition' +' position in the coordinate (X,Y,Z)' x 10) .
If 32 variables or more are specified, a "syntax error in input command statement" error is generated.

(11) If the <vision program name> exceeds 15 characters, an "abnormal vision program name" error
occurs.

(12) If a <vision program name> uses a character other than "0" - "9", "A" - "Z", "-", or "_" (including
lowercase letters), an "abnormal vision program name" error occurs.

(13) If the program specified in the <vision program name> is not in the vision sensor, a "vision program
does not exist" error occurs.

(14) If the program specified in the <vision program name> is not started by an NVRun command, a
"abnormal vision program name" error occurs.

(15) If the <Recognition count cell>, <Start cell>, or <End cell> contains a number other than "0" - "399" or a
letter other than "A - "Z", an "argument out of range" error occurs.

(16) If there is no value in the cell specified in "Recognition count cell", an "invalid value in specified for
recognition count cell" error occurs.

(17) If the <Start cell> and <End cell> are reversed, a "specified cell value out of range" error occurs.
(18) If the number of data included in the cell which specifies it by <Start cell> and <End cell> exceeds 90,

a"specified cell value out of range" error occurs.
(19) If the range specified by <Star cell> and <End cell> exceeds line 30 and row 10, a"specified cell value

out of range" error occurs.
(20) If the <Type> is other than "0" - "7", an "argument out of range" error occurs.

Please set parameter NVTRGTMG.
Please set 1 to parameter NVTRGTMG when EBRead command is executed
immediately after NVRun command.
When parameter NVTRGTMG is factory shipment setting (NVTRGTMG=2), the
next command is executed without waiting the completion of the vision recognition
processing. Therefore, there is a possibility being gotten the last recognition result
when EBRead command is continuously executed.

 CAUTION
 Detailed explanation of command words 4-235

4

4MELFA-BASIC VI
EBWrite (EasyBuilder write)

[Function]
Specifies the tag name of the vision sensor to write data.
When the vision program (job) is made with the vision tool EasyBuilder made by Cognex Corporation, you
can write data to the cell specified with the tag name by using this command.

[Format]

[Terminology]
<Vision sensor number> Specifies the number of the vision sensor to control with a numeric constant.

Setting range: 1 to 8
<Tag name> Specifies the name of the symbolic tag for the cell to which data is written.

If the name is not specified, the value of parameter EBWRTAG is set.
<Writing data> Specifies the data to be written to the vision sensor.

Numeric constants, numerical variables, character string constants,
character string variables, position element data, joint element data, numeric
expressions, or character string expressions can be used.

<Time out> Specifies the time-out time (in seconds) with a numeric constant.
If the time is not specified, a timeout of 10 seconds is set.
Setting range: 1 to 32767 (integers)

[Reference Program]
1 If M_NvOpen(1)<>1 Then ' If vision sensor number 1 is not logged on
2 NVOpen "COM2:" As #1 ' Connects with the vision sensor connected to COM2, and the

sensor is numbered 1.
3 Wait M_NvOpen(1) = 1 ' Waits until vision sensor number 1 logs on.
4 End If
5 NVOpen #1, "TEST" ' Loads the "TEST" program (job).
6 EBWrite #1, "Sample.Float", 5 ' Rewrites "Sample.Float" tag data as 5.
7 EBWrite #1, "Sample.String", "Test" ' Rewrites "Sample.String" tag data as "Test".
8 NVRun #1, "TEST" ' Starts "TEST" program (job).
 :
 :
20 End

[Explanation]
(1) Writes data to the cell specified with the tag name in the active vision program (job) of the specified

vision sensor.
(2) The error (L.3141) occurs if no NVOpen command is executed for the vision sensor specified with

<Vision sensor number>.
(3) If <Tag name> is not specified, the value of parameter EBWRTAG is set. (The factory shipment setting is

""(NULL).)
(4) The error (L.8637) occurs if the active vision program does not have the specified <Tag name>.
(5) The type of the data written to the cell of the vision sensor varies depending on the type of <Writing

data>. (When a double-precision real number is specified, the single-precision real number converted
from the double-precision real number is used.

(6) Processes are performed according to the combinations of the types of <Writing data> and the cell value
types of the vision program specified with <Tag name> as shown below.

EBWrite[]#<Vision sensor number>,[<Tag name>],<Writing data> [,<Time out>]

<Writing data> Type of data written to cells
Numeric value type (integer) Integer (Int)
Numeric value type (real number) Single-precision real number (Float)
Character string type Character string (String)

<Writing data> Cell value type Process
Numeric value type (integer) Boolean value editing control Cell value update (integer)

Integer editing control Cell value update (integer)
Floating-point number editing control Cell value update

(single-precision real number)
Text editing control Execution error (L.8637)
-236 Detailed explanation of command words

 4MELFA-BASIC VI
(7) You can specify the time-out time with a numeric constant. During the time-out time, the next step is not
performed until data containing writing results is received from the vision sensor.

(8) When the execution of a robot program is stopped, the processing of this command is interrupted. The
interrupted processing restarts by executing the program again.

(9) When this command is used with multi-tasking, it is necessary to execute the NVOpen command in the
task slot you use. Use the number specified with NVOpen command for <Vision sensor number>.

(10) This command cannot be used if ALWAYS is specified in the start conditions of the task slot.
(11) If interruption conditions have been satisfied during this command, interruption processing will be

executed immediately.

Numeric value type (real num-
ber)

Boolean value editing control Cell value update
(integer, rounding down decimals)

Integer editing control Cell value update
(integer, rounding down decimals)

Floating-point number editing control Cell value update
(single-precision real number)

Text editing control Execution error (L.8637)
Character string type Boolean value editing control Execution error (L.8637)

Integer editing control Execution error (L.8637)
Floating-point number editing control Execution error (L.8637)
Text editing control Cell value update (character string)

<Writing data> Cell value type Process
 Detailed explanation of command words 4-237

4

4MELFA-BASIC VI
EMvc (E Move C)

[Function]
Carries out 3-dimensional circular interpolation movement along the work coordinates system (Ex-T
coordinates system) in the order of start point, transit point 1, transit point 2, and start point.
(For the outline of the function, refer to Page 764, "7.3 Ex-T control".)

[Format]

[Terminology]
<Work Coordinates Number> A work coordinate number which is chosen from 1 through 8.
<Start Point> This is the final position for interpolation operation. Describe a position using

a position type variable or constant, logic/arithmetic expressions, functions,
or a joint variable.

<Transit Point 1> Transit point 1 for a circular arc. Describe a position using a position type
variable or constant, logic/arithmetic expressions, functions, or a joint
variable.

<Transit Point 2> Transit point 2 for a circular arc. Describe a position using a position type
variable or constant, logic/arithmetic expressions, functions, or a joint
variable.

<Appended Conditions> The Wth and WthIf statements can be used.

[Reference Program]
(1) Moves to the positions in the order of P1, P2, P3, and P1 along the work coordinate 1 by circular

interpolation.
 1 EMvc 1, P1, P2, P3
(2) Moves to the positions in the order of P1, J2, P3, and P1 along the work coordinate 2 by circular

interpolation (when the joint variable is used).
 2 EMvc 2, P1, J2, P3
(3) Moves to the positions in the order of P1, P2, P3, and P1 along the work coordinate 2 by circular

interpolation, and simultaneously turns on the output signal 17.
 3 EMvc 2, P1, P2, P3 Wth M_Out(17)=1
(4) Turns on the output signal 21 if the input signal 20 is turned on during movement to the positions in the

order of P3, (Plt 1, 5), P4, and P3 along the work coordinate 4 by circular interpolation.
 4 EMvc 4, P3, (Plt 1, 5), P4 WthIf M_In(20)=1, M_Out(21)=1

[Explanation]
(1) In Ex-T control circular interpolation motion, a circle along the work coordinates is formed with the 3

given points, and the circumference is moved. (360 degrees)
(2) The posture at the start point is maintained during Ex-T circular interpolation. The postures while passing

points 1 and 2 are not considered.
(3) If the current position and the starting position do not match, the robot automatically moves to the

starting point based on the Ex-T control linear interpolation, and then performs the Ex-T control circular
interpolation.

(4) If paused during execution of a EMvc command and restarted after jog feed, the robot returns to the
interrupted position and restarts the remaining circle interpolation. The interpolation method (JOINT
interpolation / XYZ interpolation) which returns to the interrupted position can be changed by the
"RETPATH" parameter. (Refer to Page 539, "5.10 Automatic return setting after jog feed at pause")

(5) This cannot be used in programs set to ALWAYS or ERROR. (The error L3287 will occur.)
(6) When the work coordinates system is not specified, the initial value is 0 (0, 0, 0, 0, 0, 0) for all elements.

If the Ex-T control linear interpolation is executed in this condition, the movement is performed along the
world coordinates system origin.

(7) If any additional axis is provided, the additional axis also moves. However, the additional axis is not
included in the Ex-T control. Therefore, the robot position may be deviated from its original working
position when the robot arm is moved with the additional axis such as the travel axis and the work
coordinates is also moved along with the robot. Accordingly, operating an additional axis using this
command is not recommended. Also, do not perform synchronous control of additional axis while using
this command.

EMvc[]<Work Coordinates Number>, <Start Point>, <Transit Point 1>, <Transit Point 2>

[[]<Appended Conditions>]
-238 Detailed explanation of command words

 4MELFA-BASIC VI
[Related instructions]
EMvr (E Move R), EMvr2 (E Move R 2), EMvr3 (E Move R 3), EMvs (E Move S)

[Related system variables]
P_WkCord (Work coordinates data)

[Related parameter]
WK1CORD to WK8CORD
 Detailed explanation of command words 4-239

4

4MELFA-BASIC VI
EMvr (E Move R)

[Function]
Carries out 3-dimensional circular arc interpolation movement along the work coordinates system (Ex-T
coordinates system) from the start point to the end point via transit points.
(For the outline of the function, refer to Page 764, "7.3 Ex-T control".)

[Format]

[Terminology]
<Work Coordinates Number> A work coordinate number which is chosen from 1 through 8.
<Start Point> Start point for the arc. Describe a position using a position type variable or

constant, logic/arithmetic expressions, functions, or a joint variable.
<Transit Point> Transit point for the arc. Describe a position using a position type variable

or constant, logic/arithmetic expressions, functions, or a joint variable.
<End Point> End point for the arc. Describe a position using a position type variable or

constant, logic/arithmetic expressions, functions, or a joint variable.
<Constants 1> Specify the posture rotation.

Short cut = 0, The default value is 0.
<Constants 2> Specify the posture interpolation method.

Equivalent rotation/3-axis XYZ = 0/1. The default value is 0.
<Appended Conditions> The Wth and WthIf statements can be used.

[Reference Program]
(1) Moves to P3 from P1 via P2 along the work coordinate 1 by circular arc interpolation.
 1 EMvr 1, P1, P2, P3
(2) Moves to P3 from P1 via J2 along the work coordinate 2 by circular arc interpolation.
 2 EMvr 2, P1, J2, P3
(3) Moves to P3 from P1 via P2 along the work coordinate 2 by circular arc interpolation, and

simultaneously turns on the output signal 17.
 3 EMvr 2, P1, P2, P3 Wth M_Out(17)=1
(4) Turns on the output signal 21 if the input signal 20 is turned on during movement from P3 to P4 via (Plt

1, 5) along the work coordinate 4 by circular arc interpolation.
 4 EMvr 4, P3, (Plt 1, 5), P4 WthIf M_In(20)=1, M_Out(21)=1

[Explanation]
(1) In Ex-T control circular arc interpolation motion, a circular arc along the work coordinates is formed with

the 3 given points, and the movement is performed along the circular arc.
(2) Interpolation is performed for the posture at the start point and the end point. The posture at the transit

point does not affect the interpolation.
(3) If the current position and the starting position do not match, the robot automatically moves to the

starting point based on the Ex-T control linear interpolation, and then performs the Ex-T control circular
arc interpolation.

(4) If paused during execution of a EMvr command and restarted after jog feed, the robot returns to the
interrupted position and restarts the remaining circular arc interpolation. The interpolation method
(JOINT interpolation / XYZ interpolation) which returns to the interrupted position can be changed by the
"RETPATH" parameter. (Refer to Page 539, "5.10 Automatic return setting after jog feed at pause")

(5) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,
an error will occur at the execution.

(6) Of the three designated points, if any points coincide with the other, or if three points are on a straight
line, the Ex-T control linear interpolation will take place from the start point to the end point. An error will
not occur.

(7) If 3-axis XYZ is designated for the constant 2, the constant 1 will be invalidated, and the robot will move
with the taught posture.

(8) This cannot be used in programs set to ALWAYS or ERROR. (The error L3287 will occur.)
(9) When the work coordinates system is not specified, the initial value is 0 (0, 0, 0, 0, 0, 0) for all elements.

If the Ex-T control linear interpolation is executed in this condition, the movement is performed along the
world coordinates system origin.

EMvr[]<Work Coordinates Number>, <Start Point>, <Transit Point>, <End Point>

[[]Type[] <Constants 1>, <Constants 2>][[]<Appended Conditions>]
-240 Detailed explanation of command words

 4MELFA-BASIC VI
(10) If any additional axis is provided, the additional axis also moves. However, the additional axis is not
included in the Ex-T control. Therefore, the robot position may be deviated from its original working
position when the robot arm is moved with the additional axis such as the travel axis and the work
coordinates is also moved along with the robot. Accordingly, operating an additional axis using this
command is not recommended. Also, do not perform synchronous control of additional axis while using
this command.

(11) If 1 (3-axis XYZ) is specified to <Constants 2> of this command, movement of the robot is the same as
1 (3-axis XYZ) is specified to <Constants 2> of Mvr command.

[Related instructions]
EMvc (E Move C), EMvr2 (E Move R 2), EMvr3 (E Move R 3), EMvs (E Move S)

[Related system variables]
P_WkCord (Work coordinates data)

[Related parameter]
WK1CORD to WK8CORD
 Detailed explanation of command words 4-241

4

4MELFA-BASIC VI
EMvr2 (E Move R 2)

[Function]
Carries out 3-dimensional circular arc interpolation movement along the work coordinates system (Ex-T
coordinates system) from the start point to the end point on the arc composed of the start point, end point,
and reference points. The movement direction does not pass through the reference points.
(For the outline of the function, refer to Page 764, "7.3 Ex-T control".)

[Format]

[Terminology]
<Work Coordinates Number> A work coordinate number which is chosen from 1 through 8.
<Start Point> Start point for the arc. Describe a position using a position type variable or

constant, logic/arithmetic expressions, functions, or a joint variable.
<End Point> End point for the arc. Describe a position using a position type variable or

constant, logic/arithmetic expressions, functions, or a joint variable.
<Reference Point> Reference point for a circular arc. Describe a position using a position type

variable or constant, logic/arithmetic expressions, functions, or a joint
variable.

<Constants 1> Specify the posture rotation.
Short cut = 0, The default value is 0.

<Constants 2> Specify the posture interpolation method.
Equivalent rotation/3-axis XYZ = 0/1. The default value is 0.

<Appended Conditions> The Wth and WthIf statements can be used.

[Reference Program]
 1 EMvr2 1, P1, P2, P3
 2 EMvr2 2, P1, J2, P3
 3 EMvr2 2, P1, P2, P3 Wth M_Out(17)=1
 4 EMvr2 4, P3, (Plt 1, 5), P4 WthIf M_In(20)=1, M_Out(21)=1

[Explanation]
(1) In circular arc interpolation motion, a circle is formed with three given points, and robot moves along the

circumference.
(2) The posture is interpolation from the start point to the end point; the reference point posture has no

effect.
(3) If the current position and start point do not match, the robot will automatically move with linear

interpolation (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a Mvr instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 539, "5.10 Automatic return
setting after jog feed at pause")

(5) The direction of movement is in a direction that does not pass through the reference points.
(6) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,

an error will occur at the execution.
(7) Of the three designated points, if any points coincide with the other, or if three points are on a straight

line, linear interpolation will take place from the start point to the end point. An error will not occur.
(8) If 3-axis XYZ is designated for the constant 2, the constant 1 will be invalidated, and the robot will move

with the taught posture.
(9) This cannot be used in programs set to ALWAYS or ERROR. (The error L3287 will occur.)
(10) When the work coordinates system is not specified, the initial value is 0 (0, 0, 0, 0, 0, 0) for all elements.

If the Ex-T control linear interpolation is executed in this condition, the movement is performed along the
world coordinates system origin.

(11) If any additional axis is provided, the additional axis also moves. However, the additional axis is not
included in the Ex-T control. Therefore, the robot position may be deviated from its original working
position when the robot arm is moved with the additional axis such as the travel axis and the work

EMvr2[]<Work Coordinates Number>, <Start Point>, <End Point>, <Reference Point>

[[]Type[] <Constants 1>, <Constants 2>][[]<Appended Conditions>]
-242 Detailed explanation of command words

 4MELFA-BASIC VI
coordinates is also moved along with the robot. Accordingly, operating an additional axis using this
command is not recommended. Also, do not perform synchronous control of additional axis while using
this command.

(12) If 1 (3-axis XYZ) is specified to <Constants 2> of this command, movement of the robot is the same as
1 (3-axis XYZ) is specified to <Constants 2> of Mvr command.

[Related instructions]
EMvc (E Move C), EMvr (E Move R), EMvr3 (E Move R 3), EMvs (E Move S)

[Related system variables]
P_WkCord (Work coordinates data)

[Related parameter]
WK1CORD to WK8CORD
 Detailed explanation of command words 4-243

4

4MELFA-BASIC VI
EMvr3 (E Move R 3)

[Function]
Carries out 3-dimensional circular arc interpolation movement along the work coordinates system from the
start point to the end point on the arc composed of the start point, end point, and center point.
(For the outline of the function, refer to Page 764, "7.3 Ex-T control".)

[Format]

[Terminology]
<Work Coordinates Number> A work coordinates number which is chosen from 1 through 8.
<Start Point> Start point for the arc. Describe a position using a position type variable or

constant, logic/arithmetic expressions, functions, or a joint variable.
<End Point> End point for the arc. Describe a position using a position type variable or

constant, logic/arithmetic expressions, functions, or a joint variable.
<Center Point> Center point for the arc. Describe a position using a position type variable

or constant, logic/arithmetic expressions, functions, or a joint variable.
<Constants 1> Specify the posture rotation.

Short cut/detour = 0, The default value is 0.
<Constants 2> Specify the posture interpolation method.

Equivalent rotation/3-axis XYZ = 0/1. The default value is 0.
<Appended Conditions> The Wth and WthIf statements can be used.

[Reference Program]
 1 EMvr3 1, P1, P2, P3
 2 EMvr3 2, P1, J2, P3
 3 EMvr3 2, P1, P2, P3 Wth M_Out(17)=1
 4 EMvr3 4, P3, (Plt 1, 5), P4 WthIf M_In(20)=1, M_Out(21)=1

[Explanation]
(1) In circular arc interpolation motion, a circle is formed with three given points, and robot moves along the

circumference.
(2) The posture is interpolation from the start point to the end point; the center point posture has no effect.
(3) If the current position and start point do not match, the robot will automatically move with linear

interpolation (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a Mvr3 instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 539, "5.10 Automatic return
setting after jog feed at pause")

(5) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,
an error will occur at the execution.

(6) If 3-axis XYZ is designated for the constant 2, the constant 1 will be invalidated, and the robot will move
with the taught posture.

(7) The central angle from the start point to the end point always satisfies 0 < central angle < 180 degrees.
(8) Designate the positions so that the difference from the center point to the end point and the center point

to the distance is within 0.01mm.
(9) If the three points are on the same line, or if the start point and center point, or end point and center point

are the same, an error will occur.
(10) If the start point and end point are the same or if three points are the same, an error will not occur, and

the next command will be executed. Note that if the posture changes at this time, only the posture will
be interpolated.

(11) This cannot be used in programs set to ALWAYS or ERROR. (The error L3287 will occur.)
(12) When the work coordinates system is not specified, the initial value is 0 (0, 0, 0, 0, 0, 0) for all elements.

If the Ex-T control linear interpolation is executed in this condition, the movement is performed along the
world coordinates system origin.

EMvr3[]<Work Coordinates Number>, <Start Point>, <End Point>, <Center Point>

[[]Type[] <Constants 1>, <Constants 2>][[]<Appended Conditions>]
-244 Detailed explanation of command words

 4MELFA-BASIC VI
(13) If any additional axis is provided, the additional axis also moves. However, the additional axis is not
included in the Ex-T control. Therefore, the robot position may be deviated from its original working
position when the robot arm is moved with the additional axis such as the travel axis and the work
coordinates is also moved along with the robot. Accordingly, operating an additional axis using this
command is not recommended. Also, do not perform synchronous control of additional axis while using
this command.

(14) If 1 (3-axis XYZ) is specified to <Constants 2> of this command, movement of the robot is the same as
1 (3-axis XYZ) is specified to <Constants 2> of Mvr command.

[Related instructions]
EMvc (E Move C), EMvr (E Move R), EMvr2 (E Move R 2), EMvs (E Move S)

[Related system variables]
P_WkCord (Work coordinates data)

[Related parameter]
WK1CORD to WK8CORD
 Detailed explanation of command words 4-245

4

4MELFA-BASIC VI
EMvs (E Move S)
[Function]

Carries out linear interpolation movement along the work coordinates system (Ex-T coordinates system)
from the current position to the movement target position.
(For the outline of the function, refer to Page 764, "7.3 Ex-T control".)

[Format]

[Terminology]
<Work Coordinates Number> A work coordinate number which is chosen from 1 through 8.
<Target Position> This is the final position for interpolation operation. This position may be

specified using a position type variable and constant, logic/arithmetic
expressions, functions, or a joint variable. (Input the position data of the robot
control point.)

<Constants 1> Specify the posture rotation.
Short cut = 0, The default value is 0.

<Constants 2> Specify the posture interpolation method.
Equivalent rotation/3-axis XYZ = 0/1. The default value is 0.

<Appended Conditions> The Wth and WthIf statements can be used.

[Reference Program]
(1) Moves to the target position P1 along the work coordinate 1 by linear interpolation.
 1 EMvs 1,P1
(2) Moves to the target position (Plt 1,5) along the work coordinate 3 by linear interpolation.
 1 EMvs 3,(Plt 1,5)
(3) Moves to the target position P1 along the work coordinate 2 by linear interpolation, and simultaneously

turns on the output signal 17.
 1 EMvs 2,P1 Wth M_Out(17)=1
(4) Turns on the output signal 20 if the input signal 18 is turned on during movement to the target position

P4 along the work coordinate 1 by linear interpolation.
 1 EMvs 1,P4 WthIf M_In(18)=1, M_Out(20)=1

[Explanation]
(1) The EMvs command (Ex-T control linear interpolation) is for a type of movement in which the robot

moves from its current position to the movement target position along the specified work coordinates
system.
The figure shows an example of movement by the EMvs command. The example shows linear
interpolation along the Ex-T control point (Ex-T coordinates system origin) while the posture is changed.

(2) The posture interpolation is from the start point to the end point viewed from the work coordinates.

EMvs[]<Work Coordinates Number>, <Target Position> [[]Type[]<Constants 1>,

<Constants 2>][[]<Appended conditions>]
-246 Detailed explanation of command words

 4MELFA-BASIC VI
(3) The work coordinate numbers 1 to 8 correspond to WK1CORD to WK8CORD.
(4) MELFA-BASIC V/VI can be used.
(5) The movement speed during Ex-T control linear interpolation can be also specified by the Spd

command. The Ovrd command or the O/P override setting also changes the speed.
(6) The acceleration/deceleration of the Ex-T control linear interpolation is optimum when Oadl ON is set

(initial value). The Accel command is valid.
(7) The MvTune command can switch the operation mode.
(8) Path connection by the Cnt command and the positioning accuracy specification by the Fine command

are also available.
(9) The Ex-T control linear interpolation can be interrupted or resumed during operation. Returning to the

interrupted position is performed by the normal interpolation operation, not by the Ex-T control linear
interpolation. The interpolation type to the interrupted position depends on the RETPATH parameter
setting. The initial setting is "returning to the interrupted position by JOINT interpolation".

(10) This cannot be used in programs set to ALWAYS or ERROR. (The error L3287 will occur.)
(11) When the work coordinates system is not specified, the initial value is 0 (0, 0, 0, 0, 0, 0) for all elements.

If the Ex-T control linear interpolation is executed in this condition, the movement is performed along the
world coordinates system origin.

(12) If any additional axis is provided, the additional axis also moves. However, the additional axis is not
included in the Ex-T control. Therefore, the robot position may be deviated from its original working
position when the robot arm is moved with the additional axis such as the travel axis and the work
coordinates is also moved along with the robot. Accordingly, operating an additional axis using this
command is not recommended. Also, do not perform synchronous control of additional axis while using
this command.

(13) If 1 (3-axis XYZ) is specified to <Constants 2> of this command, movement of the robot is the same as
1 (3-axis XYZ) is specified to <Constants 2> of Mvs command.

[Related instructions]
EMvc (E Move C), EMvr (E Move R), EMvr2 (E Move R 2), EMvr3 (E Move R 3)

[Related system variables]
P_WkCord (Work coordinates data)

[Related parameter]
WK1CORD to WK8CORD
 Detailed explanation of command words 4-247

4

4MELFA-BASIC VI
EMvSpl (E Move Spline)

[Function]
Spline interpolation in alignment with the Ex-T coordinate system origin is executed based on the
information registered in the designated spline file.
(Refer to Page 694, "7.2 Spline interpolation" for details on spline interpolation.)

[Format]

[Terminology]
<Ex-T coordinates number> The number of Ex-T coordinates as a control point is designated with

a constant or numerical variable.
Setting range:

0: The Ex-T coordinate system origin data registered into the
spline file is used.

1 to 8: The origin data of work coordinate system corresponding
to the number is used.

<Spline No.> The number of the spline file holding information on the path to be
moved is designated with a constant or numerical variable.
Setting range: 1 to 99

<Speed> The spline interpolation movement speed is designated with a
constant or numerical variable.
Setting range: Value larger than 0.0 (mm/s).

<Acceleration/deceleration distance> The spline interpolation acceleration/deceleration distance is
designated with a constant or numerical variable.
The acceleration distance is the distance required to accelerate from
the start or movement to the designated speed.
The deceleration distance is the distance required to decelerate from
the designated speed to the end position.
With spline interpolation, the acceleration distance and deceleration
distance are a common setting.
Setting range: Value larger than 0.0 (mm)

<Frame transformation> The details for executing frame transformation are designated with
a constant or numerical variable.
Setting range:

0: Frame transformation is not executed.
1: Frame transformation is executed using coordinate system set

in spline file.
2: Frame transformation is executed using coordinate system set

with SetCalFrm command.
When omitted: Frame transformation is not executed.

<Posture interpolation type> The posture interpolation type is designated with a constant or
numerical variable.
Setting range:

0 (equivalent rotation movement)/1 (3-axis orthogonal movement)
When omitted: Equivalent rotation movement

<Filter length> The filter length applied on the acceleration/deceleration movement
is designated with a constant or numerical variable.
Setting range: 0.0 to 1000.0 (ms)
When omitted: 100.0 ms

EMvSpl []<Ex-T coordinates number>, <Spline No.>, <Speed>,
<Acceleration/deceleration distance> [, <Frame transformation>
[, <Posture interpolation type> [, <Filter length>]]]
-248 Detailed explanation of command words

 4MELFA-BASIC VI
[Reference Program]
1 EMvSpl 0,2,20,10 ' Executes Ex-T spline interpolation to shift the spline curve generated with the

path point data set in spline file 2 along the Ex-T coordinate system origin
registered in the spline file.

2 EMvSpl 7,2,30,10 ' Executes Ex-T spline interpolation to shift the spline curve generated with the
path point data set in spline file 2 along work coordinate 7.

[Explanation]
(1) If 1 to 8 is specified for the <Ex-T coordinate No.>, spline interpolation along the coordinate system data

set in WK1CORD to WK8CORD is executed. If 0 is specified, spline interpolation along the Ex-T
coordinate system origin registered in the spline file is executed.

(2) If the coordinate system is not set in the spline file, the error L2610 (The setting of Ex-T is illegal) will
occur.

(3) Ex-T spline interpolation is carried out based on the path point data, etc., registered in the spline file
corresponding to <Spline No.>.

(4) The Ex-T coordinate system origin viewed from the workpiece being grasped moves so that the curve is
smooth.

(5) If the robot's current position at the start of EMvSpl command execution and the Ex-T spline interpolation
start position are deviated, the robot will move to the start position with Ex-T linear interpolation (EMvs
command) and then start spline interpolation.

(6) If a spline file corresponding to the <Spline No.> is not saved in the controller, the error L2610 (Can't
open spline file) will occur.

(7) The Ex-T spline interpolation command speed (Ex-T coordinate system speed viewed from workpiece)
is specified with the following equation.
Speed command = (EMvSpl command's <Speed>) × (Ovrd command) × (operation panel override)
The Spd command and JOvrd command settings are not used. Even if the status variable M_NSpd is
set for <Speed>, the optimum speed control mode does not function.

(8) The Ex-T spline interpolation acceleration/deceleration is designated with <Acceleration/deceleration
distance>. The Accel command setting is not used. Even if the optimum acceleration/deceleration
control is enabled with the Oadl command, it will not be applied to Ex-T spline interpolation.

(9) The acceleration movement generates speed to reach the <Speed> when the <Acceleration/
deceleration distance> is moved from the Ex-T spline interpolation start position. The deceleration
movement generates the speed to move the <Acceleration/deceleration distance> from the <Speed>
and stop at the end position.
If the Ovrd command and operation panel's override is set to a value smaller than 100%, the
commanded speed will be reached at a shorter travel rate than <Acceleration/deceleration distance>.
(The effect of filters, etc., can cause the acceleration/deceleration distance to be actually longer than
the value set with <Acceleration/deceleration distance>.

(10) If "1 (execute using coordinate system set in spline file)" or "2 (execute using coordinate system set
with SetCalFrm command) is designated in <Frame transformation>, the path point data is converted
sequentially based on the designated method, and Ex-T spline interpolation is executed to pass
through those path points.

(11) If the coordinate system is not set in the spline file even though "1 (execute using coordinate system set
in spline file)" is designated in <Frame transformation>, error L2042 (Frame transformation coordinates
are not set) will occur.

(12) If the coordinate system cannot be calculated when "1 (execute using coordinate system set in spline
file)" is designated in <Frame transformation>, error L2041 (Can't calculate frame transformation
coordinates) will occur.

(13) If "2 (execute using coordinate system set with SetCalFrm command)" is designated for <Frame
transformation>, frame conversion is executed using the coordinate system set with the SetCalFrm
command executed last. If the SetCalFrm command has not been executed even once and the
coordinate system is not set, error L2042 (Frame transformation coordinates are not set) will occur.

(14) Switch between "0 (equivalent rotation movement)" and "1 (3-axis orthogonal movement)" by
designating <Posture interpolation type>. The equivalent rotation movement operates so that the
posture change between the path points has the minimum angle.
The 3-axis orthogonal motion generates the posture data with the J4, J5 and J6 axis angles instead of
the A, B and C axis coordinate values. Thus, even if the path point posture data (A, B, C axis coordinate
values) are the same, the robot's posture will change during the movement.
 Detailed explanation of command words 4-249

4

4MELFA-BASIC VI
(15) Transfer of the configuration flag (peculiar point transit) is not supported. If the configuration flag differs
between path points, error L2611 (Path point configuration flag is different) will occur.

(16) The filter characteristics applied on the acceleration/deceleration movement can be changed with
<Filter length>. Increase the filter length to make the movement during acceleration and deceleration
smoother. Note that if the filter length is too high, the movement will slow down and it will take a long
time for the Ex-T spline interpolation to end.

(17) If a signal output is set for the path point data, the general purpose output signal will be output with the
designated conditions when passing through the target path point.

(18) If the robot positioning complete condition is specified (Fine command, Fine J command, or Fine P
command), positioning completion will be confirmed at the Ex-T spline interpolation end position.

(19) Even if continuous movement is designated with the Cnt command, continuous movement will not take
place at the Ex-T spline interpolation start position and end position.

(20) Even if "Stop type 1" is designated for the Def Act command (interrupt condition and process definition),
if an interrupt occurs during the Ex-T spline interpolation, the robot will stop with the same deceleration
as "Stop type 2".

(21) The additional axis will not move from the Ex-T spline interpolation start position. Even if an additional
axis position is set for one of the interim path points, it will not be used during Ex-T spline interpolation.

(22) Step feed can be executed for the EMvSpl command, but step return cannot be executed. Error L2612
(Cannot execute step return) will occur.

(23) The mechanism’s control rights (GetM command) are required to execute the EMvSpl command.
(24) The EMvSPl command cannot be executed in a slot where the start conditions are ALWAYS or

ERROR. Error L3287 (Cannot execute (ERROR ALWAYS)) will occur.
(25) If a value outside the setting range is set for the EMvSpl command argument, error L3110 (Argument

value is out of range (EMvSpl)) will occur.

If an <Acceleration/deceleration distance> too short for the <Speed> is designated,
sudden acceleration/deceleration will take place and could cause robot vibration or
a servo error. Always set an appropriate acceleration/deceleration distance.

Related instructions]
SetCalFrm (Set Calibration Frame)

[Related system variables]
M_SplPno, M_SplVar, P_WkCord, P_ECord

[Related parameter]
WKnCORD("n" is 1 to 8), SPLOPTGC

 CAUTION
-250 Detailed explanation of command words

 4MELFA-BASIC VI
End (End)

[Function]
This instruction defines the final step of a program.
It is also used to indicate the end of a program explicitly, by entering the End instruction at the end of the
main processing, in case a sub program is attached after the main program. In the case of a sub program
called up by the CallP instruction, the control is returned to the main program when the End instruction is
executed.

[Format]

[Reference Program]
1 Mov P1
2 GoSub *ABC
3 End ' End the program.
 :
10 *ABC
11 M1=1
12 Return

[Explanation]
(1) This instruction defines the final step of a program. Use the Hlt instruction to stop a program in the

middle and put it in the pause status.
(2) If executed from the operation panel, a program is executed in the continuos operation mode; it will be

executed again from the top even if it contains an End instruction. If it is desired to end a program at the
End instruction, press the End key on the operation panel to stop the cycle.

(3) It is allowed to have several End statements within one program.
(4) The End statement does not need to be described at the end of the program.
(5) If the End command is executed by the sub program called by CallP, control will return to the main

program. The operation will be similar to the Return command of GoSub.
(6) The file and communication line which are opened are all closed by execution of the End command.
(7) At program End, the Spd, Accel, Oadl, JOvrd, Ovrd, Fine and Cnt settings will be initialized.

[Related instructions]
Hlt (Halt), CallP (Call P)

End
 Detailed explanation of command words 4-251

4

4MELFA-BASIC VI
Error (error)

[Function]
This instruction makes a program generate an error (9000s number).

[Format]
Normal programs

Constantly-executed programs (ALWAYS attribute)

[Terminology]
<Error No.> Either a constant or numeric operation expression can be set. Designate the No. within the range

of 9000 to 9299.
<Conditions> 0: Execution of the program which executed this Error command stops with error.

1: Execution of the program which executed this Error command does not stop with error.

[Reference Program]
(1) Generate the error 9000.
 10 Error 9000

(2) Change the error number to generate corresponding to the value of M1.
 4 If M1 <> 0 Then *LERR ' When M1 is not 0, branches to "*LERR".
 :
 14 *LERR
 15 MERR=9000+M1*10 ' Calculate the error number according to the value of M1.
 16 Error MERR ' The calculated error number is generated.
 17 End

[Explanation]
(1) It is possible to generate any error in the 9000's number range by executing this instruction.
(2) If a LOW level or HIGH level error is generated, the program is paused.

Steps after the Error command are not executed. A CAUTION error does not pause a program; the next
step and onward are executed. The action of system by error number is shown in the Table 4-16.

(3) It is possible to create up to 20 error messages using parameters UER1 to UER20.
(4) A system error occurs if a value outside the error number range shown in Table 4-16 is specified.

Table 4-16:Action of system by error number

[Related parameter]
UER1 to 20

Error[]<Error No.>

Error[]<Error No.>, <Conditions>

No. System behavior

9000 to 9099
(H level error)

The program execution is stopped, and the servo power is shut off.
The error state is reset when error reset is input.

9100 to 9199
(L level error)

The program execution is stopped.
The error state is reset when error reset is input.

9200 to 9299
(CAUTION)

The program execution is continued.
The error state is reset when error reset is input.
-252 Detailed explanation of command words

 4MELFA-BASIC VI
Exit

[Function]
Exits from a Function procedure.

[Format]

[Reference Program]
1 Function V Func
2 ' :
3 Exit Function ' Exits from the function processing.
4 FEnd

[Explanation]
(1) The program exits from the function processing (Function procedure).

[Related instructions]
Function... FEnd

Exit[]Function
 Detailed explanation of command words 4-253

4

4MELFA-BASIC VI
Fine (Fine)

[Function]
This instruction specifies completion conditions of the robot's positioning with number of encoder pulses. It
is invalid during the smooth movement control (Cnt 1).
Depending on the type of robot (RP series), positioning using the Dly instruction may be more effective than
using the Fine command.

[Format]

[Terminology]
<No. of pulses> Specify the positioning encoder pulses number.

This will be invalid to when set to 0. The default value is 0.
<Axis No.> Designate the axis No. to which the positioning pulses are to be designated. The positioning

pulses will be applied on all axes when omitted.

[Reference Program]
1 Fine 300 ' Designate 300 for the positioning pulses.
2 Mov P1
3 Fine 100,2 ' Change the 2nd axis positioning pulses to 100.
4 Mov P2
5 Fine 0 ' Invalidate the positioning pulse designation.
6 Mov P3
7 Fine 100 ' Designate 100 for the positioning pulses.
8 Mov P4

[Explanation]
(1) The Fine command does not complete movement instructions such as Mov by giving commands to the

servo; rather, it completes positioning by determining whether or not the feedback pulse value from the
servo is within the specified range. It is thus possible to confirm positioning more accurately.

(2) There are cases when the Dly instruction (timer) is used for positioning instead of the Fine instruction.
This instruction is easier to specify.

1 Mov P1
2 Dly 0.1

(3) Fine is invalid in the program until the Fine command is executed. Once Fine is validated, it remains
valid until invalidated.

(4) Fine is invalidated at the end of the program (Execution of the End instruction, program reset after
pausing).

(5) When the continuous movement control valid state (Cnt 1) is entered, the Fine command will be ignored
even if it is valid (i.e., it will be treated as invalid, but the status will be kept).

(6) To the addition axis (general-purpose servo axis), although the valid/invalid change of Fine is possible,
specification of the pulse number cannot be performed. The value registered in the "INP" parameter on
the servo amplifier side is used. Thus, when the integers other than zero are specified, the Fine
becomes effective by the parameter set value of servo amplifier, and the Fine becomes invalid when 0
is specified.

(7) If a positioning completion condition is specified using the Fine instruction while the compliance mode is
activated, depending on the operation the robot may be unable to reach the positioning completion
pulse of the target position, and will wait indefinitely for the completion of the operation instruction. As a
result, the program execution comes to a halt. Do not use the compliance mode and the Fine instruction
at the same time.

(8) The Fine command is affected by the encoder resolution or the gear ratio because positioning judgment
is made using encoder pulses of the motor axis. The output angle per pulse differs depending on the
model or the axis. To monitor positioning using the unit of the output axis (in units of mm or degree), use
the Fine P command or the Fine J command.

Fine[]<No. of pulses> [, <Axis No.>]
-254 Detailed explanation of command words

 4MELFA-BASIC VI
Fine J (Fine Joint)

[Function]
Specifies the robot positioning complete conditions with a joint axis value.
The Fine J command will be disabled during continuous operation control (Cnt 1).
The Fine command or Fine P command will be disabled for all axes when the Fine J command is executed.

[Format]

[Terminology]
< Positioning Width >The positioning width is specified with either a variable or constant and will be disabled

if 0 is specified. The default value is set to 0.
Units will be in either "mm" or "deg.", depending on the joint axis unit system.
 The minimum value that can be specified is 0.001.

< Axis No. > Specifies the number of the axis that specifies the positioning pulse, and will apply to
all axes if omitted. Specify with either a constant or numeric value variable.

[Reference Program]
1 Fine 1, J 'Specifies the positioning width for all axes to 1 [mm] (or [deg.]).
2 Mov P1
3 Fine 0.5, J, 2 'Changes the no.2 axis positioning width to 0.5 [mm] (or [deg.]).
4 Mov P2
5 Fine 0, J, 5 'Disables the no.5 axis positioning width specification.
6 Mov P3
7 Fine 0, J 'Disables the positioning width specification for all axes.
8 Mov P4

[Explanation]
(1) The Fine J command specifies the operation command complete condition (positioning accuracy) with a

feedback joint value. Operation completion is determined with a joint value, resulting in more accurate
positioning.

(2) The Fine J command deems the operation to be complete when the difference between the command
joint position and feedback joint position for all enabled axes is within the <Positioning Width>.

(3) Furthermore, there are also times when positioning is performed with a Dly command (timer) instead of
the Fine J command. This is easier to specify.
 1 Mov P1
 2 Dly 0.1

(4) Fine J is disabled for all axes by default. Once Fine J is enabled, the enabled status is applied
continuously until disabled.

(5) Fine J is disabled when a program is terminated (End command execution, program reset following an
interruption).

(6) The Fine J enabled status is temporarily ignored (disabled, status is maintained) when in the continuous
operation control enabled status (Cnt 1).

(7) The Fine command or Fine P command will be disabled for all axes when the Fine J command is
executed. (The status is not maintained.)

(8) Fine J can be enabled and disabled and the <positioning width> can be specified for additional axes
(multi-purpose servo axes) also.

(9) If the positioning complete condition is specified with the Fine J command when the compliance mode is
functioning, depending on the operation, there may be times when the robot is unable to reach the
positioning completion pulse for its target position, the system waits for completion of the operation
command, and program execution does not proceed any further. Do not use compliance mode and the
Fine J command simultaneously.

Fine[]<Positioning Width>, J [, <Axis No.>]
 Detailed explanation of command words 4-255

4

4MELFA-BASIC VI
Fine P (Fine Pause)

[Function]
Specifies the robot positioning complete conditions with a linear distance.
The Fine P command will be disabled during continuous operation control (Cnt 1).
The Fine command or Fine J command will be disabled for all axes when the Fine P command is executed.

[Format]

[Terminology]
<Linear Distance> The positioning linear distance [mm] is specified with either a variable or constant and

will be disabled if 0 is specified. The default value is set to 0.
The minimum value that can be specified is 0.001.

[Reference Program]
1 Fine 1, P 'Specifies the positioning linear distance to 1 mm.
2 Mov P1
3 Fine 0, P 'Disables the positioning linear distance specification.
4 Mov P2

[Explanation]
(1) The Fine P command specifies the operation command complete condition (positioning accuracy) with a

feedback linear distance. Operation completion is determined with a linear distance, resulting in more
accurate positioning.

(2) The operation is deemed to be complete when the linear distance between the respective robot current
positions obtained from the command pulse and feedback pulse is within the <Linear Distance>.

(3) Furthermore, there are also times when positioning is performed with a Dly command (timer) instead of
the Fine P command. This is easier to specify.
 1 Mov P1
 2 Dly 0.1

(4) Fine P is disabled for all axes by default. Once Fine P is enabled, the enabled status is applied
continuously until disabled.

(5) Fine P is disabled when a program is terminated (End command execution, program reset following an
interruption).

(6) The Fine P enabled status is temporarily ignored (disabled, status is maintained) when in the continuous
operation control enabled status (Cnt 1).

(7) The Fine command or Fine J command will be disabled for all axes when the Fine P command is
executed. (The status is not maintained.)

(8) Fine P cannot be enabled and disabled for additional axes (multi-purpose servo axes). Fine P is always
disabled.

(9) If the positioning complete condition is specified with the Fine P command when the compliance mode is
functioning, depending on the operation, there may be times when the robot is unable to reach the
positioning completion pulse for its target position, the system waits for completion of the operation
command, and program execution does not proceed any further. Do not use compliance mode and the
Fine P command simultaneously.

Fig.4-24:The example of Fine P command use

Fine[]<Linear Distance>, P

A sphere with a radius of 1mm.Current
position

Fine 1, P
Mov P1

P1

Positioning is completed when the current position moves into the sphere with a radius of
1mm with P1 set to the center.
-256 Detailed explanation of command words

 4MELFA-BASIC VI
For - Next (For-next)

[Function]
Repeatedly executes the program between the For statement and Next statement until the end conditions
are satisfied.

[Format]

[Terminology]
<Counter> Describe the numerical variable that represents the counter for the number of repetitions.

Same for <Counter 1> and <Counter 2>.
<Default Value> Set default value of the counter for the number of repetitions as a numeric operation

expression.
<End Value> Set the end value of the counter for the number of repeats as a numeric operation

expression.
<Increment> Set the value of the increments for the counter for the number of repetitions as a numeric

operation expression. It is allowed to omit this argument, including Step.

[Reference Program]
(1) A program that adds the numbers 1 to 10
1 MSUM=0 ' Initialize the total MSUM.
2 For M1=1 To 10 ' Increase the counter by 1 from 1 to 10 for the numeric variable M1.
3 MSUM=MSUM+M1 ' Add M1 value to numeric variable MSUM.
4 Next M1 ' Return to step 2.

(2) A program that puts the result of a product of two numbers into a 2-dimensional array variable
1 Dim MBOX(10,10) ' Reserve space for a 10 x 10 array.
2 For M1=1 To 10 Steo 1 ' Increase the counter by 1 from 1 to 10 for the numeric variable M1.
3 For M2=1 To 10 Step 1 ' Increase the counter by 1 from 1 to 10 for the numeric variable M2.
4 MBOX(M1,M2)=M1*M2 ' Substitute the value of M1*M2 for the array variable MBOX (M1, M2).
5 Next M2 ' Return to step 3.
6 Next M1 ' Return to step 2.

(3) Process of the For-Next can be skipped by Break
1 MSUM=0 ' Initialize the total MSUM.
2 For M1=1 To 10 ' Increase the counter by 1 from 1 to 10 for the numeric variable M1.
3 MSUM=MSUM+M1 ' Add M1 value to numeric variable MSUM.
4 If M_In(8)=1 Then Break ' If the input signal 8 is turned on, jump to Step 6.
5 Next ' Return to step 2.
6 If M_BrkCq=1 Then Hlt

[Explanation]
(1) It is possible to describe For-Next statements between other For-Next statements.Jumps in the program

caused by the For-Next instruction will add one more level to the control structure in a program. It is
possible to make the control structure of a program up to 16 levels deep. An error occurs at execution if
16 levels are exceeded.

(2) If a GoTo instruction forces the program to jump out from between a For statement and a Next
statement, the free memory available for control structure (stack memory) decreases. Thus, if a
program is executed continuously, an error will eventually occur. Write a program in such a way that the
loop exits when the condition of the For statement is met.

For[]<Counter> = <Default value> To <End Value> [Step <Increment>]

 :

Next[] [<Counter 1>]
 Detailed explanation of command words 4-257

4

4MELFA-BASIC VI
(3) A run-time error occurs under the following conditions.
*The counter's <Default Value> is greater than <End Value> and <Increment> is a positive number.
*The counter's <Default Value> is smaller than <End Value>, and <Increment> is a negative number.

(4) A run-time error occurs if a For statement and a Next statement are not paired.
(5) When the Next statement corresponds to the closest For statement, the variable name in the Next

statement can be omitted. In the example, "M2" in step 5 and "M1" in step 6 can be omitted. The
processing speed will be slightly faster to omit the counter variable.

(6) In the For, it can escape to the next step of the Next by Break. That is, process of the For-Next can be
skipped.

FPrm (FPRM)

[Function]
Defines the order of the arguments, the type, and number for the main program that uses arguments in a
sub program (i.e., when the host program uses another program with Call P).

[Format]

[Terminology]
<Dummy Argument> The variable in the sub program that is transferred to the main statement when

executed. All variables can be used. Up to 16 variables may be used.

[Reference Program]
<Main program>
1 M1=1
2 P2=P_Curr
3 P3=P100
4 CallP "100",M1,P2,P3 ' It can be described like "CallP "100", 1, P_Curr, P100" also.

<Sub program "100">
1 FPrm M1,P1,P2
2 If M1=1 Then GoTo *LBL
3 Mov P1
4 *LBL
5 Mvs P2 ' Return to the main program.
6 End

[Explanation]
(1) FPrm is unnecessary if there are no arguments in the sub program that is called up.
(2) An error occur when the type or number is different between the argument of CallP and the dummy

argument that defined by FPrm.
(3) It is not possible to pass the processing result of a sub program to a main program by assigning it in an

argument.
To use the processing result of a sub program in a main program, pass the values using external
variables.

[Related instructions]
CallP (Call P)

FPrm[]<Dummy Argument> [,<Dummy Argument>] ...
-258 Detailed explanation of command words

 4MELFA-BASIC VI
Function... FEnd

[Function]
Defines a Function procedure (function).

[Format]

[Terminology]
<Return value type> Designate a return value type.

P: XYZ type
J: Joint type
W: Work coordinate type
M: Numeric value type (Designate a type with a postfix. When a postfix is omitted,
the single-precision real number type is designated.)
C: Character string type
V: No return value (void type)

<Procedure name> A user-selected character string (Up to 32 alphanumeric characters)
<Dummy Argument> The argument names are the same as the variable names corresponding to the

five data types in "4.3.8Data type".
To pass an argument, add the keyword of "ByVal" (call by value, it can be omitted)/
"ByRef"(call by reference) before the argument name.

<Function processing> Describe the function processing.
<Return value> Describe the function return value in a specified type.

[Reference Program]
1 Function Main
2 Dim Mary(10)
3 For Idx=1 To 10 Step 1 ' Processing for storing a value in Mary
4 Mary(Idx) = Idx
5 Next
6 Msum = Sum(Mary, 10) ' Calculates the total value of Mary.
7 FEnd
8 ' --
9 ' Calculates the total value of the first dimensional array specified in the first argument.
10 ' Return value: Total value
11 ' First argument: First dimensional array
12 ' Second argument: Number of elements
13 Function M Sum(ByRef Mary(), ByVal Melem)
14 Msum = 0
15 For Idx=1 To Melem Step 1
16 Msum = Msum + Mary(Idx)
17 Next
18 Sum = Msum ' Returns the total value of Mary.
19 Exit Function
20 FEnd

Function[]<Return value type>[]<Procedure name>([<Dummy Argument>[, <Dummy Argument>]...])

 <Function processing>

 <Procedure name> = <Return value>

 Exit[]Function

FEnd
 Detailed explanation of command words 4-259

4

4MELFA-BASIC VI
[Explanation]
(1) Up to 256 Function procedures can be defined.
(2) Specification of the return value can be omitted. When the specification of the return value is omitted, the

void type is set.
(3) Up to 16 dummy arguments can be defined.
(4) When a procedure is defined, a Function Main procedure needs to be defined as an entry point in the

program file. (Write the program conventionally in a program file in which a Function Main procedure
does not exist.)

(5) When the program in which a Function Main procedure exists is called with the CallP instruction, the
argument of the CallP instruction is passed to the dummy argument of the procedure. (The FPrm
instruction is not required.)
Note that a Function Main procedure without dummy arguments cannot be defined when a Function
Main procedure with dummy arguments is defined.

(6) In a program with a Function Main procedure, instruction statements (except for instructions that can be
executed by the preprocessor) must be described in the procedure.
*Instructions that can be executed by the preprocessor are as follows.
• #Include statement
• Definition instruction Note 1)

• Conditional branching/Repetition instruction
• Arithmetic operation/Comparison operation
• Tool/Base instruction
Note1) Any processing to call a subroutine (GoSub...Return statement) or GoTo statement cannot be
described with instructions (including the Def Act instruction) which are defined outside the procedure.

(7) All the variables defined in a program in which a Function procedure does not exist are handled as
global variables in the program.

(8) To call a Function procedure, parentheses must be described after <Procedure name>.
(9) To specify an array for an argument, add "(<Number of elements>[, <Number of elements>[, <Number of

elements>]])" to the argument name and declare the function.
Omitting <Number of elements> can pass an array whose number of elements and dimensions is
undefined. (* Up to third dimensions)
For correspondence between dummy arguments and actual arguments when an array is specified, refer
to the following table.

(10) When an array is specified for an argument and <Number of elements> is omitted, the <Number of
elements> in the later dimensions is not determined.

(11) When element data is specified for an actual argument, call by value is always used.
(12) Condition variables cannot be specified for arguments.
(13) The variables declared and defined in the function are handled as local variables, which are valid only

in the function.
(14) If a variable with the same name as a local variable has already been declared and defined outside the

function, the local variable takes precedence.
(15) Function can be saved in the static variables.

In the variable editor, the program is displayed as follows.
"<Procedure name>::<Variable name>"

Actual argument

Not an array

Array
(The number of

elements is
determined.)

Array
(The number of
elements is not

determined.)

Dummy
argument

Not an array OK NG NG

Array
(The number of

elements is
determined.)

NG

OK (Only when the
number of elements
is the same as the

number of dimensions.)

NG

Array
(The number of
elements is not
determined.)

NG OK OK
-260 Detailed explanation of command words

 4MELFA-BASIC VI
(16) The local variable value is discarded after the function is ended.
(17) To hold the local variable value even after the function is ended, add a Static keyword before the

variable name at variable declaration to change the local variable to a static variable.
(18) If no processing is performed for the return value, the default value of the return value type is returned.

The following shows the default values of each data type.
* XYZ/Work coordinate type: (0,0,0,0,0,0,0,0)(,)
* Joint type: (0,0,0,0,0,0,0,0)
* Numeric value type: 0
* Character string type: ""

(19) The Function exits from the function processing with Exit Function.
(20) The following values take over the set values even at the function call destination (and the function call

source).
Cnt, Fine, MvTnue, Tool, Base, Accel, Spd, Ovrd, JOvrd

(21) Set parameter FUNCSPEC to "1" when combining other program read commands (CallP, XLoad,
XRun, #Include).

[Related parameter]
FUNCSPEC
 Detailed explanation of command words 4-261

4

4MELFA-BASIC VI
GetM (Get Mechanism)

[Function]
This instruction is used to control the robot by a program other than the slot 1 program when a multi-task is
used, or to control a multi-mechanism by setting an additional axis as a user-defined mechanism.
Control right is acquired by specifying the mechanism number of the robot to be controlled. To release
control right, use the RelM instruction.

[Format]

[Terminology]
<Mechanism No.> 1 to 3, Specify this argument using a numerical or a variable.

The standard system's robot arm is assigned to mechanism 1.

[Reference Program]
(1) Start the task slot 2 from the task slot 1, and control the mechanism 1 in the task slot 2.
Task slot 1.
1 RelM ' Releases the mechanism in order to control mechanism 1 using slot 2.
2 XRun 2,"10" ' Start the program 10 in slot 2.
3 Wait M_Run(2)=1 ' Wait for the starting confirmation of the slot 2.
 :

Task slot 2. (Program "10")
1 GetM 1 ' Get the control of mechanism 1.
2 Servo On ' Turn on the servo of mechanism 1.
3 Mov P1
4 Mvs P2
5 P3=P_Curr ' Substitute P3 in mechanism 1 current position.
6 Servo Off ' Turn mechanism 1 servo OFF.
7 RelM ' Releases the control right of mechanism 1.
8 End

[Explanation]
(1) Normally (in single task operation), mechanism 1 is obtained in the initial status; it is not necessary to

use the GetM instruction.
(2) Because the control right of the same mechanism cannot be acquired simultaneously by multiple tasks,

the following procedure is required in order to operate the robot by other than slot 1:
First, release control right using the RelM instruction by the slot 1 program. Next, acquire control right
using the GetM instruction by the slot program that operates the robot. An error will be generated if the
GetM instruction is executed again using a slot that has already acquired control right.

(3) The instructions requiring control right include the motor power ON/OFF instruction, the interpolation
instruction, the speed acceleration deceleration specification instruction, and the Tool/Base instruction.

GetM[]<Mechanism No.>

Commands Accel, Base, CavChk, Cmp Jnt, Cmp Pos, Cmp Tool, Cmp Off, CmpG, Cnt, ColChk, ColLvl, Def Plt, Plt,
Fine, Fsc, FsGChg, HOpen, HClose, JRC, LoadSet, Mov, Mva, Mvc, Mvr, Mvr2, Mvr3, Mvs, MvSpl,
MvTune, Mxt, Oadl, P_Base, Prec, Servo, SetCalFrm, Spd, SpdOpt, Tool, Torq, Trk, EMvc, EMvr, EMvr2,
EMvr3, EMvs

Functions Align, PosCq, PosMid
* The following commands do not require GetM for Mechanism 1 if the controller software version is the

one mentioned below or later. In this case, the commands can be executed without generating an error.
JtoP, PtoJ Ver.N8/P8 or later
Inv Ver.R3a/S3a(Special ES Ver.R3dZ)
Fram................... Ver.R3a/S3a(Special ES Ver.R3dZ)

Robot status
variables

M_RSpd, M_ESpd
-262 Detailed explanation of command words

 4MELFA-BASIC VI
(4) If the argument is omitted from the system status variable requiring the mechanism designation, the
currently acquired mechanism will be designated.

(5) If the program is stopped, RelM will be executed automatically by the system. When the program is
restarted, GetM will be executed automatically.

(6) This instruction cannot be used in a constantly executed program.

[Related instructions]
RelM (Release Mechanism)

GoSub (Return)(Go Subroutine)

[Function]
Calls up the subroutine at the designated step label. Be sure to return from the jump destination using the
Return instruction.

[Format]

[Terminology]
<Call Destination> Describe the step label name.

[Reference Program]
1 GoSub *LBL
2 End
 :
20 *LBL
21 Mov P1
22 Return ' Be sure to use the Return instruction to return.

[Explanation]
(1) Make sure to return from the subroutine by using the Return command. If return by GoTo command, the

memory for control structure (stack memory) will decrease, and it will cause the error at continuous
executing.

(2) The call of other subroutines is possible again by the GoSub command out of the subroutine. This
approach can be employed approximately up to 800 times.

(3) When the step or label of the call place does not exist, it becomes the execution-time error.

[Related instructions]
Return (Return)

GoSub[]<Call Destination>
 Detailed explanation of command words 4-263

4

4MELFA-BASIC VI
GoTo (Go To)

[Function]
This instruction makes a program branch to the specified label step unconditionally.

[Format]

[Terminology]
<Branch Destination> Describe the label name.

[Reference Program]
 :
 10 GoTo *LBL ' Branches to the label *LBL.
 :
 100 *LBL
 101 Mov P1

[Explanation]
(1) If a branch destination or label does not exist, an error will occur during execution.

GoTo[]<Branch Destination>
-264 Detailed explanation of command words

 4MELFA-BASIC VI
GpsChk (Get position check)

[Function]
This command starts/stops monitoring the condition defined in the Def Gps command or Def Map command
using the get-position-quick function (GPS function).
Before executing this command, define the monitored condition in the Def Gps command or Def Map
command.

[Format]

[Terminology]
<On/Off> On: Monitoring of the condition defined in the Def Gps command or Def Map command

is started.
The data stored in the M_Gps(n), P_GpsX(), and M_MapX() corresponding the target
monitoring number is cleared to zero ("X" indicates the same number as the target
monitoring number from 1 to 8).

Off: Monitoring of the target input signal is stopped.
The data being stored in the M_Gps(n), P_GpsX(), and M_MapX() corresponding
to the target monitoring number is imported.

<Monitoring No.> Set the same monitoring number as set in the Def Gps command or Def Map command.

[Reference Program]
1 Def Gps 7,852,Off,1 ‘ The position data of the mechanism No. 1 is recorded for the monitoring No. 7

when the signal No. 852 is turned off.
2 GpsChk On,7 ‘ Monitoring a condition for the monitoring No. 7 is started.
3 Mvs P1 ‘ Moves to P1
4 GpsChk Off,7 ‘ Monitoring a condition for the monitoring No. 7 is stopped.

[Explanation]
(1) This command starts/stops monitoring the condition defined in the Def Gps command or Def Map

command.
(2) The data set in <Monitoring No.> in the P_GpsX() and M_Gps(n) is cleared to zero when the GpsChk On

command is executed.
(3) The data set in <Monitoring No.> in the P_GpsX() and M_Gps(n) is created when the GpsChk Off

command is executed. Before using the data obtained using the get-position-quick function (GPS
function), execute the GpsChk Off command.

(4) This command is not available for the programs in which the starting condition is set to ALWAYS or
ERROR.

[Related instructions]
Def Gps (Define get position), Def Map (Define mapping)

[Related system status variables]
M_Gps, P_Gps1 to P_Gps8, M_Map1 to M_Map8

GpsChk[] <On/Off>, <Monitoring No.>
 Detailed explanation of command words 4-265

4

4MELFA-BASIC VI
Hlt (Halt)

[Function]
Interrupts the execution of the program which executed this Hlt command.
In use of the multitasking function, the executing status of other programs is not affected.

[Format]

[Reference Program]
(1) Stop the robot on some conditions.
10 If M_In(18)=1 Then Hlt ' Stop the program execution when the input signal 18 turns on.
11 Mov P1 WthIf M_In(17)=1, Hlt ' When the input signal 17 turns on during moving to P1, the

program execution is stopped.

(2) Stop the robot without condition during program execution.
15 Hlt ' Stop the program without condition.

[Explanation]
(1) Interrupts the execution of the program which executed this Hlt command, and will be waiting state.
(2) In use of the multitasking function, only the task slot which executed this command interrupts execution.
(3) To restart, start the O/P or issue the start signal from an external source. The program will be restarted at

the next step after the Hlt statement. Note that if the Hlt statement is an appended statement, the
operation will restart from the same step of the program where it was interrupted.

[Related instructions]
End (End)

When using the tracking function
When this Hlt command is executed during tracking movement, tracking movement
will be stopped (an equivalent for the Trk Off command) and execution of the
program will be interrupted. In use of the multi-mechanism, tracking movement is
stopped to the robot of the mechanism number got by the GetM command. When
you continue tracking movement by the restart (continuation), please create the
program to execute the Trk On command.

Hlt

 CAUTION
-266 Detailed explanation of command words

 4MELFA-BASIC VI
HOpen / HClose (Hand Open/Hand Close)

[Function]
Commands the hand to open or close.

[Format]

[Terminology]
<Hand No.> Select a numeric value between 1 and 8. Specify this argument using a

constant or a variable.

[Reference Program]
1 HOpen 1 ' Open hand 1.
2 Dly 0.2 ' Set the timer to 0.2 sec. (Wait for the hand to open securely.)
3 HClose 1 ' Close hand 1.
4 Dly 0.2 ' Set the timer to 0.2 sec. (Wait for the hand to close securely.)
5 Mov PUP '

[Explanation]
(1) The operation (single/double) of each hand is set with parameter HANDTYPE.
(2) If the hand type is set to double solenoid, hands 1 to 4 can be supported. If the hand type is set to single

solenoid, hands 1 to 8 can be supported.
(3) The status of the hand output signal when the power is turned ON is set with parameter HANDINIT.
(4) The hand input signal can be checked with the robot status variable M_HndCq ("Hand input number").

The signal can also be checked with the input signals 900 to 907.
1 HClose 1
2 *LBL: If M_HndCq(1)<>1 Then GoTo *LBL
3 Mov P1

(5) There are related parameters. Refer to Page 539, "5.10 Automatic return setting after jog feed at pause"
and, Page 542, "5.13 About default hand status" of this manual.

[Related system variables]
M_In/M_Inb/M_In8/M_Inw/M_In16/M_In32 (900s number), M_Out/M_Outb/M_Out8/M_Outw/M_Out16/
M_Out32 (900s number), M_HndCq
For the CR860 controller, the hand input/output signal number 900 corresponds to the number 764.

[Related instructions]
Loadset (Load Set), Oadl (Optimal Acceleration)

[Related parameter]
HANDTYPE, HANDINIT
Refer to Page 539, "5.10 Automatic return setting after jog feed at pause"and, Page 542, "5.13 About
default hand status".

HOpen[]<Hand No.>
HClose[]<Hand No.>
 Detailed explanation of command words 4-267

4

4MELFA-BASIC VI
If...Then...ElseIf...Else...EndIf (If Then Else)

[Function]
A process is selected and executed according to the results of an expression.

[Format]

.

[Terminology]
<Expression> Describe the expression targeted for comparison as a comparison operation expression

or logic operation expression.
<Process> Describe the process following Then for when the comparison results are true, and the

process following Else for when the comparison results are false.
[Reference Program]

(1) Describes If...Then...Else... in a line.
10 If M1>10 Then *L100 ' When M1 is larger than 10, jump to the step *L100.
11 If M1>10 Then GoTo *L20 Else GoTo *L30 ' If M1 is larger than 10, it jumps to step *L20;

if smaller than 10, it jumps to label *L30.
The "GoTo" after" Then" or "Else" can be
omitted.

(2) Using a block structure of If...Then...Else...EndIf.
10 If M1>10 Then
11 M1=10
12 Mov P1
13 Else
14 M1=-10
15 Mov P2
16 EndIf

(3) Describes If...Then...Else...EndIf block inside Then or Else.
30 If M1>10 Then
31 If M2 > 20 Then
32 M1 = 10
33 M2 = 10
34 Else
35 M1 = 0
36 M2 = 0
37 EndIf
38 Else
39 M1 = -10

If[]<Expression>[]Then[]<Process>[][Else <Process>]

If[]<Expression>[]Then
 <Process>
 <Process>
 Break
 :
[ElseIf[]<Expression>[]Then
 <Process>
 <Process>
 Break
 :]
[Else
 <Process>
 <Process>
 Break
 :]
EndIf
-268 Detailed explanation of command words

 4MELFA-BASIC VI
400 M2 = -10
410 EndIf

(4) Describes the Break structure in the Then or Else, it can escape to the next step of EndIf.
30 If M1>10 Then
31 If M2 > 20 Then Break ' Once the designated conditions are

established, the process escapes to step 39.
32 M1 = 10
33 M2 = 10
34 Else
35 M1 = -10
36 If M2 > 20 Then Break ' Once the designated conditions are

established, the process escapes to step 39.
37 M2 = -10
38 EndIf
39 If M_BrkCq=1 Then Hlt
40 Mov P1

[Explanation]
(1) The If .. Then .. Else .. statements should be contained in one step.
(2) It is allowed to split an If .. Then .. ElseIf .. Else .. EndIf block over several steps.
(3) Else can be omitted.
(4) Make sure to include the EndIf statement in the If .. Then .. ElseIf .. Else .. EndIf block.
(5) It is possible to describe the ElseIf statement in multiple lines.
(6) If the GoTo instruction is used to jump out from inside an If .. Then .. ElseIf .. Else .. EndIf block, an

error will occur when the memory for control structure (stack memory) becomes insufficient.
(7) For If .. Then .. ElseIf .. Else .. EndIf, it is possible to describe If .. Then .. ElseIf .. Else .. EndIf inside

Then or Else. (UP to eight levels of nesting is allowed.)
(8) GoTo following Then or Else may be omitted.

Example) If M1 > 10 Then *L200 Else *L300
Also, only when Then is followed by GoTo, either one of Then or GoTo may be omitted. Else
cannot be omitted.

 Example) If M1 > 10 Then GoTo *L200 (The program at left can be rewritten as shown below.)
→ If M1 > 10 Then *L200
→ If M1 > 10 GoTo *L200

(9) In the Then or the Else, it can escape to the next step of EndIf by Break. That is, process of If Then EndIf
can be skipped.

(10) Logic numbers can be described in the condition expression. If the logic number is not 0, then it is true
(the condition is met), and if 0, it is false. Therefore, a description such as one below can be used.

Example) If M_IN(900) Then M_Out(30)=1
When the input signal 900 is on, it is processed as true (M_In(900) = 1). Consequently, the description
following Then is executed.
When the input signal 900 is off, it is processed as false (M_In(900) = 0). Consequently, the description
following Then is not executed.

(11) If the Else statement is described before ElseIf statement, an error will occur.
 Detailed explanation of command words 4-269

4

4MELFA-BASIC VI
Include

[Function]
Reads a specified program.

[Format]

[Terminology]
<Program Name> Designate a program name to be read.

[Reference Program]
1 #Include "LIB1" ' Reads the program.
2 '
3 Function Main
4 Mvs PData1 ' Uses the common variables of the read program.
5 Func1() ' Calls the functions of the read program.
6 FEnd

1 ' LIB1.MB6
2 Def Pos PData1, PData2
3 Function V Func1
4 Mvs P1
5 Mvs P2
6 Mvs P3
7 FEnd

[Explanation]
(1) Up to 64 #Include statements (when a further #Include statement is declared in a program read by an

#Include statement) can be declared including multiple includes.
(2) The specified program is read in the step in which the #Include statement is described.
(3) When an #Include statement is declared in a Function procedure, an error will occur at execution.
(4) When the same file is specified for several times, the file is not read after the second reading.

(The program which has been read in the program specified with the #Include statement is included.)
(5) When the read source program (where the #Include statement is described) is specified, the

specification is ignored.
(6) If a variable or function with the same name has existed in the read destination program (specified with

the #Include statement), the variable or function in the read source program (where the #Include
statement is described) takes precedence.

(7) If a variable or function with the same name exists among the read destination programs, the variable or
function in the program read later (the #Include statement is written later) takes precedence.

(8) Functions with the same name among programs are regarded as overloaded functions if the signatures
of the functions are different.

#Include[]"<Program Name>
-270 Detailed explanation of command words

 4MELFA-BASIC VI
Input (Input)

[Function]
Inputs data into a file (including communication lines). Only AscII character data can be received.

[Format]

[Terminology]
<File No.> Describe a number between 1 and 8.

This corresponds to the file No. assigned with the Open command.
<Input data name> Describe the variable name for saving the input data. All variables can be described.

[Reference Program]
1 Open "COM1:" AS #1 ' Assign RS-232-C to file No. 1.
2 Input #1, M1 ' The value will be set to the numerical variable M1 if data are inputted from the

keyboard.
3 Input #1, CABC$ '
 :
10 Close #1

[Explanation]
(1) Data is input from file having the file No. opened with the Open statement, and is substituted in the

variable. If the Open statement has not been executed, an error will occur.
(2) The type of data input and the type of variable that is substituting it must be the same.
(3) When describing multiple variable names, use a comma (,) between variable names as delimiters.
(4) When the Input statement is executed, the status will be "standby for input. "The input data will be

substituted for the variables at the same time as the carriage return (CR and LF) are input.
(5) If the protocol (in the case of the standard port: the "CPRC232" parameter is 0) of the specified port is for

PC support (non procedure), it is necessary to attach "PRN" at the head of any data sent from a PC.
Normally, the standard port is connected to a PC and used for transferring and debugging robot
programs. Therefore, it is recommended to use the optional expansion serial interface if a data link is
used.

(6) If the number of elements input is greater than the number of arguments in the Input statement, they will
be read and discarded.
When the End or Close statement is executed, the data saved in the buffer will be erased.

 Example) To input both a character string, numeric value and position.
10 Input #1,C1$,M1,P1

Data sent from the PC side
 (when received by the standard port of the robot: the "CPRC232" parameter is 0)

MELFA is substituted in C1$, 125.75 in M1, and (130.5, -117.2,55.1,16.2,0,0)(1,0) in P1.

[Related instructions]
Open (Open), Close (Close), Print (Print)

Input[]#<File No.>, <Input data name> [, <Input data name>] ...

PRN MELFA,125.75,(130.5,-117.2,55.1,16.2,0,0)(1,0) CR
 Detailed explanation of command words 4-271

4

4MELFA-BASIC VI
JOvrd (J Override)

[Function]
Designates the override that is valid only during the robot's joint movements.

[Format]

[Terminology]
<Designated override> Describe the override as a real number.

A numeric operation expression can also be described.
Unit: [%] (Recommended range: 1 to 100.0)

[Reference Program]
1 JOvrd 50
2 Mov P1
3 JOvrd M_NJovrd ' Set the default value.

[Explanation]
(1) The JOvrd command is valid only during joint interpolation.
(2) The actual override is = (Operation panel (T/B) override setting value) x (Program override (Ovrd

command)) x (Joint override (JOvrd command)). The JOvrd command changes only the override for the
joint interpolation movement.

(3) The 100% <Designate override> is the maximum capacity of the robot. Normally, the system default
value (M_NOvrd) is set to 100%. The value is reset to the default value when the End statement is
executed or the program is reset.

[Related instructions]
Ovrd (Override), Spd (Speed)

[Related system variables]
M_NJovrd (System default value), M_JOvrd (Currently specified joint override)

JOvrd[]<Designated override>
-272 Detailed explanation of command words

 4MELFA-BASIC VI
JRC (Joint Roll Change)

[Function]
• This instruction rewrites the current coordinate values by adding +/-360 degrees to the current joint

coordinate values of the applicable axis (refer to <Axis No> in [Terminology]) of the robot arm.
• User-defined axis (additional axis, user defined mechanism)

This instruction rewrites the current coordinate values by adding/subtracting the value specified by a
parameter to/from the current joint coordinate values of the specified axis. This instruction can be used for
both rotating and linear axes. The origin can also be reset at the current position.

[Format]

[Terminology]
<Numeric Value> Specify an incremental/decremental number (a multiple of 360 degrees). Description

by the constant or the variable is possible (J1 edition or later is possible).
Example) +3: Increases the applicable axis angle by 1080 degrees.

 -2: Decreases the angle by 720 degrees.
<+1>: The current joint angle of the designated axis is incremented by the

amount designated in parameter JRCQTT (The sign can be omitted.).
For the priority axes of the robot arm, it is fixed at 360 degrees.

<-1>: The current joint angle of the designated axis is decremented by the
amount designated in parameter JRCQTT. For the priority axes of the
robot arm, it is fixed at 360 degrees.

<0>: The origin for the designated axis is reset at the value designated in
parameter JRCORG.
This can be used only for the user-defined axis.

<Axis No> The target axis is specified with the number. The priority axes are used if omitted.
Note that this argument cannot be omitted if additional axes and/or user-defined
mechanical axes are the targets.
[Applicable Models and Applicable Axes]

(1)Applicable models and priority axes

(2)Additional axes of all models
(3)All axes of user defined mechanisms

[Reference Program]
1 Mov P1 ' Moves to P1.(The movement to which the J6 axis moves in the minus direction)
2 JRC +1 ' Add 360 degrees to the current coordinate values of the applicable axis.
3 Mov P1 ’ Moves to P1.
4 JRC +1 ' Add 360 degrees to the current coordinate values of the applicable axis.
5 Mov P1 ' Moves to P1.
6 JRC -2 ’ Subtract 720 degrees from the current coordinate values of the applicable axis.

(Reverts)

[Explanation]
(1) With the JRC 1/-1 instruction (JRC n/-n), the current joint coordinate values of the specified axis are

incremented/decremented.
The origin for the designated axis is reset with the JRC 0 command.
Although the values of the joint coordinates change, the robot does not move.

(2) When using this command, change the movement range of the target axis beforehand so that it does not
leave the movement range when the command is executed. The range can be changed by changing
the - side and + side value of the corresponding axis in the joint movement range parameter "MEJAR".
Set the movement range for the rotating axis in the range of -2340 deg. to 2340 deg.

JRC < [+] <Numeric Value> / -<Numeric Value> / 0 > [, < Axis No>]

RH-FRH/RH-CRH series: J4 axis (priority axis)
RV-FR series: J6 axis (priority axis)
 Detailed explanation of command words 4-273

4

4MELFA-BASIC VI
(3) If the designated axis is omitted, the priority axis will be the target. The priority axis is the rotating axis (J6
axis) at the end of the robot.

(4) If the designated axis is omitted when a priority axis does not exist (robot incapable of JRC), or if the
designated axis is not a target for JRC, an error will occur when the command is executed.

(5) If the origin is not set, an error will occur when the command is executed.
(6) The robot is stopped while the JRC command is executed. Even if Cnt is validated, the interpolation

connection will not be continuous when this command is executed.
(7) The following parameter must be set before using the JRC command.

Set JRCEXE to 1. (JRC execution enabled)
Change the movement range of the target axis with MEJAR.
Set the position change amount during the JRC 1/-1(JRC n/-n) execution with JRCQTT.
(Only for the additional axis or user-defined mechanism.)
Set the origin position for executing JRC 0 with JRCORG.
 (Only for the additional axis or user-defined mechanism.)

(8) When parameter JRCEXE is set to 0, no process will take place even if JRC command is executed.
(9) If the movement amount designated with parameter JRCQTT is not within the pulse data 0 to Max., an

error will occur during the initialization. Here, Max. is 2 ^ (Number of encoder bits + 15) - 1. For example,
with a 13-bit encoder (8192 pulses), this will be Max. = 2 ^ (13+15)-1 = 0x0fffffff,
and for a 14-bit encoder (16384 pulses), this will be Max. 2 ^ (14+15)-1 = 0x1fffffff.

The movement amount to pulse data conversion is as follows:
For rotating axis

Pulse data = movement amount (deg.)/360 * gear ratio denominator/gear ratio numerator *
Number of encoder pulses

For linear axis
Pulse data = movement amount (mm) * gear ratio denominator/gear ratio numerator * Number of
encoder pulses

(10) The origin data will change when JRC is executed, so the default origin data will be unusable.
If the controller needs to be initialized due to a version upgrade, etc., the parameters must be backed
up beforehand in the original state.

(11) Step return operation is not possible with the JRC command.
(12) This command cannot be used in a constantly executed program.
(13) Do not power off the controller during execution of a JRC command. Doing so may result in incorrect

origin data, causing a C1761 error (Illegal origin data in robot arm) to occur. In this case, the origin
needs to be set again.

[Related parameter]
JRCEXE

Set whether to enable/disable the JRC execution.
Execution disabled = 0 (default value)/execution enabled = 1

JRCQTT
Designate the amount to move (1 deg./1mm unit) when incrementing or decrementing with the JRC
command in additional axis or user-defined mechanism.
For the JRC's applicable axis on the robot arm side, it is fixed at 360 degrees regardless of this setting.

JRCORG
Designate the origin for executing JRC 0. in additional axis or user-defined mechanism.
Refer to Page 492, "5 Functions set with parameters" for detail.
-274 Detailed explanation of command words

 4MELFA-BASIC VI
Loadset (Load Set)

[Function]
This instruction specifies the condition of the hand/workpiece at execution of the Oadl instruction.
And, when using the interference avoidance function, specify the hand number and the work number.
(Specify the model which is the target of the interference check)

[Format]

[Terminology]
<Hand condition No.> 1 to 8.Designate the hand condition (HNDDAT 1 to 8) No. for which the weight and

size are designated.
<Workpiece condition No.>

1 to 8. Designate the hand condition (WRKDAT 1 to 8) No. for which the weight
and size are designated. .

[Reference Program]
1 Oadl On
2 LoadSet 1,1 ' Hand 1(HNDDAT1) and workpiece 1(WRKDAT1) conditions.
3 Mov P1
4 Mov P2
5 LoadSet 1,2 ' Hand 1(HNDDAT1) and workpiece 2(WRKDAT1) conditions.
6 Mov P1
7 Mov P2
8 Oadl Off

[Explanation]
(1) Set the hand conditions and workpiece conditions used for optimum acceleration/deceleration. This is

used when setting the optimum acceleration/deceleration for workpiece types having different weights.
(2) The maximum load is set for the hand when the program execution starts.
(3) Set the weight, size (X, Y, Z) and center of gravity position (X, Y, Z) as the hand conditions in parameter

(HNDDAT 1 to 8).
(4) Set the weight, size (X, Y, Z) and center of gravity position (X, Y, Z) as the workpiece conditions in

parameter (WRKDAT 1 to 8).
(5) The hand conditions and workpiece conditions changed when this command is executed are reset to the

system default value when the program is reset and when the End statement is executed.
As the system default values, the hand conditions are set to the rated load, and the workpiece
conditions are set to none (0kg).

(6) Refer to Page 552, "5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)"
for details on the optimum acceleration/deceleration.
Refer to Page 578, "5.24 Interference avoidance function" for details of the interference avoidance
function.

[Related instructions]
Oadl (Optimal Acceleration), HOpen / HClose (Hand Open/Hand Close)

[Related parameter]
HNDDAT1 to 8, WRKDAT1 to 8, HNDHOLD1 to 8
Refer to Page 552, "5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)".
Refer to Page 492, "Table 5-1: List Movement parameter" for the ACCMODE.
Refer to Page 578, "5.24 Interference avoidance function" for details of the parameter about interference
avoidance function.

LoadSet[]<Hand condition No.>, <Workpiece condition No.>
 Detailed explanation of command words 4-275

4

4MELFA-BASIC VI
Mov (Move)

[Function]
Using joint interpolation operation, moves from the current position to the destination position.

[Format]

[Terminology]
<Movement Target Position>This is the final position for interpolation operation. This position may be specified

using a position type variable and constant, or a joint variable.
<Close Distance> If this value is designated, the actual movement target position will be a position

separated by the designated distance in the tool coordinate system Z axis
direction (+/- direction).

<Constants 1> 1/0: Detour/short cut. The default value is 1(detour).
<Constants 2> Invalid (Specify 0).
<Appended conditions> The Wth and WthIF statements can be used.

[Reference Program]
1 Mov P1 Type 1,0
2 Mov J1
3 Mov (Plt 1,10),100.0 Wth M_Out(17)=1
4 Mov P4+P5,50.0 Type 0,0 WthIf M_In(18)=1,M_Out(20)=1

[Explanation]
(1) The joint angle differences of each axis are evenly interpolated at the starting point and endpoint

positions. This means that the path of the tip cannot be guaranteed.
(2) By using the Wth and WthIf statement, the signal output timing and motion can be synchronized.
(3) The numeric constant 1 for the Type designates the posture interpolation amount.
(4) Detour refers to the operating exactly according to the teaching posture. Short cut operation may take

place depending on the teaching posture.
(5) Short cut operation refers to posture interpolation between the start point and end point in the direction

with less motion.
(6) The detour/short cut designation is significant when the posture axis has a motion range of (180 deg. or

more.
(7) Even if short cut is designated, if the target position is outside the motion range, the axis may move with

the detour in the reverse direction.
(8) The Type numeric constant 2 setting is insignificant for joint interpolation.
(9) This instruction cannot be used in a constantly executed program.
(10) If paused during execution of a Mov instruction and restarted after jog feed, the robot returns to the

interrupted position and restarts the Mov instruction. The interpolation method (JOINT interpolation / XYZ
interpolation) which returns to the interrupted position can be changed by the "RETPATH" parameter.
Moreover, it is also possible by changing the value of this RETPATH parameter to move to the direct target
position, without returning to the interrupted position. (Refer to Page 539, "5.10 Automatic return setting
after jog feed at pause")

Fig.4-25:Example of joint interpolation motion path

Mov[]<Target Position> [, <Close Distance>] [[]Type[]<Constants 1>, <Constants 2>][]
[<Appended conditions>]

Ｐ＿ＣＵＲＲ

Ｐ１
-276 Detailed explanation of command words

 4MELFA-BASIC VI
Mva (Move Arch)

[Function]
This instruction moves the robot from the current position to the target position with an arch movement (arch
interpolation).

[Format].

[Terminology]
<Target Position> Final position of interpolation movement. This position may be specified using a

position type variable and constant, or a joint variable.
<Arch number> A number defined by the Def Arch instruction (1 to 4).

[Reference Program]
1 Def Arch 1,5,5,20,20 ' Defines the arch shape configuration.
2 Ovrd 100,20,20 ' Specifies override.
3 Accel 100,100,50,50,50,50 ' Specifies acceleration/deceleration rate.
2 Mva P1,1 ' Performs the arch motion movement according to the shape

configuration defined in step 1.
3 Mva P2,2 ' Moves the robot according to the default values registered in the

parameters.
[Explanation]

(1) The robot moves upward along the Z-axis direction from the current position, then moves to a position
above the target position, and finally moves downward, reaching the target position. This so-called arch
motion movement is performed with one instruction.

(2) If the Mva instruction is executed without the Def Arch instruction, the robot moves with the arch shape
configuration set in the parameters. Refer to Page 215, " Def Arch (Define arch)" for a detailed
description about the parameters.

(3) The interpolation form, type and other items are also defined by the Def Arch instruction; refer to Page
215, " Def Arch (Define arch)".

(4) This command cannot be used in a constantly executed program.
(5) If paused during execution of a Mva instruction and restarted after jog feed, the robot returns to the

interrupted position and restarts the Mva instruction. (this can be changed by the "RETPATH"
parameter). The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the
interrupted position can be changed by the "RETPATH" parameter. (Refer to Page 539, "5.10 Automatic
return setting after jog feed at pause").

Fig.4-26:Example of arch interpolation motion path (seen from the side)

Mva[]<Target Position>, <Arch number>

DEF ARCH 1,5,5,20,20

5mm (Upward
moving amount)

5mm (Downward
moving amount)

20mm (Upward
retreat amount)

20mm (Downward
retreat amount)

Target positionStart position

DEF ARCH 1,5,5,20,20

*If Z is different between the movement starting position and the target position,
 it will operate as follows:

Start position

Target position

20mm (Upward
retreat amount)

5mm (Upward
moving amount)

5mm (Downward
moving amount)

20mm (Downward
retreat amount)
 Detailed explanation of command words 4-277

4

4MELFA-BASIC VI
The robot's locus of movement may change with specified speed.
Especially as for the corner section, short cut distance may change. Therefore,
when beginning automatic operation, moves at low speed at first, and you should
gather speed slowly with being careful of interference with peripheral equipment.

[Related instructions]
Def Arch (Define arch), Accel (Accelerate), Ovrd (Override)

 CAUTION
-278 Detailed explanation of command words

 4MELFA-BASIC VI
Mva2 (Move Arch 2)

[Function]
This instruction moves the robot from the current position to the target position with an arch movement (arch
interpolation).
Note) The available robot type is limited. Refer to "[Available robot type]".

[Format]

[Terminology]
<Target Position> Final position of interpolation movement. This position may be specified using a

position type variable and constant, or a joint variable.
<Downward Increment> Specify the downward increment from the operation limit of the Z axis. Unit: [mm]

Setting range: Real value less than or equal to 0
When 0 is specified or this argument is omitted, the robot moves upward
to the operation limit of the Z axis.

<Neighborhood Distance 1> The neighborhood distance at the 1st corner can be specified using a
constant or a variable. Unit: [mm]
Setting range: Real value more than or equal to -1/0
When 0 is specified, the robot switches to the next operation after the
completion of the operation to the upward position.
When -1 is specified, the operation is the same as Cnt1.
When this argument is omitted, the value in the 1st element of the parameter
"MVACNT1" is used.

<Neighborhood Distance 2> The neighborhood distance at the 2nd corner can be specified using a
constant or a variable. Unit: [mm]
Setting range: Real value more than or equal to -1/0
When 0 is specified, the robot switches to the next operation after the
completion of the operation to a position above the target position.
When -1 is specified, the operation is the same as Cnt1.
When this argument is omitted, the value in the 2nd element of the parameter
"MVACNT1" is used.

<Positioning Distance> Specify the positioning complete conditions to the target position with a linear
distance. Unit: [mm]
Setting range: Real value more than or equal to 0 (The minimum value that
can be specified is 0.001.)
When 0 is specified, the positioning will be disabled.
When this argument is omitted, the value in the 3rd element of the parameter
"MVACNT1" is used.

<Settling Time> Specify the settling time after the completion of arrival to the target position.
Unit: [Seconds]
Setting range: Real value more than or equal to 0
When this argument is omitted, the value in the 4th element of the parameter
"MVACNT1" is used.

[Reference Program]
1 Mov P0 ' Moves to the start position of the arch motion movement.
2 Mva2 P1 ' Moves upward to the operation limit of the Z axis, and moves to P1 with

 the arch motion.
3 Mva2 P2,-20 ' Moves upward to the position which is -20mm from the operation limit

 of the Z axis, and moves to P2 with the arch motion.
5 Mva2 P3,0,20,20,0.1,0 ' Moves upward to the operation limit of the Z axis, and moves to P3 with

the arch motion.
' The positioning distance of the target position is 0.1mm.

Mva2 <Target Position> [, <Downward Increment> [, <Neighborhood Distance 1>

 [, <Neighborhood Distance 2> [, <Positioning Distance> [, <Settling Time>]]]]]
 Detailed explanation of command words 4-279

4

4MELFA-BASIC VI
[Explanation]
(1) The robot moves upward in the Z-axis direction from the current position, then moves to a position above

the target position, and finally moves downward, reaching the target position.
This arch motion movement is performed with one instruction.

(2) <Downward Increment>, <Neighborhood Distance 1>, <Neighborhood Distance 2>, <Positioning
Distance>, and <Settling Time> can be omitted.

(3) When <Neighborhood Distance 1>, <Neighborhood Distance 2>, <Positioning Distance>, and <Settling
Time> are omitted, the value in the parameter "MVACNT1" is used. For details, refer to the explanation
of the parameter "MVACNT1".

(4) The interpolation method of the Mva2 instruction is the joint interpolation, short cut, or equivalent rotation.
(5) The Cnt command is temporarily ignored (disabled, the status is maintained) when the Mva2 command

is executed.
(6) The Fine command is temporarily ignored (disabled, the status is maintained) when the Mva2 command

is executed.
(7) If <Positioning Distance> is specified while the compliance function is enabled, the robot may be unable

to reach the positioning completion condition of the target position depending on the operation, and will
wait indefinitely for the completion of the operation instruction. As a result, the program execution
comes to a halt. Do not specify <Positioning Distance> while the compliance function is enabled.

(8) The available robot type is limited. Using this instruction for other types of robot generates an error
H3391. For the supported robot, refer to "[Available robot type]".

(9) This instruction cannot be used in a constantly executed program.
(10) If paused during execution of an Mva2 instruction and restarted after jog feed, the robot returns to the

interrupted position and restarts the Mva2 instruction. The interpolation method (JOINT interpolation/
XYZ interpolation) which returns to the interrupted position can be changed by the RETPATH parameter.

Fig.4-27:Example of Mva2 instruction motion path (seen from the side)

Downward increment

Operation limit of the Z axis

Neighborhood Distance 1

Neighborhood Distance 1

Neighborhood Distance 2

Neighborhood Distance 2

Neighborhood Distance 1

Neighborhood Distance 1

Operation limit of the Z axis

Downward increment Neighborhood Distance 2

Neighborhood Distance 2

∗ If Z is different between the movement start position and the target position, it will operate as follows:

Start position

Start position

Target position

Target position
-280 Detailed explanation of command words

 4MELFA-BASIC VI
Fig.4-28:Positioning distance of Mva2 instruction

[Available robot type]
RH-FRH series (Without RH-3FRHR series)

[Related instructions]
MVACNT1

Positioning distance

"Positioning is completed when the current

position moves into the sphere with the

radius specified in <Positioning Distance>."

Target position
 Detailed explanation of command words 4-281

4

4MELFA-BASIC VI
Mvc (Move C)

[Function]
Carries out 3D circular interpolation in the order of start point, transit point 1, transit point 2 and start point.

[Format]

[Terminology]
<Start point> The start point and end point for a circle. Describe a position using a position type variable

or constant, or a joint variable.
<Transit point 1> Transit point 1 for a circular arc. Describe a position operation expression or joint

operation expression.
<Transit point 2> Transit point 2 for a circular arc. Describe a position operation expression or joint

operation expression.
<Additional condition> Describe a Wth conjunction or a WthIf conjunction

[Reference Program]
1 Mvc P1,P2,P3
2 Mvc P1,J2,P3
3 Mvc P1,P2,P3 Wth M_Out(17)=1
4 Mvc P3,(Plt 1,5),P4 WthIf M_In(20)=1,M_Out(21)=1

[Explanation]
(1) In circular interpolation motion, a circle is formed with the 3 given points, and the circumference is

moved. (360 degrees)
(2) The posture at the starting point is maintained during circle interpolation. The postures while passing

points 1 and 2 are not considered.
(3) If the current position and the starting position do not match, the robot automatically moves to the

starting point based on the linear interpolation (3-axis XYZ interpolation), and then performs the circle
interpolation.

(4) If paused during execution of a Mvc instruction and restarted after jog feed, the robot returns to the
interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 539, "5.10 Automatic return
setting after jog feed at pause")

(5) This instruction cannot be used in a constantly executed program.

Fig.4-29:Example of circle interpolation motion path

Mvc[]<Start point>,<Transit point 1>,<Transit point 2>[][<Additional condition>]

P1

P_CURR
P2

P3

MVC P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)
-282 Detailed explanation of command words

 4MELFA-BASIC VI
Mvr (Move R)

[Function]
Carries out 3-dimensional circular interpolation movement from the start point to the end point via transit
points.

[Format]

[Terminology]
<Start Point> Start point for the arc. Describe a position using a position type variable or constant,

or a joint variable.
<Transit Point> Transit point for the arc. Describe a position using a position type variable or constant,

or a joint variable.
<End Point> End point for the arc. Describe a position using a position type variable or constant,

or a joint variable.
<Constants 1> Short cut/detour = 1/0, The default value is 0.
<Constants 2> Equivalent rotation/3-axis XYZ/singular point passage = 0/1/2.

The default value is 0.
<Appended conditions> The Wth and WthIf statements can be used.

[Reference Program]
1 Mvr P1,P2,P3
2 Mvr P1,J2,P3
3 Mvr P1,P2,P3 Wth M_Out(17)=1
4 Mvr P3,(Plt 1,5),P4 WthIf M_In(20)=1,M_Out(21)=1

Mvr[]<Start Point>, <Transit Point>, <End Point>
[[]TYPE[]<Constants 1>, <Constants 2>][] [<Appended Condition>]
 Detailed explanation of command words 4-283

4

4MELFA-BASIC VI
[Explanation]
(1) In circular interpolation motion, a circle is formed with three given points, and robot moves along the

circumference.
(2) The posture is interpolation from the start point to the end point; the transit point posture has no effect.
(3) If the current position and start point do not match, the robot will automatically move with linear

interpolation (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a Mvr instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 539, "5.10 Automatic return
setting after jog feed at pause")

(5) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,
an error will occur at the execution.

(6) Of the three designated points, if any points coincide with the other, or if three points are on a straight
line, linear interpolation will take place from the start point to the end point. An error will not occur.

(7) If 3-axis XYZ is designated for the constant 2, the constant 1 will be invalidated, and the robot will move
with the taught posture.

(8) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out interpolation
on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point. The
singular point passage function is supporting only certain models. Refer to Page 563, "5.20 About
singular point passage function" in details.

(9) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out interpolation
on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point.

(10) This instruction cannot be used in a constantly executed program.

Fig.4-30:Example of circular interpolation motion path 1

P2

P1 P3

MVR P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)

P_CURR

Precautions for registration of position data after execution of linear (circular arc) interpolation for
vertical 5-axis robots

In the linear (circular arc) interpolation, the posture data at the operation start position and the posture
data at the movement target position are different by +180 degrees or -180 degrees or more, the robot
performs shortcut operation. For vertical 5-axis robots (RV-4FRJL), the registered posture data is shown
at the movement target position, but the actual posture is deviated by +360 degrees or -360 degrees.
For example, when linear interpolation is performed from the 0-degree position to the +200-degree
position of the A axis, the posture data at the current position is shown as +200 degrees, but the robot
operates to the -160-degree position.
When the position data is registered under such a condition, the posture data deviated by +360 or -360
degrees from the actual position is registered. Be careful when the position data is compensated after
linear (circular arc) compensation movement for debugging operation (step feed, MS position movement)
of the program.
This phenomenon can be avoided by specifying the roundabout operation in the argument type of the
linear (circular arc) interpolation, or by the servo OFF operation before the position data is registered.
-284 Detailed explanation of command words

 4MELFA-BASIC VI
Mvr2 (Move R 2)

[Function]
Carries out 3-dimensional circular interpolation motion from the start point to the end point on the arc
composed of the start point, end point, and reference points.
The direction of movement is in a direction that does not pass through the reference points.

[Format]

[Terminology]
<Start Point> Start point for the arc. Describe a position using a position type variable or constant,

or a joint variable.
<End Point> End point for the arc. Describe a position using a position type variable or constant,

or a joint variable.
<Reference point> Reference point for a circular arc. Describe a position using a position type variable

or constant, or a joint variable.
<Constants 1> Short cut/detour = 0/1, The default value is 0.
<Constants 2> Equivalent rotation/3-axis XYZ/singular point passage = 0/1/2.

The default value is 0.
<Appended conditions> The Wth and WthIf statements can be used.

[Reference Program]
1 Mvr2 P1,P2,P3
2 Mvr2 P1,J2,P3
3 Mvr2 P1,P2,P3 Wth M_Out(17)=1
4 Mvr2 P3,(Plt 1,5),P4 WthIf M_In(20)=1,M_Out(21)=1

Mvr2[]<Start Point>, <End Point>, <Reference point>
[[]Type[]<Constants 1>, <Constants 2>][][<Appended Condition>]
 Detailed explanation of command words 4-285

4

4MELFA-BASIC VI
[Explanation]
(1) In circular interpolation motion, a circle is formed with three given points, and robot moves along the

circumference.
(2) The posture is interpolation from the start point to the end point; the reference point posture has no

effect.
(3) If the current position and start point do not match, the robot will automatically move with linear

interpolation (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a Mvr instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 539, "5.10 Automatic return
setting after jog feed at pause")

(5) The direction of movement is in a direction that does not pass through the reference points.
(6) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,

an error will occur at the execution.
(7) Of the three designated points, if any points coincide with the other, or if three points are on a straight

line, linear interpolation will take place from the start point to the end point. An error will not occur.
(8) If 3-axis XYZ is designated for the constant 2, the constant 1 will be invalidated, and the robot will move

with the taught posture.
(9) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out interpolation

on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point. The
singular point passage function is supporting only certain models. Refer to Page 563, "5.20 About
singular point passage function" in details.

(10) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out
interpolation on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular
point.

(11) This instruction cannot be used in a constantly executed program.

Fig.4-31:Example of circular interpolation motion path 2

P2

P1 P3

MVR2 P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)

P2

P1

P4

MVR2 P1, P2, P4

P_CURR
P_CURR

Moves by XYZ
interpolation (3-axis
XYZ interpolation)

Precautions for registration of position data after execution of linear (circular arc) interpolation for
vertical 5-axis robots

In the linear (circular arc) interpolation, the posture data at the operation start position and the posture
data at the movement target position are different by +180 degrees or -180 degrees or more, the robot
performs shortcut operation. For vertical 5-axis robots (RV-4FRJL), the registered posture data is shown
at the movement target position, but the actual posture is deviated by +360 degrees or -360 degrees.
For example, when linear interpolation is performed from the 0-degree position to the +200-degree
position of the A axis, the posture data at the current position is shown as +200 degrees, but the robot
operates to the -160-degree position.
When the position data is registered under such a condition, the posture data deviated by +360 or -360
degrees from the actual position is registered. Be careful when the position data is compensated after
linear (circular arc) compensation movement for debugging operation (step feed, MS position movement)
of the program.
This phenomenon can be avoided by specifying the roundabout operation in the argument type of the
linear (circular arc) interpolation, or by the servo OFF operation before the position data is registered.
-286 Detailed explanation of command words

 4MELFA-BASIC VI
Mvr3 (Move R 3)

[Function]
Carries out 3-dimensional circular interpolation movement from the start point to the end point on the arc
composed of the center point, start point and end point.

[Format]

[Terminology]
<Start Point> Start point for the arc. Describe a position using a position type variable or constant,

or a joint variable.
<End Point> End point for the arc. Describe a position using a position type variable or constant,

or a joint variable.
<Center Point> Center point for the arc. Describe a position using a position type variable or constant,

or a joint variable.
<Constants 1> Short cut/detour = 0/1, The default value is 0.
<Constants 2> Equivalent rotation/3-axis XYZ/singular point passage = 0/1/2.

The default value is 0.
<Appended conditions> The Wth and WthIf statements can be used.

[Reference Program]
1 Mvr3 P1,P2,P3
2 Mvr3 P1,J2,P3
3 Mvr3 P1,P2,P3 Wth M_Out(17)=1
4 Mvr3 P3,(Plt 1,5),P4 WthIf M_In(20)=1,M_Out(21)=1

[Explanation]
(1) In circular interpolation motion, a circle is formed with three given points, and robot moves along the

circumference.
(2) The posture is interpolation from the start point to the end point; the center point posture has no effect.
(3) If the current position and start point do not match, the robot will automatically move with linear

interpolation (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a Mvr3 instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 539, "5.10 Automatic return
setting after jog feed at pause")

(5) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,
an error will occur at the execution.

(6) If 3-axis XYZ is designated for the constant 2, the constant 1 will be invalidated, and the robot will move
with the taught posture.

(7) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out interpolation
on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point. The
singular point passage function is supporting only certain models. Refer to Page 563, "5.20 About
singular point passage function" in details.

(8) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out interpolation
on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point.

(9) The central angle from the start point to the end point always satisfies 0 < central angle < 180 degrees.
(10) Designate the positions so that the difference from the center point to the end point and the center point

to the distance is within 0.01mm.
(11) If the three points are on the same line, or if the start point and center point, or end point and center

point are the same, an error will occur.
(12) If the start point and end point are the same or if three points are the same, an error will not occur, and

the next command will be executed. Note that if the posture changes at this time, only the posture will
be interpolated.

(13) This instruction cannot be used in a constantly executed program.

Mvr3[]<Start Point>, <End Point>, <Center Point>
[[]Type[]<Constants 1>, <Constants 2>][] [<Appended Condition>]
 Detailed explanation of command words 4-287

4

4MELFA-BASIC VI

Fig.4-32:Example of circular interpolation motion path 3

P2

P3

P1

P_CURR

MVR3 P1, P2, P3
Moves by XYZ

interpolation (3-axis
XYZ interpolation)

Central

angle

Precautions for registration of position data after execution of linear (circular arc) interpolation for
vertical 5-axis robots

In the linear (circular arc) interpolation, the posture data at the operation start position and the posture
data at the movement target position are different by +180 degrees or -180 degrees or more, the robot
performs shortcut operation. For vertical 5-axis robots (RV-4FRJL), the registered posture data is shown
at the movement target position, but the actual posture is deviated by +360 degrees or -360 degrees.
For example, when linear interpolation is performed from the 0-degree position to the +200-degree
position of the A axis, the posture data at the current position is shown as +200 degrees, but the robot
operates to the -160-degree position.
When the position data is registered under such a condition, the posture data deviated by +360 or -360
degrees from the actual position is registered. Be careful when the position data is compensated after
linear (circular arc) compensation movement for debugging operation (step feed, MS position movement)
of the program.
This phenomenon can be avoided by specifying the roundabout operation in the argument type of the
linear (circular arc) interpolation, or by the servo OFF operation before the position data is registered.
-288 Detailed explanation of command words

 4MELFA-BASIC VI
Mvs (Move S)

[Function]
Carries out linear interpolation movement from the current position to the movement target position.

[Format 1]

[Format 2]

[Terminology]
<Movement Target Position> The final position for the linear interpolation. Describe a position using a

position type variable or constant, or a joint variable.
<Close Distance> If this value is designated, the actual movement target position will be a

position separated by the designated distance in the tool coordinate system
Z axis direction (+/- direction).

<Constants 1> Short cut/detour = 0/1, The default value is 0.
<Constants 2> Equivalent rotation/3-axis XYZ/singular point passage = 0/1/2.

The default value is 0.
<Appended conditions> The Wth and WthIf statements can be used.
<Separation Distance> When this value is designated, the axis will move the designated distance

from the current position to the Z axis direction (+/- direction) of the tool
coordinate system.

[Reference Program]
(1) Move to the target position P1 by XYZ interpolation.
1 Mvs P1

(2)Turns on the output signal 17 at the same time if it moves to the target position P1 by linear interpolation.
1 Mvs P1,100.0 Wth M_Out(17)=1

(3)Turns on output signal 20 if the input signal 18 is turned on while moving 50 mm in the Z direction of the
tool coordinate system of the target position P4+P5 (relative operation position obtained by addition) by
linear interpolation.

2 Mvs P4+P5, 50.0 WthIf M_In(18)=1, M_Out(20)=1

(4)Moves 50 mm in the Z direction of the tool coordinate system from the current position by linear interpolation.
3 Mvs ,50

Mvs[]<Movement Target Position> [, <Close Distance>]
[[]Type[]<Constants 1>,<Constants 2>][][<Appended Condition>]

Mvs[], <Separation Distance>
[[]Type[]<Constants 1>,<Constants 2>][][<Appended Condition>]
 Detailed explanation of command words 4-289

4

4MELFA-BASIC VI
[Explanation]
(1) Linear interpolation motion is a type of movement where the robot moves from its current position to the

movement target position so that the locus of the control points is in a straight line.
(2) The posture is interpolation from the start point to the end point.
(3) In the case of the tool coordinate system specified by using <proximity distance> or <separation

distance>, the + and - directions of the Z axis vary depending on the robot model. Refer to Page 528,
"5.6 Standard Tool Coordinates" for detail. The "Fig.4-33:Example of movement at linear interpolation"
is an example of movement.

Fig.4-33:Example of movement at linear interpolation

(4) Short cut operation refers to posture interpolation between the start point and end point in the direction
with less motion.

(5) Detour operation refers to posture interpolation between the start point and end point in the direction with
more motion.

(6) When detour/short cut is designated, if the target position is outside the motion range, the error of
outside the motion range will occur.

(7) If paused during execution of a Mvs instruction and restarted after jog feed, the robot returns to the
interrupted position and restarts the Mvs instruction. This can be changed by the "RETPATH"
parameter, and also the interpolation method (JOINT interpolation / XYZ interpolation) which returns to
the interrupted position can be changed by same parameter. Some robots for liquid crystal
transportation have different default values of this parameter. Refer to Page 539, "5.10 Automatic return
setting after jog feed at pause".

(8) This instruction cannot be used in a constantly executed program.
(9) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,

an error will occur at the execution.
(10) If 3-axis XYZ is designated for the numeric constant 2, the numeric constant 1 will be invalidated, and

the robot will move with the taught posture.
(11) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out

interpolation on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular
point. The singular point passage function is supporting only certain models. Refer to Page 563, "5.20
About singular point passage function" in details.

P_CURR

MVS ,-100
100mm

P_CURR

Ｐ１

MVS P1,-100

100mm

ＭＶＳ Ｐ１

Ｐ１

P_CURR
-290 Detailed explanation of command words

 4MELFA-BASIC VI
(12) Description of singular points.
<In the case of a vertical 6-axis robot>
Movement from posture A, through posture B, to posture C
cannot be performed using the normal linear interpolation (Mvs).

This limitation applies only when J4 axis is at zero degrees at all
the postures A, B, and C. This is because the structure flag of axis
J5 (wrist axis) is FLIP for posture A and NONFLIP for posture C.
Moreover, in posture B, the wrist is fully extended and axes J4
and J6 are located on the same line. In this case, the robot cannot
perform a linear interpolation position calculation.
The 3-axis XYZ (TYPE 0, 1) method in the command option of
Mvs should be used if it is desired to perform linear interpolation
based on such posture coordinates. Note that, strictly speaking,
this 3-axis XYZ method does not maintain the postures as it
evenly interpolates the joint angle of axes J4, J5, and J6 at
posture A and C. Therefore, it is expected that the robot hand's
posture may move forward and backward while moving from
posture A to posture C.
In this case, add one point in the middle to decrease the amount
of change in the hand's posture.

Another singular point is when the center of axis J5 is on the Z
axis of the base coordinates and the wrist is facing upward. In this
case, J1 and J6 are located on the same axis and it is not
possible to calculate the robot position.

Fig.4-34:Singular point 1

 About singular points of vertical 6-axis robots

1) Posture A

Posture at which the
flag changes status

2) Posture B

3) Posture C

NONFLIP

FLIP

Precautions for registration of position data after execution of linear (circular arc) interpolation for
vertical 5-axis robots

In the linear (circular arc) interpolation, the posture data at the operation start position and the posture
data at the movement target position are different by +180 degrees or -180 degrees or more, the robot
performs shortcut operation. For vertical 5-axis robots (RV-FR series), the registered posture data is
shown at the movement target position, but the actual posture is deviated by +360 degrees or -360
degrees.
For example, when linear interpolation is performed from the 0-degree position to the +200-degree
position of the A axis, the posture data at the current position is shown as +200 degrees, but the robot
operates to the -160-degree position.
When the position data is registered under such a condition, the posture data deviated by +360 or -360
degrees from the actual position is registered. Be careful when the position data is compensated after
linear (circular arc) compensation movement for debugging operation (step feed, MS position movement)
of the program.
This phenomenon can be avoided by specifying the roundabout operation in the argument type of the
linear (circular arc) interpolation, or by the servo OFF operation before the position data is registered.
 Detailed explanation of command words 4-291

4

4MELFA-BASIC VI
MvSpl (Move Spline)

[Function]
Spline interpolation is executed based on the information registered in the designated spline file.
(Refer to Page 694, "7.2 Spline interpolation" for details on spline interpolation.)

[Format]

[Terminology]
<Spline No.> The number of the spline file holding information on the path to be

moved is designated with a constant or numerical variable.
Setting range: 1 to 99

<Speed> The spline interpolation movement speed is designated with a
constant or numerical variable.
Setting range: Value larger than 0.0 (mm/s). Refer to [Explanation]
"(5)" for details.

<Acceleration/deceleration distance> The spline interpolation acceleration/deceleration distance is
designated with a constant or numerical variable.
The acceleration distance is the distance required to accelerate from
the start or movement to the designated speed.
The deceleration distance is the distance required to decelerate from
the designated speed to the end position.
With spline interpolation, the acceleration distance and deceleration
distance are a common setting.
Setting range: Value larger than 0.0 (mm)

<Frame transformation> The details for executing frame transformation are designated with
a constant or numerical variable.
Setting range:

0: Frame transformation is not executed.
1: Frame transformation is executed using coordinate system set

in spline file.
2: Frame transformation is executed using coordinate system set

with SetCalFrm command.
When omitted: Frame transformation is not executed.

<Posture interpolation type> The posture interpolation type is designated with a constant or
numerical variable.
Setting range:

0 (equivalent rotation movement)/1 (3-axis orthogonal movement)
When omitted: Equivalent rotation movement

<Filter length> The filter length applied on the acceleration/deceleration movement
is designated with a constant or numerical variable.
Setting range: 0.0 to 1000.0 (ms)
When omitted: 100.0 ms

[Reference Program]
1 Ovrd 70 ' Set program override to 70%
2 Mov P1 ' Move to position P1 with joint interpolation
3 MvSpl 2, 50, 10 ' Execute spline interpolation that passes through spline file 2 path point
4 Mvs P2 ' Move to position P2 with linear interpolation
5 MvSpl 2, 50, 10, 1 ' Pass through path point for which frame transformation has been executed on

spline file 2 path point
' Execute spline interpolation

MvSpl []<Spline No.>, <Speed>, <Acceleration/deceleration distance>
[, <Frame transformation> [, <Posture interpolation type> [, <Filter length>]]]
-292 Detailed explanation of command words

 4MELFA-BASIC VI
[Explanation]
(1) Spline interpolation is carried out based on the path point data, etc., registered in the spline file

corresponding to <Spline No.>. A smooth curve (spline curve) is generated to pass through the robot
position and posture that are registered as path points. The robot movement follows that curve.

(2) If the robot's current position at the start of MvSpl command execution and the spline interpolation start
position are deviated, the robot will move to the start position with linear interpolation and then start
spline interpolation.

(3) If a spline file corresponding to the <Spline No.> is not saved in the controller, the error L2610 (Can't
open spline file) will occur.

(4) The spline interpolation command speed is designated with the following expression.
 Speed command = (MvSpl command's <Speed>) × (Ovrd command) × (operation panel override)
The Spd command and JOvrd command settings are not used. Even if the status variable M_NSpd is
set for <Speed>, the optimum speed control mode does not function.

(5) The setting range of <speed> changes according to a distance between path points that registered into
the spline file. Refer to Page 699, "Table 7-5: Check related to path points" for details.

(6) The spline interpolation acceleration/deceleration is designated with <Acceleration/deceleration
distance>. The Accel command setting is not used. Even if the optimum acceleration/deceleration
control is enabled with the Oadl command, it will not be applied to spline interpolation.

(7) The acceleration movement generates speed to reach the <Speed> when the <Acceleration/
deceleration distance> is moved from the spline interpolation start position. The deceleration movement
generates the speed to move the <Acceleration/deceleration distance> from the <Speed> and stop at
the end position.
If the Ovrd command and operation panel's override is set to a value smaller than 100%, the
commanded speed will be reached at a shorter travel rate than <Acceleration/deceleration distance>.
(The effect of filters, etc., can cause the acceleration/deceleration distance to be actually longer than
the value set with <Acceleration/deceleration distance>.

Fig.4-35: Acceleration with <Acceleration/deceleration distance>

(8) If "1 (execute using coordinate system set in spline file)" or "2 (execute using coordinate system set with
SetCalFrm command) is designated in <Frame transformation>, the path point data is converted
sequentially based on the designated method, and spline interpolation is executed to pass through
those path points.

(9) If the coordinate system is not set in the spline file even though "1 (execute using coordinate system set
in spline file)" is designated in <Frame transformation>, error L2042 (Frame transformation coordinates
are not set) will occur.

(10) If the coordinate system cannot be calculated when "1 (execute using coordinate system set in spline
file)" is designated in <Frame transformation>, error L2041 (Can't calculate frame transformation
coordinates) will occur.

(11) If "2 (execute using coordinate system set with SetCalFrm command)" is designated for <Frame
transformation>, frame conversion is executed using the coordinate system set with the SetCalFrm
command executed last. If the SetCalFrm command has not been executed even once and the
coordinate system is not set, error L2042 (Frame transformation coordinates are not set) will occur.

(12) Switch between "0 (equivalent rotation movement)" and "1 (3-axis orthogonal movement)" by
designating <Posture interpolation type>. The equivalent rotation movement operates so that the
posture change between the path points has the minimum angle.
The 3-axis orthogonal motion generates the posture data with the J4, J5 and J6 axis angles instead of
the A, B and C axis coordinate values. Thus, even if the path point posture data (A, B, C axis coordinate
values) are the same, the robot's posture will change during the movement.

(13) Transfer of the configuration flag (peculiar point transit) is not supported. If the configuration flag differs
between path points, error L2611 (Path point configuration flag is different) will occur.

<速度>

<加減速距離>

速度

時間

Speed

<Acceleration/deceleration distance>

<Speed>

Time
 Detailed explanation of command words 4-293

4

4MELFA-BASIC VI
(14) The filter characteristics applied on the acceleration/deceleration movement can be changed with
<Filter length>. Increase the filter length to make the movement during acceleration and deceleration
smoother. Note that if the filter length is too high, the movement will slow down and it will take a long
time for the spline interpolation to end.

(15) If a signal output is set for the path point data, the general purpose output signal will be output with the
designated conditions when passing through the target path point.

(16) If the robot positioning complete condition is specified (Fine command, Fine J command, or Fine P
command), positioning completion will be confirmed at the spline interpolation end position.

(17) Even if continuous movement is designated with the Cnt command, continuous movement will not take
place at the spline interpolation start position and end position.

(18) Even if "Stop type 1" is designated for the Def Act command (interrupt condition and process definition),
if an interrupt occurs during the spline interpolation, the robot will stop with the same deceleration as
"Stop type 2".

(19) The additional axis will not move from the spline interpolation start position. Even if an additional axis
position is set for one of the interim path points, it will not be used during spline interpolation.

(20) Step feed can be executed for the MvSpl command, but step return cannot be executed. Error L2612
(Cannot execute step return) will occur.

(21) The mechanism’s control rights (GetM command) are required to execute the MvSpl command.
(22) The MvSPl command cannot be executed in a slot where the start conditions are ALWAYS or ERROR.

Error L3287 (Cannot execute (ERROR ALWAYS)) will occur.
(23) If a value outside the setting range is set for the MvSpl command argument, error L3110 (Argument

value is out of range (MvSpl)) will occur.

If an <Acceleration/deceleration distance> too short for the <Speed> is designated,
sudden acceleration/deceleration will take place and could cause robot vibration or
a servo error. Always set an appropriate acceleration/deceleration distance.

[Related instructions]
SetCalFrm (Set Calibration Frame)

[Related system variables]
M_SplPno, M_SplVar

 CAUTION
-294 Detailed explanation of command words

 4MELFA-BASIC VI
Mv Tune (Move Tune)

[Function]
Select the robot operating characteristics from one of the following four modes. The robot operating
performance will improve by selecting the optimum operating characteristics based on the application.
Operating characteristics are optimized based on the hands and workpieces specified with the LoadSet
command. Set the correct weight, shape and barycentric position of hands and workpieces actually used.

[Format]

[Terminology]
<Operating Characteristics Mode > The robot operating characteristics mode (1 to 4) is specified with either

a constant or numeric value variable.
1: Standard mode (default)
2: High-speed positioning mode
3: Trajectory priority mode
4: Vibration suppression mode

Table 4-17:Movement mode of MvTune

[Reference Program]
LoadSet 1,1 'Sets to hand 1/workpiece 1.
MvTune 2 'Changes the operating characteristics mode to high-speed positioning
Mov P1 'Operates in the high-speed positioning mode
Mvs P1 'Operates in the high-speed positioning mode
MvTune 3 'Changes operating mode to the trajectory priority variation
Mvs P3 'Operates in the trajectory priority mode

[Explanation]
(1) This has been adjusted to ensure the optimum characteristics based on the hand and workpiece

conditions specified with the LoadSet command. If the hand and workpiece conditions have not been
set correctly, there is a possibility that sufficient performance will not be achieved. Refer to Page 552,
"5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)".

(2) Standard mode is specified as the default immediately after the power is turned ON.
(3) The operating characteristics mode returns to standard mode when a program is terminated (End

command execution, program reset following an interruption), however, the current operating

MvTune[]<Operating Characteristics Mode>

Operating mode Features

1 Standard mode
(default)

This is the maker standard setting. This mode has been tuned to standard
characteristics that can be used for all applications.

2 High-speed
positioning
mode

This mode reduces the time it takes to reach the target position.
Use this mode where it is desired to shorten positioning time and improve work
efficiency.
(Applications: tracking operation, palletizing operation, etc.)

3 Trajectory
priority mode

This mode improves the trajectory accuracy in an interpolating operation.
Use this mode when performing any operation in which trajectory accuracy is an
important consideration.
(Applications: sealing operation, welding operation, deburring operation, etc.)

4 Vibration
suppression
mode Note1)

Note1) The vibration suppression mode (MvTune 4) is usable with software version N7 (CRnQ-700
series)/P7 (CRnD-700 series) or later.

This mode is effective in suppressing vibration (resonance) of the robot arm.
Use this mode where vibration is encountered during the transfer of work.
(Applications: wafer transfer, precision component transfer, etc.)
 Detailed explanation of command words 4-295

4

4MELFA-BASIC VI
characteristics mode is retained with the sub-program End command executed with the CallP
command.

(4) The differences between the standard mode and the other operating characteristics modes are as
follows.

Table 4-18:By-operating mode Performance Comparison

(Note) Symbols in the table indicate relative performance rating.
◎ Improved, ○ + Somewhat improved, ○ Same, ○ -Somewhat degraded, △ Degraded

*1: For comparing the robot's ability to respond to operating command value
*2: For comparing the capability of suppressing external perturbations which induce vibration
*3: For comparing the amount of heat generated by the motor

(5) If optimum acceleration/deceleration control (specified with the Oadl command or ACCMODE
parameter) is disabled, it is automatically enabled by executing the MvTune command. Furthermore, if
OadleOff is executed after executing the MvTune command, optimum acceleration/deceleration control
only will be disabled. (The operating mode will not change.)

(6) High-speed positioning mode may allow vibration during acceleration or deceleration to become higher
as compared with the standard mode. If this is inconvenient, select the standard mode.

(7) The trajectory priority mode is adjusted so as to achieve maximum effect at operating speeds in medium-
to low-speed range. Therefore, when a motion involved is such that a small circle is drawn, vibration
may increase as compared with the standard mode. In this case, use the Spd command to slow
operating speed and thus decrease vibration.

(8) Use of the vibration-suppressing mode may lead to an increased overshoot in the "time required to reach
target position" depending on the operating condition that is used. In such an operation that starts
pending the completion of the positioning task (e.g. operation which uses Fine command), tact time
may become delayed. (The greater the mass of work, the greater the overshoot.)

(9) This command does not function for the jog operation.

[Related instructions]
Loadset (Load Set), Oadl (Optimal Acceleration), Prec (Precision)

[Related parameter]
ACCMODE, HNDDAT 0 to 8, WRKDAT 0 to 8

Operating mode
Items of comparison

Time required to
reach target

Trajectory
accuracy (*1)

Vibration
suppression (*2)

Load factor (*3)

Standard mode ○ ○ ○ ○

High-speed position
mode

◎ ○ + ○ △

Trajectory priority mode △ ◎ ○ ○ +

Vibration suppression
mode

○ - ○ - ◎ ○
-296 Detailed explanation of command words

 4MELFA-BASIC VI
Mxt (Move External)
[Function]

The real-time external control function by ethernet I/F
The absolute position data is retrieved from an external personal computer connected via Ethernet network
at each controller control time, and the robot is directly moved. The controller control time is approx. 7.1 ms
with the CR800-Q and approx. 3.5 ms with the CR800-D/R (approx. 7.1 ms when user mechanism is set).

[Format]

[Terminology]
<File No.> Describe a number between 1 and 8 assigned with the Open command.

If the communication destination is not designated with the Open command, an
error will occur, and communication will not be possible.
In addition, data received from a source other than the communication destination
will be ignored.

<Replay position data type>Designate the type of the position data to be received from the personal computer.
A XYZ/joint/motor pulse can be designated.
0: XYZ coordinate data
1: Joint coordinate data
2: Motor pulse coordinate data

<Filter time constant> If 0 is designated, the filter will not be applied. (0 will be set when omitted.) A filter
is applied on the reception position data, an obtuse command value is created
and output to the servo.

[Reference Program]
1 Open "ENET:192.168.0.2" As #1’Set Ethernet communication destination IP address
2 MovP1 ’Move to P1
3 Mxt1,1,50 ’Move with real-time external control with filter time constant set to 50msec
4 Mov P1 ’Move to P1
5 Hlt ’Halt program

[Explanation]
(1) When the Mxt command is executed, the position command for movement control can be retrieved from

the personal computer connected on the network. (One-on-one communication)
(2) One position command can be retrieved and operated at the operation control time. The operation

control time is approx. 7.1 ms with the CR800-Q and approx. 3.5 ms with the CR800-D/R (approx. 7.1
ms when user mechanism is set).

(3) Operation of Mxt command
1) When this command is executed with the controller, the controller enters the command value

reception enabled state.The workpiece grasp/not grasp for when the hand is opened or closed is set
with parameter HNDHOLD 1 to 8.

2) When the controller receives the command value from the personal computer, it will output the
received command value to the servo within the next control process cycle.

3) After the command value is sent to the servo, the controller information, such as the current position is
sent from the controller to the personal computer.

4) A reply is made from the controller to the personal computer only when the command value from the
personal computer is sent to the controller.

5) If the data is not received, the current position is maintained.
6) When the real-time external command end command is received from the personal computer, the Mxt

command is ended.
7) When the operation is stopped from the operating panel or external input, the Mxt command will be

halted, and the transmission/reception will also be halted until restart.
(4) The timeout is designated with the parameter MXTTOUT.
(5) One randomly designated (head bit, bit width) input/output signal can be transmitted and received

simultaneously with the position data.
(6) A personal computer with sufficient processing speed must be used to command movement in the

movement control time.
(7) Refer to Page 545, "5.15 About the communication setting (Ethernet)" for details.

A Windows NT or 2000/Pentium II 450MHz or higher console application is recommended.
[Related instructions]

Open (Open)

Mxt <File No.>, <Reply position data type> [, <Filter time constant>]
 Detailed explanation of command words 4-297

4

4MELFA-BASIC VI
NVClose (network vision sensor line close)
[Function]

Cuts the line with the specified vision sensor.
[Format]

[Terminology]
<Vision sensor number> (Can be omitted)

Specifies a constant from 1 to 8 (the vision sensor number). Indicates the number for
the vision sensor connection to the COM specified with the <COM number>.
When this parameter is omitted, all the lines (vision sensor lines) opened with an
NVOpen command are closed. Also, up to 8 <vision sensor numbers> can be specified.
They are delimited with commas.
Setting range: 1 - 8

[Reference Program]
1 If M_NVOpen(1)<>1 Then ’ When logon has not been completed for vision sensor number 1
2 NVOpen "COM2:" ASs#1 ’ Connects with the vision sensor connected to COM2 and sets its

number as number 1.
3 End If
4 Wait M_NVOpen(1)=1 ’ Connects with vision sensor number 1 and waits for logon to be

completed.
5 ・ ・ ・ ・ ・
 :
100 NVClose #1 ' Cuts the line with the vision sensor connected to COM2.

[Explanation]
(1) Cuts the line with the vision sensor connected with the NVOpen command.
(2) If the <vision sensor number> is omitted, cuts the line with all the vision sensors.
(3) If a line is already cut, execution shifts to the next step.
(4) Because up to seven vision sensors can be connected at the same time, <Vision sensor numbers> are

used in order to identify which vision sensor to close the line for.
(5) If the program is cancelled while this command is being executed, execution continues until processing

of this command is complete.
(6) When this command is used with multi-tasking, in the task using this command, it is necessary to close

only the lines opened by executing an NVOpen command . At this time, use the <Vision sensor number>
specified with the NVOpen command.

(7) A program start condition of "Always" is not supported.
(8) If an End command is used, all the lines opened with an NVOpen command or Open command are

closed. However, lines are not closed with an End command in a program called out with a CAllp
command.
Lines are also closed by a program reset, so when an End command or a program reset is executed, it is
not necessary to close lines with this command.

(9) If an interrupt condition is established while this command is being executed, the interrupt processing is
executed after this command is completed.

[Errors]
(1) If the value specified as the <vision sensor number> is anything other than "1" through "8", the

"argument out of range" error occurs.
(2) If there are more than eight command arguments, an "incorrect argument count" error occurs.

NVClose□[[#]<Vision sensor number>[,[[#]<Vision sensor number>・・・]
-298 Detailed explanation of command words

 4MELFA-BASIC VI
NVLoad (network vision sensor load)
[Function]

Loads the specified vision program into the vision sensor.
[Format]

[Terminology]
<Vision sensor number> (Can not be omitted)

This specifies the number of the vision sensor to control.
Setting range:1 - 8

<Vision program (job) name> (Can not be omitted)
Specifies the name of the vision program to start.
The vision program extension (.job) can be omitted.
The only characters that can be used are "0" - "9", "A" - "Z", "a" - "z", "-", and "_".

[Reference Program]
100 If M_NVOpen(1)<>1 Then ’ If vision sensor number 1 log on is not complete
110 NVOpen "COM2:" As #1 ’ Connects with the vision sensor connected to COM2.
120 End If
130 Wait M_NVOpen(1)=1 ' Connects with vision sensor number 1 and waits for logon to be

completed.
140 NVLoad #1,"TEST" ' Loads the "Test".
150 NVPst #1, "","E76","J81","L84",0,10

' Receives the recognition count recognized with the "Test" program
from the E76 cell and the recognition results from cells J81 through
L84, and stores them in P_NvS1().

160 ・・・・
 :
300 NVClose #1 ' Cuts the line with the vision sensor connected to COM2.

[Explanation]
(1) Loads the specified vision program into the specified vision sensor.
(2) This command moves to the next step at the point in time when the vision program is loaded into the

vision sensor.
(3) If the program is cancelled while this command is being executed, it stops immediately.
(4) If the specified <vision program name> is already loaded, the command ends with no processing.
(5) When this command is used with multi-tasking, it is necessary to execute the NVOpen command in the

task using this command. Also, use the <vision sensor number> specified with the NVOpen command.
(6) A program start condition of "Always" is not supported.
(7) If an interrupt condition is established while this command is being executed, the interrupt processing is

executed immediately.
[Errors]

(1) If data type for an argument is incorrect, a "syntax error in input command statement" error is generated.
(2) If there is an abnormal number of command arguments (too many or too few), an "incorrect argument

count" error occurs.
(3) If the <vision sensor number> is anything other than "1" through "8", an "argument out of range" error

occurs.
(4) If the NVOpen command is not opened with the number specified as the <vision sensor number>, an

"abnormal vision sensor number specification" error occurs.
(5) If the <vision program name> exceeds 15 characters, an "abnormal vision program name" error occurs.
(6) If a <vision program name> uses a character other than "0" - "9", "A" - "Z", "-", or "_" (including lowercase

letters), an "abnormal vision program name" error occurs.
(7) If the program specified in the <vision program name> is not in the vision sensor, a "vision program does

not exist" error occurs.
(8) If the vision sensor is "offline", the "Put online" error occurs, so put the vision sensor "Online".
(9) If the communications line is cut while this command is being executed, an "abnormal communications"

error occurs and the robot controller side line is closed.

NVLoad□#<Vision sensor number>,"<Vision program (job) name>"
 Detailed explanation of command words 4-299

4

4MELFA-BASIC VI
NVOpen (network vision sensor line open)

[Function]
Connects with the specified vision sensor and logs on to that vision sensor.

[Format]

[Terminology]
<Com number> (Can not be omitted):

Specify the communications line number in the same way as for the Open command.
"COM1:" can not be specified by it is monopolized by the operation panel front RS-232C.
Setting range: "COM2:" - "COM8:"

<Vision sensor number> (Can not be omitted)
Specifies a constant from 1 to 8 (the vision sensor number). Indicates the number for
the vision sensor connection to the COM specified with the <COM number>.
Be careful. This number is shared with the <file number> of the Open command.
Setting range: 1 - 8

[Reference Program]
1 If M_NVOpen(1)<>1 Then ' If vision sensor number 1 log on is not complete
2 NVOpen "COM2:" As#1 ' Connects with the vision sensor connected to COM2 and sets its

number as number 1.
3 End If
4 Wait M_NVOpen(1)=1 ' Connects with vision sensor number 1 and waits for logon to be

completed.

[Explanation]
(1) Connects with the vision sensor connected to the line specified with the <COM number> and logs on to

that vision sensor.
(2) It is possible to connect to a maximum of 7 vision sensors at the same time. <Vision sensor numbers>

are used in order to identify which vision sensor is being communicated with.
(3) When used together with the Open command, the Open command <COM number> and <File number>

and the <COM number> and <Vision sensor number> of this command are shared, so use numbers
other than those specified with the Open command <COM number> and <File number>.
Example: Normal example Error example
 1 Open “COM1:” As #1 1 Open “COM2:” As #1
 2 NVOpen “COM2:” As #2 2 NVOpen “COM2:” As #2 => <COM number> used
 3 NVOpen “COM3:” As #3 3 NVOpen “COM3:” Ass#1 => <Vision sensor number> Used
It is not possible to open more than one line in a configuration with one robot controller and one vision
sensor. If the same IP address is set as when the [NETHSTIP] parameter was set, an "Ethernet
parameter NETHSTIP setting" error occurs.

(4) Logging on to the vision sensor requires the "User name" and "Password". It is necessary to set a user
name for which full access is set in the vision sensor and the password in the robot controller [NVUSER]
and [NVPSWD] parameters.
The user name and password can each be any combination of up to 15 numbers (0-9) and letters (A-Z).
(T/B only supports uppercase letters, so when using a new user, set the password set in the vision
sensor with uppercase letters.)
The user name with full access rights when the network vision sensor is purchased is "admin". The
password is "". Therefore, the default values for the [NVUSER] and [NVPSWD] parameters are
[NVUSER] = "admin" and [NVPSWD] = "".
When the "admin" password is changed with MELFA-Vision or a new user is registered, change the
[NVUSER] and [NVPSWD] parameters. When such a change is made, when the content of the
[NVPSWD] parameter is displayed, "****" is displayed. If the vision sensor side password is changed,
open the [NVPSWD] parameter and directly change the displayed "****" value. After the making the
change, reset the robot controller power.
[Caution]
When multiple vision sensors are connected to one robot controller, set the same user name and
password for all of them.

(5) The state of communications with the network vision sensor when this command is executed can be
checked with M_NVOpen. For details, see the explanation of M_NVOpen.

(6) If the program is cancelled while this command is being executed, it stops immediately. In order to log on
to the vision sensor, it is necessary to reset the robot program, then start.

NVOpen□"<COM number>"□As□#<Vision sensor number>
-300 Detailed explanation of command words

 4MELFA-BASIC VI
(7) When this command is used with multi-tasking, there are the following restrictions.
The <COM number> and <Vision sensor number> must not be duplicated in different tasks.

(a) If the same <COM number> is used in another task, the "attempt was made to open an
already open communication file" error occurs.

(b) If the same vision sensor number is used in another task, the "attempt was made to open
an already open communication file" error occurs.

(8) A program start condition of "Always" is not supported.
(9) Three robots can control the same vision sensor at the same time. If a fourth robot logs on, the line for

the first robot is cut off, so be careful when constructing the system.
(10) The line is not closed with an End command in a program called out with a Callp command, but the line

is closed with a main program End command. The line is also closed by a program reset.
(11) If an interrupt condition is established while this command is being executed, the interrupt processing is

executed immediately even during processing of this command.
[Errors]

(1) If data type for an argument is incorrect, the "syntax error in input command" error is generated.
(2) If there is an abnormal number of command arguments (too many or too few), the "incorrect argument

count" error occurs.
(3) If the character specified in <COM number> is anything other than "COM2:" through "COM8:", the

"argument out of range" error occurs.
(4) If the value specified as the <vision sensor number> is anything other than "1" through "8", the

"argument out of range" error occurs.
(5) If a <COM number> for which the line is already connected is specified (including the <File number> for

which the line has been opened with an Open command), the "attempt was made to open an already
open communication file" error occurs.

(6) If the vision sensor is not connected before the line is opened, the "vision sensor not connected" error
occurs. (The same set manufacturer parameter [COMTIMER] as in the Ethernet specifications is used.
Currently "1s")

(7) If the same <COM number> or the same <vision sensor number> is specified in another task, the
"attempt was made to open an already open communication file" error occurs.

(8) If the user name or password specified in the [NVUSER] parameter (user name) and [NVPSWD]
(password) is wrong, the "wrong password" error occurs.

(9) If the communications line is cut while this command is being executed, the "abnormal communications"
error occurs and the robot controller side line is closed.

(10) If a program is used for which the starting condition is "Always", the "this command can not be used if
the start condition is ERR or ALW" error occurs.

【SLOT2】
10 NVOpen "COM2:" As #1

20 ・・・・・・・

【SLOT3】
10 NVOpen "COM2:" As #2

20 ・・・・・・・

"COM2:" is specified with Slot2

and with Slot3, so an error occurs.

"COM2:" and "COM3:" are specified with Slot2

and with Slot3, but the <Vision sensor number>

is specified as #1, so an error occurs.
 Detailed explanation of command words 4-301

4

4MELFA-BASIC VI
NVRun (network vision sensor run)

[Function]
Starts the specified vision program.

[Format]

[Terminology]
<Vision sensor number> (Can not be omitted)

This specifies the number of the vision sensor to control.
Setting range:1 - 8

<Vision program (job) name> (Can not be omitted)
Specifies the name of the vision program to start.
The vision program extension (.job) can be omitted.
The only characters that can be used are "0" - "9", "A" - "Z", "a" - "z", "-", and "_".

[Reference Program]
100 If M_NvOpen(1)<>1 Then ’ If vision sensor number 1 log on is not complete
110 NVOpen "COM2:" As #1 ’ Connects with the vision sensor connected to COM2.
120 End If
130 Wait M_NvOpen(1)=1 ' Connects with vision sensor number 1 and waits for logon to be

completed.
140 NVLoad #1,"TEST" ' Loads the "Test" program.
150 NVRun #1,"TEST" ' Starts the "Test" program.
160 EBRead #1,,MNUM,PVS1,PVS2

'The data of "Job.Robot.FormatString" tag is read, and they are
preserved in the variable MNUM, PVS1, and PVS2.

170 ・・・
 :
300 NVClose #1 ' Cuts the line with the vision sensor connected to COM2.

[Explanation]
(1) Loads the specified vision program into the specified vision sensor.
(2) The timing of completing this command processing is different depending on the value of parameter

NVTRGTMG. When the parameter NVTRGTMG is a factory shipment setting, the next command is
executed after completing the communication of image processing instruction (taking picture demand)
between the vision sensor and robot controller.

(3) If the program is cancelled while this command is being executed, it stops immediately.
(4) If the specified <vision program name> is already loaded, only image capture and image processing are

executed. (The vision program is not loaded.)?
(5) For receiving data from the vision sensor, use the EBRead command.
(6) When this command is used with multi-tasking, it is necessary to execute the NVOpen command in the

task using this command. Also, use the <vision sensor number> specified with the NVOpen command.
(7) A program start condition of "Always" is not supported.
(8) Please set the trigger of EasyBuilder's image capture to "External trigger", "Manual triggeroperation" or

"Network".
(It is possible to use "Camera" when the value of paramete NVTRGTMG is 0 or 2.)

(9) Up to three robots can control the same vision sensor at the same time, but this command can not be
used by more than one robot at the same time. Use this command on any one of the robots.

(10) If an interrupt condition is established while this command is being executed, the interrupt processing is
executed immediately.

NVRun□#<Vision sensor number >,< Vision program (job) name >
-302 Detailed explanation of command words

 4MELFA-BASIC VI
[Errors]
(1) If data type for an argument is incorrect, a "syntax error in input command statement" error is generated.
(2) If there is an abnormal number of command arguments (too many or too few), an "incorrect argument

count" error occurs.
(3) If the <vision sensor number> is anything other than "1" through "8", an "argument out of range" error

occurs.
(4) If the NVOpen command is not opened with the number specified as the <vision sensor number>, an

"abnormal vision sensor number specification" error occurs.
(5) If the <vision program name> exceeds 15 characters, an "abnormal vision program name" error occurs.
(6) If a <vision program name> uses a character other than "0" - "9", "A" - "Z", "-", or "_" (including lowercase

letters), an "abnormal vision program name" error occurs.
(7) If the program specified in the <vision program name> is not in the vision sensor, a "vision program does

not exist" error occurs.
(8) If EasyBuilder's image capture specification is set to anything other than "Camera" (all trigger

command), "External trigger", or "Manual trigger", an "abnormal image capture specification" error
occurs.
(When the value of parameter NVTRGTMG is 1 and the image capture specification is set to "Camera",
the same error occurs.)

(9) If the vision sensor is "offline", the "Put online" error occurs, so put the vision sensor "Online".
(10) If the communications line is cut while this command is being executed, an "abnormal communications"

error occurs and the robot controller side line is closed.
 Detailed explanation of command words 4-303

4

4MELFA-BASIC VI
NVTrg (network vision sensor trigger)
[Function]

Requests the specified vision program to capture an image.
[Format]

[Terminology]
<Vision sensor number> (Can not be omitted)

This specifies the number of the vision sensor to control.
Setting range:1 - 8

<Delay time> (Can not be omitted)
This specifies the delay time (in ms) from when the image capture request is output to
the vision sensor until the encoder value is obtained.
Setting range:0 - 150 ms

<Encoder n value read-out variable> (Can be omitted from the second one on)
Specifies the double precision numeric variable into which the read out external encoder
n value is set.
Note: n is 1 - 8.

[Reference Program]
1 If M_NVOpen(1)<>1 Then ’ If vision sensor number 1 logon is not complete
2 NVOpen "COM2:" As #1 ’ Connects with the vision sensor connected to COM2.
3 EndIf
4 Wait M_NVOpen(1)=1 ' Connects with vision sensor number 1 and waits for logon to be

completed.
5 NVRun #1,"TEST" ' Starts the "Test" program.
6 NVTrg #1,15,M1#,M2# ' Requests the vision sensor to capture an image and acquires encoders

1 and 2 after 15 ms.
7 NVIn #1, "TEST","E76","J81","L84",0,10

'Receives the recognition count recognized with the "Test" program
from the E76 cell and the recognition results from cells J81 through
L84, and stores this in P_NvS1 ().

8 ・・・
 :
100 NVClose #1 ' Cuts the line with the vision sensor connected to COM2.

[Explanation]
(1) Outputs the image capture request to the specified vision sensor and acquires the encoder value after

the specified time. The acquired encoder value is stored in the specified numeric variable.
(2) This command moves to the next step at the point in time when the encoder value is acquired the

specified time after the image capture request to the vision sensor.
(3) If the program is cancelled while this command is being executed, it stops immediately.
(4) For receiving data from the vision sensor, use the NVIn command.
(5) When this command is used with multi-tasking, it is necessary to execute the NVOpen command in the

task using this command. Also, use the <vision sensor number> specified with the NVOpen command.
(6) A program start condition of "Always" is not supported.
(7) Up to three robots can control the same vision sensor at the same time, but this command can not be

used by more than one robot at the same time. Use this command on any one of the robots.
(8) If an interrupt condition is established while this command is being executed, the interrupt processing is

executed immediately.

NVTrg□#<Vision sensor number>,<delay time>, <encoder 1 value read-out variable>
[,[<encoder 2 read-out variable>][,[<encoder 3 value read-out variable>]
[,[<encoder 4 read-out variable>][,[<encoder 5 value read-out variable>]
[,[<encoder 6 read-out variable>][,[<encoder 7 value read-out variable>]
[,[<encoder 8 read-out variable>]
-304 Detailed explanation of command words

 4MELFA-BASIC VI
[Errors]
(1) If data type for an argument is incorrect, a "syntax error in input command statement" error is generated.
(2) If there is an abnormal number of command arguments (too many or too few), an "incorrect argument

count" error occurs.
(3) If the <vision sensor number> is anything other than "1" through "8", an "argument out of range" error

occurs.
(4) If the NVOpen command is not opened with the number specified as the <vision sensor number>, an

"abnormal vision sensor number specification" error occurs.
(5) If the vision program's image capture specification is set to anything other than "Camera" (all trigger

command), "External trigger", or "Manual trigger", an "abnormal image capture specification" error
occurs.

(6) If the vision sensor is "offline", the "Put online" error occurs, so put the vision sensor "Online".
(7) If the communications line is cut while this command is being executed, an "abnormal communications"

error occurs and the robot controller side line is closed.
 Detailed explanation of command words 4-305

4

4MELFA-BASIC VI
Oadl (Optimal Acceleration)

[Function]
Automatically sets the optimum acceleration/deceleration according to the robot hand's load state (Optimum
acceleration/deceleration control).
By employing this function, it becomes possible to shorten the robot's motion time (tact).
The acceleration/deceleration speed during optimum acceleration/deceleration can be calculated using the
following equation:

Acceleration/deceleration speed (sec) = Optimum acceleration/deceleration speed (sec) x Accel instruction
(%) x M_SetAdl (%)

* The optimum acceleration/deceleration speed is the optimum acceleration/deceleration speed calculated
when an Oadl instruction is used.

[Format]

[Terminology]
<On / Off> ON: Start the optimum acceleration/deceleration speed.

OFF: End the optimum acceleration/deceleration speed.

[Reference Program]
1 Oadl On
2 Mov P1 ' Move with maximum load.
3 LoadSet 1,1 ' Set hand 1 and workpiece 1.
4 Mov P2 ' Move with hand 1 + workpiece 1 load.
5 HOpen 1 '
6 Mov P3 ' Move with hand 1 load.
7 HClose 1 '
8 Mov P4 ' Move with hand 1 + workpiece 1 load.
9 Oadl Off

*When parameter HNDHOLD1 is set to 0, 1

[Explanation]
(1) The robot moves with the optimum acceleration/deceleration according to the hand conditions and

workpiece conditions designated with the LoadSet command.
(2) The workpiece grasp/not grasp for when the hand is opened or closed is set with parameter HNDHOLD

1 to 8.
(3) Initial setting of Oadl can be changed by the ACCMODE parameter. (Refer to Page 492, "Table 5-1: List

Movement parameter")
(4) Once Oadl is On, it is valid until Oadl Off is executed or until the program End is executed.
(5) Depending on the conditions of the hand and/or workpiece, the motion time may become longer than

usual.
(6) It is possible to perform the optimum acceleration/deceleration operation by using the LoadSet and Oadl

instructions, and by setting the HNDDAT1(0) through 8 and WRKDAT1(0) through 8 parameters to
appropriate values. (Refer to Page 552, "5.16 Hand and Workpiece Conditions (optimum acceleration/
deceleration settings)")

Oadl[]<On / Off>
-306 Detailed explanation of command words

 4MELFA-BASIC VI
(7) The value of the acceleration/deceleration speed distribution rate in units of axes are predetermined by
the JADL parameter. This value varies with models in the S series. Refer to the Page 502, "JADL"
parameter.

Fig.4-36:Acceleration/deceleration pattern at light load

[Related instructions]
Accel (Accelerate), Loadset (Load Set), HOpen / HClose (Hand Open/Hand Close)

[Related parameter]
HNDDAT 0 to 8, WRKDAT 0 to 8, HNDHOLD 1 to 8, ACCMODE, JADL

S
pe

ed

Time

S
pe

ed

Time

OADL ON
 Detailed explanation of command words 4-307

4

4MELFA-BASIC VI
On Com GoSub (ON Communication Go Subroutine)

[Function]
Defines the starting line of a branching subroutine when an interrupt is generated from a designated
communication line.

[Format]

[Terminology]
<File No.> Describe a number between 1 and 3 assigned to the communication line.
<Call Destination> Describe the line No. and label name.

[Reference Program]
If an interrupt is generated from the file No. 1 communication line (COM1:), carry out the label RECV

process.
 1 Open "COM1:" AS #1 ' Communication line opening.
 2 On Com(1) GoSub *RECV ' The definition of interruption.
 3 Com(1) On ' Enable interrupt from file No. 1 communication line.
 4 '
 :
10 ' <<If the communicative interrupt occurs here, it will branch to label *RECV.>>
11 '
12 Mov P1
13 Com(1) Stop ' Suspend the interrupt during movement only from P1 to P2.
14 Mov P2
15 Com(1) On ' If there are some communications during movement from P1 to P2, the

interrupt occurs here.
16 '
 :
22 ' <<If the communicative interrupt occurs here, it will branch to label *RECV.>>
23 '
24 Com(1) Off ' Disable interrupt from file No. 1 communication line.
25 Close #1
26 End
 :
 :
30 *RECV ' Communication interruption processing.
31 Input #1, M0001 ' Set the received information as M0001 and P0001.
32 Input #1, P0001
 :
39 Return 1 ' Returns control to the next step of interrupted step.

[Explanation]
(1) If the file No. is omitted, 1 will be used as the file No.
(2) The file Nos. with the smallest No. have the order of priority for the interrupt.
(3) If the communicative interrupt occurs while the robot is moving, robots operating within the same slot will

stop. It is possible to use Com Stop to stop the interrupt, and prevent the robot from stopping.
(4) Interrupts are prohibited in the initial state. To enable interrupts, execute the Com On instruction after this

instruction.
(5) Make sure to return from a subroutine using the Return command. An error occurs if the GoTo instruction

is used to return, because the free memory available for control structure (stack memory) decreases
and eventually becomes insufficient.

[Related instructions]
Com On/Com Off/Com Stop (Communication ON/OFF/Stop), Return (Return), Open (Open), Input (Input),
Print (Print), Close (Close)

On[]Com[][(<File No.>)][]GoSub[]<Call Destination>
-308 Detailed explanation of command words

 4MELFA-BASIC VI
On ... GoSub (ON Go Subroutine)

[Function]
Calls up the subroutine at the step label corresponding to the value.

[Format]

[Terminology]
<Terminology> Designate the step label on the step to branch to with a numeric operation expression.
<Call Destination> Describe the step label No. The maximum number is 32.

[Reference Program]
Sets the value equivalent to three bits of input signal 16 in M1, and branches according to the value of M1
(1 through 7).
(Calls label L1 if M1 is 1, label LSUB if M1 is 2, label L2 if M1 is 3, 4 or 5, and label L67 if M1 is 6 or 7.)
1 M1 = M_Inb(16) AND &H7
2 On M1 GoSub *L1,*LSUB,*L2,*L2,*L2,*L67,*L67
 :
10 *L1
11 ' Describes processing when M1=1.
12 '
13 Return ' Be sure to return by using Return.

20 *LSUB
21 ' Describes processing when M1=2.
22 Return ' Be sure to return by using Return.

30 *L67
31 ' Describes processing when M1=6 or M1=7.
32 Return ' Be sure to return by using Return.

40 *L2
41 ' Describes processing when M1=3, M1=4, or M1=5.
42 '
43 Return ' Be sure to return by using Return.

[Explanation]
(1) The value of <Expression> determines which step label subroutine to call.

For example, if the value of <Expression> is 2, the step label described for the second value is called.
(2) If the value of <expression> is larger than the number of <destinations called up>, the program control

jumps to the next step. For example, the program control jumps to the next step if the value of
<expression> is 5 and there are only three <destinations called up>.

(3) When a step No. or abel that is called up does not exist, or when there are two definitions, an error will
occur.

(4) Make sure to return from a subroutine using the Return command. An error occurs if the GoTo instruction
is used to return, because the free memory available for control structure (stack memory) decreases
and eventually becomes insufficient.

On[]<Terminology>[]GoSub[][<Expression>] [, [<Call Destination>]] ...

Value of <Expression> Process <Control>
Real number Value is converted to an integer by rounding it off,

and then branching is executed.
When 0, or when the value exceeds the
number of step labels

Control proceeds to the next step

Negative number or 32767 is exceeded Execution error
 Detailed explanation of command words 4-309

4

4MELFA-BASIC VI
On ... GoTo (On Go To)

[Function]
Branches to the step with the step label that corresponds to the designated value.

[Format]

[Terminology]
<Expression> Designate the step label on the line to branch to with a numeric operation expression.
<Call Destination> Describe the step label No. The maximum number is 32.

[Reference Program]
Branches based on the value (1-7) of the numerical variable M1.
(Branches to label L1 if M1 is 1, to label LJMP if M1 is 2, to label L2 if M1 is 3, 4 or 5, and to label L67 if

M1 is 6 or 7.)
 10 On M1 GoTo L1,*LJMP,*L2,*L2,*L2,*L67,*L67
 11 ' Control is passed to this line when M1 is other than 1 through 7 (i.e., 0, or 8 or larger).

20 *L1
21 ' Describes processing when M1=1.
22 ' :

30 *LJMP ' When M1=2.
31 ' Describes processing when M1=2.
32 ' :

40 *L67
41 ' Describes processing when M1=6 or M1=7.
42 ' :

50 *L2
51 ' Describes processing when M1=3, M1=4, or M1=5.
52 ' :

[Explanation]
(1) This is the GoTo version of On GoSub.
(2) If the value of <expression> is larger than the number of <destinations called up>, the program control

jumps to the next step. For example, the program control jumps to the next step if the value of
<expression> is 5 and there are only three <destinations called up>.

(3) When a step No. or label that is called up does not exist, or when there are two definitions, an error will
occur.

On[]<Expression>[]GoTo[][<Branch Destination>] [, [<Branch Destination>]] ...

Value of <Expression> Process <Control>
Real number Value is converted to an integer by rounding it off,

and then branching is executed.
When 0, or when the value exceeds the
number of step labels

Control proceeds to the next step

Negative number or 32767 is exceeded Execution error
-310 Detailed explanation of command words

 4MELFA-BASIC VI
Open (Open)

[Function]
Open the file or communication lines.

[Format]

[Terminology]
<File Descriptor> Describe a file name (including communication lines).

*To use a communication line, set "<Communication Line File Name>:"
*When not using a communications line, set "<File Name>"

<Mode> Designate the method to access a file.
*Omitted = random mode. This can be omitted when using a communication line (TCP

communication).
*Input = input mode. Inputs from an existing file.
*Output = output mode (new file). Creates a new file and outputs it there.
*Append = Output mode (existing file). Appends output to the end of an existing file.
*Binary = Designate the binary file mode.
*UDP = Performs UDP communication.

<File No.> Specify a constant from 1 to 8.
To interrupt from communication line: 1 to 3.

[Reference Program]
(1) File operation (Create a file named "temp.txt" and write "abc" in the file.)

1 Open "temp.txt" For Append As #1 ' Opens the temp.txt file as the file number 1 in Append mode.
2 Print #1, "abc" ' Writes "abc" in the file.
3 Close #1 ' Closes the file.

(2) File operation (Writing to the binary file)
1 Open "temp.dat" For Binary As #1 ' Opens the temp.dat file as the file number 1 in binary file mode.
2 BPrint #1, P_Curr.X, 4 ' Writes the current position in binary format in increments of four

bytes.
3 BPrint #1, P_Curr.Y, 4
4 BPrint #1, P_Curr.Z, 4
5 BPrint #1, P_Curr.A, 4
6 BPrint #1, P_Curr.B, 4
7 BPrint #1, P_Curr.C, 4
8 Close #1 ' Closes the file.

Open[] "<File Descriptor>" [][For <Mode>][]AS[] [#] <File No.>

File type File name Access method
File Describe with 16 characters or less. Input, Output, Append,

Random, Binary
Communic
ation line

COM1: The setting in the "COMDEV" parameter.
 :
COM8: The setting in the "COMDEV" parameter.

Omitted = TCP communication
UDP = UDP communication

ENET:192.168.0.2 Note1)

Note1) It is specification in the case of using the real-time external control by the Ethernet interface. Specify
the IP address which takes absolute position data by the "Mxt" command following "ENET:".

Mxt command

MXT: QRBUS<CPU No.2 to 4>"
Select the number among 2 to 4 for the CPU
module No. to specify the master robot CPU.

Mxt command
 Detailed explanation of command words 4-311

4

4MELFA-BASIC VI
(3) Communication line
1 Open "COM1:" As #1 ' Opens the communication line set with the first element of the parameter

' COMDEV as the file number 1.
2 Mov P_01
3 Print #1, P_Curr ' Outputs the current position to the external source. (In the following format)

' "(100.00,200.00,300.00,400.00,500.00,600.00,700.00,800.00)(7,0)"
4 Input #1, M1, M2, M3 ' Receives the current position in ASCII format of "101.00,202.00,303.00" from

the external source.
5 P_01.X = M1
6 P_01.Y = M2
7 P_01.C = Rad(M3) ' Copies the current position to global data.
8 Close ' Closes all the opened files.
9 End

(4) Communication line (UDP communication)
1 Open "COM1:" For UDP As #1 ' Opens the communication line set with the first element

' of the parameter COMDEV as the file number 1 using
' the UDP communication.

2 Dim PRob(4) ' Registers the teaching point for calibration in advance.
3 For Mno=1 To 4
4 Mov PRob(Mno)
5 Print #1, "TRIGGER" ' Sends a trigger to the sensor.
6 BInput #1, MX, 4 ' Acquires sensor recognition data in binary format.
7 BInput #1, MY, 4
8 BInput #1, MC, 4
9 PCam.X = MX
10 PCam.Y = MY
11 PCam.C = MC
12 VSSetCP 1, Mno, PCam, PRob(Mno) ' Sets the corresponding points of the sensor coordinate

system and the robot coordinate system.
13 Next Mno
14 VSRegCD 1 ' Calculates calibration data.
15 Close #1 ' Closes the communication line.
16 End

[Explanation]
(1) Opens the file specified in <File name> using the file number. Use this file No. when reading from or

writing to the file.
(2) A communication line is handled as a file.
(3) Use the BInput/BPrint instruction to read/write binary data.

[Related instructions]
Close (Close), Print (Print), Input (Input), Mxt (Move External)

[Related parameter]
COMDEV
-312 Detailed explanation of command words

 4MELFA-BASIC VI
Ovrd (Override)

[Function]
This instruction specifies the speed of the robot movement as a value in the range from 0.01 to 100%. This
is the override applied to the entire program.

[Format]

.

[Terminology]
<Override> Designate the override with a real number. The default value is 100.

Unit: [%] (Recommended range: 0.01 to 100)
A numeric operation expression can also be described. If 0 or a value over 100 is set,
an error will occur.

<Override when moving upward/downward>
Sets the override value when moving upward/downward by the arch motion instruction
(Mva).

[Reference Program]
1 Ovrd 50
2 Mov P1
3 Mvs P2
4 Ovrd M_NOvrd ' Set default value.
5 Mov P1
6 Ovrd 30,10,10 ' Sets the override when moving upward/downward by the arch motion

instruction to 10.
7 Mva P3,3

[Explanation]
(1) The Ovrd command is valid regardless of the interpolation type.
(2) The actual override is as follows:
*During joint interpolation: Operation panel (T/B) override setting value) x (Program override (Ovrd

command)) x (Joint override (JOvrd command)).
*During linear interpolation: Operation panel (T/B) override setting value) x (Program override (Ovrd

command)) x (Linear designated speed (Spd command)).
(3) The Ovrd command changes only the program override. 100% is the maximum capacity of the robot.

Normally, the system default value (M_NOvrd) is set to 100%. The designated override is the system
default value until the Ovrd command is executed in the program.

(4) Once the Ovrd command has been executed, the designated override is applied until the next Ovrd
command is executed, the program End is executed or until the program is reset. The value will return
to the default value when the End statement is executed or the program is reset.

[Related instructions]
JOvrd (J Override) (For joint interpolation), Spd (Speed) (For linear/circular interpolation)

[Related system variables]
M_JOvrd/M_NJOvrd/M_OPOvrd/M_Ovrd/M_NOvrd
(M_NOvrd (System default value), M_Ovrd (Current designated speed))

Ovrd[]<Override>

Ovrd[]<Override> [, <Override when moving upward> [, <Override when moving downward>]]
 Detailed explanation of command words 4-313

4

4MELFA-BASIC VI
Plt (Pallet)

[Function]
Calculates the position of grid in the pallet.

[Format]

[Terminology]
<Pallet No.> Select a pallet No. between 1 and 8 that has already been defined with a Def Plt command.

Specify this argument using a constant or a variable.
<Grid No.> The position number to calculate in the palette. Specify this argument using a constant

or a variable.

[Reference Program]
10 Def Plt 1,P1,P2,P3,P4,4,3,1 ' The definition of the four-point pallet. (P1,P2,P3,P4)
11 '
12 M1=1 ' Initialize the counter M1.
13 *LOOP
14 Mov PICK, 50 ' Moves 50 mm above the work unload position.
15 Ovrd 50
16 Mvs PICK
17 HClose 1 ' Close the hand.
18 Dly 0.5 ' Wait for the hand to close securely (0.5 sec.)
19 Ovrd 100
20 Mvs,50 ' Moves 50 mm above the current position.
21 PLACE = Plt 1, M1 ' Calculates the M1th position
22 Mov PLACE, 50 ' Moves 50 mm above the pallet top mount position.
23 Ovrd 50
24 Mvs PLACE
25 HOpen 1 ' Open the hand.
26 Dly 0.5
27 Ovrd 100
28 Mvs,50 ' Moves 50 mm above the current position.
29 M1=M1+1 ' Add the counter.
30 If M1 <=12 Then *LOOP ' If the counter is within the limits, repeats from *LOOP.
31 Mov PICK,50
32 End

[Explanation]
(1) The position of grid of a pallet defined by the Def Plt statement is operated.
(2) The pallet Nos. are from 1 to 8, and up to 8 can be defined at once.
(3) Note that the position of the grid may vary because of the designated direction in the pallet definition.
(4) If a grid No. is designated that exceeds the largest grid No. defined in the pallet definition statement, an

error will occur during execution.
(5) When using the pallet grid point as the target position of the movement command, an error will occur if

the point is not enclosed in parentheses as shown above.
Mov (Plt 1, 5)
Refer to Page 118, "4.1.2 Pallet operation" for detail.

[Related instructions]
Def Plt (Define pallet)

Plt[]<Pallet No.> , <Grid No.>
-314 Detailed explanation of command words

 4MELFA-BASIC VI
Prec (Precision)

[Function]
This instruction is used to improve the motion path tracking. It switches between enabling and disabling the
high accuracy mode.

[Format].

[Terminology]
<On / Off> On: When enabling the high accuracy mode.

Off: When disabling the high accuracy mode.

[Reference Program]
1 Prec On ' Enables the high accuracy mode.
2 Mvs P1
3 Mvs P2
4 Prec Off ' Disables the high accuracy mode.
5 Mov P1

[Explanation]

(1) The high accuracy mode is enabled using the Prec On command if it is desired to perform interpolation
movement with increased path accuracy.

(2) When this command is used, the path accuracy is improved but the program execution time (tact time)
may become longer because the acceleration/deceleration times are changed internally.

(3) The enabling/disabling of the high accuracy mode is activated from the first interpolation instruction after
the execution of this command.

(4) The high accuracy mode is disabled if the Prec Off or End instruction is executed, or a program reset
operation is performed.

(5) The high accuracy mode is disabled immediately after turning the power on.
(6) The high accuracy mode is always disabled in jog movement.

[Related instructions]
Loadset (Load Set), Mv Tune (Move Tune)

[Related system variables]
HNDDAT 0 to 8, WRKDAT 0 to 8

Prec[]<On / Off>
 Detailed explanation of command words 4-315

4

4MELFA-BASIC VI
Print (Print)

[Function]
Outputs data into a file (including communication lines). All data uses the AscII format.

[Format]

[Terminology]
<File No.> Described with numbers 1 to 8.

Corresponds to the control No. assigned by the Open command.
<Expression> Describes numeric operation expressions, position operation expressions and character

string expressions.

[Reference Program]
1 Open "COM1" AS #1 ' Open standard RS-232-C line as file No. 1.20 Mov P_01.
2 MDATA=150 ' Substitute 150 for the numeric variable MDATA.
3 Print #1,"***Print TEST***" ' Outputs the character string "***Print TEST****."
4 Print #1 ' Issue a carriage return
5 Print #1,"MDATA=",MDATA ' Output the character string "MDATA" followed by the value of

MDATA, (150).
6 Print #1 ' Issue a carriage return.
4 Print #1,"****************" ' Outputs the character string "**************."
5 End ' End the program.

The output result is shown below.
Print TEST
 MDATA=150

[Explanation]
(1) If <Expression> is not described, then a carriage return will be output.
(2) Output format of data (reference)

The output space for the value for <Expression> and for the character string is in units of 14 characters.
When outputting multiple values, use a comma between each <Expression> as a delimiter.
If a semicolon (;) is used at the head of each space unit, it will output after the item that was last
displayed. The carriage return code will always be returned after the output data.

(3) The error occurs when Open command is not executed.
(4) If data contains a double quotation mark ("), only up to the double quotation mark is output.

Example)
[1 M1=123.5
 2 P1=(130.5,-117.2,55.1,16.2,0.0,0.0)(1,0)]
1)[3 Print #1,"OUTPUT TEST",M1,P1]is described,

OUTPUT TEST 123.5 (130.5,-117.2,55.1,16.2,0.0,0.0)(1,0) is output.

2)[3 Print #1,"OUTPUT TEST";M1;P1]is described,
OUTPUT TEST 123.5(130.5,-117.2,55.1,16.2,0.0,0.0)(1,0) is output.

If a comma or semicolon is inserted after a <Expression>, the carriage return will not be issued, and instead,
printing will continue on the same line.

3) 3 Print #1,"OUTPUT TEST",
 4 Print #1,M1;
 5 Print #1,P1]is described,

OUTPUT TEST 123.5(130.5,-117.2,55.1,16.2,0.0,0.0)(1,0) is output.

[Related instructions]
Open (Open), Close (Close), Input (Input)

Print[]#<File No.>[] [, [<Expression> [;]] ...[<Expression>[;]]]
-316 Detailed explanation of command words

 4MELFA-BASIC VI
Priority (Priority)

[Function]
In multitask program operation, multiple program lines are executed in sequence (line by line by default).
This command specifies the priority (number of lines executed in priority) when programs are executed in
multitask operation.

[Format].

[Terminology]
<Number of executed lines> Specify the number of lines executed at once .

Use a numerical value from 1 to 31.
<Slot number> 1 to 32. If this argument is omitted, the current slot number is set.

[Reference Program]
Slot 1
1 Priority 3 ' Sets the number of executed steps for the current slot to 3.

Slot 2
1 Priority 4 ' Sets the number of executed steps for this slot to 4.

[Explanation]
(1) Programs of other slots are not executed until the specified number of steps is executed. For example,

as in the statement example above, if Priority 3 is set for slot 1's program and Priority 4 is set for slot 2's
program, three steps of the slot 1 program are executed first, then four steps of the slot 2 program are
executed. Afterward, this cycle is repeated.

(2) The default value is 1 for all the slots. In other words, the execution moves to the next slot every time one
step has been executed.

(3) An error occurs if there is no program corresponding to the specified task slot.
(4) It is possible to change the priority even while the program of the specified task slot is being executed.

Priority[]<Number of executed lines> [, <Slot number>]
 Detailed explanation of command words 4-317

4

4MELFA-BASIC VI
PrmRead (Parameter Read)

[Function]
Reads a parameter value.

[Format]

[Terminology]
<Mechanism Number> Specify the mechanism No. of a parameter to be read. Parameters

independent from the mechanism can also be read by specifying 1, 2, or
3 as the mechanism No. Specify the mechanism No. with a constant or
variable.
(The mechanism No. can be omitted. The common parameter and
mechanism No. 1 can be read.)
Setting range: 0 to 3, 0: Common parameter (Mechanism No. 1 can also
be read by specifying 0.)

<Parameter name> Specify the name of the parameter to be read.
<Storage destination variable> Specify a variable in which the read parameter value is stored.

Numeric value type: Only the 1st element is read and the read value is
round off for the integer type.
Position type: The 1st to 8th elements are read.
Joint type: The 1st to 8th elements are read.
Character type: All the elements are read as characters. The maximum
number of characters is 127.

[Reference Program]
1 PrmRead 0,"LNG",CLNG$ ' Reads the parameter LNG.
2 PrmRead 1,"LNG",CLNG$ ' The parameter can also be read by specifying the mechanism

No. 1.
3 PrmRead 1,"MEJAR",CMEJAR$ ' Reads the parameter MEJAR. However, the characters after the

128th character are not read.
4 Dim CDIM$(16)
5 PrmRead 0,"ROMDRV",MDRV ' Reads the parameter after converting it into a numeric value.
6 PrmRead 0,"AREA1P1",PAREA1 ' Reads the parameter AREA1P1 to the P variable.

[Explanation]
(1) Only the parameters disclosed to customers can be read.

[Related instructions]
PrmWrite (Parameter Write)

[Format 1] PrmRead [<Mechanism Number>], <Parameter name>, <Storage destination variable>
-318 Detailed explanation of command words

 4MELFA-BASIC VI
PrmWrite (Parameter Write)

[Function]
Writes a parameter value.

[Format]

[Terminology]
<Mechanism Number> Specify the mechanism No. of the parameter to be written. Parameters

independent from the mechanism can also be written by specifying 1, 2, or 3
as the mechanism No. Specify the mechanism No. with a constant or variable.
(The mechanism No. can be omitted. The common parameter and mechanism
No. 1 can be written.)
Setting range: 0 to 3, 0: Common parameter (Mechanism No. 1 can also be read
by specifying 0.)

<Parameter name> Specify the name of the parameter to be written.
<Parameter value> Specify a parameter value to be written.

The value can be also specified with a numeric value. However, if the target
parameter is the character type, the value is converted into characters.
Numeric value type: Only the 1st element is written and the written value is round
off for the integer type.
Position type: The 1st to 8th elements are written.
Joint type: The 1st to 8th elements are written.
Character type: All the elements are written as characters. The maximum number

of characters is 127.

[Reference Program]
1 PrmWrite 0,"LNG",CLNG$ ' Writes the parameter LNG.
2 PrmWrite 1,"LNG",CLNG$ ' The parameter can also be written by specifying the

mechanism No. 1.
3 PrmWrite 1,"MEJAR",CMEJAR$ ' Writes the parameter MEJAR.
4 PrmWrite 0,"ROMDRV",MDRV ' Writes the parameter after converting it into a numeric

value.
5 PrmWrite 0,"AREA1P1",PAREA1 ' Writes the parameter AREA1P1 to the P variable.

[Explanation]
(1) Only the parameters disclosed to customers can be written.
(2) It is necessary to turn the robot controller's power off and then on again after write a parameter.

[Related instructions]
PrmRead (Parameter Read)

PrmWrite [<Mechanism Number>], <Parameter name>, <Parameter value>
 Detailed explanation of command words 4-319

4

4MELFA-BASIC VI
PVSCal (PVS calibration)

[Function]
Changes the vision sensor image coordinate to the robot world coordinate using the vision sensor
calibration data (parameters from VSCALB 1 to VSCALB 8) set by 2D vision calibration function of RT
ToolBox3.

[Format].

[Terminology]
<Position Variables> Specifies the position variable to assign.

Returns the robot world coordinate for the calculation result of the coordinate
conversions.

<Calibration Number> Specify the vision sensor calibration data to be used for the coordinate
conversion with the number of parameters from VSCALB 1 to VSCALB 8.

<Vision X> X pixel coordinate of the vision sensor. [pixel]
<Vision Y> Y pixel coordinate of the vision sensor. [pixel]
<Vision θ> θ pixel coordinate of the vision sensor. [deg.]
<Reference Position Variables> Specify the reference position as s position constant or position variable.

When attaching a camera to the hand, specify the robot position
(at the time of the image recognition) where the image is recognized
with the vision sensor as a reference position. The relative calculation is
performed as follows.

<Robot position at the time of the image recognition>*<Calculation result
of the coordinate conversion>

When omitted, the absolute coordinate is set.

[Reference Program]
1 ' Start the target vision sensor with Open/Print/Input command to substitute the acquired image

coordinate [pixel] for numeric variable.
2 ' MX= X [pixcel] of the vision sensor
3 ' MY= Y [pixcel] of the vision sensor
4 ' MT= θ [deg.] of the vision sensor
5 PVS=PVSCal(1,MX,MY,MT) ' Changes the image coordinate to the robot (world) coordinate

with Calibration 1.
6 PVS.Z=PDST.Z ' Specifies Z height.
7 Mov PVS,-50 ' Moves to a position 50 mm above the calculated position.
8 Mvs PVS ' Moves to the calculated position.

[Explanation]
(1) Changes the vision sensor image coordinate to the robot world coordinate using the vision sensor

calibration data (parameters from VSCALB 1 to VSCALB 8).
Use the 2D vision calibration function of RT ToolBox3 to set the parameters from VSCALB 1 to VSCALB
8 to be used for the coordinate conversion for the advanced settings.

(2) If the calibration numbers other than 1 to 8 are set, error L3110 (Arg. value range over) occurs.
(3) If the numbers of argument are not either four or five, error L3120 (No. of arg. is over) occurs.
(4) If the type of arguments is different, error L3810 (Different argument type) occurs.

[Related parameter]
VSCALB1 to 8

<Position Variables>=PVSCal<Calibration Number>, <Vision X>,

<Vision Y>, <Vision θ> [, <Reference Position Variables>]
-320 Detailed explanation of command words

 4MELFA-BASIC VI
RelM (Release Mechanism)

[Function]
This instruction is used in connection with control of a mechanism via task slots during multitask operation.
It is used to release the mechanism obtained by the GetM instruction.

[Format]

[Reference Program]
(1) Start the task slot 2 from the task slot 1, and control the mechanism 1 in the task slot 2.

Task slot 1
1 RelM ' Releases the mechanism in order to control mechanism 1 using slot 2.
2 XRun 2,"10" ' Start the program 10 in slot 2.
3 Wait M_Run(2)=1 ' Wait for the starting confirmation of the slot 2.
 :

Task slot 2. (Program "10")
1 GetM 1 ' Get the control of mechanism 1.
2 Servo On ' Turn on the servo of mechanism 1.
3 Mov P1
4 Mvs P2
5 Servo Off ' Turn off the servo of mechanism 1.
6 RelM ' Releases the control right of mechanism 1.
7 End

[Explanation]
(1) Releases the currently acquired mechanism resource.
(2) If an interrupt is applied while the mechanism is acquired and the program execution is stopped, the

acquired mechanism resource will be automatically released.
(3) This instruction cannot be used in a constantly executed program.

[Related instructions]
GetM (Get Mechanism)

RelM
 Detailed explanation of command words 4-321

4

4MELFA-BASIC VI
Rem (Remarks)

[Function]
Uses the following character strings as comments.

[Format]

[Terminology]
<Comment> Describe a user-selected character string.

Descriptions can be made in the range of position steps.

[Reference Program]
1 Rem ***MAIN PROGRAM***
2 ' ***MAIN PROGRAM***
3 Mov P1 ' Move to P1.

[Explanation]
(1) Rem can be abbreviated to be a single quotation mark (').
(2) It can be described after the instruction like an 3 step in reference program.

Rem[][<Comment>]
-322 Detailed explanation of command words

 4MELFA-BASIC VI
Remove (Remove)

[Function]
Deletes a file.

[Format]

[Terminology]
<File Name> Specifies a file name to be deleted.

[Reference Program]
1 Remove "temp.txt" ' Deletes the specified file.

[Explanation]
(1) A file created with the Open command is deleted.
(2) When the delete target file does not exist, the error L7010 occurs at execution.

[Related instructions]
Open (Open)

Remove[]"<File Name>"
 Detailed explanation of command words 4-323

4

4MELFA-BASIC VI
Reset Err (Reset Error)

[Function]
This command resets an error generated in the robot controller. It is not allowed to use this instruction in the
initial status. If an error other than warnings occurs, normal programs other than constantly executed
programs cannot be operated. This instruction is effective if used in constantly executed programs.

[Format]

[Reference Program]
Example of execution in a constantly executed program
1 If M_Err=1 Then Reset Err 'Resets an error when an error occurs in the controller.

[Explanation]
(1) This instruction is used in a program whose start condition is set to constant execution (ALWAYS) by the

"SLT*" parameter when it is desired to reset system errors of the robot.
(2) It becomes enabled when the controller's power is turned on again after changing the value of the

"ALWENA" parameter from 0 to 1.

[Related parameter]
ALWENA

[Related system variables]
M_Err/M_ErrLvl/M_Errno

Reset Err
-324 Detailed explanation of command words

 4MELFA-BASIC VI
Return (Return)
[Function]

(1) When returning from a normal subroutine returns to the next step after the GoSub.
(2) When returning from an interrupt processing subroutine, returns either to the step where the interrupt

was generated, or to the next step.

[Format]
(1) When returning from a normal subroutine:

(2) When returning from an interrupt processing subroutine:

[Terminology]
<Return Designation No.> Designate the step number where control will return to after an interrupt has been

generated and processed.
0: Return control to the line where the interrupt was generated.
1: Return control to the next line after the line where the interrupt was issued.

[Reference Program]
(1) The example of Return from the usual subroutine .

1 ' ***MAIN PROGRAM***
2 GoSub *SUB_INIT ' Subroutine jumps to label SUB_INIT.
3 Mov P1
 :
10 ' ***SUB INIT*** ' Subroutine
11 *SUB_INIT
12 PSTART=P1
13 M100=123
14 Return ' Returns to the step immediately following the step where the

subroutine was called from.

(2) The example of Return from the subroutine for interruption processing. Calls the subroutine on step 10
when the input signal of general-purpose input signal number 17 is turned on.

1 Def Act 1,M_In(17)=1 GoSub *SUB1 ' Definition of interrupt of Act 1.
2 Act 1=1 ' Enable the Act 1.
 :
10 *SUB1 ' The subroutine for interrupt of Act 1.
11 Act 1=0 ' Disable the interrupt.
12 M_Timer(1)=0 ' Set the timer to zero.
13 Mov P2 ' Move to P2.
14 Wait M_In(17)=0 ' Wait until the input signal 17 turns off.
15 Act 1=1 ' Set up interrupt again.
16 Return 0 ' Returns control to the interrupted step.

Return

Return <Return Designation No.>
 Detailed explanation of command words 4-325

4

4MELFA-BASIC VI
[Explanation]
(1) Writes the Return command at the end of the jump destination processing called up by the GoSub

command.
(2) An error occurs if the Return command is executed without being called by the GoSub command.
(3) Always use the Return command to return from a subroutine when called by the GoSub command. An

error occurs if the GoTo command is used to return, because the free memory available for control
structure (stack memory) decreases and eventually becomes insufficient.

(4) When there is a Return command in a normal subroutine with a return-to designation number, and when
there is a Return command in an interrupt-processing subroutine with no return-to destination number,
an error will occur.

(5) When returning from interruption processing to the next step by Return1, execute the statement to
disable the interrupt. When that is not so, if interruption conditions have been satisfied, because
interruption processing will be executed again and it will return to the next step, the step may be
skipped. Please refer to Page 183, "Act (Act)" for the interrupt processing.

(6) When an interrupt occurs during execution of the circular or the arc interpolation (Mvc, Mvr, Mvr2, Mvr3),
and then control returns to the interrupted step by Return 0, the robot returns to the start point of the
circle or the arc before executing the circular or the arc interpolation again.

(7) When an interrupt occurs during execution of the arch interpolation, and then control returns to the
interrupted step by Return 0, the robot executes the arch interpolation from the current position.

[Related instructions]
Act (Act), GoSub (Return)(Go Subroutine), On ... GoSub (ON Go Subroutine), On Com GoSub (ON
Communication Go Subroutine), Def Act (Define act)
-326 Detailed explanation of command words

 4MELFA-BASIC VI
Save

[Function]
Saves a program.

[Format]

[Terminology]
<Save type> 0: Saves the slot 1 program and the user base program.

1: Saves the user base program.
2: Saves the program of a specified slot.

<Slot number> Specify a slot number. (1 to 32) Specify the value with a constant or variable.

[Reference Program]
1 Save 0 ' Saves the slot 1 program and the user base program.
2 Save 1 ' Saves the user base program.
3 Save 2, 3 ' Saves the program of the slot 3.

[Explanation]
(1) Variable values changed during high-speed DRAM operation cannot be saved. However, using this

instruction can save the values.
(2) The program waits in the executed step until it has been saved.

Since execution of the Save instruction takes time, using this instruction affects
the tact time.

[Related parameter]
AUTOSAVE

Save[]<Save type>[, <Slot number>]

 CAUTION
 Detailed explanation of command words 4-327

4

4MELFA-BASIC VI
Select Case (Select Case)

[Function]
Executes one of multiple statement blocks according to the condition expression value.

[Format]

[Terminology]
<Condition> Describe a numeric operation expression or character string expression.
<Expression> Describe an expression using the following format. The type must be the same as the

condition expression.
*IS <Comparison operator> <Constant>
*<Constant>
*<Constant> To <Constant>
*<Character string constant>

<Process> Writes any command (other than the GoTo command) provided by MELFA-BASIC V.

[Reference Program]
1 Select MCNT
2 M1=10 ' This line is not executed
3 Case Is <= 10 ' MCNT <= 10
4 Mov P1
5 Break
6 Case 11 'MCNT=11 OR MCNT=12
6 Case 12
7 Mov P2
8 Break
9 Case 13 To 18 '13 <= MCNT <= 18
10 Mov P4
11 Break
12 Default ' Other than the above.
13 M_Out(10)=1
14 Break
15 End Select

Select[] <Condition>
Case[]<Expression>

[<Process>]
Break

Case[]<Expression>
[<Process>]
Break

 :
Default

[<Process>]
Break

End[]Select
-328 Detailed explanation of command words

 4MELFA-BASIC VI
[Explanation]
(1) If the condition matches one of the Case items, the process will be executed until the next Case, Default

or End Select. If the case does not match with any of the Case items but Default is described, that block
will be executed.

(2) If there is no Default, the program will jump to the step after EndSelect without processing.
(3) The Select Case and End Select statements must always correspond. If a GoTo instruction forces the

program to jump out from a Case block of the Select Case statement, the free memory available for
control structure (stack memory) decreases. Thus, if a program is executed continuously, an error will
eventually occur.

(4) If an End Select statement that does not correspond to Select Case is executed, an execution error will
occur.

(5) It is possible to describe Select Case inside Select Case. (UP to eight levels of nesting is allowed.)
(6) It is possible to write While-WEnd and For-Next within a Case block.
(7) Use "Case IS", when using the comparison operators (<, =, >, etc.) for the "<Expression>".
(8) The Brake statement can be omitted. (Descriptions in a Case block is processed according to (1).)
(9) If the type of <Condition> and <Expression> do not match, error L3810 (Different argument type) occurs.
 Detailed explanation of command words 4-329

4

4MELFA-BASIC VI
Servo (Servo)

[Function]
Controls the ON and OFF of the servo motor power.

[Format]
(1) The usual program

(2) The program of always (ALWAYS) execution.

[Terminology]
<On / Off> On: When turning the servo motor power on.

Off: When turning the servo motor power off.
<Mechanism No.> This is valid only within the program of always execution.

The range of the value is 1 to 3, and describe by constant or variable.

[Reference Program]
1 Servo On ' Servo On.
2 *L2
3 IF M_Svo<>1 GoTo *L2 ' Wait for servo On.
4 Spd M_NSpd
5 Mov P1
6 Servo Off

[Explanation]
(1) The robot arm controls the servo power for all axes.
(2) If additional axes are attached, the servo power supply for the additional axes is also affected.
(3) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.

[Related system variables]
M_Svo (1: On, 0: Off)

[Related parameter]
ALWENA

Servo[]<On / Off>

Servo[]<On / Off> , <Mechanism No.>
-330 Detailed explanation of command words

 4MELFA-BASIC VI
SetCalFrm (Set Calibration Frame)

[Function]
Sets the reference coordinate system used for frame transformation.
Two types of reference coordinate systems (pre-frame transformation and post-frame transformation) are
set with this command.

[Format]

[Terminology]
<Position 1> The position data used as the origin for the X, Y and Z axes in the pre-frame transformation

reference coordinate system is designated with a position variable or position constant.
<Position 2> The position data used as the origin for the +X axis in the pre-frame transformation reference

coordinate system is designated with a position variable or position constant.
<Position 3> The position data used as the +Y direction point in the X-Y plane of the pre-frame

transformation reference coordinate system is designated with a position variable or
numeric constant.

<Position 4> The position data used as the origin for the X, Y and Z axes in the post-frame transformation
reference coordinate system is designated with a position variable or position constant.

<Position 5> The position data used as the origin for the +X axis in the post-frame transformation
reference coordinate system is designated with a position variable or position constant.

<Position 6> The position data used as the +Y direction point in the X-Y plane of the post-frame
transformation reference coordinate system is designated with a position variable or
numeric constant.

[Reference Program]
1 PR1=(0, 0, 0, 0, 0, 0)(0, 0) ' Origin position of pre-frame transformation reference

coordinate system
2 PR2=(1, 0, 0, 0, 0, 0)(0, 0) ' +X axis position of pre-frame transformation reference

coordinate system
3 PR3=(0, 1, 0, 0, 0, 0)(0, 0) ' +Y direction position of pre-frame transformation

reference coordinate system
4 PC1=(0, 0, 0, 0, 0, 0)(0, 0) ' Origin position of post-frame transformation reference

coordinate system
5 PC2=(1, 1, 0, 0, 0, 0)(0, 0) ' +X axis position of post-frame transformation reference

coordinate system
6 PC3=(-1, 1, 0, 0, 0, 0)(0, 0) ' +Y direction position of post-frame transformation

reference coordinate system
7 SetCalFrm PR1, PR2, PR3, PC1, PC2, PC3 ' Sets the reference coordinate system used for frame

transformation
‘ Reference coordinate system after frame transformation
is coordinate system rotated +45 degrees around Z axis

8 MvSpl 5, 50, 20, 2 ' Using the reference coordinate system set with the
SetCalFrm command, the spline file 5 path points are
frame-transformed, and spline interpolation passing
through those path points is executed

[Explanation]
(1) Position data for defining the two types of reference coordinate systems (pre-frame transformation and

post-frame transformation) used for frame transformation are set. Three position data items are
required to define one coordinate system, so a total of six points of position data is set. In this example
of the following figure, the pre-frame transformation reference coordinate system "Xfr-Zfr-Yfr" is defined

SetCalFrm []<Position 1>, <Position 2>, <Position 3>, <Position 4>, <Position 5>, <Position 6>
 Detailed explanation of command words 4-331

4

4MELFA-BASIC VI
with position data PR1, PR2 and PR3, and the post-frame transformation reference coordinate system
"Xfc-Zfc-Yfc" is defined with position data PC1, PC2 and PC3.

Fig.4-37: Example of frame transformation

(2) The X, Y and Z axis coordinate values of each position data are used to define the coordinate system.
Other element data such as the A, B and C axis coordinate values are not used.

(3) The coordinate system cannot be calculated if the same point is found in three position data items
defining the coordinate system, or if the three position data items are arranged on the same line. In this
case, error L2041 (Can’t calculate frame transformation coordinates) will occur.

(4) The reference coordinate system is not set immediately after the controller power is turned ON. The
reference coordinate system is returned to the unset state with the main program’s END command or
program reset operation.

(5) The mechanism control rights (GetM command) are required to execute the SetCalFrm command.
(6) The SetCalFrm command cannot be executed in a slot for which the start conditions are ALWAYS or

ERROR. Error L3287 (Can’t use this command when start condition is ERR or ALW) will occur.

[Related instructions]
MvSpl (Move Spline)

[Related status variable]
Fram

+Xfr

+X

+Y

P11

P12

P13

P14

+Yfr
PR1

PR2

PR3

Zfr

+Xfr

+X

+Y

P11

P12

P13

P14

+Yfr

フレーム変換

Zfr

+Xfc

P21

P22

P23

P24

+Yfc
PC1

PC2

PC3

Zfc

Frame
transformation
-332 Detailed explanation of command words

 4MELFA-BASIC VI
Skip (Skip)

[Function]
Transfers control of the program to the next step.

[Format]

[Reference Program]
1 Mov P1 WthIf M_In(17)=1,Skip ' If the input signal (M_In(1 7)) turns ON while moving with joint

interpolation to the position indicated with position variable P1,
stop the robot interpolation motion, and stop execution of this
command, and execute the next step.

2 If M_SkipCq=1 Then Hlt ' Pauses the program if the execution is skipped.

[Explanation]
(1) This command is described with the Wth or WthIf statements. In this case, the execution of that step is

interrupted, and control is automatically transferred to the next step. Execution of skip can be seen with
the M_SkipCq information.

[Related system variables]
M_SkipCq (1: Skipped, 0: Not skipped)

Skip
 Detailed explanation of command words 4-333

4

4MELFA-BASIC VI
Spd (Speed)

[Function]
Designates the speed for the robot's linear and circular movements. This instruction also specifies the
optimum speed control mode.

[Format]

[Terminology]
<Designated Speed> Designate the speed as a real number. Setting range: 0.01 to 10000 [mm/s]

[Reference Program]
1 Spd 100
2 Mvs P1
3 Spd M_NSpd ' Set the default value.(The optimal speed-control mode.)
4 Mov P2
5 Mov P3
6 Ovrd 80 ' Countermeasure against an excessive speed error in the optimal speed mode
7 Mov P4
8 Ovrd 100

[Explanation]
(1) The Spd command is valid only for the robot's linear and circular movements.
(2) The actual designated override is (Operation panel (T/B) override setting value) x (Program override

(Ovrd command)) x (Linear designated speed (Spd command)).
(3) The Spd command changes only the linear/circular designated speed.
(4) When M_NSpd (The default value is 10000) is designated for the designated speed, the robot will

always move at the maximum possible speed, so the line speed will not be constant(optimum speed
control).

(5) An error may occur depending on the posture of the robot despite of the optimal speed control. If an
excessive speed error occurs, insert an Ovrd command in front of the error causing operation
command in order to lower the speed only in that segment.

(6) The system default value is applied for the designated speed until the Spd command is executed in the
program. Once the Spd command is executed, that designated speed is held until the next Spd
command.

(7) The designated speed will return to the system default value when the program End statement is
executed or the program is reset.

[Related system variables]
M_Spd/M_NSpd/M_RSpd

Spd[]<Designated Speed>

Spd[]M_NSpd (Optimum speed control mode)
-334 Detailed explanation of command words

 4MELFA-BASIC VI
SpdOpt (Speed Optimize)

[Function]
Adjusts the speed so that the speed does not exceed during the linear interpolation operation in the
horizontal direction which passes through near the singular point (X=Y=0: one of the robot's singular points).

Note) This command is limited to the corresponding robot models.
Robot model: RH-3FRHR series

[Format]

[Terminology]
<On/Off> ON: Enable the speed-optimization function.

OFF: Disable the speed-optimization function.

[Reference Program]
1 Mov P1
2 SpdOpt On ' Enable the speed-optimization function.
3 Mvs P2
4 Mvs P3
5 SpdOpt Off ' Disable the speed-optimization function.
6 Mvs P6

[Explanation]
(1) When performing a XYZ interpolation operation while maintaining the speed of the control point, the J1

axis must rotate at a faster speed when passing through a point near the origin point O (one of the
robot's singular points) as shown in Fig. 4-38, causing an excessive speed error depending on the
specified speed. If SpdOpt On is executed, the speed is adjusted automatically in order to prevent an
excessive speed error from occurring.
For example, while in operation at the command speed V, it approaches the origin point O, and the
speed will be exceeded if it continues to operate at the current speed, the speed is decreased
automatically as shown by A in Fig. 4-39 in order to prevent the speed to be exceeded. Then, when it
has passed near the origin point O and it becomes possible to increase the speed, it starts accelerating
to reach command speed V as shown by B in Fig. 4-39.

(2) Relation between Ovrd or Spd command
Moves at one of late speed.
a) If the specified speed (Ovrd or Spd command) is slower.......... Moves at specified speed.
b) If the specified speed (Ovrd or Spd command) is faster Moves at the adjustment speed in

this function.

SpdOpt[]<On/Off>
 Detailed explanation of command words 4-335

4

4MELFA-BASIC VI
Fig.4-38:Passing through near the origin point Fig.4-39:The situation of speed at speed-optimization.

(3) This command is valid only in linear interpolation movement. It functions in neither joint interpolation nor
circle interpolation. And, even if the speed optimization function is valid, if the J4 axis does not pass
through the area shown in "Fig. 4-40Speed regulation area and singular point area" by linear
interpolation, this does not function.

Fig.4-40:Speed regulation area and singular point area

(4) The initial condition of the speed optimization function at turning ON the power supply can be changed
with parameter SPDOPT. This parameter also limits the models which can be used.
The initial value in the target models is SPDOPT=1 (speed optimization valid).

(5) If the End instruction or a program reset operation is executed, the status of the speed adjustment
function returns to the initial state immediately after the power is turned on.

(6) When the speed adjustment function is enabled, error 2804 will be generated if the XYZ interpolation
by which the J4 axis passes through a singular point area shown in Fig. 4-40 is executed, and the
operation is then suspended.

(7) Even if this instruction is described in a program, it is ignored on models other than the applicable
models.

(8) Even if the speed adjustment function is enabled, an exceeded speed error may be generated if a path
is connected by enabling the Cnt instruction near the origin point, or a XYZ interpolation operation that
drastically changes the posture is executed. In such a case, move the position where a path is
connected away from the origin point, or adjust the speed by using the Ovrd instruction.

(9) In the case of a XYZ interpolation that operates slightly in the horizontal direction but operates
significantly in the vertical direction, the operation speed may degrade drastically when the speed
adjustment function is enabled vs. when it is disabled. In such a case, disable the speed adjustment
function, or operate by using a JOINT interpolation (Mov command).

速 度

時 間

V

Ａ
↓

Ｂ
↓

速度調整領域
J2

+Y

+X

J2

J4

原点

J4

J1

直線補間

Speed

 Origin

Time

Speed regulation area

Linear interpolation

+Y

+X

J2

J4

直線補間

J1

R1

R2
Distance of R1 and R2
RH-3FRHR series

R1=240.0mm, R2=1.0mm
Inside of R2:Singular point area (positioning and

passage only by joint interpolation are
possible)

R1-R2: Speed regulation area

Linear interpolation
-336 Detailed explanation of command words

 4MELFA-BASIC VI
[The available robot type]

[Related parameter]
SPDOPT

SplFWrt (Spline Frame Write)

[Function]
Register the frame transformation information to specified spline file.

[Format]

[Terminology]
<Spline No.> The number of the spline file to register the frame transformation information is designated.

Setting range: 1 to 99
<Position 1> The origin of reference coordinate system used for frame transformation is designated.
<Position 2> The position on the X axis of reference coordinate system used for frame transformation

is designated.
<Position 3> The position of the +Y direction point in the X-Y plane of the reference coordinate system

used for frame transformation is designated.
<Position 4> The origin after adjustment used for frame transformation is designated.
<Position 5> The position on the X axis after adjustment used for frame transformation is designated.
<Position 6> The position of the +Y direction point in the X-Y plane after adjustment used for frame

transformation is designated.

[Reference Program]
1 SplFWrt 1, PR1, PR2, PR3, PC1, PC2, PC3 ' Set the reference coordinate system used for frame

transformation and the coordinate system after
adjustment to the spline file 1.

[Explanation]
(1) Registers the frame transformation information to the spline file specified by <Spline No.>.
(2) Position data for defining the two types of reference coordinate systems (pre-frame transformation and

post-frame transformation) used for frame transformation are set. Three position data items are
required to define one coordinate system.

(3) The X, Y and Z axis coordinate values of each position data are used to define the coordinate system.
Other element data such as the A, B and C axis coordinate values are not used.

(4) The coordinate system cannot be calculated if the same point is found in three position data items
defining the coordinate system, or if the three position data items are arranged on the same line. In this
case, error L2041 (Can’t calculate frame transformation coordinates) will occur.

(5) If a spline file corresponding to the <Spline No.> is not saved in the controller, the error L2610 (Can't
open spline file) will occur.

RH-3FRHR series

SplFWrt []<Spline No.>, <Position 1>, <Position 2>, <Position 3>, <Position 4>, <Position 5>,
<Position 6>
 Detailed explanation of command words 4-337

4

4MELFA-BASIC VI
SplWrt (Spline Write)

[Function]
Creates a spline file that includes information of the specified file.

[Format]

[Terminology]
<Spline No.> The number of the spline file to create is designated.

Setting range: 1 to 99
<File name> The file name that includes the path point information to register is designated.

Describe with 16 characters or less.
The position data used as the origin for the +X axis in the pre-frame transformation
reference coordinate system is designated with a position variable or position
constant.

<Operation mode> The operation mode (constant linear speed/variable linear speed) during the spline
interpolation is designated.
Setting range:

0: Constant linear speed mode
1: Variable linear speed mode
When omitted: Creates the spline file in constant linear speed mode.

<Spline cancel angle> The angle that cancels the spline interpolation is designated.
Setting range: 0 to 180 (degree)
When omitted: 120 (degree)

<Block length ratio> The block length ratio where the robot moves as a linear block instead of a spline
curve is designated.
Setting range: 0 to 100 (times)
When omitted: 8 times

<Ex-T coordinates number> The number of the work coordinate to be a control point.
Setting range: 0 to 8
When omitted: Ex-T spline function is invalid.

<File version> The version of the spline file to be created is designated.
Setting range: 1 to 2
When omitted: Create the spline file of version 2. (Creates the latest version of the
spline file corresponding to the controller.)

[Reference Program]
1 SplWrt 1,”01.csv” ' Creates spline file 1 based on the path point information

registered in "01.csv".
2 SplWrt 2,”02.csv”, 0, 120, 8, 1, 2 ' Creates spline file 2 for the Ex-T spline based on both the path

point information registered in "02.csv" and the coordinate data
registered in the work coordinate number 1.

[Explanation]
(1) Creates a spline file specified by <Spline No.>.
(2) Registers the path point information registered in the file specified by <File name> to the spline file.
(3) Registers the mode specified by <Operation mode> to the spline file. When omitted, constant linear

speed mode is registered.
(4) Registers the angle specified by <Spline cancel angle> to the spline file. When omitted, 120 (degree) is

registered. Spline cancel does not function when 0 (degree) is set.
(5) Registers the ratio specified by <Block length ratio> to the spline file. When omitted, 8 (times) is

registered. Block length ratio does not function when 0 (times) is set.

SplWrt []<Spline No.>, <File name 1> [, <Operation mode> [, <Spline cancel angle>
[, <Block length ratio> [, <Ex-T coordinates number>[, <File version>]]]]]
-338 Detailed explanation of command words

 4MELFA-BASIC VI
(6) Registers the coordinate system data registered in WKnCord (n=1 to8) to the spline file when 1 to 8 is
specified by <Ex-T coordinates number>. Ex-T spline function is invalid when 0 is set. When omitted, 0
(Ex-T spline function is invalid) is registered.

(7) Creates the spline file the version is specified by <File version>. When omitted, 2 (Creates the latest
version of the spline file corresponding to the controller.) is registered.

(8) After this command is executed, the file specified by <File name> is deleted from the controller.
(9) If this command is executed with the target spline file opened with a spline related command (MvSpl,

EMvSpl, SplPos, SplSpd, SplECord) for another slot, error L2610 (cannot make the spline file) will
occur.

(10) If the path point file specified by <File name> cannot be opened, error L2611 (Cannot open the path
point file) will occur.

(11) If the path point information registered in <File name> is of a different format (different number of tags,
different tag name), error L2611 (The format of file is different) will occur.

(12) If the number of path points registered in <File name> is abnormal (less than 4 points/5001 points or
more), error L2611 (The number of point is illegal) will occur.

(13) If a value outside the setting range is set for the M_SplVar function registered in <File name>, error
L2615 (M_SplVar setting range exceeds setting range) will occur.

(14) If a value outside the setting range is set for the tolerance registered in <File name>, error L2615
(Tolerance setting value exceeds range) will occur.

(15) If a value outside the setting range is set for the output signal registered in <File name>, error L2615
(Output signal exceeds range) will occur.

(16) If a value outside the setting range is set for the argument, error L3110 (Arg. value range over) will
occur.

(17) If the numbers of argument are abnormal (too much or too little), error L4220 (Syntax error) will occur.
(18) If the controller has no available capacity to create the spline file, error C7070 (Memory area is full) will

occur.

[Related status variable]
P_WkCord

[Related parameter]
WKnCORD (n = 1 to 8)
 Detailed explanation of command words 4-339

4

4MELFA-BASIC VI
Static

[Function]
Declares a Static value.

[Format]

<Numeric value variable name> Designate a variable name.

<Character string variable name> Designate a variable name.

<Joint variable name> Designate a variable name.
<XYZ variable name> Designate a variable name.
<Work coordinate variable name> Designate a variable name.

<Variable Name> Designate an array variable name.
<Eelement Value> Designate the number of elements in an array variable with a constant.

[Reference Program]
1 Static Def Inte M1 ' Declares M1 as a static variable of numeric value type.
2 Static Def Char Message ' Declares Message as a static variable of character string type.
3 Static Def Pos P1 ' Declares P1 as a static variable of XYZ type.
4 Static Dim cmd$(5) ' Declares cmd as a static array variable of character string type.

[Explanation]
(1) Declares a static value.
(2) The static values declared in a Function procedure are held even after the function ends.
(3) Variables defined with Const can be used together.

[Related instructions]
Const, Def Inte/Def Long/Def Float/Def Double (Define Integer/Long/Float/Double), Def Char (Define
Character), Def Jnt (Define Joint), Def Pos (Define Position)

Static[]Def[]Inte[]<Numeric value variable name>[, <Numeric value variable name>[, ...]]

Static[]Def[]Long[]<Numeric value variable name>[, <Numeric value variable name>[, ...]]

Static[]Def[]Float[]<Numeric value variable name>[, <Numeric value variable name>[, ...]]

Static[]Def[]Double[]<Numeric value variable name>[, <Numeric value variable name>[, ...]]

Static[]Def[]Char[]<Character string variable name>[, <Character string variable name>[, ...]]

Static[]Def[]Jnt[]<Joint variable name>[, <XYZ variable name>[, ...]]

Static[]Def[]Pos[]<XYZ variable name>[, <Joint variable name>[, ...]]

Static[]Def[]Work[]<Work coordinate variable name>[, <Work coordinate variable name>[, ...]]

Static[]Dim[]<Variable Name>(<Eelement Value>[, <Eelement Value>[, <Eelement Value>]])

 [, <Variable Name>(<Eelement Value>[, <Eelement Value>[, <Eelement Value>]]) [, ...]]
-340 Detailed explanation of command words

 4MELFA-BASIC VI
Title (Title)

[Function]
Appends the title to the program. The characters specified in the program list display field of the robot
controller can be displayed using the separately sold personal computer support software.

[Format]

[Terminology]
<Character String> Message for title

[Reference Program]
1 Title "ROBOT Loader Program"
2 Mvs P1
3 Mvs P2

[Explanation]
(1) Although characters can be registered up to the maximum allowed for each step in the program, only a

maximum of 20 characters can be displayed in the program list display field of the robot controller using
the personal computer support software.

Title[]"<Character String>"
 Detailed explanation of command words 4-341

4

4MELFA-BASIC VI
Tool(Tool)

[Function]
Designates the tool conversion data. This instruction specifies the length, position of the control point from
the mechanical interface, and posture of the tools (hands).

[Format]

[Terminology]
<Tool Conversion Data>

Specifies the tool conversion data using the position operation expression.
(Position constants, position variables, etc.)

[Reference Program]
(1) Set up the direct numerical value.

1 Tool (100,0,100,0,0,0) ' Changes the control position to an X-axis coordinate value of
100 mm and a Z-axis coordinate value of 100 mm in the tool
coordinate system.

2 Mvs P1
3 Tool P_NTool ' Returns the control position to the initial value.

(mechanical interface position, flange plane.)

(2) Set up the position variable data in the XYZ coordinates system.
(If (100,0,100,0,0,0,0,0) are set in PTL01, it will have the same meaning as (1).)
1 Tool PTL01
2 Mvs P1

[Explanation]
(1) The Tool command is used to specify the control points at the tip of each hand in a system using double

hands. If both hands are of the same type, the control point should be set by the "MEXTL" parameter
instead of by the Tool command.

(2) "Tool conversion data" changed with this command is saved in parameter MEXTL. The saved values are
retained even after the controller is turned off.
For programs in which Base command, Tool command, and M_Tool are executed repeatedly,
parameters may not be saved in time, causing error C7091 (parameter save error). If error C7091
occurs, change the order of Base command and Tool command as shown in the following example.

(3) The system default value (P_NTool) is applied until the Tool command is executed.
Once the Tool command is executed, the designated tool conversion data is applied until the next Tool
command is executed. This is operated with 6-axis three-dimension regardless of the mechanism
structure.

(4) If different tool conversion data are used at teaching and automatic operation, the robot may move to an
unexpected position. Make sure that the settings at operation and teaching match.
The valid axis element of tool conversion data is different depending on the type of robot.
Set up the appropriate data referring to the Page 529, "Table 5-8: Valid axis elements of the tool
conversion data depending on the robot model".

(5) Using the M_Tool variable, it is possible to set the MEXTL1 to 16 parameters as tool conversion data.

Tool[]<Tool Conversion Data>

Example)
*MAIN
Base PB
Tool PT
If M_In(20)=1 Then
 GoSub *SUB1
EndIf
GoTo *MAIN

Base PB
Tool PT
*MAIN
If M_In(20)=1 Then
 GoSub *SUB1
EndIf
GoTo *MAIN
-342 Detailed explanation of command words

 4MELFA-BASIC VI
[Related parameter]
MEXTL, MEXTL 1 to 16 Refer to Page 528, "5.6 Standard Tool Coordinates" for detail.

[Related system variables]
P_Tool/P_NTool, M_Tool

Torq (Torque)
[Function]

Designates the torque limit for each axis. By specifying the torque limit, an excessive load (overload) on
works and so froth can be avoided. An excessive error is generated if the torque limit value ratio is
exceeded.

[Format]

[Terminology]
<Axis No.> Designate the axis No. with a numeric constant. (1 to 6)
<Torque Limitation Rate> Designate the limit of the force generated from the axis as a percentage. (1 to 100)

[Reference Program]
1 Def Act 1,M_Fbd>10 GoTo *SUB1,S

' Generate an interrupt when the difference between the
command position and the feedback position reaches 10 mm or
more.

2 Act 1=1 ' Enable the interrupt 1
3 Torq 3,10 ' Set the torque limit of the three axes to 10% of the normal torque

using the torque instruction.
4 Mvs P1 ' Moves
5 Mov P2
:
10 *SUB1
11 Mov P_Fbc ' Align the command position with the feedback position.
12 M_Out(10)=1 ' Signal No. 10 output
13 Hlt ' Stop when a difference occurs.

[Explanation]
(1) Restrict the torque limit value of the specified axis so that a torque exceeding the specified torque value

will not be applied during operation. Specify the ratio relative to the standard torque limit value. The
standard torque limit value is predefined by the manufacturer.

(2) The available rate of torque limitation is changed by robot type. The setting is made for each servo motor
axis; thus, it may not be the torque limit ratio at the control point of the tip of the actual robot. Try various
ratios accordingly.

(3) If the robot is stopped while still applying the torque limit, it may stop at the position where the command
position and the feedback position deviate (due to friction, etc.). In such a case, an excessive error may
occur when resuming the operation. To avoid this, program so as to move to the feedback position
before resuming the operation, as shown on the 10th step of the above example.

(4) This instruction is valid only for standard robot axes. It cannot be used for general-purpose servo axes
(additional axes and user-defined mechanisms). Change the parameters on the general-purpose servo
side to obtain similar movement.

[Related system variables]
P_Fbc, M_Fbd

Torq[]<Axis No.>, <Torque Limitation Rate>
 Detailed explanation of command words 4-343

4

4MELFA-BASIC VI
Wait (Wait)

[Function]
Waits for the variable to reach the designated value.

[Format]

[Terminology]
<Numeric variable> Designate a numeric variable. Use the input/output signal variable (in such cases

as M_In, M_Out) well.
<Numeric constant> Designate a numeric constant.

[Reference Program]
(1) Signal state

1 Wait M_In(1)=1 ' The same meaning as 1 *L10:If M_In(1)=0 Then GoTo *L10.
2 Wait M_In(3)=0

(2) Task slot state
3 Wait M_Run(2)=1

(3) Variable state
4 Wait M_01=100

[Explanation]
(1) This command is used as the interlock during signal input wait and during multitask execution.
(2) The Wait instruction allows the program control to continue to the next step once the specified condition

is met.
(3) In case the Wait instruction is executed in several tasks at one time in the multitask execution status, the

processing time (tact time) may become longer and affect the system. In such cases, use the If-Then
instruction instead of the Wait instruction.

(4) Number of conditions which may be included in a Wait command is one. If more than one is included, an
erroneous judgment or an error in execution process can result.

An example of wrong indication) Wait M_In(38)=1 Or M_In(39)=1
→There are two ways to avoid it.
1) Avoid using the Wait command and use the "If-Then" statement instead.

Example) *Loop
If M_In(38)=1 Or M_In(39)=1 Then *Next1 Else *Loop
*Next1

2) Set 0 (conditional command) to the parameter PRSPEC.
(5) If Wait and CallP commands are executed at the same time in a multitask program, it may affect the

system. For a possibility that these commands are executed at the same time in a multitask program, set
0 (conditional command) in the parameter PRSPEC.

Wait[]<Numeric variable>=<Numeric constant>
-344 Detailed explanation of command words

 4MELFA-BASIC VI
While-WEnd (While End)

[Function]
The program between the While statement and WEnd statement is repeated until the loop conditions are
satisfied.

[Format]

[Terminology]
<Loop Condition> Describe a numeric operation expression. (Refer to Page 178, "4.8 Operators")

[Reference Program]
(1) Repeat the process while the numeric variable M1 value is between -5 and +5, and transfer control to

step after WEnd statement if range is exceeded.
1 While (M1>=-5) AND (M1<=5) ' Repeat the process while the value of numeric variable M1 is

between -5 and +5.
2 M1=M1+1 ' Add 1 to M1.
3 Print# 1, M1 ' Output the M1 value.
4 WEnd ' Return to the While statement (step 1)
5 End ' End the program.

(2) Process of the While-WEnd can be skipped by Break
1 While (M1>=-5) AND (M1<=5) ' Repeat the process while the value of numeric variable M1 is

between -5 and +5.
2 M1=-(M1+1) ' Add 1 to M1, and reverse the sign.
3 M_Out(8)=M1 ' Output the numeric variable M1.
4 If M_In(8)=1 Then Break ' If the input signal 8 is turned on, jump to Step 6.
5 WEnd ' Return to the While statement (step 1)
6 If M_BrkCq=1 Then Hlt

[Explanation]
(1) The program between the While statement and WEnd statement is repeated.
(2) If the result of <Expression> is true (not 0), the control moves to the step following the While statement

and the process is repeated.
(3) If the result of <Expression> is false (is 0), then the control moves to the step following the WEnd

statement.
(4) If a GoTo instruction forces the program to jump out from between a While statement and a WEnd

statement, the free memory available for control structure (stack memory) decreases. Thus, if a
program is executed continuously, an error will eventually occur. Write a program in such a way that the
loop exits when the condition of the While statement is met.

(5) In the While, it can escape to the next step of the WEnd by Break. That is, process of the While-WEnd
can be skipped.

While[]<Loop Condition>

 :

WEnd
 Detailed explanation of command words 4-345

4

4MELFA-BASIC VI
Wth (With)

[Function]
A process is added to the interpolation motion.

[Format]

[Terminology]
<Process> Describe the process to be added. The commands that can be described are as follow.

 1. <Numeric type data B> <Substitution operator><Numeric type data A> [Substitute,
signal modifier command (Refer to Page 178, "4.8 Operators".)]

[Reference Program]

1 Mov P1 Wth M_Out(17)=1 Dly M1+2 ' Simultaneously with the start of movement to P1, the
output signal No. 17 will turn ON for the value indicated
with the numeric variable M1 + two seconds.

[Explanation]
(1) This command can only be used to describe the additional condition for the movement command.
(2) An error will occur if the Wth command is used alone.
(3) The process will be executed simultaneously with the start of movement.
(4) The relationship between the interrupts regarding the priority order is shown below.

 Com > Act > WthIf(Wth)

Example) Mov P1 Wth[]<Process>
-346 Detailed explanation of command words

 4MELFA-BASIC VI
WthIf (With If)

[Function]
A process is conditionally added to the interpolation motion command.

[Format]

[Terminology]
<Additional Condition> Describe the condition for adding the process. (Same as Act condition

expression)
<Process> Describe the process to be added when the additional conditions are

established. (Same as Wth)
The commands that can be described as a process are as follow. (Refer to
syntax diagram.)
 1. <Numeric type data B> <Substitution operator> <Numeric type data A>
 Example) M_Out(1)=1, P1=P2
 2. Hlt statement
 3. Skip statement

[Reference Program]
(1) If the input signal 17 turns on, the robot will stop.

1 Mov P1 WthIf M_In(17)=1, Hlt

(2) If the current command speed exceeds 200 mm/s, turn on the output signal 17 for the M1+2 seconds.
2 Mvs P2 WthIf M_RSpd>200, M_Out(17)=1 Dly M1+2

(3) If the rate of arrival exceeds 15% during movement to P3, turn on the output signal 1.
3 Mvs P3 WthIf M_Ratio>15, M_Out(1)=1

[Explanation]
(1) This command can only be used to describe the additional conditions to the movement command.
(2) Monitoring of the condition will start simultaneously with the start of movement.
(3) It is not allowed to write the Dly command at the processing part.
(4) If the robot is stopped using the Hlt or the Skip command, it decelerates and stops in the same way as

for "Stop type 1" or "Stop type 2" of the Def Act command. (Refer to Page 212, " Def Act (Define act)")
The Hlt command interrupts the execution of the program. The Skip command executes the next step
and continues the program.
When 0 is set to the parameter WTHFUNC, the robot stops by "stop type 1". When 1 is set to the
parameter WTHFUNC, the robot stops by "stop type 2". The initial setting is "stop type 1"
(WTHFUNC=0).

WthIf[]<Additional Condition>, <Process>
 Detailed explanation of command words 4-347

4

4MELFA-BASIC VI
XClr (X Clear)

[Function]
This instruction cancels the program selection status of the specified task slot from within a program.
Enabling the execution of a new program in the specified task slot. It is used during multitask operation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.

[Reference Program]
1 XRun 2,"1" ' Executes the first program in task slot 2.
 :
10 XStp 2 ' Pauses the program of task slot 2.
11 Wait M_Wai(2)=1 ' Waits until the program of task slot 2 pauses.
12 XRst 2 ' Cancels the pause status of the program of task slot 2.
13 Wait M_Psa(2)=1 ' Waits until selection of a program is possible in task slot 2.
14 XClr 2 ' Cancels the program selection status of task slot 2.
15 End

[Explanation]
(1) If the specified slot does not select the program, the error (L3370) will occur.
(2) If the specified slot is operating, the error (L3380) will occur.
(3) If the specified slot is being paused, the error (L3380) will occur.
(4) If this instruction is used within a constantly executed program, it becomes enabled by changing the

value of the "ALWENA" parameter from 0 to 7 and turning the controller's power off and on again.

[Related instructions]
XLoad (X Load), XRst (X Reset), XRun (X Run), XStp (X Stop)

[Related parameter]
ALWENA

XClr[]<Slot No.>
-348 Detailed explanation of command words

 4MELFA-BASIC VI
XLoad (X Load)

[Function]
This instruction commands the specified program to be loaded into the specified task slot from within a
program.
It is used during multitask operation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.
<Program Name> Designate the program name. Specify with the character string constant. (The character

string variables cannot be used.)

[Reference Program]
1 If M_Psa(2)=0 Then *L1 ' Checks whether slot 2 is in the program selectable state.
2 XLoad 2,"10" ' Select program 10 for slot 2.
3 *L3
4 If C_Prg(2)<>"10" Then GoTo *L3 ' Waits for a while until the program is loaded.
5 XRun 2 ' Start slot 2.
6 Wait M_Run(2)=1 ' Wait to confirm starting of slot 2.
7 *L1
8 ' When the slot 2 is already operating, execute from here.

[Explanation]
(1) If the specified program does not exist, the error (L4140) will occur.
(2) If the specified program is already selected for another slot, the error (L3360) will occur.
(3) If the specified program is being edited, the error (L3360) will occur.
(4) If the specified slot is operating, the error (L3360) will occur.
(5) Designate the program name in double quotations.
(6) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.
(7) If XRun is executed immediately after executing XLoad, this instruction may fail while loading a program.

If necessary, perform a load completion check as shown on the 3rd step of the reference program.

[Related instructions]
XClr (X Clear), XRst (X Reset), XRun (X Run), XStp (X Stop)

[Related parameter]
ALWENA

XLoad[]<Slot No.>, <Program Name>
 Detailed explanation of command words 4-349

4

4MELFA-BASIC VI
XRst (X Reset)

[Function]
This instruction returns the program control to the first step if the program of the specified task slot is paused
by a command within the program (program reset). It is used during multitask operation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.

[Reference Program]
1 XRun 2 ' Start.
2 Wait M_Run(2)=1 ' Wait to confirm starting.
 :
10 XStp 2 ' Stop.
11 Wait M_Wai(2)=1 ' Wait for stop to complete.
 :
15 XRst 2 ' Set program execution start step to head step.
16 Wait M_Psa(2)=1 ' Wait for program reset to complete.
 :
20 XRun 2 ' Restart.
21 Wait M_Run(2)=1 ' Wait for restart to complete.

[Explanation]
(1) This is valid only when the slot is in the stopped state.

(If the slot is operating or no program is selected, the error (L3340, L3350) will occur.)
(2) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.

[Related instructions]
XClr (X Clear), XLoad (X Load), XRun (X Run), XStp (X Stop)

[Related parameter]
ALWENA

[Related system variables]
M_Psa (Slot number) (1: Program selection is possible, 0: Program selection is impossible)
M_Run (Slot number) (1: Executing, 0: Not executing)
M_Wai (Slot number) (1: Stopping, 0: Not stopping)

XRst[]<Slot No.>
-350 Detailed explanation of command words

 4MELFA-BASIC VI
XRun (X Run)

[Function]
This instruction executes concurrently the specified programs from within a program.It is used during
multitask operation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.
<Program Name> Designate the program name.

Specify with either the character string constant or character string variables.
<Operation Mode> 0 = Continuous operation,

1 = Cycle stop operation. If the operation mode is omitted, the current operation mode
will be used. Specify this argument using a constant or a variable.

[Reference Program]
(1) When the program of execution is specified by XRun command (continuous executing).

1 XRun 2,"1" ' Start the program 1 with slot 2.
2 Wait M_Run(2)=1 ' Wait to have started.

(2) When the program of execution is specified by XRun command (cycle operation)
1 XRun 3,"2",1 ' Start the program 2 with slot 3 in the cycle operation mode
2 Wait M_Run(3)=1 ' Wait to have started.

(3) When the program of execution is specified by XLoad command (continuous executing).
1 XLoad 2, "1" ' Select the program 1 as the slot 2.
2 *L2
3 If C_Prg(2)<>"1" Then GoTo *L3 ' Wait for load complete.
4 XRun 2 ' Start the slot 2.

(4) When the program of execution is specified by XLoad command (cycle operation)
1 XLoad 3, "2" ' Select the program 2 as the slot 3.
2 *L2
3 If C_Prg(2)<>"1" Then GoTo *L2 ' Wait for load complete
4 XRun 3, ,1 ' Start the program 1 with cycle operation.

[Explanation]
(1) If the specified program does not exist, the error (L4140) will occur.
(2) If the specified slot No. is already in use, the error (L3310) will occur.
(3) If a program has not been loaded into a task slot, this instruction will load it. It is thus possible to operate

the program without executing the XLoad instruction.
(4) If XRun is executed in the "Pausing" state with the program stopped midway, continuous execution will

start.
(5) Designate the program name in double quotations.
(6) If the operation mode is omitted, the current operation mode will be used.
(7) If it is used in programs that are constantly executed, change the value from 0 to 7 in the ALWENA

parameter, and power ON the controller again.
(8) If XRun is executed immediately after executing XLoad, this instruction may fail while loading a program.

If necessary, perform a load completion check as shown on the 2nd step of both the reference programs
(3) and (4).

XRun[]<Slot No.>[, [<Program Name>] [, <Operation Mode>]]
 Detailed explanation of command words 4-351

4

4MELFA-BASIC VI
When the program executed in the slot specified by the XRun command ends,
data is written to the non-volatile memory inside the controller.
If the XRun command is executed repeatedly, the number of writes to the non-
volatile memory increases, which may cause a malfunction. Therefore, set the
parameter AUTOSAVE to 0 (Not saved). For details, refer to AUTOSAVE in
"5.4Command parameter".

Example: The program 1 calls and executes the program 2 (cyclic operation
mode) repeatedly.
<Program 1>
1 *LOOP
2 XRun 2,"2",1
3 Wait M_Run(2)=1
4 End

<Program 2>
1 PS=P_Curr
2 End

[Related instructions]
XClr (X Clear), XLoad (X Load), XRst (X Reset), XStp (X Stop)

[Related parameter]
ALWENA

[Related system variables]
M_Run (Slot number) (1: Executing, 0: Not executing)

XStp (X Stop)

[Function]
This instruction pauses the execution of the program in the specified task slot from within a program. If the
robot is being operated by the program in the specified task slot, the robot stops. It is used in multitask
operation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.

[Reference Program]
1 XRun 2 ' Execute.
 :
10 XStp 2 ' Stop.
11 Wait M_WAI(2)=1 ' Wait for stop to complete.
 :
20 XRun 2 ' Restart.

[Explanation]
(1) If no program is selected, the error (L3330) will occur. If the program is already stopped, the execution

does not fail.
(2) XStp can also stop the constant execution attribute program.

XStp[]<Slot No.>

 CAUTION
-352 Detailed explanation of command words

 4MELFA-BASIC VI
(3) If used in a program that is executed constantly, this instruction is enabled by changing the value of the
"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.

[Related instructions]
XClr (X Clear), XLoad (X Load), XRst (X Reset), XRun (X Run)

[Related parameter]
ALWENA

[Related system variables]
M_Wai (Slot number) (1: Stopping, 0: Not stopping)
 Detailed explanation of command words 4-353

4

4MELFA-BASIC VI
Substitute

[Function]
The results of an operation are substituted in a variable or array variable.

[Format]

For pulse substitution

[Terminology]
<Variable Name> Designate the variable name of the value is to be substituted.

(Refer to Page 178, "4.8 Operators" for the types of variables.)
<Expression 1> Substitution value. Describe an numeric value operation expression.
<Expression 2> Pulse timer. Describe an numeric value operation expression.

[Reference Program]

(1) Substitution of the variable operation result .
1 P100=P1+P2*2

(2) Output of the signal.
2 M_Out(10)=1 ' Turn on the output signal 10.

(3) Pulse output of the signal.
3 M_Out(17)=1 Dly 2.0 ' Turn on the output signal 17 for 2 seconds.

[Explanation]
(1) When using this additionally for the pulse output, the pulse will be executed in parallel with the execution

of the commands on the following steps.
(2) Be aware that if a pulse is output by M_Outb or M_Outw, the bits are reversed in 8-bit units or 16-bit

units, respectively. It is not possible to reverse at any bit widths.
(3) If the End command or program's last step is executed during the designated time, or if the program

execution is stopped due to an emergency stop, etc., the output state will be held. But, the output
reversed after the designated time.

<Variable Name> = <Expression 1>

<Variable Name> = <Expression 1> Dly <Expression 2>
-354 Detailed explanation of command words

 4MELFA-BASIC VI
(Label)

[Function]
This indicates the jump site.

[Format]

[Terminology]
<Label Name> Describe a character string that starts with an alphabetic character.

Up to 16 characters can be used. (Up to 17 characters including *.)
<Command line> The command line can be described after the colon after the label (:).

[Reference Program]
1 *SUB1
2 If M1=1 Then GoTo *SUB1
3 *LBL1 : IF M_In(10)=0 Then GoTo *LBL1 ' Wait by the step 3 until the input signal of No. 10 turns on.

[Explanation]
(1) An error will not occur even if this is not referred to during the program.
(2) If the same label is defined several times in the same program, an error will occur at the execution.
(3) The reserved words can't be used for the label.
(4) The underscore ("_") cannot be specified as the 2nd character. This form is for the system external

variable. For example, "*A_", "*B_", "*Z_", etc. are the syntax error.
When using the "*L_", the error occur at execution. This form is reservation for the system.
In addition, the underscore ("_") can be used in the 3rd character or later.

(5) The software J1 or later, the command line can be described after the colon after the label (:). However,
after the command line, the colon cannot be described and the command line cannot be described
again.

*<Label Name>

*<Label Name> [:<Command line>]
 Detailed explanation of command words 4-355

4

4MELFA-BASIC VI
4.13 Detailed explanation of Robot Status Variable
4.13.1 How to Read Described items

[Function] : This indicates a function of a variable.
[Format] : This indicates how to enter arguments of an instruction. [] means that

arguments may be omitted.
System status variables can be used in conditional expressions, as well
as in reference and assignment statements. In the format example, only
reference and assignment statements are given to make the description
simple.

[Reference Program] : An example program using variables is shown.
[Terminology] : This indicates the meaning and range of an argument.
[Explanation] : This indicates detailed functions and precautions.
[Reference] : This indicates related items.

4.13.2 Explanation of Each Robot Status Variable
Each variable is explained below in alphabetical order.
-356 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
C_Com

[Function]
Sets the parameters for the line to be opened by the Open (Open) command. This is used when the
communication destination is changed frequently.
* Character string type
* Only for a client with the Ethernet.

[Format]

[Terminology]
ETH: An identifier to indicate that the target is an Ethernet
<Communication line number>The number of the COM to be specified by the Open command (The line

type is assigned by the COMDEV parameter.) Specify 1 through 8.
<Server side IP address> Server side IP address (May be omitted.)
<Port number> Port number on the server side (If omitted, the set value of the NETPORT

parameter is used.)

[Reference Program]
Example when the Ethernet option is installed in an option slot and OPT12 is set in the second element of
the COMDEV parameter

1 C_Com(2)="ETH:192.168.0.10,10010"' Set the IP address of the communication destination server
corresponding to communication line COM2

2 *O1
3 Open "COM2:" AS #1 ' As 192.168.0.10 and the port number as 10010, and then open

the line.
4 If M_Open(1)<>1 Then *O1 ’ Loops if unable to connect to the server.
5 Print #1, "HELLO" ’ Sends a character string.
6 Input #1, C1$ ’ Receives a character string.
7 Cose #1 ’ Closes the line.
8 C_Com(2)="ETH:192.168.0.11,10011"’ Set the IP address of the communication destination server

corresponding to communication line COM2
9 *O2
10 Open "COM2:" AS #1 ’ As 192.168.0.11 and the port number as 10011, and then open

the line.
11 If M_Open(1)<>1 Then *O2 ’ Loops if unable to connect to the server.
12 Print #1, C1$ ’ Sends a character string.
13 Input #1, C2$ ’ Receives a character string.
14 Close #1 ’ Closes the line.
15 Hlt ’ Halts the program.
16 End ’ Ends.

[Explanation]
(1) It is not necessary to use this command when the communication counterpart of the robot controller is

specified with the NETHSTIP and NETPORT parameters and the specified communication counterpart
will not be changed at all.

(2) Currently, this function is valid only for a client of a data link with the Ethernet option.
(3) Because the communication parameters of the Open (Open) command are set, it is necessary to

execute this command before the OPEN instruction.
(4) When the power is turned on, the set values specified by the NETHSTIP and NETPORT parameters are

used. When this command is executed, the values specified by the parameters of this command are
changed temporarily. They are valid until the power is turned off. When the power is turned on again,
the values revert to the original values set by the parameters.

C_Com (<communication line number>) = "ETH: <server side IP address> [, <port number>]"
 Detailed explanation of Robot Status Variable 4-357

4

4MELFA-BASIC VI
(5) If this command is executed after the OPEN command, the current open status will not change. In such
a case, it is necessary to close the line with the Close (Close) command once, and then execute the
OPEN command again.

(6) If an incorrect syntax is used, an error occurs when the program is executed, not when the program is
edited.

[Related parameter]
NETHSTIP, NETPORT

C_Date

[Function]
This variable returns the current date in the format of year/month/date.

[Format]

[Reference Program]
1 C1$=C_Date ' "2000/12/01" is assigned to C1$.

[Explanation]
(1) The current date is assigned.
(2) This variable only reads the data. Use the T/B to set the date.

[Reference]
C_Time

C_Maker

[Function]
This variable returns information on the manufacturer of the robot controller.

[Format]

[Reference Program]
1 C1$=C_Maker ' "COPYRIGHT1999......." is assigned to C1$.

[Explanation]
(1) This variable returns information on the manufacturer of the robot controller.
(2) This variable only reads the data.

[Reference]
C_Mecha

Example) <Character String Variable >=C_Date

Example) <Character String Variable >=C_Maker
-358 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
C_Mecha

[Function]
This function returns the mechanism name (robot type name) for which control right has been acquired.

[Format]

[Terminology]
<Character String Variable > Specify a character string variable to be assigned.
<Numeric> 1 to 32, Enter the task slot number. If the argument is omitted, current

task slot number is set as the default value.

[Reference Program]
1 C1$=C_Mecha(1) ' "RH-3FRH5515-D" is assigned to C1$.

(When slot 1 has acquired control right of mechanism 1 ("RH-3FRH5515-D"))

[Explanation]
(1) The mechanism name (robot type name), for which the specified task slot has acquired control right, is

returned.
(2) When a task slot, which has not acquired control right of the mechanism, is specified, "" (none) is

returned.
(3) This variable only reads the data.

[Related instructions]
GetM (Get Mechanism), RelM (Release Mechanism)

C_Prg

[Function]
This variable returns the selected program name (number).

[Format]

[Terminology]
<Character String Variable > Specify a character string variable to be assigned.
<Numeric> 1 to 32, Enter the task slot number. If the argument is omitted, current

task slot number is set as the default value.

[Reference Program]
1 C1$=C_Prg(1) ' "10" is assigned to C1$. (if the program name is "10".)

[Explanation]
(1) The program name (number) set (loaded) into the specified task slot is assigned.
(2) If this variable is used in single task operation, the task slot number becomes 1.
(3) If it is set in the operation panel, that program name (number) is set.
(4) This variable only reads the data.
(5) If a task slot for which a program is not loaded is specified, an error occurs at execution.

Example) <Character String Variable >=C_Mecha[(<Numeric>)]

Example) <Character String Variable >=C_Prg [(<Numeric>)]
 Detailed explanation of Robot Status Variable 4-359

4

4MELFA-BASIC VI
C_Time

[Function]
This variable returns the current time in the format of time: minute: econd (24 hours notation).

[Format]

[Reference Program]
1 C1$=C_Time ' "01/05/20" is assigned to C1$.

[Explanation]
(1) The current clock is assigned.
(2) This variable only reads the data.
(3) Use the T/B to set the time.

[Reference]
C_Date

C_User

[Function]
This variable returns the data registered in the "USERMSG" parameter.

[Format]

[Reference Program]
1 C1$=C_User ' The characters registered in "USERMSG" are assigned to C1$.

[Explanation]
(1) This variable returns the data registered in the "USERMSG" parameter.
(2) This variable only reads the data.
(3) Use the PC support software or the T/B to change the parameter setting.

Example) <Character String Variable >=C_Time

Example) <Character String Variable >=C_User
-360 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
J_Curr

[Function]
Returns the joint type data at the current position.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 J1=J_Curr ' J1 will contain the current joint position.

[Explanation]
(1) The joint type variable for the current position of the robot specified by the mechanism number will be

obtained.
(2) This variable only reads the data.

[Reference]
P_Curr

Example) <Joint Type Variable>=J_Curr [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-361

4

4MELFA-BASIC VI
J_ColMxl

[Function]
Return the maximum value of the differences between the estimated torque and actual torque while the
collision detection function is being enabled.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.(Joint type variable will be used

even if this is a pulse value.)
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=100 'Set the initial value of the allowable collision level of each axis.
2 M2=100
3 M3=100
4 M4=100
5 M5=100
6 M6=100
7 ColLvl M1,M2,M3,M4,M5,M6,, 'Set the allowable collision level of each axis.
8 ColChk On 'Enable the collision detection function.

(Start the calculation of the maximum value of torque error.)
9 Mov P1
 :
 :
50 ColChk Off 'Disable the collision detection function.

(End the calculation of the maximum value of torque error.)
51 M1=J_ColMxl(1).J1+10 'For each axis, the allowable collision level with a margin of 10%

is calculated.
(10% is a reference value for the reference program and not an
actual guaranteed value.)

52 M2=J_ColMxl(1).J2+10
53 M3=J_ColMxl(1).J3+10
54 M4=J_ColMxl(1).J4+10
55 M5=J_ColMxl(1).J5+10
56 M6=J_ColMxl(1).J6+10
57 GoTo 70

Example) <Joint Type Variable>=J_ColMxl [(<Mechanism Number>)]
-362 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
[Explanation]
(1) Keep the maximum value of the error of the estimated torque and actual torque of each axis while

collision detection function is valid.

(2) When this value is 100%, it indicates that the maximum error value is the same as the manufacturer's
initial value of the allowable collision level.

(3) For robots that prohibit the use of collision detection, 0.0 is always returned for all axes.
(4) The maximum error value is initialized to 0.0 when the servo is turned ON during the execution of a

ColChk ON or COLLVL instruction.
(5) Because they are joint-type variables, it will be conversion values from rad to deg if they are read as joint

variables. Therefore, substitute each axis element by a numeric variable as shown in the syntax
example when using these joint-type variables.

(6) This variable only reads the data.

[Reference]
CavChk On (CavChk On), ColLvl (Col Level), M_ColSts, P_ColDir

[Sample program]
The program which sets the collision detection level automatically is shown below.

Sets up the collision detection level automatically in the moving to P2
from P1.

Estimated
torque

Actual torque

COLMXL

COLLVL

Torque

Time

Work

Hand

Jig

InsertP1

P2

Work
 Detailed explanation of Robot Status Variable 4-363

4

4MELFA-BASIC VI
Sample program Explanations

'********** Collision detection level automatic setup **********
'GoSub *LEVEL ' Collision detection level automatic setting

program
'HLT
'***

*MAIN
Oadl ON
LoadSet 2,2

Collvl M_01,M_02,M_03,M_04,M_05,M_06,,

Mov PHOME
Mov P1
Dly 0.5

ColChk ON
Mvs P2
Dly 0.5
ColChk OFF

Mov PHOME
End

'************************** LEVEL FIX ***************************
*LEVEL
Mov PHOME

M1=0 ' Collision detection level of the J1 axis (initialization)
M2=0 ' Collision detection level of the J2 axis (initialization)
M3=0 ' Collision detection level of the J3 axis (initialization)
M4=0 ' Collision detection level of the J4 axis (initialization)
M5=0 ' Collision detection level of the J5 axis (initialization)
M6=0 ' Collision detection level of the J6 axis (initialization)
ColLvl 500,500,500,500,500,500,,

' Set the collision detection level to 500%

For MCHK=1 To 10
 Dly 0.3
 Mov P1
 Dly 0.3
 Colhk ON 'Enable the collision detection.
 Mvs P2
 Dly 0.3
 ColChk OFF 'Disable the collision detection.
 If M1<J_ColMxl(1).J1 Then M1=J_ColMxl(1).J1
 If M2<J_ColMxl(1).J2 Then M2=J_ColMxl(1).J2
 If M3<J_ColMxl(1).J3 Then M3=J_ColMxl(1).J3
 If M4<J_ColMxl(1).J4 Then M4=J_ColMxl(1).J4
 If M5<J_ColMxl(1).J5 Then M5=J_ColMxl(1).J5
 If M6<J_ColMxl(1).J6 Then M6=J_ColMxl(1).J6
Next MCHK

M_01=M1+10
M_02=M2+10
M_03=M3+10
M_04=M4+10
M_05=M5+10
M_06=M6+10
ColLvl M_01,M_02,M_03,M_04,M_05,M_06,,

Mvs P1
Mov PHOME
RETURN
'***

Is the command which executes the collision detection level
automatic setting subroutine. Remove the comment out of the head
when set up automatically.

Moves in the optimal acceleration and deceleration.
Reads the information on the hand and the work-piece. (For the
system optimization of the acceleration-and-deceleration hours)

Re-set up the collision detection level.

Moves to PHOME (standby position).
Moves to P1 (starting position).

Enable the collision detection.

Disable the collision detection.

Return to PHOME (standby point)
End of program line.

The collision detection level automatic setting subroutine.

Set the collision detection level to 500% (maximum value).
(Before starting movement, confirms that there is no obstacle on the
course)

Although the collision detection level is automatically detectable,
please execute two or more times in consideration of the dispersion
etc. The ten of repeat number in the sample is reference values.
J_COLMXL is the maximum value of differences between the
estimated torque and actual torque while the collision detection
function is being enabled.
Memorizes the maximum values in the ten times measured for
consideration of the dispersion.

Usually, as for the detection level, the value of the parameter "ColLvl"
will be set up after the power supply ON. Therefore, the value set up
automatically should be recorded on external variable.
"10" is added with the sample, because 10% of circular land is given
for the value searched for by automatic detection.
* 10% is the reference value.

Depending on the system to be used, it may not operate normally.
Please confirm with the system and adjust to the optimal value.
Refer to "ColLvl (Col Level)" for details.
-364 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
J_ECurr

[Function]
Returns the current encoder pulse value.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 J1=J_ECurr(1) ' JA will contain the encoder pulse value of mechanism 1.
2 MA=JA. 1 ’ Loads the encoder pulse value of the J1 axis to the MA.

[Explanation]
(1) Although the value to be returned is a pulse value, use the joint type as the substitution type. Then,

specify joint component data, and use by substituting in a numeric variable.
(2) This variable only reads the data.

Example) <Joint Type Variable>=J_ECurr [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-365

4

4MELFA-BASIC VI
J_Fbc/J_AmpFbc

[Function]
J_Fbc: Returns the current position of the joint type that has been generated by encoder feedback.
J_AmpFbc: Returns the current feedback value of each axis

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 J1=J_Fbc ' J1 will contain the current position of the joint that has been generated by

servo feedback.
2 J1=J_AmpFbc ' The present current feedback value is entered in J2.

[Explanation]
(1) J_Fbc returns the present position of the joint type generated by the feedback of the encoder.
(2) J_Fbc can check the difference between the command value to the servo and the delay in the actual

servo.
(3) J_Fbc can also check if there is a difference as a result of executing a Cmp Jnt instruction.
(4) J_AmpFbc is a percentage of the rated current (increment of 0.1% (1000 = 100%)).
(5) This variable only reads the data.

[Reference]
M_AmpInfoA, P_Fbc

J_Origin

[Function]
Returns the joint data when the origin has been set.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 J1=J_Origin(1) ' J1 will contain the origin setting position of mechanism 1.

[Explanation]
(1) Returns the joint data when the origin has been set.
(2) This can be used to check the origin, for instance, when the position of the robot shifted.
(3) This variable only reads the data.

Example) <Joint Type Variable>=J_Fbc [(<Mechanism Number>)]

Example) <Joint Type Variable>=J_AmpFbc [(<Mechanism Number>)]

Example) <Joint Type Variable>=J_Origin [(<Mechanism Number>)]
-366 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_Acl/M_DAcl/M_NAcl/M_NDAcl/M_AclSts

[Function]
Returns information related to acceleration/deceleration time.
M_Acl: Returns the ratio of current acceleration time. (%)
M_DAcl: Returns the ratio of current deceleration time. (%)
M_NAcl: Returns the initial acceleration time value. (100%)
M_NDAcl: Returns the initial deceleration time value. (100%)
M_AclSts: Returns the current acceleration/deceleration status.
(Current status: 0 = Stopped, 1 = Accelerating, 2 = Constant speed, 3 = Decelerating)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Enter the task slot number. If this argument is omitted, the current slot

will be used as the default.

[Reference Program]
1 M1=M_Acl ' M1 will contain the ratio of acceleration time set for task slot 1.
2 M1=M_DAcl(2) ' M1 will contain the ratio of deceleration time set for task slot 2.
3 M1=M_NAcl ' M1 will contain the ratio of initial acceleration time value set for task slot 1.
4 M1=M_NDAcl(2) ' M1 will contain the ratio of initial deceleration time value set for task slot 2.
5 M1=M_AclSts(3) ' M1 will contain the current acceleration/deceleration status for task slot 3.

[Explanation]
(1) The ratio of acceleration/deceleration time is the ration against each robot's maximum acceleration/

deceleration time (initial value). If this value is 50%, the amount of time needed to accelerate/decelerate
is doubled, resulting in slower acceleration/deceleration.

(2) M_NAcl and M_NDAcl always return 100 (%).
(3) This variable only reads the data.

Example) <Numeric Variable>=M_Acl [(<Equation>)]

Example) <Numeric Variable>=M_DAcl [(<Equation>)]

Example) <Numeric Variable>=M_NAcl [(<Equation>)]

Example) <Numeric Variable>=M_NDAcl [(<Equation>)]

Example) <Numeric Variable>=M_AclSts [(<Equation>)]
 Detailed explanation of Robot Status Variable 4-367

4

4MELFA-BASIC VI
M_AmpInfoA

[Function]
Returns present current value information of each axis in Arms.
Note) This robot state variable is available with robot controller software Ver. C2 or later.

[Format]

[Terminology]
<Numeric Variable> This specifies a numerical variable (single-precision real number) to which a

value is to be assigned.
<Information ID number> Specifies the information ID number of the information to read.

Refer to the table below for details.

<Axis Number> Specifies the axis number 1 to 6. This argument cannot be omitted.

[Reference Program]
1 M1=M_AmpInfoA(1,1) ' Read the present current feedback value of axis 1.
2 M2=M_AmpInfoA(2,2) ' Read the present maximum current command value (in the most recent two

seconds) of axis 2.
3 M3=M_AmpInfoA(3,3) ' Read the present maximum current command value (after power-on) of axis

3.

[Explanation]
(1) Assigning an out-of-range value to the information ID number or the axis number causes the L3110 error

on execution.
(2) The unit is Arms (RMS-ampere) for all the current value information.
(3) This variable only reads the data.

[Reference]
J_Fbc/J_AmpFbc

Example) <Numeric Variable>=M_AmpInfoA(<Information ID number>, <Axis Number>)

Information ID number

Setting value Details of information
1 Current feedback value (Arms)
2 Maximum current command value in the most recent two sec-

onds (Arms)
3 Maximum current command value after power-on (Arms)
-368 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_BsNo

[Function]
Returns a current base coordinate system number.

[Format]

[Terminology]
<Numerical Variable> A numerical variable to which a value is to be assigned is designated.
<Mechanism number> A mechanism number which is chosen from 1 through 3.

(1 is chosen to indicate omission.)
Constants, variables, logic/arithmetic expressions, and functions are usable.
When a real number or a double-precision real number is specified, the fractional
portion of 0.5 or over of the number is counted as one and the rest is cut away.

[Reference Program]
1 M1=M_BsNo 'Assign base coordinate number for Mechanism No. 1 to variable M1.
2 If M1=1 Then 'If base coordinate number is one, move to P1.
3 Mov P1
4 Else 'If base coordinate number is other than one, move to P2.
5 Mov P2
6 EndIf

[Explanation]
(1) Base coordinate number being currently specified (parameter: MEXBSNO) is read.
(2) The following coordinate system is set according to the value that is read.

a) 0: System's initial value (P_Nbase)
b) 1~8: Work coordinate system number 1 through 8 (parameter: WK1CORD~WK8CORD)
c) -1: Base conversion setting is made by other than the above options.

(Base conversion data is specified by a base command, or parameter MEXBS is directly
edited.)

(3) If reference is made to the M_BrkCq variable even for once, the existing "break" condition is cleared
(relevant value goes to zero). When you want to retain the condition, therefore, save it by assigning an
appropriate value to the numerical variable.

(4) You can clear the "break" condition via the T/B monitor screen, as well.

[Related instructions]
Base (Base)

[Related parameter]
MEXBSNO, WKnCORD("n" is 1 to 8), MEXBS

Example) <Numerical Variable>=M_BsNo[(<mechanism number>)]
 Detailed explanation of Robot Status Variable 4-369

4

4MELFA-BASIC VI
M_BrkCq

[Function]
Returns the result of executing a line containing a Break command that was executed last.
1: Break was executed
0: Break was not executed

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Enter the task slot number. If this argument is omitted, the current slot

will be used as the default.

[Reference Program]
1 While M1<>0
2 If M2=0 Then Break ' The remaining battery capacity time is assigned to M1.
3 WEnd
4 If M_BrkCq=1 Then Hlt ' Hlt, if Break in While is executed.

[Explanation]
(1) Check the state of whether the Break command was executed.
(2) This variable only reads the data.
(3) If the M_BrkCq variable is referenced even once, the Break status is cleared. (The value is set to zero.)

Therefore, to preserve the status, save it by substituting it into a numeric variable.
(4) The Break status is also cleared even if it is referenced on T/B monitor screen and so forth.

M_BTime

[Function]
Returns the remaining hour of battery left. (Unit: hour)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_BTime ' The remaining battery capacity time is assigned to M1.

[Explanation]
(1) Returns the remaining hours the battery can last from now.
(2) As for the battery life, 14,600 hours are stored as the initial value.
(3) After summing the total amount of time the power of robot controller has been off, this value will be

subtracted from 14,600 and the result is returned.
(4) This variable only reads the data.

Example) <Numeric Variable>=M_BrkCq [(<Equation>)]

Example)<Numeric Variable>=M_BTime
-370 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_CavSts

[Function]
Returns the robot CPU number where an interference is predicted.
1 to 3: Interference predicted.
0: Interference not predicted.

This function is only available for certain models. For details, refer to Page 578, "5.24 Interference
avoidance function".

[Format]

[Terminology]
<Mechanism No.> Enter the mechanism number, 1 to 3. If the argument is omitted, 1 is set.

[Reference Program]
Refer to Page 600, "5.24.10 Sample programs".

[Explanation]
(1) When an interference between robots is predicted, the robot CPU number (1 to 3) where the interference

is predicted is written. When an interference with a free plane limit is predicted, 1 is written.
(2) The value is not cleared to 0 until an END command is executed. To clear the value to 0, use an interrupt

processing.
(3) The value is retained until the execution of the End command, program reset, or execution of "CavChk

Off" with the CavChk On (CavChk On) command (disables the stop function of the interference
avoidance function.)

(4) This command is used as an interrupt condition with the Def Act command in the NoErr mode operation.
(5) This command can be used to read and write.

Example) Def Act 1,M_CavSts [(<Mechanism No.>)] <> 0 GoTo *LCAV,S
 Detailed explanation of Robot Status Variable 4-371

4

4MELFA-BASIC VI
M_CmpDst

[Function]
Returns the amount of difference (in mm) between the command value and the actual value from the robot
when executing the compliance function.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 Mov P1
2 CmpG 0.5,0.5,1.0,0.5,0.5, , , ' Set softness.
3 Cmp Pos, &B00011011 ' Enter soft state.
4 Mvs P2
5 M_Out(10)=1
6 Mvs P1
7 M1=M_CmpDst(1) ' M1 will contain the difference between the position specified by the

operation command and the actual current position.
8 Cmp Off ' Return to normal state.

[Explanation]
(1) This is used to check the positional discrepancy while executing the compliance function.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_CmpDst [(<Mechanism Number>)]
-372 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_CmpLmt

[Function]
Returns whether or not the command value when the compliance function is being executed is about to
exceed various limits.
1: The command value is about to exceed a limit.
0: The command value is not about to exceed a limit.

[Format]

[Terminology]
<Mechanism Number> Specify the mechanism number 1 to 3. The default value is 1.

[Reference Program]
1 Def Act 1, M_CmpLmt(1)=1 GoTo *Lmt ' Define the conditions of interrupt 1.
2 '
3 '
 ;
10 Mov P1
11 CmpG 1,1,0,1,1,1,1,1
12 Cmp Pos, &B100 ' Enable compliance mode.
13 Act 1=1 ' Enable interrupt 1.
14 Mvs P2 '
15 '
16
 ; '
100 *Lmt
101 Mvs P1 ' Movement to P2 is interrupted and returns to P1.
102 Reset Err ' Reset the error.
103 Hlt ' Execution is stopped.

[Explanation]
(1) This is used to recover from the error status by using interrupt processing if an error has occurred while

the command value in the compliance mode attempted to exceed a limit.
(2) For various limits, the joint operation range and operation speed of the command value in the

compliance mode, and the dislocation between the commanded position and the actual position are
checked.

(3) 0 is set if the servo power is off, or the compliance mode is disabled.
(4) This is a read only variable.

Example) Def Act 1, M_CmpLmt [(<Mechanism Number>)]=1 GoTo *Lmt
 Detailed explanation of Robot Status Variable 4-373

4

4MELFA-BASIC VI
M_ColSts

[Function]
Return the collision detection status..
1: Detecting an collision
0: No collision has been detected

[Format]

[Terminology]
<Mechanism Number> Specify the mechanism number 1 to 3. The default value is 1.

[Reference Program]
1 Def Act 1,M_ColSts(1)=1 GoTo *HOME,S 'Define the processing to be executed when an collision

is detected using an interrupt.
2 Act 1=1
3 ColChk ON,NOErr 'Enable the collision detection function in the error non-occurrence

mode.
4 Mov P1
5 Mov P2 'If an collision is detected while executing lines 40 through 70, it jumps to

interrupt processing.
6 Mov P3
7 Mov P4
8 Act 1=0
 :
 :
100 *HOME 'Interrupt processing during collision detection.
101 ColChk Off 'Disable the collision detection function.
102 Servo On 'Turn the servo on.
103 PESC=P_ColDir(1)*(-2) 'Create the amount of movement for escape operation
104 PDst=P_Fbc(1)+PESC 'Create the safe position.
105 Mvs PDst 'Move to the safe position.
106 Error 9100 'Stop operation by generating a user-defined L level error.

[Explanation]
(1) When an collision is detected, it is set to 1. When the servo is turned off and the collision state is

canceled, it is set to 0.
(2) It is used as an interrupt condition in the Def Act instruction when used in the NOERR mode.
(3) This variable only reads the data.

Example) Def Act 1, M_ColSts [(<Mechanism Number>)]=1 GoTo *LCOL,S
-374 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_Cstp

[Function]
Returns the status of whether or not a program is on cycle stop
1: Cycle stop is entered, and cycle stop operation is in effect.
(The input of the End key on the operation panel, or the input of a cycle stop signal)
0: Other than above

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
 1 M1=M_Cstp ' 1 is assigned to M1. (When under a cycle stop)

[Explanation]
(1) When the End key on the operation panel is pressed while the program is under continuous execution,

the system enters a cycle operation state. The status at this time is returned as 1.
(2) This variable only reads the data.

M_Cys

[Function]
Returns the status of whether or not a program is on cycle operation
1: In cycle operation (When CYC is set to the slot table parameter.)
0: Other than above.

[Format]

[Terminology]
<Numerical variable> Specify the numerical variable to substitute.

[Reference Program]
 1 M1=M_Cys ' The numerical value 1 is substituted for M1. (When under a cycle operation)

[Explanation]
(1) When starting a program, the cycle mode - either continuous operation or cycle operation - can be

specified using a parameter, etc. Returns this operation mode.
(2) Even if CYC has been specified in the slot parameter, the value will be 0 when continuous operation is

specified by XRun.
(3) This is a read only variable.

Example)<Numeric Variable>=M_Cstp

Example)<Numerical variable> = M_Cys
 Detailed explanation of Robot Status Variable 4-375

4

4MELFA-BASIC VI
M_DIn/M_DOut

[Function]
This status variable is not available for the CR800-R/Q series.
It references/writes word data (16 bits) to the CC-Link or EtherCAT I/O register.
M_DIn: References the input register.
M_DOut: Writes or reference the output register.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable that assigns the remote register value.
<Equation 1> Specifies the input register number (6000 or above).
<Equation 2> Specifies the output register number (6000 or above).

[Reference Program]
1 M1=M_DIn(6000) ' M1 will contain the value of input register No. 6000.
2 M1=M_DOut(6000) ' M1 will contain the value of output register No. 6000.
3 M_DOut(6000)=100 ' Writes 100 to output register No. 6000.

[Explanation]
(1) For details, refer to the "CC-Link Interface Instruction Manual."
(2) Signal numbers in 6,000's will be used for CC-Link.
(3) M_DIn is read-only.

Example)<Numeric Variable>=M_DIn (<Equation 1>)

Example)<Numeric Variable>=M_DOut (<Equation 2>)
-376 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_DIn32

[Function]
Obtains double-word data (32 bits) via the CC-Link or EtherCAT input register from an external device.

[Format]

[Terminology]
<Numeric Variable> Specifies a long-precision integer number variable to be

substituted.
<Equation/Inputting register number> The range of register numbers that can be specified is from 6000

to 6254.

[Reference Program]
1 M1=M_DIn(6000) ' Obtains a 32-bit value from the input register numbers 6000 and

6001, and assigns that value to M1&.
2 M2%=6002 ' Assigns 6002 to M2%.
3 M3&=M_DIn32(M2%) And &H7FFFF ' Obtains a 32-bit value from the input register number specified

by M2%, and assigns the lowest 19-bit value from that value to
M3&.

[Explanation]
(1) Two points are used for obtaining 32-bit data from the specified input register number.
(2) Use a long-precision integer number variable for <Numeric Variable>. If any other variable is used, the

correct information cannot be obtained.
(3) Specify an input register number from 6000 to 6254. If a number outside the range is specified, an all-

zero value will be returned and no error will be generated.
(4) M_DIn32 is read-only.

Example)<Numeric Variable>=M_DIn32 (<Equation/Inputting register number>)
 Detailed explanation of Robot Status Variable 4-377

4

4MELFA-BASIC VI
M_DOut32

[Function]
Writes double-word data (32 bits) to the CC-Link or EtherCAT output register. Alternatively, it references the
current output information in double-word units.

[Format]

[Terminology]
<Numeric Variable> Specifies a long-precision integer number variable to be

substituted.
<Equation/Outputting register number> The range of output register numbers that can be specified is from

6000 to 6254.
<Numeric> Specifies the data to be output.

The range of the numerical value is from -2147483648 to
2147483647 (&H80000000 to &H7FFFFFFF).

[Reference Program]
1 M_DOut32(6000)=&H12345678 ' Outputs 12345678 in hexadecimal notation to the output

register numbers 6000 and 6001.
&H4567 will be output to register number 6000, and
&H1234 will be output to 6001.

2 M1&=M_DOut32(6002) And &H7FFFF ' The lowest 19-bit value from the 32-bit data output to the
output register numbers 6002 and 6003 will be assigned
to M1&.

[Explanation]
(1) The specified 32-bit data is output to two points from the specified output register number.
(2) The current information (32-bit data) output to two points is obtained from the specified output register

number.
(3) Use a long-precision integer number variable for <Numeric Variable> and <Numerical Value>. If any

other variable is used, the information may not be processed.
(4) Specify an output register number from 6000 to 6254. If a number outside the range is specified, an all-

zero value will be returned when referenced and no processing will be performed when written,
resulting in no error being generated. However, if a negative value is specified, error L3110 will be
generated.

(5) By setting the SYNCIO parameter to the high-speed mode, the updating cycle of the register output can
be sped up. It is recommended to use high-speed mode with signals interlocked for synchronization in
order to keep the timing of the I/O signals correct.

(6) When the specified register number is not occupied by a robot, although data is displayed on the output
register monitor, such as RT ToolBox3, as output information, the data is not actually output to the
network. When the last register occupied is specified, although data is displayed on the monitor as
output information, only the information of the last register occupied (lowest 16 bits) is output.

(7) The pulse output which combines the Dly command cannot be used. If the Dly command is used, error
L4220 (syntax error) occurs.

(8) When data is output to a register number assigned to the dedicated output of the DIODATA and SVDATA
parameters, error L0091 (signal already assigned to dedicated output) will occur.

Reference
Example)<Numeric Variable>=M_DOut32 (<Equation/Inputting register number>)

Write
Example)M_DOut32 (<Equation/Inputting register number>)=<Numeric Variable>
-378 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_ErCode

[Function]
Returns the detailed error number of the error currently generated.

[Format]

[Terminology]
<Numeric Variable> Specifies a 32-bit long-precision integer number.

(Specifying a 16-bit long-precision integer number will cause an out-of-range
error when substituted.)
Refer to (2) in [Explanation] for the meaning of the read value.

[Reference Program]
1 *LBL: If M_Err=0 Then *LBL ' Waits until an error is generated.
2 MD&=M_ErCode ' Reads the detailed error number (substitutes for the long-

precision integer number).
3 MS%=Int(MD&/1000) Mod 100 ' Obtains two digits of the detailed error number.

[Explanation]
(1) If two or more errors occur, returns the information on the highest level error. (Only one error)
(2) The detailed error number is a number with a maximum of nine digits.

XXXXYYYYY............. XXXX: Four-digit error number displayed by the O/P and T/B
YYYYY: Detailed error number (Content determined by error.)

Example) <Numeric Variable>=M_ErCode
 Detailed explanation of Robot Status Variable 4-379

4

4MELFA-BASIC VI
M_Err/M_ErrLvl/M_Errno

[Function]
Returns information regarding the error generated from the robot.
M_Err : Error occurrence condition
M_ErrLvl : The level of the occurrence error
M_Errno : Error number

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

The value assigned and meaning.
M_Err : 0/1 = No error/Under error occurrence
M_ErrLvl : 0/1/2/3/4/5/6=No error / Caution / Low / High / Caution1

/ Low1 / High1
Note) The meaning of each terminology is shown in Table 4-19.

M_ErrNo : Error number

[Reference Program]
1 *LBL: If M_Err=0 Then *LBL ' Waits until an error is generated.
2 M2=M_ErrLvl ' M2 will contain the error level
3 M3=M_Errno ' M3 will contain the error number.

[Explanation]
(1) Normal programs will pause when an error (other than cautions) is generated. The error status of the

controller may be monitored using this variable for programs whose startup condition is set to ALWAYS
by the SLT* parameter. The program set to ALWAYS will not stop even when an error is generated from
other programs.

(2) If two or more errors occur, returns the information on the high error of the error level most.
(3) The error level which M_ErrLvl returns, and its meaning are shown below.

Table 4-19:The error level and meaning

[Related instructions]
Error (error), Reset Err (Reset Error)

Example) <Numeric Variable>=M_Err
Example) <Numeric Variable>=M_ErrLvl
Example) <Numeric Variable>=M_Errno

Error level Terminology Meaning Error reset

0 No error The error has not occurred. -

1 Caution Program is continued. [RESET] Key

2 Low The program under execution is interrupted. [RESET] Key

3 High The program under execution is interrupted and turns off the servo
power.

[RESET] Key

4 Caution1 Program is continued. Power supply reset

5 Low1 The program under execution is interrupted. Power supply reset

6 High1 The program under execution is interrupted and turns off the servo
power.

Power supply reset
-380 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_ESpd

[Function]
Returns the transit speed [mm/s] of Ex-T coordinate system currently used during the Ex-T control/Ex-T
spline interpolation

[Format]

[Terminology]
<Position Variables> Designates the numerical variable substituted for the reference results.
<Mechanism Number> Sets the mechanism No. that executes Ex-T control/Ex-T spline interpolation.

Setting range: 1 to 3
When omitted: 1
If a non-existent mechanism No. is designated, the error L3870 (designated
mechanism No. invalid) will occur when execution is started.

[Reference Program]
1 Wait M_00=1 ' Wait for spline interpolation to start
2 *L1:If M_ESpd < 50 Then GoTo *L1
3 M_Out(100)=1 ' When the transit speed is over 50 [mm/s], turns output signal 100 ON.

[Explanation]
(1) During Ex-T control/Ex-T spline interpolation, the transit speed of the Ex-T coordinate is returned.
(2) By referring to the M_ESpd value with multi-task, the operation process or signal output, etc., can be

executed according to the transit speed of Ex-T spline interpolation.
(3) When the Ex-T control/Ex-T spline interpolation is not executed, 0.0 will be returned.
(4) M_ESpd returns the value indicated in the following table according to the state.

Table 4-20:Value returned by M_ESpd

(5) M_ESpd is a read-only status variable.

[Related instructions]
EMvc (E Move C), EMvr (E Move R), EMvr2 (E Move R 2), EMvr3 (E Move R 3), EMvs (E Move S), EMvSpl
(E Move Spline)

Example)<Position Variables>=M_ESpd [(<Mechanism Number>)]

Status Value returned by M_ESpd

Immediately after power ON 0.0

 During Ex-T control/Ex-T spline
interpolation execution

Transit speed of the Ex-T coordinate during
executing interpolation.

During interpolation execution without Ex-
T control/Ex-T spline interpolation

0.0

During interpolation is paused 0.0

Immediately after main program’s End
command is executed

0.0

Immediately after program reset operation 0.0

Mechanism not compatible with spline
interpolation

0 (0 even after write is executed)
 Detailed explanation of Robot Status Variable 4-381

4

4MELFA-BASIC VI
M_Exp

[Function]
Returns the base of natural logarithm (2.718281828459045).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_Exp ' Base of natural logarithm (2.718281828459045) is assigned to M1.

[Explanation]
(1) This is used when processing exponential and logarithmic functions.
(2) This variable only reads the data.

M_Fbd
[Function]

Returns the difference between the command position and the feedback position.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Specify the mechanism number 1 to 3. The default value is 1.

[Reference Program]
1 Def Act 1,M_Fbd>10 GoTo *SUB1,S ' Generate an interrupt when the difference between the

command position and the feedback position reaches 10
mm or more.

2 Act 1=1 ' An interrupt takes effect.
3 Torq 3,10 ' Set the torque limit of the three axes to 10% or less using

the torque instruction.
4 Mvs P1 ' Moves.
5 End
 ;
10 *SUB1
11 Mov P_Fbc ' Align the command position with the feedback position.
12 M_Out(10)=1 ' Signal No. 10 output
13 Hlt ' Stop when a difference occurs.

[Explanation]
(1) This function returns the difference between the command position specified by the operation instruction

and the feedback position from the motor. When using the torque instruction, use this in combination
with a Def Act instruction to prevent the occurrences of excessive errors (960, 970, etc.).

(2) This variable only reads the data.

[Reference]
Torq (Torque), P_Fbc

Example) <Numeric Variable>=M_Exp

Example) <Numeric Variable>=M_Fbd[(<Mechanism Number>)]
-382 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_G

[Function]
Returns gravitational constant (9.80665).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_G ' Gravitational constant (9.80665) is assigned to M1.

[Explanation]
(1) This is used to perform calculation related to gravity.
(2) This variable only reads the data.

Example) <Numeric Variable>=M_G
 Detailed explanation of Robot Status Variable 4-383

4

4MELFA-BASIC VI
M_GDev/M_GDevW/M_GDevD

[Function]
Writes to or directly references CPU buffer memory with the CR800-R/Q series controllers.
(CR800-R/Q series controllers only)

M_GDev: Writes or References in bits (one bit).
M_GDevW: Reads/ Writes per word. (16 bits)
M_GDevD: Reads/ Writes per double word. (32 bits)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Top input output number> Enter the I/O number of the CPU module.

(The value to specify omits the single digit low order of the top input
output number in the hexadecimal number.)
Range : "&H3E0" to "&H3E" in hexadecimal expression. ("992" to "995"
in the decimal number)

No. 1: &H3E0 (992 in the decimal number)
No. 2: &H3E1 (993 in the decimal number)
No. 3: &H3E2 (994 in the decimal number)
No. 4: &H3E3 (995 in the decimal number)

Note) The write function is allowed to host CPU only.
<Buffer memory address> Specifies CPU module buffer memory addresses using constants or

numeric variables.
The effective range varies for each state variable. (Decimal)

M_GDev: 10000 to 24335
M_GDevW: 10000 to 24335
M_GDevD: 10000 to 24334

<Bit number> Specifies the bit number of CPU module buffer memory addresses using
constants or numeric variables.
These number must be specified in decimal numbers. The setting range
is as follows.

M_GDev: 0 to 15
<Numeric value> Specify the data to write in with the constant or the numeric variable.

The effective range varies for each state variable.
M_GDev: 0, 1
M_GDevW: -32768 to 32767 (&H8000 to &H7FFF)
M_GDevD: -2147483648 to 2147483647

(&H80000000 to &H7FFFFFFF)

ExampleReference

<Numeric Variable> = M_GDev(<Top input output number>, < Buffer memory address >, < Bit number>)
<Numeric Variable> = M_GDevW(<Top input output number>, < Buffer memory address >)
<Numeric Variable> = M_GDevD(<Top input output number>, < Buffer memory address >)

Writing

M_GDev(<Top input output number>, < Buffer memory address >, < Bit number>) = < Numeric value >
M_GDevW(<Top input output number>, < Buffer memory address >) = < Numeric value >
M_GDevD(<Top input output number>, < Buffer memory address >) = < Numeric value >
-384 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
[Reference Program]
1 M_GDev(&H3E1, 10010, 2)=1 'Sets the value of bit number 2 in buffer memory address

10010 of CPU No. 2 to 1.
2 M_GDevW(&H3E1, 10010)=&HFFFF 'Sets buffer memory address 10010 of CPU No. 2 to FFFF.
3 M_GDevD(&H3E1, 10011)=P1.X * 1000 'Multiplies the X coordinate value of position variable P1 by

1000 and sets buffer memory addresses 10011 and 10012
(2 words) of CPU No. 2 with this value.

4 M1%=M_GDevW(&H3E2, 10001) And &H7 'Sets M1 to the values of the lower 3 bits in buffer memory
address 10001 of CPU No. 3.

[Explanation]
(1) This variable is used to write or reference PLC buffer memory.
(2) Buffer memory addresses are specified using start I/O numbers and the actual buffer memory

addresses.
(3) Both write and reference data strings are integers.
(4) Variable M_GDevW uses 1 word, or 16 bits, of data in the specified buffer memory address. Variable

M_GDevD uses 2 words, or 32 bits, of data.
(5) Specify start I/O numbers in hexadecimal format. The range of numbers is between &H3E0 to &H3E3,

which is equivalent to 992 to 995 in decimal. Specify buffer memory addresses in decimal numbers
within a range of addresses between 10000 to 24335.

(6) Write operations can only be performed for buffer memory addresses of the target CPU. Attempting to
write data to addresses for other CPUs will not result in a successful change to the data stored by the
address.

(7) To prevent 32-bit data strings from being fragmented with M_GDevD, specify buffer memory addresses
starting with the even-numbered address first. Only CR800-R/Q series devices are supported.
(Statements executed using CR800-D series devices result in unsuccessful write operations, and the
reference returns zero value.)

[Supplementary]
Table 4-21:<Numeric variable>

Table 4-22:Constants and variables usable as <Start I/O number>, <Buffer memory address>, and <Bit
number>

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1%

Single-
precision

real
number

Ex.)M1&

Double-
precision

real
number
Ex.)M1

Position

Ex.)P1.X

Joint

Ex.)J1.J1

Character
string

Ex.)C1$

M_GDev O O O O O O X

M_GDevW O O O O O O X

M_GDevD X O O O O O X

O: The available, X: unavailable

Bit width

Constant types Numeric variables types Other variables

Numeric
value

Ex.)12

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1%

Single-
precision
real
number
Note1)

Ex.)M1&

Note1) The real value is rounded off.

Double-
precision
real
number
Note1)
Ex.)M1

Position
Note1)

Ex.)P1.X

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_GDev O O O O O O O O O X

M_GDevW O O O O O O O O O X

M_GDevD O O O O O O O O O X
 Detailed explanation of Robot Status Variable 4-385

4

4MELFA-BASIC VI
Table 4-23:<Numeric value>
O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
value
Note1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1%

Single-
precision
real
number
Ex.)M1&

Double-
precision
real
number
Ex.)M1

Position
Note1)

Ex.)P1.X

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_GDev O O O O X X X X X X

M_GDevW O O O O X X X X X X

M_GDevD ONote2)

Note2) For the numerical value of the less than 16 bits of the binary number (-32768 to +32767), the specified constant will
handle as a negative numerical value, if the bit 15 (the 16th bit) turns on. Therefore, please be careful of turning on
all of upper 16 bits. (The sign bit is extended)
Example)

Designation of "-32768(&B1000000000000000)" will output the "&B11111111111111111000000000000000."
[Measures]

After substituting the constant for the long-precision integer number variable as follows, when substituting to this
robot status variable M_GDevD, &B00000000000000001000000000000000 (binary number) can be outputted.

1 M1&=-32768
2 M_GDevD(&H20)=M1&

ONote2) ONote2) ONote2) O O ONote3)

Note3) The ranges of the numerical value which can be outputted are -2147483648 to 2147483647.

O O X

 CAUTION
-386 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_Gps

[Function]
This command returns the number of the position data stored in the P_GpsX() for the monitoring number
defined in the Def Gps command, using the get-position-quick function (GPS function). ("X" indicates the
same number as the target monitoring number from 1 to 8.)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

The number of the current position data stored in the status variable P_GpsX()
corresponding to the monitoring number set in <Numeric value> is returned.
The default value is set to 0. The value is cleared to zero when the GpsChk On
command is executed.

<Numeric> Set the monitoring number from 1 to 8 defined in the Def Gps command.
If the argument is omitted, 1 is set as the default value.

[Reference Program]
1 Def Gps1,851,1 ‘ The position data of the mechanism No. 1 is recorded for the

monitoring No. 1 when the signal No. 851 is turned on.
2 GpsChk On,1 ‘ Monitoring a condition for the monitoring No. 1 is started.
3 Mvs P1 ‘ Moves to P1
4 GpsChk Off,1 ‘ Monitoring a condition for the monitoring No. 1 is stopped.
5 M1=M_Gps(1) ‘ The number of the position data recorded in the P_Gps1 is stored.
6 If M1=0 Then Error 9000 ‘ The error 9000 is generated if no position data is recorded.

[Explanation]
(1) The current position data of the robot is stored in the P_GpsX() when the condition defined in the Def

Gps command is met. The number of position data stored in the P_GpsX() is stored in this status
variable.

(2) The number of times when the condition defined in the Def Gps command is met can be confirmed.
(3) The value is cleared to zero when the GpsChk On command is executed.
(4) The number of times can be confirmed after the GpsChk Off command is executed.
(5) This variable only reads the data.
(6) The number of times is cleared to zero when the controller is turned on.

[Related instructions]
Def Gps (Define get position), Def Map (Define mapping), GpsChk (Get position check)

Example) <Numeric Variable>=M_Gps[(<Numeric>)]
 Detailed explanation of Robot Status Variable 4-387

4

4MELFA-BASIC VI
M_HGDev/M_HGDevW/M_HGDevD

[Function]
Writes or directly references the periodical communication area of CPU buffer memory with the CR800-R
series controllers.
(CR800-R series controllers only)
(This enables multiple robot interfaces such as interlocks to be accessed more quickly without having to use
ladder program of the PLC. CPU buffer memory information other than robot CPUs, such as motion CPU,
can also be accessed. (Refer to Page 633, "5.26 Direct communication with robot CPUs"))

M_HGDev: Writes or References in bits (one bit).
M_HGDevW: Reads/ Writes per word. (16 bits)
M_HGDevD: Reads/ Writes per double word. (32 bits)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Top input output number> Enter the I/O number of the CPU module.

(The value to specify omits the single digit low order of the top input
output number in the hexadecimal number.)
Range : "&H3E0" to "&H3E" in hexadecimal expression. ("992" to "995"
in the decimal number)

No. 1: &H3E0 (992 in the decimal number)
No. 2: &H3E1 (993 in the decimal number)
No. 3: &H3E2 (994 in the decimal number)
No. 4: &H3E3 (995 in the decimal number)

Note) The write function is allowed to host CPU only.
<Buffer memory address> Specifies CPU module buffer memory addresses using constants or

numeric variables.
The effective range varies for each state variable. (Decimal)

M_HGDev: 0 to 12287
M_HGDevW: 0 to 12287
M_HGDevD: 0 to 12286

<Bit number> Specifies the bit number of CPU module buffer memory addresses using
constants or numeric variables.
These number must be specified in decimal numbers. The setting range
is as follows.

M_HGDev: 0 to 15
<Numeric value> Specifies write data using constants or numeric variables.

The effective range varies for each state variable.
M_HGDev: 0, 1
M_HGDevW: -32768 to 32767 (&H8000 to &H7FFF)
M_HGDevD: -2147483648 to 2147483647

(&H80000000 to &H7FFFFFFF)

ExampleReference

<Numeric Variable> = M_HGDev(<Top input output number>, < Buffer memory address >, < Bit number >)
<Numeric Variable> = M_HGDevW(<Top input output number>, < Buffer memory address >)
<Numeric Variable> = M_HGDevD(<Top input output number>, < Buffer memory address >)

Writing

M_HGDev(<Top input output number>, < Buffer memory address >, < Bit number >) = < Numeric value >
M_HGDevW(<Top input output number>, < Buffer memory address >) = < Numeric value >
M_HGDevD(<Top input output number>, < Buffer memory address >) = < Numeric value >
-388 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
[Reference Program]
1 M_HGDev(&H3E1,30,2)=1 'Sets the value of bit number 2 in buffer memory

address 30 of CPU No. 2 to 1.
2 M_HGDevW(&H3E1,10)=&HFFFF 'Sets buffer memory address 10 of CPU No. 2 to FFFF.
3 M_HGDevD(&H3E1,11)=P1.X * 1000 'Multiplies the X coordinate value of position variable P1

by 1000 and sets buffer memory addresses 11 and 12
(2 words) of CPU No. 2 with this value.

4 M1%=M_HGDevW(&H3E2,1) And &H7 'Sets M1 to the values of the lower 3 bits in buffer
memory address 1 of CPU No. 3.

[Explanation]
(1) This variable is used to write to or reference the periodical communication area of PLC buffer memory.
(2) Buffer memory addresses are specified using start I/O numbers and the actual buffer memory

addresses.
(3) Both write and reference data strings are integers.
(4) Variable M_HGDevW uses 1 word, or 16 bits, of data in the specified buffer memory address. Variable

M_HGDevD uses 2 words, or 32 bits, of data.
(5) Specify start I/O numbers in hexadecimal format. The range of numbers is between &H3E0 to &H3E3,

which is equivalent to 992 to 995 in decimal. Specify buffer memory addresses in decimal numbers
within a range of addresses between 0 to 12287.

(6) Write operations can only be performed for buffer memory addresses of the target CPU. Attempting to
write data to addresses for other CPUs will not result in a successful change to the data stored by the
address.

(7) Only CR800-R series devices are supported. (Statements executed using CR800-D/CR800-Q series
devices result in unsuccessful write operations, and the reference returns zero value.)

(8) To prevent 32-bit data strings from being fragmented with M_HGDevD, specify buffer memory addresses
starting with the even-numbered address first.

[Supplementary]
Table 4-24:<Numeric variable>

Table 4-25:<Constants and variables usable as <Start I/O number>, <Buffer memory address>, and <Bit
number>

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1%

Single-
precision

real
number

Ex.)M1&

Double-
precision

real
number

Ex.)M1

Position

Ex.)P1.X

Joint

Ex.)J1.J1

Character
string

Ex.)C1$

M_HGDev O O O O O O X

M_HGDevW O O O O O O X

M_HGDevD X O O O O O X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
valueNote1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1%

Single-
precision
real
number
Note1)
Ex.)M1&

Double-
precision
real
number
Note1)
Ex.)M1

Position
Note1)

Ex.)P1.X

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_HGDev O O O O O O O O O X

M_HGDevW O O O O O O O O O X

M_HGDevD O O O O O O O O O X
 Detailed explanation of Robot Status Variable 4-389

4

4MELFA-BASIC VI
Table 4-26:<Numeric value>

M_HndCq

[Function]
Returns the hand check input signal value.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> Enter the hand input signal number.

CR800-D/R/Q: 1 to 8 (The numbers correspond to input signals 900 to 907.)
CR860-D/R/Q: 1 to 8 (The numbers correspond to input signals 764 to 775.)

[Reference Program]
1 M1=M_HndCq(1) ' M1 will contain the status of hand 1.

[Explanation]
(1) Returns one bit of the hand check input signal status (such as a sensor).
(2) For CR800-D/Q/R, M_HndCq(1) corresponds to the input signal number 900. Same result will be

obtained using M_In(900).
For CR860-D/Q/R, M_HndCq(1) corresponds to the input signal number 764. Same result will be
obtained using M_In(764).

(3) This variable only reads the data.

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
value
Note1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1%

Single-
precision
real
number
Ex.)M1&

Double-
precision
real
number
Ex.)M1

Position
Note1)

Ex.)P1.X

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_HGDev O O O O X X X X X X

M_HGDevW O O O O X X X X X X

M_HGDevD ONote2)

Note2) For the numerical value of the less than 16 bits of the binary number (-32768 to +32767), the specified constant
will handle as a negative numerical value, if the bit 15 (the 16th bit) turns on. Therefore, please be careful of
turning on all of upper 16 bits. (The sign bit is extended)
Example)

Designation of "-32768(&B1000000000000000)" will output the "&B11111111111111111000000000000000."
[Measures]

After substituting the constant for the long-precision integer number variable as follows, when substituting to
this robot status variable M_HGDevD, &B00000000000000001000000000000000 (binary number) can be
outputted.

1 M1&=-32768
2 M_HGDevD(&H20)=M1&

ONote2) ONote2) ONote2) O O ONote3)

Note3) The ranges of the numerical value which can be outputted are -2147483648 to 2147483647.

O O X

Example) <Numeric Variable>=M_HndCq (<Equation>)

 CAUTION
-390 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_In/M_Inb/M_In8/M_Inw/M_In16/M_In32

[Function]
Returns the value of the input signal.
M_In: Returns a bit.
M_Inb or M_In8: Returns a byte (8 bits).
M_Inw or M_In16: Returns a word (16 bits).
M_In32: Returns a double-word (32 bits).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign. Supplementary explanation is

shown in Table 4-27.
<Equation> Enter the input signal number. Supplementary explanation is shown in Table 4-28.

(1)CR800-R/Q series
10000 to 18191: Multi-CPU share device
7764 to 775: Hand input (CR860)
900 to 907: Hand input (CR800)

(2)CR800-D series
0 to 255: Standard remote inputs.
764 to 775: Hand input (CR860)
900 to 907: Hand input (CR800)
2000 to 5071: Input signal of PROFIBUS.
6000 to 8047: Remote input for CC-Link.

[Reference Program]
1 M1%=M_In(0) ' M1 will contain the value of the input signal 0 (1 or 0).
2 M2%=M_Inb(0) ' M2 will contain the 8-bit information starting from input signal 0.
3 M3%=M_Inb(3) And &H7 ' M3 will contain the 3-bit information starting from input signal 3.
4 M4%=M_Inw(5) ' M4 will contain the 16-bit information starting from input signal 5.
5 M5&=M_In32(16000) ' M5 will contain the 32-bit information starting from input signal 16000.

[Explanation]
(1) Returns the status of the input signal.
(2) M_In returns the 1-bit information, M_Inb/M_In8 returns the 8-bit information, M_Inw/M_In16 returns the

16-bit information, and M_In32 returns the 32-bit information starting from the specified signal number.
(3) Although the signal number can be as large as 32767, only the signal numbers with corresponding

hardware will return a valid value. Value for a signal number without corresponding hardware is set as
undefined.

(4) For M_In32, specify the long precision integer type or the real-number type variable as the <Numeric
Variable>.

(5) This variable only reads the data.

Example) <Numeric Variable>=M_In(<Equation>)

Example) <Numeric Variable>=M_Inb(<Equation>) or M_In8(<Equation>)

Example) <Numeric Variable>=M_Inw(<Equation>) or M_In16(<Equation>)

Example) <Numeric Variable>=M_In32(<Equation>)
 Detailed explanation of Robot Status Variable 4-391

4

4MELFA-BASIC VI
Always make interlock of signal to take synchronization. Failure to observe this
could lead to cause of malfunction by the signal transmitted incorrectly.

[Supplement]
Table 4-27:<Numeric Variable>

Table 4-28:<Equation>

[Related instructions]
Def IO (Define IO)

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision

real number
Ex.)M1!

Double-
precision

real number
Ex.)M1#

Position
Note1)

Ex.)P1.X

Note1) The unit is the radian if the value of variable is the angle. (The elements of A, B and C of position variable, and all elements
of joint variable) The display of the monitor etc. is converted into the degree.
Example) If the input signal 8 is ON in P1.A=M_In (8), P1.A is displayed as "57.296." Therefore, ON/OFF status does not
look clear. Because the unit of the element X, Y, and Z of the position variable is "mm", there is no such condition.

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_In O O O O O O X

M_Inb/M_In8 O O O O O O X

M_Inw/M_In16 O O O O O O X

M_In32 X O O O O O X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
valueNote1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision
real
number
Note1)
Ex.)M1!

Double-
precision
real numbe
Note1)

Ex.)M1#

Positio
Note1)
Note2)

Ex.)P1.X

Note2) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of position variable, and all elements of joint
variable) Therefore, designation of the signal number is very difficult. The display of the monitor etc. is converted into the degree, and the same value as
the setting value displayed.
Example) It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to specify the input signal No.8. The result
is "0" when 8 degree is converted to radian (0.14) and rounded off.Because the unit of the element X, Y, and Z of the position variable is "mm", there is
no such condition.

Joint
Note1)
Note2)

Ex.)J1.J1

Character
string

Ex.)C1$

M_In O O O O O O O O O X

M_Inb/M_In8 O O O O O O O O O X

M_Inw/M_In16 O O O O O O O O O X

M_In32 O O O O O O O O O X

 CAUTION
-392 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_JOvrd/M_NJOvrd/M_OPOvrd/M_Ovrd/M_NOvrd

[Function]
Returns override value.
M_JOvrd: Value specified by the override JOvrd command for joint interpolation.
M_NJOvrd: Initial override value (100%) for joint interpolation.
M_OPOvrd: Override value of the operation panel.
M_Ovrd: Current override value, value specified by the Ovrd command.
M_NOvrd: Initial override value (100%).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> In M_JOvrd/M_NJOvrd/M_Ovrd/M_NOvrd, 1 to 32, enter the task slot number.

If these parameters are omitted, the current slot will be used as the default.
In M_OPOvrd, enter an override value.

[Reference Program]
1 M1=M_Ovrd ' M1 will contain the current override value.
2 M2=M_NOvrd ' M2 will contain the initial override value (100%).
3 M3=M_JOvrd ' M3 will contain the current joint override value.
4 M4=M_NJOvrd ' M4 will contain the initial joint override value.
5 M5=M_OPOvrd ' M5 will contain the current OP (operation panel) override value.
6 M6=M_Ovrd(2) ' M6 will contain the current override value for slot 2.
7 M_OPOvrd=20 ' The OP (operation panel) override value is set in 20.

[Explanation]
(1) If the argument is omitted, the current slot status will be returned.
(2) In M_JOvrd/M_NJOvrd/M_Ovrd/M_NOvrd, only read the data.

In M_OPOvrd, writes/reads the data.

Example)<Numeric Variable>=M_JOvrd [(<Equation>)]

Example)<Numeric Variable>=M_NJOvrd[(<Equation>)]

Example)<Numeric Variable>=M_OPOvrd

Example)M_OPOvrd=<Equation>

Example)<Numeric Variable>=M_Ovrd[(<Equation>)]

Example)<Numeric Variable>=M_NOvrd[(<Equation>)]
 Detailed explanation of Robot Status Variable 4-393

4

4MELFA-BASIC VI
M_LdFact

[Function]
The load ratio for each joint axis can be referenced.

[Format]

[Terminology]
<Numeric Variable> The load ratio of each axis is substituted. The range is 0 to 100%.
<Axis Number> 1 to 8, Specifies the axis number.

[Reference Program]
1 Accel 100,100 ' Lower the overall deceleration time to 100%.
2 *Label
3 Mov P1
4 Mov P2
5 If M_LdFact(2)>90 Then
6 Accel 50,50 ' Lower the acceleration/deceleration ratio to 50%.
7 M_SetAdl(2)=50 ' Furthermore, lower the acceleration/deceleration ratio of the J2 axis to

50%. (In actuality, 50% x 50% = 25%)
8 Else
9 Accel 100,100 ' Return the acceleration/deceleration time.
10 EndIf
11 GoTo *Label

[Explanation]
(1) The load ratio of each axis can be referenced.
(2) The load ratio is derived from the current that flows to each axis motor and its flow time.
(3) The load ratio rises when the robot is operated with a heavy load in a severe posture for a long period of

time.
(4) When the load ratio reaches 100%, an overload error occurs. In the above example statement, once the

load ratio exceeds 90%, the acceleration/deceleration time is lowered to 50%.
(5) To lower the load ratio, measures, such as decreasing the acceleration/deceleration time, having the

robot standing by in natural posture, or shutting down the servo power supply, are effective.
(6) The initial value of the target mechanism number is "1". Therefore, when mechanism number 1 is

targeted, after executing the RelM command, or the program slot is other than 1, execution of the GetM
command is unnecessary. If target mechanism is other than 1, execute the GetM command beforehand.

[Related instructions]
Accel (Accelerate), Ovrd (Override)

Example)<Numeric Variable>=M_LdFact(<Axis Number>)
-394 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_LdFMax

[Function]
The maximum load ratio for each joint axis can be referenced.

[Format]

[Terminology]
<Axis Number> 1 to 8, Specifies the axis number.
<Numeric Variable> The load ratio of each axis is substituted. The range is 0 to 100%.

[Reference Program]
1 Accel 100,100 ' Lower the overall deceleration time to 100%.
2 *Label
3 Mov P1
4 Mov P2
5 If M_LdFMax(2)>90 Then Goto *LdErr Else Goto *Label
6
7 *LdErr
8 Error 9101 ' User error output
9 End

[Explanation]
(1) The maximum load ratio of each axis can be referenced. The severity of a robot can be checked.
(2) The load ratio is derived from the current that flows to each axis motor and its flow time.
(3) The load ratio rises when the robot is operated with a heavy load in a severe posture for a long period of

time.
(4) When the load ratio reaches 100%, an overload error occurs. In the above example statement, once the

load ratio exceeds 90%, the alarm 9101 is generated.
(5) To lower the load ratio, measures, such as decreasing the acceleration/deceleration time, having the

robot standing by in natural posture, or shutting down the servo power supply, are effective.
(6) The initial value of the target mechanism number is "1". Therefore, when mechanism number 1 is

targeted, after executing the RelM command, or the program slot is other than 1, execution of the GetM
command is unnecessary. If target mechanism is other than 1, execute the GetM command beforehand.

[Related instructions]
Accel (Accelerate), Ovrd (Override)

Example)<Numeric Variable>=M_LdFMax(<Axis Number>)
 Detailed explanation of Robot Status Variable 4-395

4

4MELFA-BASIC VI
M_Line

[Function]
Returns the line number that is being executed.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Line(2) ' M1 will contain the line number being executed by slot 2.

[Explanation]
(1) This can be used to monitor the line being executed by other tasks during multitask operation.
(2) This variable only reads the data.

M_Map1 to M_Map8

[Function]
This command returns the segment number in which a workpiece is present in the condition defined in the
Def Map command, using the get-position-quick function (GPS function).
The information of the workpiece presence recognition obtained by the execution of the mapping (the
recording of the workpiece presence in a segment to which a sensor attached on the hand reacts by sliding
the hand vertically at the front of a cassette) can be checked.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

The information of the workpiece presence recognition in the segment set in
<Numeric value> is returned to the position variable.
The default value is set to 0. "1" is stored for the segment in which the workpiece
is present.
The value is cleared to zero when the GpsChk On command is executed.

<Numeric value> Set the segment number to check for the workpiece presence in a cassette.
The lowest segment in a cassette is defined as the first segment.
Setting range: 1 to 130 (segments)
 (A setting value of 0 or a negative value is regarded as 1.)

[Reference Program]
1 Def Map 3,851,On,1,PC1,PC2,20,10

‘ The position data of the mechanism No. 1 is recorded for the
monitoring No. 3 when the signal No. 851 is turned on, and the
mapping is executed according to the defined condition.
PC1: Lowest position (first segment) in a cassette, PC2: Highest
position (last segment) in a cassette, 20: the number of segments in a
cassette (20 segments), 10: a sensitive area of a sensor (10 mm)

2 Mov PM1 ‘ The robot moves its arm to the mapping start position.

Example)<Numeric Variable>=M_Line [(<Equation>)]

Example) <Numeric Variable>=M_Map1[(<Numeric value>)]
-396 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
3 GpsChk On,3 ‘ Monitoring a condition for the monitoring No. 3 is started. The position
data is recorded when the signal No. 851 is turned on, and the
segment number in which the workpiece is present is calculated from
that position data, which is shown as "M_Map3(130)".

4 Mvs PM2 ‘ The robot moves its arm to the mapping stop position.
5 GpsChk Off,3 ‘ Monitoring a condition for the monitoring No. 3 is stopped.
6 M1=M_Gps(3) ‘ The number of the position data recorded in the P_Gps3 is stored.
7 If M1=0 Then Error 9000 ‘ The error 9000 is generated if no position data is recorded.
8 For M2=1 To 20
9 M_Out(6100+M2) = M_Map3(M2)

‘ The results of the mapping are output with a signal (the signal number
"6101" is assigned for the first result).

10 Next M2 ‘ The process performed for the first segment is repeated for the
remaining segments.

[Explanation]
(1) The current position data of the robot is stored in the P_GpsX() when the condition defined in the Def

Map command is met. The segment number in which the workpiece is present is calculated from that
position data and the condition defined in the Def Map command, and stored in this status variable.

(2) To send the data of workpiece position to an external device, output the signal including the information
stored in this status variable.

(3) The value is cleared to zero when the GpsChk On command is executed.
(4) The number of times can be confirmed after the GpsChk Off command is executed.
(5) This variable only reads the data.
(6) The number of times is cleared to zero when the controller is turned on.

[Related instructions]
Def Map (Define mapping), GpsChk (Get position check)

M_Mode

[Function]
Returns the key switch mode of the operation panel.
1: MANUAL
2: AUTOMATIC (O/P)
3: AUTOMATIC (External)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_Mode ' M1 will contain the key switch status.

[Explanation]
(1) This can be used in programs set to ALWAYS (constantly executed) during multitask operation.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_Mode
 Detailed explanation of Robot Status Variable 4-397

4

4MELFA-BASIC VI
M_Mxt

[Function]
Use this command for synchronization of the robot applications between the master and slave robots for

cooperative operation.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Target CPU No.> Enter the CPU module No. of the master robot. 2 to 4.

[Reference Program]
M_Mxt(2)=1 ' The robot CPU No. 2 starts cooperation.
Wait M_Mxt(2)=1 ' Wait for the robot CPU No. 2 to start cooperation.

[Explanation]
(1) This can be used for synchronization of the applications with the cooperative operation function.
(2) In the target CPU, this variable reads and writes the data. In other CPU, this variable only reads the data.
(3) If the status variable is changed from 1 to 0 at the master robot during the cooperative operation, the

slave robot finishes Mxt command automatically.
(4) The initial value after power ON is 0.

Example)<Numeric Variable>=M_Mxt(<Target CPU No.>)
-398 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_NvOpen

[Function]
Indicates the vision sensor line connection status.

[Array meaning]
Array elements (1 - 8): Vision sensor numbers

[Explanation of values returned]
0: Line connecting (logon not complete) 1: Logon complete -1: Not connected

[Usage]
After an NVOpen command is executed, checks whether or not the line with the vision sensor is
connected and the vision sensor logged onto.

[Reference Program]
1 If M_NVOpen(1)<>1 Then ' If vision sensor number 1 is not connected
2 NVOpen "COM2:" As #1 ' Connects with the vision sensor connected to COM2 and sets its

number as number 1.
3 EndIf
4 Wait M_NVOpen(1)=1 ' Connects with vision sensor number 1 and waits for the logon state.
5 ・・・・・

 :
100 NVClose #1 ' Cuts the line with the vision sensor connected to COM2.

[Explanation]
(1) Indicates the status of a line connected with a network vision sensor with an NVOpen command when

the line is opened.
(2) The initial value is "-1". At the point in time that the NVOpen command is executed and the line is

connected, the value becomes "0" (line connecting). At the point in time that the network vision sensor
logon is completed, the value becomes "1" (logon complete).

(3) This variable strongly resembles the status of status variable M_OPEN, but whereas M_Open
(4) becomes "1" when the connection is verified, M_NVOpen becomes "1" when the vision sensor logon is

complete.

[Errors]
(1) If the type of data specified as an array element is incorrect, a "syntax error in input command statement"

error occurs.
(2) If there is an abnormal number of array elements (too many or too few), an "incorrect argument type"

error occurs.
(3) If an array element other than "1" through "8" is specified, an "array element mistake" error occurs.
 Detailed explanation of Robot Status Variable 4-399

4

4MELFA-BASIC VI
M_On/M_Off

[Function]
Always returns 1 (M_On) or 0 (M_Off).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_On ' 1 is assigned to M1.
2 M2=M_Off ' 0 is assigned to M2.

[Explanation]
(1) Always returns 1 or 0.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_On

Example)<Numeric Variable>=M_Off
-400 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_Open

[Function]
Returns the status indicating whether or not a file or communication line is opened.

[Format]

[Terminology]
<Numerical variable> Specify the numerical variable to substitute.
<File number> Specify the file number 1-8 by constant value of communication line opened by

Open command. The default value is 1. If 9 or more are specified, the error will
occur when executing.

[Reference Program]
1 Open "temp.txt" For Append As #1 ' Open "temp.txt" as the file number 1.
2 *LBL:If M_Open(1)<>1 Then GoTo *LBL ' Wait until the file number 1 opens.

[Explanation]
(1) This is a read only variable.
(2) The return value differ corresponding to the file type specified by Open command as follows.

[Related instructions]
Open (Open)

[Related parameter]
COMDEV, CPRE**, NETMODE

Example)<Numerical variable>=M_Open [<File number>]

Kind of files Meaning Value
File Returns the status indicating whether or not a file is

opened.
Returns 1 until the Close instruction, the End instruction
or End in a program is executed after executing the Open
instruction.

1: Already opened
-1: Undefined file number (not opened)

Communication line
Ethernet

Indicates whether or not
connection is made with the
counterpart.

For server setting 1: Client is already connected.
0: Client is not connected.
-1: The file number is undefined (not

opened).
For client setting 1: Already connected to the server.

(Connection has been made.)
0: Not connected to the server. (Connection

has not been made. Equivalent to when
the server is down after being opened.)

-1: The file number is undefined. (When the
file has not been opened, or has been
opened while the server is down.)
 Detailed explanation of Robot Status Variable 4-401

4

4MELFA-BASIC VI
M_Out/M_Outb/M_Out8/M_Outw/M_Out16/M_Out32

[Function]
Writes or references external output signal.
M_Out:Output signal bit.
M_Outb or M_Out8:Output signal byte (8 bits).
M_Outw or M_Out16:Output signal word (16 bits).
M_Out32: Output signal double-word (32 bits).

[Format]

[Terminology]
<Numeric value 1> Specify the output signal number. Supplementary explanation is shown in Table 4-29.

(1)CR800-R/Q series
10000 to 18191: Multi-CPU share device
764 to 771: Hand output (CR860)
900 to 907: Hand output (CR800)

(2)CR800-D series
0 to 255: Parallel I/O
764 to 771: Hand output (CR860)
900 to 907: Hand output (CR800)
2000 to 5071: PROFIBUS
6000 to 8047: CC-Link

<Numeric Variable> Specifies the numerical variable to assign.
<Numeric value 2>, <Numeric value 3>, <Numeric value 4>, <Numeric value 5>

Describe the value to output by the numeric variable, the constant, or numerical
arithmetic expression.Supplementary explanation is shown in Table 4-30.
Numerical range

<Numeric value 2>: 0 or 1 (&H0 or &H1)
<Numeric value 3>: -128 to +127 (&H80 to &H7F)
<Numeric value 4>: -32768 to +32767 (&H8000 to &H7FFF)
<Numeric value 5>: -2147483648 to +2147483647 (&H80000000 to

&H7FFFFFFF)
<Time> Describe the output time for the pulse output as a constant or numeric

operation expression. Unit: [Seconds]
<Numeric Variable> Specifies the numerical variable to assign. Supplementary explanation is shown in

Table 4-31.

[Reference Program]
1 M_Out(2)=1 ' Turn ON output signal 2 (1 bit).
2 M_Outb(2)=&HFF ' Turns ON 8-bits starting from the output signal 2.
3 M_Outw(2)=&HFFFF ' Turns ON 16-bits starting from the output signal 2.
4 M4=M_Outb(2) AND &H0F ' M4 will contain the 4-bit information starting from output signal 2.
5 M5=M_Out32(16000) ' M5 will contain the 32-bit information starting from output signal 16000.

Example)M_Out(<Numeric value 1>)=<Numeric value 2>

Example)M_Outb(<Numeric value 1>) or M_Out8(<Numeric value 1>)=<Numeric value 3>

Example)M_Outw(<Numeric value 1>) or M_Out16(<Numeric value 1>)=<Numeric value 4>

Example) M_Out32(<Numeric expression 1>)=<Numeric value 5>

Example)M_Out(<Numeric value 1>)=<Numeric value 2> Dly <Time>

Example)<Numeric Variable>=M_Out(<Numeric value 1>)
-402 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
[Explanation]
(1) This is used when writing or referencing external output signals.
(2) M_Out outputs the 1-bit information, M_Outb/M_Out8 outputs the 8-bit information, M_Outw/M_Out16

outputs the 16-bit information, and M_Out32 outputs the 32-bit information starting from the specified
signal number.Refer to Page 232, "Dly (Delay)" for the explanation of pulse output.

(3) By high-speed mode setting of parameter: SYNCIO, the updating cycle to the external output signal can
be made speedy. However, always make interlock of signal to take synchronization. Because to make
the timing of the I/O signal correct. Refer to SYNCIO in Page 511, "SYNCIO"

Always make interlock of signal to take synchronization. Failure to observe this
could lead to cause of malfunction by the signal transmitted incorrectly.

[Supplement]
Table 4-29:<Numeric value 1>

Table 4-30:<Numeric value 2>, <Numeric value 3>, <Numeric value 4> <Numeric value 5>

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
valueNote1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision
real
number
Note1)
Ex.)M1!

Double-
precision
real numbe
Note1)

Ex.)M1#

Positio
Note1)
Note2)

Ex.)P1.X

Note2) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of position variable, and all elements of joint
variable) Therefore, designation of the signal number is very difficult. The display of the monitor etc. is converted into the degree, and the same value as
the setting value displayed.
Example) It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to specify the input signal No.8. The result

is "0" when 8 degree is converted to radian (0.14) and rounded off. Because the unit of the element X, Y, and Z of the position variable is "mm", there is
no such condition.

Joint
Note1)
Note2)

Ex.)J1.J1

Character
string

Ex.)C1$

M_Out O O O O O O O O X X

M_Outb/M_Out8 O O O O O O O O X X

M_Outw/M_Out16 O O O O O O O O X X

M_Out32 O O O O O O O O X X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
value

Ex.)12

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number
Ex.)M1&

Single-
precision

real
number

Ex.)M1!

Double-
precision

real numbe

Ex.)M1#

Positio

Ex.)P1.X

Joint

Ex.)J1.J1

Character
string

Ex.)C1$

M_Out O O O O X X X X X X

M_Outb/M_Out8 O O O O X X X X X X

M_Outw/M_Out16 O O O O X X X X X X

M_Out32 ONote1)

Note1) For the numerical value of the less than 16 bits of the binary number (-32768 to +32767), the specified constant will
handle as a negative numerical value, if the bit 15 (the 16th bit) turns on. Therefore, please be careful of turning on
all of upper 16 bits. (The sign bit is extended)
Example)

Designation of "-32768(&B1000000000000000)" will output the "&B11111111111111111000000000000000."
[Measures]

After substituting the constant for the long-precision integer number variable as follows, when substituting to this
robot status variable M_YDevD, &B00000000000000001000000000000000 (binary number) can be outputted.

1 M1&=32768
2 M_YDevD(&H20)=M1&

O Note1) O Note1) O Note1) X X ONote2)

Note2) The ranges of the numerical value which can be outputted are -2147483648 to 2147483647.

X X X

 CAUTION

 CAUTION
 Detailed explanation of Robot Status Variable 4-403

4

4MELFA-BASIC VI
Table 4-31:<Numeric value>

[Related instructions]
Def IO (Define IO)

[Related parameter]
SYNCIO

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision

real
number

Ex.)M1!

Double-
precision

real numbe

Ex.)M1#

Positio
Note1)

Ex.)P1.X

Note1) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of
position variable, and all elements of joint variable) The display of the monitor etc. is converted into the degree
and displayed

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_Out O O O O O O X

M_Outb/M_Out8 O O O O O O X

M_Outw/M_Out16 O O O O O O X

M_Out32 X O O O O O X
-404 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_PI

[Function]
Returns pi (3.14159265358979).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_PI ' 3.14159265358979 is assigned to M1.

[Explanation]
(1) A variable to be assigned will be a real value.
(2) This variable only reads the data.

M_Psa

[Function]
Returns whether the program is selectable by the specified task slot.
1: Program is selectable.
0: Program not selectable (when the program is paused).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Psa(2) ' M1 will contain the program selectable status of task slot 2.

[Explanation]
(1) Returns whether the program is selectable by the specified task slot.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_PI

Example)<Numeric Variable>=M_Psa [(<Equation>)]
 Detailed explanation of Robot Status Variable 4-405

4

4MELFA-BASIC VI
M_Ratio

[Function]
Returns how much the robot has approached the target position (0 to 100%) while the robot is moving.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 Mov P1 WthIf M_Ratio>80, M_Out(1)=1 ' The output signal 1 will turn ON when the robot has

moved 80% of the distance until the target position is
reached while moving toward P1.

[Explanation]
(1) This is used, for instance, when performing a procedure at a specific position while the robot is moving.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_Ratio [(<Equation>)]
-406 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_RCInfo

[Function]
This variable returns a variety of information of the robot controller.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Information ID number> Specifies the information ID number of the information to read.

Refer to the table below for details.
<Element number> Specifies the element number corresponding to the information to read.

Refer to the table below for details.

[Reference Program]
1 Dim METMP(8) ' Variable to which the temperature of the each axis

encoder is assigned.
2 Dim METMPX(8) ' Variable to which the maximum temperature of the each

axis encoder is assigned.
3 For MT=1 To 8
4 METMP(MT)=M_RCInfo(1,MT) ' Read the temperature of the each axis encoder.
5 METMPX(MT)=M_RCInfo(2,MT) ' Read the maximum temperature of the each axis encoder.
6 Next
7 MRCTMP=M_RCInfo(3,1) ' Read the temperature of inside the controller.

[Explanation]
(1) If the value exceeding the setting value is specified as information ID number and element number, the

error L3110 will occur when executed.

Example)<Numeric Variable>=M_RCInfo (<Information ID number>, <Element number>)

Information ID number Element number

Setting value Details of information Setting value
(Setting range) Meaning

1 Temperature of each axis
encoder (°C)

1 to 8 Indicates the axial number of the robot.
* As for the axis not existing or the additional axis (7 and 8

axes), zero value will be returned.2 Maximum temperature of each
axis encoder (°C)

1 to 8

3 Temperature of inside the
controller (°C)

1 -
 Detailed explanation of Robot Status Variable 4-407

4

4MELFA-BASIC VI
M_RDst

[Function]
Returns the remaining distance to the target position (in mm) while the robot is moving.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 Mov P1 WthIf M_RDst<10 M_Out(10)=1 ' The output signal 1 will turn ON when the remaining

distance until the target position is reached becomes 10
mm or less while moving toward P1.

[Explanation]
(1) This is used, for instance, when performing a procedure at a specific position while the robot is moving.
(2) This variable only reads the data.

M_Run

[Function]
Returns whether the program for the specified task slot is being executed.
1: Executing.
0: Not executing (paused or stopped).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Run(2) ' M1 will contain the execution status of slot 2.

[Explanation]
(1) This will contain 1 if the specified slot is running, or 0 if the slot is stopped (or paused).
(2) Combine M_Run and M_Wai to determine if the program has stopped (in case the currently executed

line is the top line).
(3) This variable only reads the data.

Example)<Numeric Variable>=M_RDst [(<Equation>)]

Example)<Numeric Variable>=M_Run [(<Equation>)]
-408 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_SetAdl

[Function]
Set the acceleration/deceleration time distribution rate of the specified axis when optimum acceleration/
deceleration control is enabled (Oadl ON). Since it can be set for each axis, it is possible to reduce the
motor load of an axis with a high load. Also, unlike a method that sets all axes uniformity, such as Ovrd, Spd
and Accel instructions, the effect on the tact time can be minimized as much as possible. The initial value is
the setting value of the JADL parameter.

[Format]

[Terminology]
<Axis Number> 1 to 8, Specifies the axis number.
<Numeric Variable> Specify the ratio for the standard acceleration/deceleration time, between 1

and 100. The unit is %. The initial value is the value of the optimum
acceleration/deceleration adjustment rate parameter (JADL).

[Reference Program]
1 Accel 100,50 ' Set the overall acceleration/deceleration distribution rate to 50%.
2 If M_LdFact(2)>90 Then ' If the load rate of the J2 axis exceeds 90%,
3 M_SetAdl(2)=70 ' set the acceleration/deceleration time distribution rate of the J2

axis to 70%.
4 EndIf ' Acceleration 70% (= 100% x 70%), deceleration 35% (= 50% x

70%)
5 Mov P1
6 Mov P2
7 M_SetAdl(2)=100 ' Return the acceleration/deceleration time distribution rate of the

J2 axis to 100%.
8 Mov P3 ' Acceleration 100%, deceleration 50%
9 Accel 100,100 ' Return the overall deceleration distribution rate to 100%.
10 Mov P4

[Explanation]
(1) The acceleration/deceleration time distribution rate when optimum acceleration/deceleration is enabled

can be set in units of axes. If 100% is specified, the acceleration/deceleration time becomes the
shortest.

(2) Using this status variable, the acceleration/deceleration time can be set so as to reduce the load on axes
where overload and overheat errors occur.

(3) The setting of this status variable is applied to both the acceleration time and deceleration time.
(4) When this status variable is used together with an Accel instruction, the specification of the acceleration/

deceleration distribution rate of the Accel instruction is also applied to the acceleration/deceleration
time calculated using the optimum acceleration/deceleration speed.

(5) With the Accel instruction, the acceleration/deceleration time changes at the specified rate. Because this
status variable is set independently for each axis and also the acceleration/deceleration time that takes
account of the motor load is calculated, the change in the acceleration/deceleration time may show a
slightly different value than the specified rate.

[Reference]
Accel (Accelerate),Ovrd (Override),Spd (Speed),M_LdFact

Example)M_SetAdl(<Axis Number>)=<Numeric Variable>
 Detailed explanation of Robot Status Variable 4-409

4

4MELFA-BASIC VI
M_SkipCq

[Function]
Returns the result of executing the line containing the last executed Skip command.
1: Skip has been executed.
0: Skip has not been executed.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 Mov P1 WthIf M_In(10)=1,Skip ' If the input signal 10 is 1 when starting to move to P1, skip

the Mov instruction.
2 If M_SkipCq=1 Then GoTo *Lskip ' If Skip instruction has been executed, jump to line 1000.
 ;
10 *Lskip

[Explanation]
(1) Checks if a Skip instruction has been executed.
(2) This variable only reads the data.
(3) If the M_SkipCq variable is referenced even once, the Skip status is cleared. (The value is set to zero.)

Therefore, to preserve the status, save it by substituting it into a numeric variable.

Example)<Numeric Variable>=M_SkipCq [(<Equation>)]
-410 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_Spd/M_NSpd/M_RSpd

[Function]
Returns the speed information during XYZ and JOINT interpolation.
M_Spd: Currently set speed.
M_NSpd: Initial value (optimum speed control).
M_RSpd: Directive speed.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Spd ' M1 will contain the currently set speed.
2 Spd M_NSpd ' Reverts the speed to the optimum speed control mode.

[Explanation]
(1) M_RSpd returns the directive speed at which the robot is operating. When the servo-off condition, the

feedback speed is returned. At this time, even if the robot is stopping, the value may change between
- 0.01, to +0.01

(2) This can be used in M_RSpd multitask programs or with Wth and WthIf statements.
(3) This variable only reads the data.

Example)<Numeric Variable>=M_Spd [(<Equation>)]

Example)<Numeric Variable>=M_NSpd [(<Equation>)]

Example)<Numeric Variable>=M_RSpd [(<Equation>)]
 Detailed explanation of Robot Status Variable 4-411

4

4MELFA-BASIC VI
M_SplPno

[Function]
During spline interpolation, the number of the path point passed through most recently is returned.
The spline interpolation start position is 1.

[Format]

[Terminology]
<Numeric Variable> Designates the numerical variable substituted for the reference results.
<Mechanism Number> Sets the mechanism No. that executes spline interpolation.

Setting range: 1 to 3
When omitted: 1
If a non-existent mechanism No. is designated, the error L3870 (designated
mechanism No. invalid) will occur when execution is started.

[Reference Program]
1 Wait M_00=1 ' Wait for spline interpolation to start
2 *L1:If M_SplPno < 5 Then GoTo *L1 ' Wait for path point 5 to be passed
3 M1=M_Inw(100) ' After passing through path point 5, get input signal 100 to 115

status
4 *L2:If M_SplPno < 10 Then GoTo *L2 ' Wait for path point 10 to be passed
5 M_01=M1 ' After passing through path point 10, substitute M1 details in

M_01

[Explanation]
(1) During spline interpolation, the number of the path point passed through most recently is returned.
(2) By referring to the M_SplPno value with multi-task, the operation process or signal output, etc., can be

executed according to the progress of spline interpolation.
(3) M_SplPno returns the value indicated in the following table according to the state.

Table 4-32:Value returned by M_SplPno

(4) M_SplPno is a read-only status variable.

Example) <Numeric Variable>=M_SplPno [(<Mechanism Number>)]

Status Value returned by M_SplPno

Immediately after power ON 0

During spline interpolation execution 1 to (value corresponding to progress of spline interpolation)

After spline interpolation Path point No. for end position of spline interpolation

Immediately after main program’s End
command is executed

0

Immediately after program reset operation 0

Mechanism not compatible with spline
interpolation

0

-412 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_SplVar

[Function]
During spline interpolation, the numerical setting value set for the path point passed through most recently is
returned. This value can be changed to a random value by using writing.

[Format]

[Terminology]
<Numeric Variable 1> Designates the numerical variable substituted for the reference results.
<Mechanism Number> Sets the mechanism No. that executes spline interpolation.

Setting range: 1 to 3
When omitted: 1
If a non-existent mechanism No. is designated, the error L3870 (designated
mechanism No. invalid) will occur when execution is started.

<Numeric Variable 2> Designates the value set in M_SplVar.
Setting range: 0 to 32767
If a value exceeding the range is set, the error L2615 (M_SplVar setting value
outside range) or error L3110 (argument value outside range) will occur when
execution is started.

[Reference Program]
1 Wait M_00=1 ' Wait for spline interpolation to start
2 *L1
3 Select M_SplVar
4 Case 1 ' Pass through path point for which M_SplVar value is set to 1
5 M_SplVar=0 ' Reset M_SplVar value to 0
6 M_Out(100)=1 ' Turn output signal 100 ON
7 Break
8 Default ' M_SplVar value is not 1
9 M_Out(100)=0 ' Turn output signal 100 OFF
10 Break
11 End Select
12 If M_00=1 Then Goto *L1 ' Repeat until spline interpolation finishes

[Explanation]
(1) During spline interpolation, the numerical setting value set for the path point passed through most

recently is returned. The numerical setting is designated in the spline file’s path point data.
(2) By referring to M_SplVar value multi-task, the operation process or signal output process, etc., can be

executed according to the progress of spline interpolation. This differs from M_SplPro in that the same
value can be returned even if the path point is different. Thus, the program can be simplified if the same
output signal is repeatedly turned ON/OFF as shown in [Reference Program].

(3) M_SplVar returns an integer between 0 and 32767. If the numerical setting for the path point is set to "-1"
in the spline file, the M_SplVar value will not change even if that path point is passed through. The value
at the time of path point passage will be applied.

Example) <Numeric Variable 1>=M_SplVar [(<Mechanism Number>)]

Example) M_SplVar [(<Mechanism Number>)]=<Numeric Variable 2>
 Detailed explanation of Robot Status Variable 4-413

4

4MELFA-BASIC VI
(4) M_SplVar returns the value according to the states shown in Table 4-33.
Table 4-33: Value returned by M_SplVar

(5) A random value between 0 and 32767 can be set by writing to M_SplVar. That value is held until the
value is changed with spline interpolation or other operations/processes.

M_Svo

[Function]
Returns the current status of the servo power supply.
1: Servo power ON
0: Servo power OFF

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Svo(1) ' M1 will contain the current status of the servo power supply.

[Explanation]
(1) The status of the robot's servo can be checked.
(2) This variable only reads the data.

Status Value returned by M_SplVar

Immediately after power ON 0

During spline interpolation execution Value corresponding to progress of spline interpolation
(Value set in spline file)

When passing through path point set to "–1" Value at that time is continuously applied

After spline interpolation Value at end of spline interpolation

Immediately after main program’s END command
is executed

0

Immediately after program reset operation 0

Immediately after value is read into M_SplVar Written value

Mechanism not compatible with spline interpolation 0 (0 even after write is executed)

Example)<Numeric Variable>=M_Svo [(<Mechanism Number>)]
-414 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_Timer

[Function]
Time is measured in milliseconds. This can be used to measure the operation time of the robot or to
measure time accurately.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> Enter the number to 8 from 1. Parentheses are required.

[Reference Program]
1 M_Timer(1)=0
2 Mov P1
3 Mov P2
4 M1=M_Timer(1) ' M1 will contain the amount of time (ms) required to move from the current

position to P1, and from P1 to P2.
Example) If the time is 5.346 sec. the value of M1 is 5346.

5 M_Timer(1)=1.5 ' Set to 1.5 sec.

[Explanation]
(1) A value may be assigned. The unit is seconds when set to M_Timer.
(2) Since measurement can be made in milliseconds (ms), precise execution time measurement is possible.

Example)<Numeric Variable>=M_Timer (<Equation>)
 Detailed explanation of Robot Status Variable 4-415

4

4MELFA-BASIC VI
M_Tool

[Function]
In addition to using the tool conversion data (MEXTL1 to 16) of the specified number as the current tool
conversion data, it is also set in the MEXTL parameter.
The current tool number can also be read.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number to 3 from 1.

If the argument is omitted, 1 is set as the default value.
<Equation> Enter the tool number to 16 from 1.

[Reference Program]
Setting Tool Conversion Data
1 Tool (0,0,100,0,0,0) ' Specify tool conversion data (0,0,100,0,0,0), and write it into MEXTL.
2 Mov P1
3 M_Tool=2 ' Change the tool conversion data to the value of tool number 2

(MEXTL2).
4 Mov P2

Referencing the Tool Number
1 If M_In(900)=1 Then ' Change the tool conversion data by a hand input signal.
2 M_Tool=1 ' Set tool 1 in tool conversion data.
3 Else
4 M_Tool=2 ' Set tool 2 in tool conversion data.
5 EndIf
6 Mov P1

[Explanation]
(1) The values set in the MEXTL1, MEXTL2, MEXTL3 MEXTL16 tool parameters are reflected in the tool

conversion data. It is also written into the MEXTL parameter.
For programs in which Base command, Tool command, and M_Tool are executed repeatedly,
parameters may not be saved in time, causing error C7091 (parameter save error). If error C7091
occurs, change the order of Base command and M_Tool as shown in the following example.

(2) Tool numbers 1 to 16 correspond to MEXTL1 to 16.
(3) While referencing, the currently set tool number is read.
(4) If the reading value is 0, it indicates that tool conversion data other than MEXTL1 to 16 is set as the

current tool conversion data.

Example)<Numeric Variable>=M_Tool [(<Mechanism Number>)]'Referencing the Current Tool Number

Example)M_Tool [(<Mechanism Number>)] = [(<Equation>)] 'Set a tool number.

Example)
*MAIN
Base PB
M_Tool=2
If M_In(20)=1 Then
 GoSub *SUB1
EndIf
GoTo *MAIN

Base PB
M_Tool=2
*MAIN
If M_In(20)=1 Then
 GoSub *SUB1
EndIf
GoTo *MAIN
-416 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
(5) Setting 0 in the tool number will reset tool parameter MEXTL to the initial values (0,0,0,0,0,0). To retain
the current tool parameter with the tool number set to 0, change parameter TOOLSPEC from 0 (initial
value) to 1, and turn on the power again.
Supported with controller software version A4 or later.

(6) The same setting can be performed on the Tool Setup screen of the teaching pendant. For more
information, see Page 33, "3.2.9 Switching Tool Conversion Data".

[Reference]
Tool(Tool), MEXTL, MEXTL1 to MEXTL16, TOOLSPEC

M_Uar

[Function]
Returns whether the robot is in the user-defined area.
Bits 0 through 7 correspond to areas 1 to 8 and each bit displays the following information.
1: Within user-defined area
0: Outside user-defined area

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Uar(1) AND &H0004 ' The result for area 3 only is assigned to M1.
2 If M1<>0 Then M_Out(10)=1 ' Output signal 10 turns ON if contained in area 3.

[Explanation]
(1) For details on how to use user-defined areas, refer to Page 531, "5.8 About user-defined area".
(2) This variable only reads the data.

Example)<Numeric Variable>=M_Uar [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-417

4

4MELFA-BASIC VI
M_Uar32

[Function]
Returns whether contained in the user-defined area.
Bits 0 to 31 correspond to areas 1 to 32, with the respective bits displaying the information below.

1: Within user-defined area
2: Outside user-defined area

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number from 1 to 3. If the argument is omitted, 1 is set

as the default value.
[Reference Program]

1 Def Long M1
2 M1& = M_Uar32(1) AND &H00080000 'The result for area 20 only is assigned to M1.
3 If M1&<>0 Then M_Out(10)=1 'Output signal 10 turns ON if contained in area 20.

[Explanation]
(1) Refer to, Page 531, "5.8 About user-defined area" for details on how to use a user-defined area.
(2) An error will occur if a 16-bit integer type is used for the <Numeric Variable> and the value is over. If so,

use a 32-bit integer type.
(3) The area in which 1 (signal output) is specified for parameter AREAnAT (n is the area no. (n = 1 to 32))

is applicable.
(4) When performing a comparison operation or logic operation, a negative value results in decimal notation

if bit 31 is 1, and therefore it is recommended that hexadecimal notation be used.
(5) This variable only reads the data.

[Related System Variables]
M_Uar

[M_Uar32 and User-defined Area Compatibility]

Example) If contained in user-defined area 5 and 10, this will be the combined value of &H00000010, the
value indicating area 5, and H00000200, the value indicating area 10, however, this will be
returned as an M_Uar32 value.

Example) <Numeric Variable> = M_Uar32 [(<Mechanism Number>)]

Bit Area Decimal
Value

Hexadecimal
Value Bit Area Decimal Value Hexadecimal

Value
0 1 1 &H00000001 16 17 65536 &H00010000
1 2 2 &H00000002 17 18 131072 &H00020000
2 3 4 &H00000004 18 19 262144 &H00040000
3 4 8 &H00000008 19 20 524288 &H00080000
4 5 16 &H00000010 20 21 1048576 &H00100000
5 6 32 &H00000020 21 22 2097152 &H00200000
6 7 64 &H00000040 22 23 4194304 &H00400000
7 8 128 &H00000080 23 24 8388608 &H00800000
8 9 256 &H00000100 24 25 16777216 &H01000000
9 10 512 &H00000200 25 26 33554432 &H02000000
10 11 1024 &H00000400 26 27 67108864 &H04000000
11 12 2048 &H00000800 27 28 134217728 &H08000000
12 13 4096 &H00001000 28 29 268435456 &H10000000
13 14 8192 &H00002000 29 30 536870912 &H20000000
14 15 16384 &H00004000 30 31 1073741824 &H40000000
15 16 32768 &H00008000 31 32 -2147483648 &H80000000
-418 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_UDevW/ M_UDevD

[Function]
This function is to exchange the signals directly with two or more robot CPUs in the robot controller of
CR800-Q series (Only CR800-Q series)
(Since the rudder program of the PLC is not needed, the exchange of the signal can be executed more
speedily. And, the reference of shared memory information other than robot CPUs, such as motion CPU, is
also possible. (Page 633, "5.26 Direct communication with robot CPUs"))

M_UDevW: Reads/ Writes per word. (16 bits)
M_UDevD: Reads/ Writes per double word. (32 bits)

[Format]

[Terminology]
<Numeric Variable> Specify the numeric variable which substitutes the value of the input

output signal.
<Top input output number> 1 to 32, Specifies the task slot number. If this parameter is omitted, the

current slot will be used as the default.
Specify the input output signal number of the CPU unit with the constant
or the numeric variable.
(The value to specify omits the single digit low order of the top input
output number in the hexadecimal number.)
Range : "&H3E0" to "&H3E" in hexadecimal expression. ("992" to "995"
in the decimal number)

No. 1: &H3E0 (992 in the decimal number)
No. 2: &H3E1 (993 in the decimal number)
No. 3: &H3E2 (994 in the decimal number)
No. 4: &H3E3 (995 in the decimal number)

Note) The write function is allowed to host CPU only.
<Shared memory address> Specify the shared memory address of the CPU unit with the constant or

the numeric variable.
The useful ranges differ for each status variable. (Decimal number)

M_UDevW: 10000 to 24335
M_UDevD: 10000 to 24334

<Numeric value> Specify the data to write in with the constant or the numeric variable.
The useful ranges differ for each status variable

M_UDevW: -32768 to 32767 (&H8000 to &H7FFF)
M_UDevD: -2147483648 to 2147483647

(&H80000000 to &H7FFFFFFF)

ExampleReference

<Numeric Variable> = M_UDevW(<Top input output number>, < Shared memory address >)
<Numeric Variable> = M_UDevD(<Top input output number>, < Shared memory address >)

Writing

M_UDevW(<Top input output number>, < Shared memory address >) = < Numeric value >
M_UDevD(<Top input output number>, < Shared memory address >) = < Numeric value >
 Detailed explanation of Robot Status Variable 4-419

4

4MELFA-BASIC VI
[Reference Program]
1 M_UDevW(&H3E1, 10010)=&HFFFF ' The &HFFFF (hexadecimal number) is written to the

shared memory address 10010 of No. 2 CPU (host CPU).
2 M_UDevD(&H3E1, 10011)=P1.X * 1000 ' Calculate the X coordinate value of position variable P1 by

1000. And write the result value to shared memory
addresses of 10011/10012 (two word) on No. 2 CPU
(host CPU).

3 M1%=M_UDevW(&H3E2, 10001) And &H7 ' The value of 3-bit width from 10001 of shared memory
address of No. 3 CPU is substituted to M1.

[Explanation]
(1) Exchange directly the signals with two or more robot CPUs.
(2) Specify the shared memory to be used by the top input output signal number and the shared memory

address.
(3) Both values (reads/ writes) are the integer values.
(4) Handle the data of the following width about the specified shared memory address.

M_UDevW:16 bit, M_UDevD:32 bit
(5) The range of the top input output signal number is &H3E0-&H3E3 in hexadecimal expression. (992-995

in the decimal number)
And, the range of the shared memory address written in or referred to is 10000-24335 in decimal
number.

(6) The write function is allowed to host CPU only. It is not updated, although the address of other CPU units
is specified and the data is written in. Only CR800-Q series devices are supported. (Statements
executed using CR800-D/CR800-R series devices result in unsuccessful write operations, and the
reference returns zero value.)

(7) Accessing to the shared memory with placing the address of even number in front can realize the data
consistency for 32 bit data with M_UDevD. Refer to Page 421, "[Reference] Assurance of data sent
between CPUs"

[Supplementary]

Table 4-34:<Numeric value>

Table 4-35:<<PLC input-signal number>

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision

real
number

Ex.)M1!

Double-
precision

real
number

Ex.)M1#

Position
Note1)

Ex.)P1.X

Note1) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of
position variable, and all elements of joint variable) The display of the monitor etc. is converted into the
degree and displayed

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_UDevW X O O O O O X
M_UDevD X O O O O O X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
valueNote1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision
real
number
Note1)
Ex.)M1!

Double-
precision
real
number
Note1)

Ex.)M1#

Position
Note1)
Note2)

Ex.)P1.X

Note2) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of position variable, and all elements of joint
variable) Therefore, designation of the signal number is very difficult. The display of the monitor etc. is converted into the degree, and the same value
as the setting value displayed.
Example) It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to specify the input signal No.8. The

result is "0" when 8 degree is converted to radian (0.14) and rounded off. Because the unit of the element X, Y, and Z of the position
variable is "mm", there is no such condition.

Joint
Note1)
Note2)

Ex.)J1.J1

Character
string

Ex.)C1$

M_UDevW O O O O O O O O X X
M_UDevD O O O O O O O O X X
-420 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
Table 4-36:<Numeric value>

[Reference] Assurance of data sent between CPUs
The old data and the new data may be mixed (data separation) in each CPU due to the timing of receiving
data from the other CPU and reading in the host CPU.
The Fig. 4-41 shows the method to realize the data consistency of the user data for the data transmission in
the multiple CPU high speed transmission function.

1) Preventing 32-bit data separation
Accessing to the user setting area of the multiple CPU high speed transmission area with placing

the address of even number in front (for example, address 10002) can realize the data consistency
for 32 bit data.

Fig.4-41:Preventing 32-bit data separation

2) Preventing separation for data exceeding 32 bits
Programs are read from the start of user setting area.
With the write instruction, send data are written from the last address to the start address of the user

setting area.
Therefore, data separation can be avoided by creating an interlock device at the start of data to be
communicated.

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables
Numeric

value
Note1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision
real
number

Ex.)M1!

Double-
precision
real number

Ex.)M1#

Position

Ex.)P1.X

Joint

Ex.)J1.J1

Character
string

Ex.)C1$

M_UDevW O O O O X X X X X X
M_UDevD ONote2)

Note2) For the numerical value of the less than 16 bits of the binary number (-32768 to +32767), the specified constant will
handle as a negative numerical value, if the bit 15 (the 16th bit) turns on. Therefore, please be careful of turning on all
of upper 16 bits. (The sign bit is extended)
Example)

Designation of "-32768(&B1000000000000000)" will output the "&B11111111111111111000000000000000."
[Measures]

After substituting the constant for the long-precision integer number variable as follows, when substituting to this
robot status variable M_UDevD, &B00000000000000001000000000000000 (binary number) can be outputted.

1 M1&=-32768
2 M_UDevD(&H20)=M1&

ONote2) ONote2) ONote2) O O ONote3)

Note3) The ranges of the numerical value which can be outputted are -2147483648 to 2147483647.

O O X

 CAUTION

Device memory CPU shared memory

G10000

G10001

G10002

G10003

G10004

G10005

Even address
 Detailed explanation of Robot Status Variable 4-421

4

4MELFA-BASIC VI
M_Wai

[Function]
Returns the standby status of the program for the specified task slot.
1 : Paused (The program has been paused.)
0 : Not paused (Either the program is running or is being stopped.)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Wai(1) ' M1 will contain the standby status of slot 1.

[Explanation]
(1) This can be used to check whether the program has been paused.
(2) Combine M_Run and M_Wai to determine if the program has stopped (in case the currently executed

line is the top line).
(3) This variable only reads the data.

[Reference]
M_Wupov, M_Wuprt, M_Wupst

Example)<Numeric Variable>=M_Wai [(<Equation>)]
-422 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_Wupov

[Function]
Returns the value of an override (warm-up operation override, unit: %) to be applied to the command speed
in order to reduce the operation speed when in the warm-up operation status.
Note) For more information about the warm-up operation mode, see Page 556, "5.19 Warm-Up Operation

Mode" for detail.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Wupov(1) ' The value of a warm-up operation override is entered in M1.

[Explanation]
(1) This is used to confirm the value of an override (warm-up operation override) to be applied to the

command speed in order to reduce the operation speed when the robot is in the warm-up operation
status (the status in which operation is performed by automatically reducing the speed).

(2) If the warm-up operation mode is disabled, the mode of the controller is set to "TEACH" or the machine
is being locked, the value is always 100.

(3) If the normal status changes to the warm-up operation status, or the warm-up operation status is set
immediately after power on, the value specified in the first element (the initial value of a warm-up
operation override) of the WUPOVRD parameter is set as the initial value, and the value of M_Wupov
increases according to the operation of the robot. And when the warm-up operation status is canceled,
the value of M_Wupov is set to 100.

(4) The actual override in the warm-up operation status is as follows:
During joint interpolation operation = (operation panel (T/B) override setting value) x (program override
(Ovrd instruction)) x (joint override (JOvrd instruction)) x warm-up operation override
During linear interpolation operation = (operation panel (T/B) override setting value) x (program
override (Ovrd instruction)) x (linear specification speed (Spd instruction)) x warm-up operation override

(5) This variable only reads the data.

Example)<Numeric Variable> = M_Wupov [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-423

4

4MELFA-BASIC VI
M_Wuprt

[Function]
Returns the time (sec) during which a target axis must operate to cancel the warm-up operation status.

Note: For more information about the warm-up operation mode, see Page 556, "5.19 Warm-Up Operation
Mode" for detail.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Wuprt(1) ' The time during which a target axis must operate is entered in M1.

[Explanation]
(1) This is used to confirm when the warm-up operation status can be canceled after how long more the joint

axis specified in the WUPAXIS parameter (warm-up operation mode target axis) operates when the
robot is in the warm-up operation status (the status in which operation is performed by automatically
reducing the speed).

(2) If the warm-up operation mode is disabled, 0 is always returned.
(3) If the normal status changes to the warm-up operation status, or the warm-up operation status is set

immediately after power on, the time specified in the first element (the valid time of the warm-up
operation mode) of the WUPTIME parameter is set as the initial value, and the value of M_Wuprt
decreases according to the operation of the robot. And when the value is set to 0, the warm-up
operation status is canceled.

(4) If a multiple number of target axes in warm-up operation mode exist, the value of the axis with the
shortest operation time among them is returned.
For example, when a target axis (A) operates and the warm-up operation status is canceled in
remaining 20 seconds (when M_Wuprt = 20), if another target axis (B) that has continuously been
stopped changes from the normal status to the warm-up operation status, (B) becomes the axis with the
shortest operation time (operation time of 0 sec). Therefore, the time during which (B) must operate (=
the valid time of the warm-up operation mode, initial value is 60 sec) becomes the value of this status
variable (M_Wuprt = 60).

(5) This variable only reads the data.

Example)<Numeric Variable> = M_Wuprt [(<Mechanism Number>)]
-424 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
M_Wupst

[Function]
Returns the time (sec) until the warm-up operation status is set again after it has been canceled.
Note: For more information about the warm-up operation mode, see Page 556, "5.19 Warm-Up Operation
Mode" for detail.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Wupst(1) ' The time until the warm-up operation status is set again is entered in M1.

[Explanation]
(1) This is used to confirm when the warm-up operation status is set again after how long more the joint axis

specified in the WUPAXIS parameter (warm-up operation mode target axis) continues to stop operating
while the robot’s warm-up operation status (the status in which operation is performed by automatically
reducing the speed) is canceled.

(2) If the warm-up operation mode is disabled, the time specified in the second element (warm-up operation
mode resume time) of the WUPTIME parameter is returned.

(3) If a target axis operates while the warm-up operation status is canceled, the time specified in the second
element (warm-up operation mode resume time) of the WUPTIME parameter is set as the initial value,
and the value of M_Wupst decreases while the target axis is stopping. And when the value is set to 0,
the warm-up operation status is set.

(4) If a multiple number of target axes exist, the value of the axis that has been stopped the longest among
them is returned.

(5) This variable only reads the data.

Example)<Numeric Variable> = M_Wupst [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-425

4

4MELFA-BASIC VI
M_XDev/ M_XDevB/ M_XDevW/ M_XDevD

[Function]
Reads the value of PLC input signal (X) in the robot controller of CR800-R/Q series. (Only CR800-R/Q
series)
The direct reference of the input signal of the input output unit / input output mixing unit managed by other
CPU is possible. (Refer to Page 602, "5.25 Direct control of the PLC input/output module")

M_XDev: Reads per bit.
M_XDevB: Reads per byte. (8 bits)
M_XDevW: Reads per word. (16 bits)
M_XDevD: Reads per double word. (32 bits)

[Format]

[Terminology]
<Numeric Variable> Specify the numeric variable which substitute the value of the input

signal.
<PLC input signal number> Specify the input signal number to refer to with the constant or the

numeric variable.
Although the useful range is "&H0" - "&HFFF" (0 - 4095 in decimal
number) in hexadecimal expression, it differs for each status variable.

M_XDev: &H0 - &HFFF(0 - 4095)
M_XDevB: &H0 - &HFF8(0 - 4088)
M_XDevW: &H0 - &HFF0(0 - 4080)
M_XDevD: &H0 - &HFE0(0 - 4064)

Note) The real number is rounded off.

[Reference Program]
1 M1%=M_XDev(1) ' The value of the PLC input signal 1 (1 or 0) is substituted to M2.
2 M2%=M_XDevB(&H10) ' The value of 8-bit width from 10 (hexadecimal number) of PLC

input signals is substituted to M2.
3 M3%=M_XDevW(&H20) And &H7 ' The value of 3-bit width from 20 (hexadecimal number) of PLC

input signals is substituted to M3.
4 M4%=M_XDevW(&H20) ' The value of 16-bit width from 20 (hexadecimal number) of PLC

input signals is substituted to M4.
5 M5&=M_XDevD(&H100) ' The value of 32-bit width from 100 (hexadecimal number) of PLC

input signals is substituted to M5.
6 P1.Y=M_XDevD(&H100)/1000 ' Input the 32-bit width from 100 (hexadecimal number) as an

integer value, and divide by 1000. (Change into the real number)
And the arithmetic result is substituted to Y coordinate value of
the position variable P1.

[Explanation]
(1) Return the condition of PLC input signal (X) by the integer value.
(2) Each return the data of the following width about the specified PLC input-signal number.

M_XDev: 1 bit, M_XDevB:8 bit, M_XDevW:16 bit, M_XDevD:32 bit

<Numeric Variable> = M_XDev[(<PLC input signal number>)]

<Numeric Variable> = M_XDevB[(<PLC input signal number>)]

<Numeric Variable> = M_XDevW[(<PLC input signal number>)]

<Numeric Variable> = M_XDevD[(<PLC input signal number>)]
-426 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
(3) The PLC input signal number should be in "&H0"to "&HFFF" in hexadecimal expression. Error L3110
(value of the argument outside of the range) will occur, if it is the abbreviation and outside the range.

(4) It is necessary to set up so that the input signal can be referred to with Parameter QXYREAD previously.
(5) Return 0, when the PLC unit which can correspond is not connected.

[Supplementary]

Table 4-37:<Numeric value>

Table 4-38:<PLC input-signal number>

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision

real
 number

Ex.)M1!

Double-
precision

real number

Ex.)M1#

Position
Note1)

Ex.)P1.X

Note1) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of
position variable, and all elements of joint variable) The display of the monitor etc. is converted into the degree
and displayed.

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_XDev O O O O O O X
M_XDevB O O O O O O X
M_XDevW O O O O O O X
M_XDevD X O O O O O X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables
Numeric

valueNote1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision
real
number
Note1)
Ex.)M1!

Double-
precision
real number
Note1)

Ex.)M1#

Position
Note1)
Note2)

Ex.)P1.X

Note2) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of position variable, and all elements of
joint variable) Therefore, designation of the signal number is very difficult. The display of the monitor etc. is converted into the degree, and the same
value as the setting value displayed.
Example) It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to specify the input signal No.8. The result

is "0" when 8 degree is converted to radian (0.14) and rounded off. Because the unit of the element X, Y, and Z of the position variable is
"mm", there is no such condition.

Joint
Note1)
Note2)

Ex.)J1.J1

Character
string

Ex.)C1$

M_XDev O O O O O O O O X X
M_XDevB O O O O O O O O X X
M_XDevW O O O O O O O O X X
M_XDevD O O O O O O O O X X
 Detailed explanation of Robot Status Variable 4-427

4

4MELFA-BASIC VI
M_YDev/ M_YDevB/ M_YDevW/ M_YDevD

[Function]
Reads/ Writes the value of PLC output signal (Y) in the robot controller of CR800-R/Q series. (Only CR800-
R/Q series)
(Set up the input output unit / input output mixing unit which robot CPU manages, and execute direct
reference or direct write of the output signal. (Refer to Page 602, "5.25 Direct control of the PLC input/output
module"))

M_YDev: Reads/ Writes per bit.
M_YDevB: Reads/ Writes per byte. (8 bits)
M_YDevW: Reads/ Writes per word. (16 bits)
M_YDevD: Reads/ Writes per double word. (32 bits)

[Format]

[Terminology]
<Numeric Variable> Specify the numeric variable which substitute the value of the output

signal to refer to.
<PLC output signal number> Specify the output signal number to Read/ write with the constant or

the numeric variable.
Although the useful range is "&H0" - "&HFFF" (0 to 4095 in decimal
number) in hexadecimal expression, it differs for each status
variable.

M_YDev: &H0 - &HFFF(0 - 4095)
M_YDevB: &H0 - &HFF8(0 - 4088)
M_YDevW: &H0 - &HFF0(0 - 4080)
M_YDevD: &H0 - &HFE0(0 - 4064)

Note) The real number is rounded off.
<Numeric value> Describe the value to output by the numeric variable, the constant.

The useful ranges differ for each status variable.
M_YDev: 0 or 1(&H0 or &H1)
M_YDevB: -128 - 127(&H80 - &H7F)
M_YDevW: -32768 - 32767(&H8000 - &H7FFF)
M_YDevD: -2147483648 - 2147483647

(&H80000000 - &H7FFFFFFF)
Note) The real number is rounded off.

Reference

<Numeric Variable> = M_YDev[(<PLC output signal number>)]
<Numeric Variable> = M_YDevB[(<PLC output signal number>)]
<Numeric Variable> = M_YDevW[(<PLC output signal number>)]
<Numeric Variable> = M_YDevD[(<PLC output signal number>)]

Writing

M_YDev[(<PLC output signal number>)] = < Numeric value>
M_YDevB[(<PLC output signal number>)] = < Numeric value>
M_YDevW[(<PLC output signal number>)] = < Numeric value>
M_YDevD[(<PLC output signal number>)] = < Numeric value>
-428 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
[Reference Program]
1 M_YDev(1)=1 ' Turns on the PLC output signal 1
2 M_YDevB(&H10)=&HFF ' Turns on the 8-bit width from 10 (hexadecimal number) of PLC

output signal.
3 M_YDevW(&H20)=&HFFFF ' Turns on the 16-bit width from 20 (hexadecimal number) of PLC

output signal.
4 M_YDevD(&H100)=P1.X * 1000 ' Outputs the multiplication result value of X coordinate value of

the position variable P1 by 1000 to 32-bit width from 100
(hexadecimal number) of PLC output signals.

5 M1%=M_YDevW(&H20) And &H7 ' The value of 3-bit width from 20 (hexadecimal number) of PLC
input signals is substituted to M1.

[Explanation]
(1) Reads/ Writes the value of PLC output signal (Y).
(2) Both value (Reads/ writes) are the integer values.
(3) Handle the data of the following width about the specified PLC output signal number.

M_YDev: 1 bit, M_YDevB:8 bit, M_YDevW:16 bit, M_YDevD:32 bit
(4) The PLC output signal number should be "&H0"- "&HFFF" in hexadecimal expression. Error L3110

(value of the argument outside of the range) will occur, if it is the abbreviation or outside the range.
(5) The following setup is necessary previously.

* Validate the reference of the input signal with Parameter QXYREAD.
* Set up the input output unit which will be managed by robot CPU with Parameter QXYUNITn (n=1 - 4).

(6) The pulse output which combines the Dly command cannot be used. If the Dly command is used, error
L4220 (syntax error) occurs.

(7) If the corresponding PLC unit is not connected at writing the output signal, the signal will not change.
If the corresponding PLC unit is not connected at referring to the output signal, the return value will be
0.

[Supplementary]
Table 4-39:<Numeric value>

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision

real
number

Ex.)M1!

Double-
precision

real number

Ex.)M1#

Position
Note1)

Ex.)P1.X

Note1) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of
position variable, and all elements of joint variable) The display of the monitor etc. is converted into the
degree and displayed.

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_YDev O O O O O O X
M_YDevB O O O O O O X
M_YDevW O O O O O O X
M_YDevD X O O O O O X
 Detailed explanation of Robot Status Variable 4-429

4

4MELFA-BASIC VI
Table 4-40:<PLC input-signal number>

Table 4-41:<Numeric value>

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables
Numeric

valueNote1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision
real
number
Note1)
Ex.)M1!

Double-
precision
real numbe
Note1)

Ex.)M1#

Positio
Note1)
Note2)

Ex.)P1.X

Note2) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of position variable, and all elements of joint
variable) Therefore, designation of the signal number is very difficult. The display of the monitor etc. is converted into the degree, and the same value as
the setting value displayed.
Example) It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to specify the input signal No.8. The result

is "0" when 8 degree is converted to radian (0.14) and rounded off. Because the unit of the element X, Y, and Z of the position variable is "mm",
there is no such condition.

Joint
Note1)
Note2)

Ex.)J1.J1

Character
string

Ex.)C1$

M_XDev O O O O O O O O X X
M_XDevB O O O O O O O O X X
M_XDevW O O O O O O O O X X
M_XDevD O O O O O O O O X X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables
Numeric

value
Note1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecimal
number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision
real
number

Ex.)M1!

Double-
precision
real number

Ex.)M1#

Position

Ex.)P1.X

Joint

Ex.)J1.J1

Character
string

Ex.)C1$

M_XDev O O O O X X X X X X
M_XDevB O O O O X X X X X X
M_XDevW O O O O X X X X X X
M_XDevD ONote2)

Note2) For the numerical value of the less than 16 bits of the binary number (-32768 to +32767), the specified constant will
handle as a negative numerical value, if the bit 15 (the 16th bit) turns on. Therefore, please be careful of turning on all
of upper 16 bits. (The sign bit is extended)
Example)

Designation of "-32768(&B1000000000000000)" will output the "&B11111111111111111000000000000000."
[Measures]

After substituting the constant for the long-precision integer number variable as follows, when substituting to this
robot status variable M_YDevD, &B00000000000000001000000000000000 (binary number) can be outputted.

1 M1&=-32768
2 M_YDevD(&H20)=M1&

ONote2) ONote2) ONote2) O O ONote3)

Note3) The ranges of the numerical value which can be outputted are -2147483648 to 2147483647.

O O X

 CAUTION
-430 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
P_Base/P_NBase

[Function]
Returns information related to the base conversion data.
P_Base: Returns the base conversion data that is currently being set.
P_NBase: Returns the initial value (0, 0, 0, 0, 0, 0) (0, 0).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 P1=P_Base ' P1 will contain the base conversion data that is currently being set.
2 Base P_NBase ' Resets the base conversion data to the initial value.

[Explanation]
(1) P_NBase will contain (0, 0, 0, 0, 0, 0) (0, 0).
(2) Be careful when using base conversion since it may affect the teaching data.
(3) Use the Base instruction when changing the base position.
(4) This variable only reads the data.

Example)<Position Variables>=P_Base [(<Mechanism Number>)]

Example)<Position Variables>=P_NBase
 Detailed explanation of Robot Status Variable 4-431

4

4MELFA-BASIC VI
P_CavDir

[Function]
Returns which direction the robot was moving when an interference was predicted during interference
check.
This function is only available for certain models. For details, refer to Page 578, "5.24 Interference
avoidance function".

[Format]

[Terminology]
<Position Variable> Specifies a position variable to be assigned.
<Mechanism No.> Enter the mechanism number, 1 to 3. If the argument is omitted, 1 is set.

[Reference Program]
Refer to.Page 600, "5.24.10 Sample programs"

[Explanation]
(1) Use this command to check the robot's moving direction in automatic restoration after an interference

check.
(2) The robot's moving direction when an interference is predicted is indicated in a ratio, which assuming the

maximum locomotive axis value as +/-1.0.
Example) When the robot is being operated at the ratio of (X-axis direction : Y-axis direction) = (2 : -1)
P_CavDir=(1,-0.5,0,0,0,0)(0,0)

(3) The posture axis and structural flag are always (*.*.*.0,0,0,0,0)(0,0). (* is an arbitrary value.)
(4) A value is calculated when an interference is predicted, and then that value is retained until the next

interference is predicted.
(5) If an interference is predicted because of another robot moving while the own robot is in stop, all axes

are set to 0.0.
(6) Because this variable calculates the operation direction based on the target position of an operation

instruction, all elements may be set to 0.0 if an interference occurs at a position near the target position.
(7) This is read only.
(8) For robots that prohibit the use of interference check, 0.0 is always returned for all axes.
(9) Units of the read-enabled values are the same with the ones of P_ColDir.

Example) <Position Variable>=P_CavDir[(<Mechanism No>)]
-432 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
P_ColDir

[Function]
Return the operation direction of the robot when an collision is detected.

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
[Reference Program]

Refer to Page 205, "[Reference Program 2]" for "ColChk (Col Check)".

[Explanation]
(1) This is used to verify the operation direction of the robot in automatic restoration operation after collision

detection.
(2) The operation direction of the robot at the very moment of collision detection is expressed as a ratio

using the maximum travel axis as ±1.0. Example: If the robot was being operated at a ratio of (X-axis
direction:Y-axis direction) = (2:-1)...P_ColDir = (1,-0.5,0,0,0,0)(0,0)

(3) The posture axis and structural flag are always (*.*.*.0,0,0,0,0)(0,0).
(4) A value is calculated when an collision is detected, and then that value is retained until the next collision

is detected.
(5) If an collision is detected when an external object hits the robot in the stationary state, all axes are set to

0.0.
(6) Because this variable calculates the operation direction based on the target position of an operation

instruction, all elements may be set to 0.0 if an collision occurs at a position near the target position.
(7) This is read only.
(8) For robots that prohibit the use of collision detection, 0.0 is always returned for all axes.

[Reference]
ColChk (Col Check), ColLvl (Col Level), M_ColSts, J_ColMxl

Example)<Position Variables>=P_ColDir [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-433

4

4MELFA-BASIC VI
P_CordR

[Function]
Returns the base coordinates of the own robot looking from the common coordinates.

This function is only available for certain models. For details, refer to Page 578, "5.24 Interference
avoidance function".

[Format]

[Terminology]
<Position Variable> Specifies a position variable to be assigned.
<Mechanism No.> Enter the mechanism number, 1 to 3. If the argument is omitted, 1 is set.

[Reference Program]
1 P1=P_CordR ' P1 will contain the base coordinates of the robot from the common coordinates.

[Explanation]
(1) The base coordinates of the robot looking from the common coordinates are read. (The setting value of

parameter: RBCORD)
(2) All coordinates are read as 0 when the parameter: RBCORD is set to the initial value (0,0,0,0,0,0).
(3) This is read only.
(4) The value "0" is always returned for the user mechanisms.

Example) <Position Variable> = P_CordR [(<Mechanism No>)]
-434 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
P_Curr

[Function]
Returns the current position (X, Y, Z, A, B, C,L1,L2) (FL1, FL2).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
[Reference Program]

1 Def Act 1,M_In(10)=1 GoTo *LACT ' Defines interrupt.
2 Act 1=1 ' Enables interrupt.
3 Mov P1
4 Mov P2
5 Act 1=0 ' Disables interrupt.
 :
100 *LACT
101 P100=P_Curr ' Loads the current position when an interrupt signal is

received.
102 Mov P100,-100 ' Moves 100 mm above P100 (i.e, -100 mm in the Z

direction of the tool).
103 End ' Ends the program.

[Explanation]
(1) This can be used to identify the current position.
(2) This variable only reads the data.

[Reference]
J_Curr, P_Fbc

Example)<Position Variables>=P_Curr [(<Mechanism Number>)]
 Detailed explanation of Robot Status Variable 4-435

4

4MELFA-BASIC VI
P_CurrR

[Function]
Returns the current position of the own robot looking from the common coordinates.

This function is only available for certain models. For details, refer to Page 578, "5.24 Interference
avoidance function".

[Format]

[Terminology]
<Position Variable> Specifies a position variable to be assigned.
<Mechanism No.> Enter the mechanism number, 1 to 3. If the argument is omitted, 1 is set.

[Reference Program]
1 P1=P_CurrR ' P1 will contain the current position of the robot looking from the common coordinates.

[Explanation]
(1) The current position looking from the common coordinates is read.
(2) The value which is converted from P_Curr by the parameter: RBCORD is returned.
(3) This is read only.
(4) The value "0" is always returned for the user mechanisms.

Example) <Position Variable> = P_CurrR [(<Mechanism No>)]
-436 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
P_ECord

[Function]
Returns the Ex-T coordinate system origin data currently used during the Ex-T control/Ex-T spline
interpolation movement.

[Format]

[Terminology]
<Position Variables> Designates the numerical variable substituted for the reference results.
<Mechanism Number> Sets the mechanism No. that executes Ex-T control/Ex-T spline interpolation.

Setting range: 1 to 3
When omitted: 1
If a non-existent mechanism No. is designated, the error L3870 (designated
mechanism No. invalid) will occur when execution is started.

[Reference Program]
1 P1 = P_ECord ' The Ex-T coordinate system origin data that executes interpolation is

substituted for position variable P1.

[Explanation]
(1) During Ex-T control/Ex-T spline interpolation, the Ex-T coordinate system origin data most recently used

is returned.
(2) By referring to the P_ECord value with multi-task, the operation process or signal output, etc., can be

executed according to the progress of spline interpolation.
(3) P_ECord returns the value indicated in the following table according to the state.

Table 4-42:Value returned by P_ECord

(4) P_ECord is a read-only status variable.

[Related instructions]
EMvc (E Move C), EMvr (E Move R), EMvr2 (E Move R 2), EMvr3 (E Move R 3), EMvs (E Move S), EMvSpl
(E Move Spline)

Example)<Position Variables>=P_ECord [(<Mechanism Number>)]

Status Value returned by P_ECord

Immediately after power ON (0.0,0.0,0.0,0.0,0.0,0.0)(0,0)

 During Ex-T control/Ex-T spline
interpolation execution

The Ex-T coordinate system origin data used for
interpolation

After Ex-T control/Ex-T spline interpolation The Ex-T coordinate system origin data most
recently used

Immediately after main program’s End
command is executed

(0.0,0.0,0.0,0.0,0.0,0.0)(0,0)

Immediately after program reset operation (0.0,0.0,0.0,0.0,0.0,0.0)(0,0)

Mechanism not compatible with Ex-T
control/ Ex-T spline interpolation

(0.0,0.0,0.0,0.0,0.0,0.0)(0,0)
 Detailed explanation of Robot Status Variable 4-437

4

4MELFA-BASIC VI
P_Fbc

[Function]
Returns the current position (X,Y,Z,A,B,C,L1,L2)(FL1,FL2) based on the feedback values from the servo.

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
[Reference Program]

1 P1=P_Fbc ' P1 will contain the current position based on the feedback.

[Explanation]
(1) Returns the current position based on the feedback values from the servo.
(2) This variable only reads the data.

[Reference]
Torq (Torque), J_Fbc/J_AmpFbc, M_Fbd

Example)<Position Variables>=P_Fbc [(<Mechanism Number>)]
-438 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
P_GCurr

[Function]
This command contains a status variable to read the current position of the master robot on starting the
cooperative operation between the master and slave robots. Use this command to align the start positions of
movement by reading the current position of the master robot before starting the cooperative operation.
As a preparation, it is required to enable the iQ extended function so that the current position of the target
CPU can be monitored.

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Target CPU No.> Enter the CPU module No. of the master robot. 2 to 4.

[Reference Program]
Open "MXT:QRBUS2" As #1 ' Specify the robot CPU No. 2 in the CPU buffer memory as a master

robot.
Mov P_GCurr(2) ' The start positions of movement at the host CPU is aligned with the

robot CPU No. 2.

[Explanation]
(1) This command can be used to obtain the start position data of movement in the application with the

cooperative operation function.
(2) This variable only reads the data.
(3) The current position of the target CPU at the point of reading this variable is assigned.

If the specified target CPU is not enabled the iQ extended function, all values are always 0 (same as
the P_Zero).

(4) The assigned value for the status variable is retained until the controller is powered off. Reading is
possible regardless of the Open command.

[Reference]
Torq (Torque), J_Fbc/J_AmpFbc, M_Fbd

Example)<Position Variables>=P_GCurr [(<Target CPU No.>)]
 Detailed explanation of Robot Status Variable 4-439

4

4MELFA-BASIC VI
P_GDev

[Function]
Writes or directly references positional data to CPU buffer memory with the CR800-R/Q series controllers.
(CR800-R/Q series controllers only)
Writing and reading are performed in the position data width of (32 bits x 10).

[Format]

[Terminology]
<Position Variable> Specifies the position variable to assign.
<Start I/O Number> Specifies the I/O number of a CPU module as a constant or numeric variable.

(The specified value for the start I/O number is in hexadecimal and with its last
digit omitted.)
Range: &H3E0 to &H3E3 in hexadecimal (992 to 995 in decimal)

Module No. 1: &H3E0 (992 in decimal)
Module No. 2: &H3E1 (993 in decimal)
Module No. 3: &H3E2 (994 in decimal)
Module No. 4: &H3E3 (995 in decimal)

Note) Data can be written to the host CPU only.
<Buffer memory address> Specifies CPU module buffer memory addresses using constants or numeric

variables.
The effective range is between 0 and 524268 in decimal numbers.

<Position Data> Specifies which position data to write.
The data can be specified as a constant, variable, logical/arithmetic
expression, or function.

[Reference Program]
1 P_GDev(&H3E1, 10)=P_Curr 'Sets buffer memory address 10 of CPU No. 2 to the current location.
2 P1=P_GDev(&H3E2, 1) 'Sets P1 to the positional data in buffer memory address 1 of CPU No. 3.

[Explanation]
(1) This variable is used to write or reference positional data to PLC CPU buffer memory.

Both write and reference data strings are positional data.
(2) Buffer memory addresses are specified using start I/O numbers and the actual buffer memory

addresses.
(3) This variable uses 20 words (10 32-bit data strings) of data in the specified buffer memory address.
(4) Specify start I/O numbers in hexadecimal format. The range of numbers is between &H3E0 to &H3E3,

which is equivalent to 992 to 995 in decimal. Specify buffer memory addresses in decimal numbers
within a range of addresses between 0 to 524268.

(5))Write operations can only be performed for buffer memory addresses of the target CPU. Attempting to
write data to addresses for other CPUs will not result in a successful change to the data stored by the
address.

(6) Only CR800-R/Q series devices are supported. Statements executed using CR800-D series devices
result in unsuccessful write operations, and the reference returns zero value.

Reading
<Position Variable>=P_GDev(<Start I/O Number>, <Buffer memory address>)

Writing
P_GDev(<Start I/O Number>, <Buffer memory address>)=<Position Data>
-440 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
[Supplement]
Table 4-43:Constants and variables usable as <PLC input signal number> and <Buffer memory address>

Bit width

Constant types Numeric variable types Other variables

Numeric
value Note1)

Ex.)12

Note1) The real value is rounded off.

Binary number

Ex.)&B1100

Hexadecim
al number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer

Ex.)M1%

Single-
precision

real
number
Note1)

Ex.)M1&

Double-
precision

real
number
Note1)

Ex.)M1

Position
Note1)

Ex.)P1.X

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

Availability O O O O O O O O O X

O: Available, X: Unavailable
 Detailed explanation of Robot Status Variable 4-441

4

4MELFA-BASIC VI
P_Gps1 to P_Gps8

[Function]
This command returns XYZ coordinate data for the current position data when the condition defined in the
Def Gps command is met, using the get-position-quick function (GPS function). (Up to 400 position data can
be saved.)
The current position data of the robot at the time when the condition defined in the Def Gps command is met
can be checked. (The number of times when the condition defined in the Def Gps command is met can be
checked in the M_Gps.)

[Format]

[Terminology]
<Position Variable> Specifies the position variable to assign.

The position data corresponding to a position number set in <Numeric value> is
returned to <Position variable>. The initial value is "P_Zero" (all elements are zero).
The value is cleared to zero when the GpsChk On command is executed, and the
current position data at the time when the defined condition is met is stored after
the GpsChk Off command is executed.

<Numeric value> Set a position number obtained using the GPS function. (1 to 400)
The first time when the condition defined in the Def Gps command is met is numbered
1, and the following times are numbered 2, 3, in turn. (To obtain the position
data of the first time, set "1".)
1 will be set when omitted.

[Reference Program]
1 Def Gps1,852,On,1 ‘ The position data of the mechanism No. 1 is recorded for the

monitoring No. 1 when the signal No. 852 is turned on.
2 GpsChk On,1 ‘ Monitoring a condition for the monitoring No. 1 is started.
3 Mvs P1 ‘ Moves to P1
4 GpsChk Off,1 ‘ Monitoring a condition for the monitoring No. 1 is stopped.
5 M1=M_Gps(1) ‘ The number of the position data recorded in the P_Gps1 is stored.
6 If M1=0 Then Error 9000 ‘ The error 9000 is generated if no position data is recorded.
7 Mvs P_Gps1(1) ‘ The robot moves its arm to the position at the first time when the signal

No. 852 is turned on.
8 Hlt ‘ Halt program

[Explanation]
(1) The current position data of the robot is stored in this status variable when the condition defined in the

Def Gps command is met. When "1" is set in <Monitoring No.> in the Def Gps command and the
condition is met three times, these position data of the robot is stored in the "P_Gps1(1), P_Gps1(2),
and P_Gps1(3)". The stored position data of the first time is shown as "P_Gps1(1)".

(2) Up to 400 position data (P_GpsX(1) to P_GpsX(400)) can be saved. When the number of stored position
data reaches 400, further position data cannot be stored.

(3) The position data corresponding to a numerical value set in array elements is returned.
(4) The value is cleared to zero when the GpsChk On command is executed.
(5) The number of times can be confirmed after the GpsChk Off command is executed.
(6) This variable only reads the data.
(7) The number of times is cleared to zero when the controller is turned on.

[Related instructions]
Def Gps (Define get position), Def Map (Define mapping), GpsChk (Get position check)

Example) <Position Variable>=P_Gps1[(<Numeric value>)]
-442 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
P_HGDev

[Function]
Writes or directly references positional data to the periodical communication area of CPU buffer memory
with the CR800-R series controllers. (CR800-R series controllers only)
Writing and reading are performed in the position data width of (32 bits x 10).

[Format]

[Terminology]
<Position Variable> Specifies the position variable to assign.
<Start I/O Number> Specifies the I/O number of a CPU module as a constant or numeric

variable.
(The specified value for the start I/O number is in hexadecimal and with
its last digit omitted.)
Range: &H3E0 to &H3E3 in hexadecimal (992 to 995 in decimal)

Module No. 1: &H3E0 (992 in decimal)
Module No. 2: &H3E1 (993 in decimal)
Module No. 3: &H3E2 (994 in decimal)
Module No. 4: &H3E3 (995 in decimal)

<Buffer memory address> Specifies CPU module buffer memory addresses using constants or
numeric variables.
The effective range is between 0 and 12268 in decimal numbers.

<Position Data> Specifies which position data to write.
The data can be specified as a constant, variable, logical/arithmetic
expression, or function.

[Reference Program]
1 P_HGDev(&H3E1,10)=P_Curr 'Sets buffer memory address 10 of CPU No. 2 to the current

location.
2 P1=P_HGDev(&H3E2,1) 'Sets P1 to the positional data in buffer memory address 1 of CPU

No. 3.

[Explanation]
(1) This variable is used to write or reference positional data to the periodical communication area of PLC

CPU buffer memory. Both write and reference data strings are positional data.
(2) Buffer memory addresses are specified using start I/O numbers and the actual buffer memory

addresses.
(3) This variable uses 20 words (10 32-bit data strings) of data in the specified buffer memory address.
(4) Specify start I/O numbers in hexadecimal format. The range of numbers is between &H3E0 to &H3E3,

which is equivalent to 992 to 995 in decimal. Specify buffer memory addresses in decimal numbers
within a range of addresses between 0 to 12268.

(5) Write operations can only be performed for buffer memory addresses of the target CPU. Attempting to
write data to addresses for other CPUs will not result in a successful change to the data stored by the
address.

(6) Reference operations result in a value of 0 when the corresponding CPU buffer memory address
(parameter: QMLTCPUn) has not been assigned. Only CR800-R series devices are supported.
(Statements executed using CR800-D/CR800-Q series devices result in unsuccessful write operations,
and the reference returns zero value.)

Reading
<Position Variable>=P_HGDev(<Start I/O Number>, <Buffer memory address>)

Writing
P_HGDev(<Start I/O Number>, <Buffer memory address>)=<Position Data>
 Detailed explanation of Robot Status Variable 4-443

4

4MELFA-BASIC VI
[Supplement]
Table 4-44:Constants and variables usable as <PLC input signal number> and <Buffer memory address>

Bit width

Constant types Numeric variable types Other variables

Numeric
value Note1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecim
al number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer

Ex.)M1%

Single-
precision

real
number
Note1)

Ex.)M1&

Double-
precision

real
number
Note1)

Ex.)M1

Position
Note1)

Ex.)P1.X

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

Availability O O O O O O O O O X

O: Available, X: Unavailable
-444 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
P_Safe

[Function]
Writes or references positional data to the safe point (XYZ position of the JSAFE parameter).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
<Position Data> Specifies the position data to be written. The data can be specified as a

constant, variable, logical/arithmetic expression, or function.

[Reference Program]
1 P1=P_Safe ' P1 will contain the set safe point.
2 P_Safe = P2 ' Change the safe point to P2.

[Explanation]
(1) Returns the XYZ position, which has been converted from the joint position registered in parameter

JSAFE.
(2) When the data has been written, the value of the parameter JSAFE is also written.

P_Tool/P_NTool

[Function]
Returns tool conversion data.
P_Tool: Returns the tool conversion data that is currently being set.
P_NTool: Returns the initial value (0,0,0,0,0,0,0,0)(0,0).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 P1=P_Tool ' P1 will contain the tool conversion data.

[Explanation]
(1) P_Tool returns the tool conversion data set by the Tool instruction or the MEXTL parameter.
(2) Use the Tool instruction when changing tool conversion data.
(3) This variable only reads the data.

Reading
<Position Variables>=P_Safe [(<Mechanism Number>)]

Writing
P_Safe[(<Mechanism Number>)] = <Position Data>

Example)<Position Variables>=P_Tool [(<Mechanism Number>)]

Example)<Position Variables>=P_NTool
 Detailed explanation of Robot Status Variable 4-445

4

4MELFA-BASIC VI
P_UDev

[Function]
Writes/reads the position data to/from the CPU shared memory. (This function is available with the CR800-Q
series robot controllers only.)
Writing and reading are performed in the position data width of (32 bits x 10).

[Format]

[Terminology]
<Position Variable> Specifies a numerical variable to substitute.
<Start I/O Number> Specifies the I/O number of a CPU module as a constant or numeric variable.

(The specified value for the start I/O number is in hexadecimal and with its last
digit omitted.)
Range: &H3E0 to &H3E3 in hexadecimal (992 to 995 in decimal)

Module No. 1: &H3E0 (992 in decimal)
Module No. 2: &H3E1 (993 in decimal)
Module No. 3: &H3E2 (994 in decimal)
Module No. 4: &H3E3 (995 in decimal)

Note) Data can be written to the host CPU only.
<Shared Memory Address>Specifies the shared memory address in the CPU module as a constant or

numeric variable.
The valid range is 10000 to 24316 (decimal).

<Position Data> Specifies which position data to write.
The data can be specified as a constant, variable, logical/arithmetic
expression, or function.

[Reference Program]
1 P_UDev(&H3E1, 10010)=P_Curr 'Write the current position to the shared memory address 10010

of the CPU module No.2.
2 P1=P_UDev(&H3E2, 10001) 'Read the position data from the shared memory address 10001

of the CPU module No.3, and substitute the read value for the
position variable P1.

[Explanation]
(1) This command writes/reads the position data to/from the CPU shared memories of programmable

controllers.
Written data and returned read data are both position data.

(2) Use the start I/O number and shared memory address to specify a target shared memory.
(3) The target data is a 20-word width data (32 bits x 10) starting from the specified shared memory address.
(4) Use &H3E0 to &H3E3 in hexadecimal (992 to 995 in decimal) to specify a start I/O number. Use 10000

to 24316 in decimal to specify an address to be written or read in the shared memory address.
(5) Data can be written to the shared memory address of the host CPU only. Even if another CPU address is

specified for data writing, the data will not be updated.
(6) If the shared memory address has not been assigned by the Multi CPU quantity setting (Parameter:

QMLTCPUn), the value 0 will be returned when position data is read. Only CR800-Q series devices are
supported. (Statements executed using CR800-D/CR800-R series devices result in unsuccessful write
operations, and the reference returns zero value.)

Reading
<Position Variable>=P_UDev(<Start I/O Number>, <Shared Memory Address>)

Writing
P_UDev(<Start I/O Number>, <Shared Memory Address>)=<Position Data>
-446 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
[Supplement]
Table 4-45:Constants and Variables for <Input Signal Number for Programmable Controller ><Shared

Memory Address>

[Reference] Data assurance between CPU modules
New and old data may co-exist (data inconsistency may exist) due to difference between data writing/
receiving timings of host and other CPU modules.
Fig. 4-42 shows how to prevent data inconsistency using the program communication between the
CPU shared memories.

1) Preventing data inconsistency of 32-bit data
Data inconsistency of 32-bit data can be prevented by accessing a CPU shared memory's user setting
area that starts in an even address (for example, address 10002).

Fig.4-42:Preventing data inconsistency of 32-bit data

2) Preventing data inconsistency of data larger than 32 bits
When data is read by a program, the reading starts from the start of the user setting area.
When data is commanded to be written, the writing of the transmitted data starts from the end of the
user setting area to the start of the user setting area.
With these characteristics in mind, provide an interlock device to the head of the transmitted data to
prevent data inconsistency between transmitted data.

Variable types

Constant types Numeric variable types Other variables

Numeric
value Note1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)
&B1100

Hexadecim
al number

Ex.)&HC

Integer
Ex.)M1%

Long-
precision
integer

Ex.)M1&

Single-
precision

real
number
Note1)

Ex.)M1!

Double-
precision

real
number
Note1)

Ex.)M1#

Position
Note1) ,
Note2)

Ex.)P1.X

Note2) If the value of the variable is an angle, the unit will be processed by the radian. (The elements of A, B
and C of position variable, and all elements of joint variable) Therefore, designation of the signal number is
very difficult. (The display of the monitor etc. is converted into a degree, and the same value as the setting
value is displayed.)
It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to
specify the input signal No.8. The result is "0" when 8 degree is converted to radian (0.14) and rounded off.
Because the unit of the element X, Y, and Z of the position variable is "mm", there is no such condition.

Joint
Note1) ,
Note2)

Ex.)J1.J1

Character
string

Ex.)C1$

Availability ○ ○ ○ ○ ○ ○ ○ ○ × ×

○ : Available, ×: Unavailable

Device memory CPU shared
memory

G10000

G10001

G10002

G10003

G10004

G10005

Even address
 Detailed explanation of Robot Status Variable 4-447

4

4MELFA-BASIC VI
P_WkCord

[Function]
This function permits you to make reference to the work coordinate data being currently specified or to make
a setting for a new work coordinate.
Parameters to be worked with are WK1CORD through WK8CORD.
(For the outline of the function, refer to Page 764, "7.3 Ex-T control".)

[Format]

[Terminology]
<Position variable> A position variable to which a value is to be assigned is designated.
<Work coordinate number> A work coordinate number which is chosen from 1 through 8.

Constants, variables, logic/arithmetic expressions, and functions are usable.
When a real number or a double-precision real number is specified, the
fractional portion of 0.5 or over of the number is counted as one and the rest
is cut away.

<Work coordinate data> Work coordinate data is specified with a position constant or a position
variable.
Values to be specified (coordinate values) represent the position of the origin
point of a work coordinate system viewed from the base coordinate system.

[Reference Program]
(1) Example when a new work coordinate 2 based on the existing work coordinate 1 is used as a new world

coordinates system
1 PW=P_WkCord(1) ' Read work coordinate 1 (set value for parameter: WK1CORD) and assign it to

PW.
2 PW.X=PW.X+100 ’Add 100 to X coordinate value that has been read.
3 PW.Y=PW.Y+100 ’Add 100 to Y coordinate value that has been read.
4 P_WkCord(2)=PW ’Set the results of the above operations for work coordinate 2.

(Set them to parameter: WK2CORD).
5 Base 2 ’Let work coordinate 2 be a new world coordinate system.
6 Mov P1

(2) Specification of PA as a work coordinate 4 and Ex-T control linear interpolation movement along the
work coordinate 4

1 P_WkCord(4)=PA ’ Specify PA as a work coordinate 4. (Set it to parameter: WK4CORD.)
2 EMvs 4,P1 ’ Moves to P1 along the work coordinate 4 by Ex-T control linear interpolation.

[Explanation]
(1) By designating a work coordinate number, work coordinate values concerned are read, or work

coordinate values are specified. The "1 to 8" specified as work coordinate number correspond to
parameter: WK1CORD-WK8CORD.

(2) Elements X, Y and Z of work coordinate data indicate the amount of translation from the origin point of
the base coordinate system to that of the work coordinate system.
Elements A, B, and C indicate how much the work coordinates system is tilted relative to the robot's
coordinates system.

X Distance the robot hand translates in the direction of the X axis
Y......... Distance the robot hand translates in the direction of the Y axis
Z......... Distance the robot hand translates in the direction of the Z axis
A......... Angle the robot hand rotates on the X axis
B......... Angle the robot hand rotates on the Y axis
C......... Angle the robot hand rotates on the Z axis

Elements A, B, and C are set to take a clockwise move as a forward rotation looking at the plus side
from the origin point of the work coordinate system.

(3) There is nothing significant about the structure flag.

Example)<Position variable>=P_WkCord(<work coordinate number>) ’Reference
P_WkCord(<work coordinate number>)=<work coordinate data> ’Setting
-448 Detailed explanation of Robot Status Variable

 4MELFA-BASIC VI
(4) Specifying work coordinates by this command clears WO, WX and WY data for the corresponding work
coordinate number [coordinate values of 3 points to be taught as work coordinates - parameters:
WKnWO, WKnWX, WKnWY (n: 1~8)].

Example) Executing Step 4 (P_WKcORD(2)=PW) of Reference Program <1> which is previously listed
causes WK2WO, WK2WX and WK2WY to be set to "0".

(5) Only MELFA-BASIC V/VI can be used.
(6) In the Ex-T control interpolation command, this variable is referred to by the designated work coordinate

number and used as the Ex-T control point. Therefore, specifying P_WkCord also specifies the control
point coordinates in the Ex-T control.

[Related instructions]
Base (Base), EMvc (E Move C), EMvr (E Move R), EMvr2 (E Move R 2), EMvr3 (E Move R 3),
EMvs (E Move S)

[Related parameter]
MEXBSNO, WKnCORD("n" is 1 to 8), WKnWO, WKnWX, WKnWY("n" is 1 to 8)

P_Zero

[Function]
Always returns (0,0,0,0,0,0,0,0)(0,0).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.

[Reference Program]
1 P1=P_Zero '(0,0,0,0,0,0,0,0)(0,0) is assigned to P1.

[Explanation]
(1) This can be used to initialize the P variable to zeros.
(2) This variable only reads the data.

Example)<Position Variables>=P_Zero
 Detailed explanation of Robot Status Variable 4-449

4

4MELFA-BASIC VI
4.14 Detailed Explanation of Functions
4.14.1 How to Read Described items

[Function] : This indicates a function of a function.
[Format] : This indicates how to input the function argument.
[Reference Program] : An example program using function is shown.
[Terminology] : This indicates the meaning and range of an argument.
[Explanation] : This indicates detailed functions and precautions.
[Reference] : This indicates related function.

4.14.2 Explanation of Each Function
Each variable is explained below in alphabetical order.
-450 Detailed Explanation of Functions

 4MELFA-BASIC VI
Abs

[Function]
Returns the absolute value of a given value.

[Format]

[Reference Program]
1 P2.C=Abs(P1.C) ' P2.C will contain the value of P1.C without the sign.
2 Mov P2
3 M2=-100
4 M1=Abs(M2) ' 100 is assigned to M1.

[Explanation]
(1) Returns the absolute value (Value with the positive sign) of a given value.

[Reference]
Sgn

<Numeric Variable>=Abs(<Equation>)
 Detailed Explanation of Functions 4-451

4

4MELFA-BASIC VI
ACos

[Function]
Returns the arc cosine from the specified cosine.

[Format]

[Terminology]
<Numeric Variable> Calculates the arc cosine with specified expression, and returns the result.

The unit is radian.
Setting range: 0 to PI

<Equation> Specifies the cosine.
Setting range: -1.0 to +1.0

[Reference Program]
1 MRad=ACos(0.6) ' Assigns the arc cosine of 0.6 (0.927295218001612 rad) to the MRad.

[Explanation]
(1) Returns the arc cosine from the specified equation. Unit is in radians.

<Numeric Variable>=ACos(<Equation>)
-452 Detailed Explanation of Functions

 4MELFA-BASIC VI
Align

[Function]
Positional posture axes (A, B, and C axes) are converted to the closest XYZ postures (0, +/-90, and +/-180).
Align outputs numerical values only. The actual operation will involve movement instructions such as the
Mov instruction.

[Format]

[Reference Program]
 1 P1=P_Curr
 2 P2=Align(P1)
 3 Mov P2

[Explanation]
(1) Converts the A, B, and C components of the position data to the closest XYZ postures (0, +/-90, and +/-

180).
(2) Since the return value is of position data type, an error will be generated if the left-hand side is of joint

variable type.
(3) This function cannot be used in vertical multi-joint 5-axes robot.

The following shows a sample case for the axis B.

<Position Variables>=Align(<Position>)
 Detailed Explanation of Functions 4-453

4

4MELFA-BASIC VI
Asc

[Function]
Returns the character code of the first character in the string.

[Format]

[Reference Program]
 1 M1=Asc("A") ' &H41is assigned to M1.

[Explanation]
(1) Returns the character code of the first character in the string.
(2) An error will be generated if the string is a null string.

[Reference]
Chr$, Val, Cvi, Cvs, Cvd

<Numeric Variable>=Asc(<Character String Expression>)
-454 Detailed Explanation of Functions

 4MELFA-BASIC VI
ASin

[Function]
Returns the arc sine from the specified sine.

[Format]

[Terminology]
<Numeric Variable> Calculates the arc sine with specified expression, and returns the result.

The unit is radian.
Setting range: -PI/2 to +PI/2

<Equation> Specifies the sine.
Setting range: -1.0 to +1.0

[Reference Program]
1 MRad=ASine(-0.4) ' Assigns the arc sine of -0.4 (-0.411516846067488 rad) to the MRad.

[Explanation]
(1) Returns the arc sine from the specified equation. Unit is in radians.

Atn/Atn2

[Function]
Calculates the arc tangent.

[Format]

[Terminology]
<Numeric Variable> Calculates the arc tangent with specified expression, and returns the result.

The unit is radian.
<Equation> Calculated value of delta Y/delta X.
<Equation 1> delta Y
<Equation 2> delta X

[Reference Program]
1 M1=Atn(100/100) 'PI/4 is assigned to M1.
2 M2=Atn2(-100,100) '-PI/4 is assigned to M1.

[Explanation]
(1) Calculates the arc tangent of a given equation. Unit is in radians.
(2) The range of the returned value for Atn is -PI/2 < Atn < PI/2.
(3) The range of the returned value for Atn2 is -PI < Atn < PI.
(4) If <Equation 2> evaluates to 0, Atn2 will return PI/2 when <Equation 1> evaluates to a positive value and

-PI/2 when <Equation 1> evaluates to a negative value.
(5) In the case of Atn2, it is not possible to describe a function that contains an argument in <Equation 1>

and <Equation 2>. If such a function is described, an error will be generated during execution.
NG exampleM1=Atn2(Max(MA,MB), 100)
 M1=Atn2(Cint(10.2), 100)

[Reference]
Sin, Cos, Tan

<Numeric Variable>=ASin(<Equation>)

<Numeric Variable>=Atn(<Equation>)

<Numeric Variable>=Atn2(<Equation 1>, <Equation 2>)
 Detailed Explanation of Functions 4-455

4

4MELFA-BASIC VI
Bin$

[Function]
Value is converted to a binary string.

[Format]

[Reference Program]
 1 M1=&B11111111
 2 C1$=Bin$(M1) ' C1$ will contain the character string of "11111111".

[Explanation]
(1) Value is converted to a binary string.
(2) If the equation does not evaluate to an integer, the integral value obtained by rounding the fraction will be

converted to a binary string.
(3) Val is a command that performs the opposite of this function.

[Reference]
Hex$, Str$, Val

<Character String Variable >=Bin$(<Equation>)
-456 Detailed Explanation of Functions

 4MELFA-BASIC VI
CalArc

[Function]
Provides information regarding the arc that contains the three specified points.

[Format]

[Terminology]
<Position 1> Specifies the starting point of the arc.
<Position 2> Specifies the passing point of the arc. Same as the three points in the Mvr

command.
<Position 3> Specifies the endpoint of the arc.
<Numeric Variable 1> Radius of the specified arc (in mm) will be calculated and returned.
<Numeric Variable 2> Central angle of the specified arc (in radians) will be calculated and returned.
<Numeric Variable 3> Length of the specified arc (in mm) will be calculated and returned.
<Position Variables 1> The center coordinates of the specified arc (in mm) will be calculated and

returned (as a position data type, ABC are all zeros).
<Numeric Variable 4> Return value

1: Calculation was performed normally.
-1: Positions 1, 2, and 3 had the exact same position or all three points were on

a straight line.
-2: The circular arc generation failed.

[Reference Program]
1 M1=CalArc(P1,P2,P3,M10,M20,M30,P10)
2 If M1<>1 Then End ' Ends if an error occurs.
3 MR=M10 ' Radius.
4 MRD=M20 ' Circular arc angle.
5 MARCLEN=M30 ' Circular arc length.
6 PC=P10 ' Coordinates of the center point.

[Explanation]
(1) Provides information regarding the arc that is determined by the three specified points, position 1,

position 2 and position 3.
(2) If the arc generation and calculation of various values succeeded, 1 will be returned as the return value.
(3) If some points have the exact same position or if all three points are on a straight line, -1 will be returned

as the return value. In such cases, the distance between the starting point and the endpoint will be
returned as the arc length, -1 as the radius, 0 as the central angle, and (0, 0, 0) as the center point.

(4) If circular arc generation fails, -2 will be returned as the return value. If a circular arc cannot be
generated, -1, 0, 0 and (0, 0, 0) are returned as the radius, central angle, arc length and center point,
respectively.

(5) It is not possible to describe a function that contains an argument in <position 1>, <position 2>, <position
3>, <numeric variable 1>, <numerical variable 2>, <numeric variable 3> and <position variable 1>. If
such a function is described, an error will be generated during execution.

<Numeric Variable 4> = CalArc(<Position 1>, <Position 2>, <Position 3>,

<Numeric Variable 1>, <Numeric Variable 2>, <Numeric Variable 3>,

<Position Variables 1>)
 Detailed Explanation of Functions 4-457

4

4MELFA-BASIC VI
Chr$

[Function]
Returns the character that has the character code obtained from the specified equation.

[Format]

[Reference Program]
1 M1=&H40
2 C1$=Chr$(M1+1) ' "A" is assigned to C1$.

[Explanation]
(1) Returns the character that has the character code obtained from the specified equation.
(2) If the equation does not evaluate to an integer, the character will be returned whose character code

corresponds to the integral value obtained by rounding the fraction.

[Reference]
Asc

Cint

[Function]
Rounds the fractional part of an equation to convert the value into an integer.

[Format]

[Reference Program]
1 M1=Cint(1.5) ' 2 is assigned to M1.
2 M2=Cint(1.4) ' 1 is assigned to M2.
3 M3=Cint(-1.4) ' -1 is assigned to M3.
4 M4=Cint(-1.5) ' -2 is assigned to M4.

[Explanation]
(1) Returns the value obtained by rounding the fractional part of an equation.

[Reference]
Int, Fix

<Character String Variable >=Chr$(<Equation>)

<Numeric Variable>=Cint(<Equation>)
-458 Detailed Explanation of Functions

 4MELFA-BASIC VI
CkSum

[Function]
Calculates the checksum of the string.

[Format]

[Terminology]
<Character String> Specifies the string from which the checksum should be calculated.
<Equation 1> Specifies the first character position from where the checksum calculation starts.
<Equation 2> Specifies the first character position from where the checksum calculation ends.

[Reference Program]
1 M1=CkSum("ABCDEFG",1,3) ' &H41("A")+&H42("B")+&H43("C")=&HC6 is assigned to M1.

[Explanation]
(1) Adds the character codes of all characters in the string from the starting position to the end position and

returns a value between 0 and 255.
(2) If the starting position is outside the range of the string, an error will be generated.
(3) If the end position exceeds the end of the string, checksum from the starting position to the last character

in the string will be calculated.
(4) If the result of addition exceeds 255, a degenerated value of 255 or less will be returned.
(5) It is not possible to describe a function that contains an argument in <Character String>, <Equation 1>

and <Equation 2>. If such a function is described, an error will be generated during execution.

Cos

[Function]
Gives the cosine.

[Format]

[Reference Program]
1 M1=Cos(Rad(60))

[Explanation]
(1) Calculates the cosine of the equation.
(2) The range of arguments will be the entire range of values that are allowed.
(3) The range of the return value will be from -1 to 1.
(4) The unit of arguments is in radians.

[Reference]
Sin, Tan, Atn/Atn2

<Numeric Variable>=CkSum(<Character String>, <Equation 1>, <Equation 2>)

<Numeric Variable>=Cos(<Equation>)
 Detailed Explanation of Functions 4-459

4

4MELFA-BASIC VI
Cvi

[Function]
Converts the character codes of the first two characters of a string into an integer.

[Format]

[Reference Program]
1 M1=Cvi("10ABC") ' &H3031 is assigned to M1.

[Explanation]
(1) Converts the character codes of the first two characters of a string into an integer.
(2) An error will be generated if the string consists of one character or less.
(3) Mki$ can be used to convert numerical values into a string.
(4) This can be used to reduce the amount of communication data when transmitting numerical data with

external devices.

[Reference]
Asc, Cvs, Cvd, Mki$, Mks$, Mkd$

Cvs

[Function]
Converts the character codes of the first four characters of a string into a single precision real number.

[Format]

[Reference Program]
1 M1=Cvs("FFFF") ' 12689.6 is assigned to M1.

[Explanation]
(1) Converts the character codes of the first four characters of a string into an single-precision real number.
(2) An error will be generated if the string consists of three character or less.
(3) Mks$ can be used to convert numerical values into a string.

[Reference]
Asc, Cvi, Cvd, Mki$, Mks$, Mkd$

<Numeric Variable>=Cvi(<Character String Expression>)

<Numeric Variable>=Cvs(<Character String Expression>)
-460 Detailed Explanation of Functions

 4MELFA-BASIC VI
Cvd

[Function]
Converts the character codes of the first eight characters of a string into a double precision real number.

[Format]

[Reference Program]
1 M1=Cvd("FFFFFFFF") ' +3.52954E+30 is assigned to M1.

[Explanation]
(1) Converts the character codes of the first eight characters of a string into a double precision real number.
(2) An error will be generated if the string consists of seven character or less.
(3) Mkd$ can be used to convert numerical values into a string.

[Reference]
Asc, Cvi, Cvs, Mki$, Mks$, Mkd$

Deg

[Function]
Converts the unit of angle measurement from radians (rad) into degrees (deg).

[Format]

[Reference Program]
1 P1=P_Curr
2 If Deg(P1.C) < 170 Or Deg(P1.C) > -150 Then *NOErr
3 Error 9100

 4 *NOErr

[Explanation]
(1) Converts the radian value of an equation into degree value.
(2) When the posture angles of the position data are to be displayed using positional constants, the unit

used for ((500, 0, 600, 180, 0, 180) (7, 0)) is Deg. As in the case of P1.C, the unit used will be in radians
(rad) when the rotational element of the positional variable is to be referenced directly. Value of P1.C
can be handled in Deg. In such case, set parameter "PRGMDeg" to 1.

[Reference]
Rad

<Numeric Variable>=Cvd(<Character String Expression>)

<Numeric Variable>=Deg(<Equation>)
 Detailed Explanation of Functions 4-461

4

4MELFA-BASIC VI
Dist

[Function]
Calculates the distance between two points (position variables).

[Format]

[Reference Program]
1 M1=Dist(P1,P2) ' M1 will contain the distance between positions 1 and 2.

[Explanation]
(1) Returns the distance between positions 1 and 2 (in mm).
(2) Posture angles of the position data will be ignored; only the X, Y, and Z data will be used for calculation.
(3) The joint variables cannot be used. Trying to use it will result in an error during execution.
(4) It is not possible to describe a function that contains an argument in <position 1> and <position 2>. If

such a function is described, an error will be generated during execution.

Exp

[Function]
Calculates exponential functions. (an equation that uses "e" as the base.)

[Format]

[Reference Program]
1 M1=Exp(2) ' e2 is assigned to M1.

[Explanation]
(1) Returns the exponential function value of the equation.

[Reference]
Ln

<Numeric Variable>=Dist(<Position 1>, <Position 2>)

<Numeric Variable>=Exp(<Equation>)
-462 Detailed Explanation of Functions

 4MELFA-BASIC VI
Fix

[Function]
Returns the integral portion of the equation.

[Format]

[Reference Program]
1 M1=Fix(5.5) ' 5 is assigned to M1.

[Explanation]
(1) Returns the integral portion of the equation value.
(2) If the equation evaluates to a positive value, the same number as Int will be returned.
(3) If the equation evaluates to a negative value, then for instance Fix(-2.3) = -2.0 will be observed.

[Reference]
Cint, Int

<Numeric Variable>=Fix(<Equation>)
 Detailed Explanation of Functions 4-463

4

4MELFA-BASIC VI
Fram

[Function]
Calculates the position data that indicates a coordinate system (plane) specified by three position data.
Normally, use Def Plt and Plt instructions for pallet calculation.

[Format]

[Terminology]
<Numeric Variable 1> This will be the origin of X, Y, and Z of the plane to be specified by three

positions. A variable or a constant.
<Numeric Variable 2> A point on the X axis of the plane to be specified by three positions. A variable

or a constant.
<Numeric Variable 3> A point in the positive Y direction of the X-Y plane on the plane to be specified

by three positions. A variable or a constant.
<Numeric Variable 4> Variable to which the result is assigned.

Substitute the structural flag by the value of <position 1>.

[Reference Program]
1 Base P_NBase ' Return base conversion data to the initial value.
2 P10=Fram(P1,P2,P3) ' Create P10 coordinate system based on P1, P2 and P3 positions.
3 P10=Inv(P10) ' Convert (inversely convert) P10 to what represents the position of the

origin point of base coordinate system viewed from P10.
4 Base P10 ' Newly establish the position of P10 defined in Step 2 in the world

coordinate system.
 :

[Explanation]
(1) This can be used to define the base coordinate system.
(2) This creates a plane from the three coordinates X, Y, and Z for the three positions to calculate the

position of the origin and the inclination of the plane, and returns the result as a position variable. The
X, Y, and Z coordinates of the position data will be identical to that of position variable 1, while A, B, and
C will be the inclination of the plane to be specified by the three positions.

(3) Since the return value is a position data, an error will be generated if a joint variable is used in the left-
hand side.

(4) It is not possible to describe a function that contains an argument in <position 1>, <position 2> and
<position 3>. If such a function is described, an error will be generated during execution.
NG example: P10=Fram(FPrm(P01,P02,P03), P04, P05)

[Reference]
Relative conversion (* operator). Refer to Page 530, "5.7 About Standard Base Coordinates".

<Numeric Variable 4>=Fram(<Numeric Variable 1>, <Numeric Variable 2>,

<Numeric Variable 3>)
-464 Detailed Explanation of Functions

 4MELFA-BASIC VI
Hex$

[Function]
Converts the value of an equation (Between -32768 to 32767) into hexadecimal string.

[Format]

[Reference Program]
1 C1$=Hex$(&H41FF) ' "41FF" is assigned to C1$.
2 C2$=Hex$(&H41FF,2) ' "FF" is assigned to C2$.

[Explanation]
(1) Converts the value of an equation into hexadecimal string.
(2) If <Number of output characters> is specified, the right most part of the converted string is output for the

specified length.
(3) If the numerical value is not an integer, the integer value obtained by rounding the fraction will be

converted into hexadecimal string.
(4) Val is a command that performs this procedure in reverse.
(5) If <number of output characters> is specified, it is not possible to describe a function that contains an

argument in <Equation>. If such a function is described, an error will be generated during execution.
NG example: C1$=Hex$(Asc("a"),1)

[Reference]
Bin$, Str$, Val

Int

[Function]
Returns the largest integer that does not exceed the value of the equation.

[Format]

[Reference Program]
1 M1=Int(3.3) ' 3 is assigned to M1.

[Explanation]
(1) Returns the largest integer that does not exceed the value of the equation.
(2) If the nquation evaluates to a positive value, the same number as Fix will be returned.
(3) If the equation evaluates to a negative value, then for instance Fix(-2.3) = -3.0 will be observed.

[Reference]
Cint, Fix

<Character String Variable >=Hex$(<Equation> [, <Number of output characters>])

<Numeric Variable>=Int(<Equation>)
 Detailed Explanation of Functions 4-465

4

4MELFA-BASIC VI
Inv

[Function]
Obtains the position data of the inverse matrix of the position variable. This is used to perform relative
calculation of the positions.

[Format]

[Reference Program]
1 P1=Inv(P2) ' P1 will contain the inverse matrix of P2.

[Explanation]
(1) Obtains the position data of the inverse matrix of the position variable.
(2) Joint variables cannot be used as the argument. When a joint variable is used, an error will be

generated.
(3) Since the return value is a position data, an error will be generated if a joint variable is used in the left-

hand side.

JtoP

[Function]
Given joint data will be converted into position data.

[Format]

[Reference Program]
1 P1=JtoP(J1) ' The position that expresses the J1 (joint type) position using the XYZ

type will be assigned to P1.
[Explanation]

(1) Converts the joint data into the position data.
(2) Position variables cannot be used as the argument. When a position variable is used, an error will be

generated.
(3) Since the return value is a position data, an error will be generated if a joint variable is used in the left-

hand side.
(4) The initial value of the target mechanism number is "1". Therefore, when mechanism number 1 is

targeted, after executing the RelM command, or the program slot is other than 1, execution of the GetM
command is unnecessary. If target mechanism is other than 1, execute the GetM command beforehand.

[Reference]
PtoJ

<Position Variables>=Inv(<Position Variables>)

<Position Variables>=JtoP(<Joint Variables>)
-466 Detailed Explanation of Functions

 4MELFA-BASIC VI
Left$

[Function]
Obtains a string of the specified length starting from the left end.

[Format]

[Reference Program]
1 C1$=Left$("ABC",2) ' "AB" is assigned to C1$.

[Explanation]
(1) Obtains a string of the specified length starting from the left end.
(2) An error will be generated if the value is a negative value or is longer than the string.
(3) It is not possible to describe a function that contains an argument in <Character String> and <Equation>.

If such a function is described, an error will be generated during execution.

[Reference]
Mid$, Right$

Len

[Function]
Returns the length of the string.

[Format]

[Reference Program]
1 M1=Len("ABCDEFG") ' 7 is assigned to M1.

[Explanation]
(1) Returns the length of the argument string.

[Reference]
Left$, Mid$, Right$

<Character String Variable >=Left$(<Character String>, <Equation>)

<Numeric Variable>=Len(<Character String>)
 Detailed Explanation of Functions 4-467

4

4MELFA-BASIC VI
Ln

[Function]
Returns the natural logarithm. (Base e.)

[Format]

[Reference Program]
1 M1=Ln(2) ' 0.693147 is assigned to M1.

[Explanation]
(1) Returns the natural logarithm of the value of the equation.
(2) An error will be generated if the equation evaluates to a zero or a negative value.

[Reference]
Exp, Log

Log

[Function]
Returns the common logarithm. (Base 10.)

[Format]

[Reference Program]
1 M1=Log(2) ' 0.301030 is assigned to M1.

[Explanation]
(1) Returns the common logarithm of the value of the equation.
(2) An error will be generated if the equation evaluates to a zero or a negative value.

[Reference]
Exp, Ln

<Numeric Variable>=Ln(<Equation>)

<Numeric Variable>=Log(<Equation>)
-468 Detailed Explanation of Functions

 4MELFA-BASIC VI
Max

[Function]
Obtains the maximum value.

[Format]

[Reference Program]
1 M1=Max(2,1,3,4,10,100) ' 100 is assigned to M1.

[Explanation]
(1) Returns the maximum value among the arbitrary number of arguments.
(2) The length of this instruction can be up to the number of characters allowed in a single line (123

characters).
(3) It is not possible to describe a function that contains an argument in <Equation 1>, <Equation 2> and

. If such a function is described, an error will be generated during execution.

[Reference]
Min

Mid$

[Function]
Returns a string of the specified length starting from the specified position of the string.

[Format]

[Reference Program]
1 C1$=Mid$("ABCDEFG",3,2) ' "CD" is assigned to C1$.

[Explanation]
(1) A string of the length specified by argument 3 is extracted from the string specified by the first argument

starting from the position specified by argument 2 and returned.
(2) An error will be generated if equation 2 or 3 evaluates to a zero or a negative value.
(3) An error is generated if the position of the last character to be extracted is larger than the length of the

string specified by the first argument.
(4) It is not possible to describe a function that contains an argument in <Character String>, <Equation 2>

and <Equation 3>. If such a function is described, an error will be generated during execution.

[Reference]
Left$, Right$, Len

<Numeric Variable>=Max(<Equation 1>, <Equation 2>, ...)

<Character String Variable >=Mid$(<Character String>, <Equation 2>, <Equation 3>)
 Detailed Explanation of Functions 4-469

4

4MELFA-BASIC VI
Min

[Function]
Obtains the minimum value.

[Format]

[Reference Program]
1 M1=Min(2,1,3,4,10,100) ' 1 is assigned to M1.

[Explanation]
(1) Returns the minimum value among the arbitrary number of arguments.
(2) The length of this instruction can be up to the number of characters allowed in a single line (123

characters).
(3) It is not possible to describe a function that contains an argument in <Equation 1>, <Equation 2> and

. If such a function is described, an error will be generated during execution.

[Reference]
Max

Mirror$

[Function]
Inverts the bit string representing each character code of the string in binary, and obtains the character-
coded string.

[Format]

[Reference Program]
1 C1$=Mirror$("BJ") ' "RB" is assigned to C1$.

' "BJ" =&H42,&H4A=&B01000010,&B01001010.
' Inverted =&H52,&H42=&B01010010,&B01000010.
' Output ="RB".

[Explanation]
(1) Inverts the bit string representing each character code of the string in binary, and obtains the character-

coded string.

<Numeric Variable>=Min(<Equation 1>, <Equation 2>, )

<Character String Variable >=Mirror$(<Character String Expression>)
-470 Detailed Explanation of Functions

 4MELFA-BASIC VI
Mki$

[Function]
Converts the value of an equation (integer) into a two-byte string.

[Format]

[Reference Program]
1 C1$=Mki$(20299) ' The specified equation is converted to a two-byte character string and

assigned to C1$.
2 M1=Cvi(C1$) ' 20299 is assigned to M1.

[Explanation]
(1) Converts the lowest two bytes of the value of an equation (integer) into a strings.
(2) Use Cvi to convert the string to a value.
(3) This can be used to reduce the amount of communication data when transmitting numerical data to

external devices.

[Reference]
Asc, Cvi, Cvs, Cvd, Mks$, Mkd$

Mks$

[Function]
Converts the value of an equation (single-precision real number) into a four-byte string.

[Format]

[Reference Program]
1 C1$=Mks$(100.1) ' The specified equation is converted to a four-byte character string and

assigned to C1$.
2 M1=Cvs(C1$) ' 100.1 is assigned to M1.

[Explanation]
(1) Converts the lowest four bytes of the value of an equation (single-precision real number) into the strings.
(2) Use Cvs to convert the string to a value.
(3) This can be used to reduce the amount of communication data when transmitting numerical data to

external devices.

[Reference]
Asc, Cvi, Cvs, Cvd, Mki$, Mkd$

<Character String Variable >=Mki$(<Equation>)

<Character String Variable >=Mks$(<Equation>)
 Detailed Explanation of Functions 4-471

4

4MELFA-BASIC VI
Mkd$

[Function]
Converts the value of an equation (double-precision real number) into a eight-byte string.

[Format]

[Reference Program]
1 C1$=Mkd$(10000.1) ' The specified equation is converted to an eight-byte character string

and assigned to C1$.
2 M1=Cvd(C1$) ' 10000.1 is assigned to M1.

[Explanation]
(1) Converts the lowest eight bytes of the value of an equation (single-precision real number) into the

strings.
(2) Use Cvd to convert the string to a value.
(3) This can be used to reduce the amount of communication data when transmitting numerical data to

external devices.

[Reference]
Asc, Cvi, Cvs, Cvd, Mki$, Mki$

PosCq

[Function]
Checks whether the given position is within the movement range.

[Format]

[Reference Program]
1 M1=PosCq(P1) ' M1 will contain 1 if the position P1 is within the movement range.

[Explanation]
(1) Check whether the position data given by an argument is within the movement range of the robot. Value

1 will be returned if it is within the movement range of the robot; value 0 will be returned if it is outside
the movement range of the robot.

(2) Arguments must give either the position data type or joint data type.

<Character String Variable >=Mkd$(<Equation>)

<Numeric Variable>=PosCq(<Position Variables>)
-472 Detailed Explanation of Functions

 4MELFA-BASIC VI
PosMid

[Function]
Obtain the middle position data when a linear interpolation is performed between two given points.

[Format]

[Reference Program]
1 P1=PosMid(P2,P3,0,0) ' The position data (including posture) of the middle point between P2

and P3 will be assigned to P1.

[Explanation]
(1) Obtain the position data of the middle point when a linear interpolation is performed between two

position data.
(2) The first argument gives the starting point of the linear interpolation, while the second argument gives

the endpoint of the linear interpolation.
(3) The third and fourth arguments correspond to the two TYPE arguments of the Mvs command.
(4) The arguments for the starting and end points must be positions that allow linear interpolation with the

specified interpolation type. For instance, an error will be generated if the structure flags of the starting
and end points are different.

(5) It is not possible to describe a function that contains an argument in <Position Variables 1>, <Position
Variables 2>,<Equation 1> and <Equation 2>. If such a function is described, an error will be generated
during execution.

PtoJ

[Function]
Converts the given position data into a joint data.

[Format]

[Reference Program]
1 J1=PtoJ(P1) ' J1 will contain the value of P1 (XYZ position variable) that has been converted

into joint data type.

[Explanation]
(1) Converts the position data into the joint data.
(2) Joint variables (J variable) cannot be used as the argument. When a joint variable is used, an error will

be generated.
(3) Since the return value is a joint data, an error will be generated if a position variable is used in the left-

hand side.
(4) The initial value of the target mechanism number is "1" under software version N8(SQ series) and P8(SD

series). Therefore, when mechanism number 1 is targeted, after executing the RelM command, or the
program slot is other than 1, execution of the GetM command is unnecessary. If target mechanism is
other than 1, execute the GetM command beforehand.

[Reference]
JtoP

<Position Variables>=PosMid(<Position Variables 1>, <Position Variables 2>,<Equation 1>,

<Equation 2>)

<Joint Variable>=PtoJ(<Position Variables>)
 Detailed Explanation of Functions 4-473

4

4MELFA-BASIC VI
Rad

[Function]
Converts the unit of angle measurement from degrees (deg) into radians (rad).

[Format]

[Reference Program]
1 P1=P_Curr
2 P1.C=Rad(90)
3 Mov P1 ' Moves to P1, which is obtained by changing the C axis of the current position

to 90 degrees.

[Explanation]
(1) Converts the degree value of an equation into radian value.
(2) This can be used to assign values to the posture components (ABC) of a position variable or to execute

trigonometric functions.

[Reference]
Deg

Rdfl 1

[Function]
Returns the structure flag of the specified position using character data "R"/"L", "A"/"B", and "N"/"F".

[Format]

[Terminology]
<Position Variables> Specifies the position variable from which the structure flag will be extracted.
<Equation> Specifies which structure flag is to be extracted.

0 = "R" / "L", 1 = "A" / "B", 2 = "N" / "F"
[Reference Program]

1 P1=(100,0,100,180,0,180)(7,0) ' Since the structure flag 7 (&B111) is RAN,
2 C1$=Rdfl1(P1,1) ' C1$ will contain "A".

[Explanation]
(1) Of the structure flags in the position data specified by argument 1, the flag specified by argument 2 will

be extracted.
(2) This function extracts information from the FL1 element of position data.
(3) It is not possible to describe a function that contains an argument in <Position Variables> and

<Equation>. If such a function is described, an error will be generated during execution.

[Reference]
Rdfl 2, Setfl 1, Setfl 2

<Numeric Variable>=Rad(<Equation>)

<Character String Variable >=Rdfl1(<Position Variables>, <Equation>)
-474 Detailed Explanation of Functions

 4MELFA-BASIC VI
Rdfl 2

[Function]
Returns the multiple rotation information of the specified joint axis.

[Format]

[Terminology]
<Position Variables> Specifies the position variable from which the multiple rotation information is to

be extracted.
<Equation> Specifies the value for the joint axis from which the multiple rotation information

is to be extracted. (1 through 8)

[Reference Program]
1 P1=(100,0,100,180,0,180)(7,&H00100000) '
2 M1=Rdfl2(P1,6) ' 1 is assigned to M1.

[Explanation]
(1) Of the multiple rotation information of the position data specified by argument 1, the value for the joint

axis specified by argument 2 is extracted.
(2) The range of the return value is between -8 and 7.
(3) This function extracts information from the FL2 element of position data.
(4) Structure flag 2 (multiple rotation information) has a 32-bit structure, which contains 4 bits of information

per axis for 8 axes.
(5) When displaying in T/B and the multiple rotation is a negative value, value of -1 to -8 is converted into F

to 8 (4-bit signed hexadecimal notation) and displayed.

(6) It is not possible to describe a function that contains an argument in <Position Variables> and
<Equation>. If such a function is described, an error will be generated during execution.

[Reference]
Rdfl 1, Setfl 1, Setfl 2, JRC (Joint Roll Change)

<Numeric Variable>=Rdfl2(<Position Variables>, <Equation>)

<Sample display of multiple rotation
information in TB> 87654321 axis <Relationship between display and number of

multiple rotations per axis>
When multiple rotation of axis J6 is +1: FL2=00100000 -2 -1 0 +1 +2...............
When multiple rotation of axis J6 is -1: FL2=00F00000 E F 0 1 2...............
 Detailed Explanation of Functions 4-475

4

4MELFA-BASIC VI
Rnd

[Function]
Generates a random number.

[Format]

[Terminology]
<Equation> Specifies the initial value of random numbers. If this value is set to 0, subsequent

random numbers will be generated without setting the initial value of random
numbers.

<Numeric Variable> A value in the range of 0.0 to 1.0 will be returned.

[Reference Program]
1 DIM MRnd(10)
2 C1=Right$(C_Time,2) ' Initializes random numbers using the clock.
3 MRndBS=Cvi(C1)) ' in order to obtain different sequence of numbers.
4 MRnd(1)=Rnd(MRndBS) ' Sets the initial value of random numbers and extracts the first random

number.
5 For M1=2 TO 10 ' Obtain other nine random numbers.
6 MRnd(M1)=Rnd(0)
7 Next M1

[Explanation]
(1) Initializes random numbers using the value provided by the argument and extracts a random number.
(2) If the equation provided as the argument evaluates to 0, initialization of random numbers will not take

place and the next random number will be extracted.
(3) When the same value is used to perform initialization of random numbers, identical random number

sequence will be obtained.

Right$

[Function]
Obtains a string of the specified length starting from the right end.

[Format]

[Reference Program]
1 C1$=Right$("ABCDEFG",3) ' "EFG" is assigned to C1$.

[Explanation]
(1) Obtains a string of the specified length starting from the right end.
(2) An error will be generated if the value of the second argument is a negative value or is longer than the

first string.
(3) It is not possible to describe a function that contains an argument in <Character String> and <Equation>.

If such a function is described, an error will be generated during execution.

[Reference]
Left$, Mid$, Len

<Numeric Variable>=Rnd(<Equation>)

<Character String Variable >=Right$(<Character String>, <Equation>)
-476 Detailed Explanation of Functions

 4MELFA-BASIC VI
Setfl 1

[Function]
Changes the structure flag of the specified position using a string (such as "RAN").

[Format]

[Terminology]
<Position Variables>Specifies the position variable whose structure flag is to be changed.
<Character String> Specifies the structure flag to be changed. Multiple flags can be specified.

"R" or "L": Right/Left setting.
"A" or "B": Above/Below setting.
"N" or "F": Nonflip/Flip setting.

[Reference Program]
1 Mov P1
2 P2=Setfl1(P1,"LBF")
3 Mov P2

[Explanation]
(1) Returns the position data obtained by changing the structure flags in the position data specified by

argument 1 to flag values specified by argument 2.
(2) This function changes information from the FL1 element of position data. The content of the position data

given by the argument will remain unchanged.
(3) The structure flag will be specified starting from the last character in the string. Therefore, for instance, if

the string "LR" is specified, the resulting structure flag will be "L".
(4) If the flags are changed using a numerical value, set P1.FL1=7.
(5) Structure flags may have different meanings depending on the robot model. For details, please refer to

"ROBOT ARM SETUP & MAINTENANCE" for each robot.

The structure flag corresponds to 7 in the position constant (100, 0, 300, 180, 0, 180) (7, 0). The actual
position is a bit pattern.

(6) It is not possible to describe a function that contains an argument in <Position Variables> and
<Character String>. If such a function is described, an error will be generated during execution.

[Reference]
Rdfl 1, Rdfl 2, Setfl 2

<Position Variables>=Setfl1(<Position Variables>, <Character String>)

 7 = & B 0 0 0 0 0 1 1 1
1/0=N/F
1/0=A/B
1/0=R/L
 Detailed Explanation of Functions 4-477

4

4MELFA-BASIC VI
Setfl 2

[Function]
Changes the multiple rotation data of the specified position.

[Format]

[Terminology]
<Position Variables> Specifies the position variable whose multiple rotation data are to be changed.
<Equation 1> Specifies the axis number for which the multiple rotation data are to be

changed. (1 through 8).
<Equation 2> Specifies the multiple rotation data value to be changed (-8 through 7).

[Reference Program]
1 Mov P1
2 P2=Setfl2(P1,6,1)
3 Mov P2

[Explanation]
(1) Returns the position data obtained by changing the position data's multiple rotation information of the

joint axis specified by equation 1 to the value specified by equation 2.
(2) This function changes information from the FL2 element of position data.
(3) The content of the position of position variables given by the argument (X, Y, Z, A, B, C, and FL1) will

remain unchanged.

(4) It is not possible to describe a function that contains an argument in <Position Variables>, <Equation 1>
and <Equation 2>. If such a function is described, an error will be generated during execution.

[Reference]
Rdfl 1, Rdfl 2, Setfl 1

<Position Variables>=Setfl2(<Position Variables>, <Equation 1>, <Equation 2>)

-900 -540 -180 0 180 540 900

...... -2
(E)

-1
(F) 0 1 2

Value of multiple
rotation data

Angle of each axis

Value of multiple rotation data

......
-478 Detailed Explanation of Functions

 4MELFA-BASIC VI
SetJnt

[Function]
Sets the value to the joint variable.

[Format]

[Terminology]
<Joint Variable> Sets the value to the joint variable.
<J1 Axis>-<J8 Axis> The unit is Rad (the unit is mm for direct-driven axes).

[Reference Program]
1 J1=J_Curr
2 For M1=0 to 60 SETP 10
3 M2=J1.J3+Rad(M1)
4 J2=SetJnt(J1.J1,J1.J2,M2) ' Only for the value of the J3 axis, it is rotated by 10 degrees each

time. The same value is used for the J4 and succeeding axes.
5 Mov J2
6 Next M1
7 M0=Rad(0)
8 M90=Rad(90)
7 J3=SetJnt(M0,M0,M90,M0,M90,M0)
10 Mov J3

[Explanation]
(1) The value of each axis in joint variables can be changed.
(2) Variable can be described as arguments.
(3) Arguments can be omitted except for the J1 axis. They can be omitted for all subsequent axes.

(Arguments such as SetJnt(10,10,,,,10) cannot be described.)
(4) In an argument, it is not allowed to describe a function with an argument. If described, an error occurs

when executed.

[Reference]
SetPos

[Related parameter]
AXUNT, PRGMDEG

<<Joint Variable>>=SetJnt(<J1 Axis>[,<J2 Axis>[,<J3 Axis>[,<J4 Axis>

 [,<J5 Axis>[,<J6 Axis>[,<J7 Axis>[,<J8 Axis>]]]]]]])
 Detailed Explanation of Functions 4-479

4

4MELFA-BASIC VI
SetPos

[Function]
Sets the value to the Position variable.

[Format]

[Terminology]
<Position Variable> Sets the value to the Position variable.
<X Axis>-<Z Axis> The unit is mm.
<A Axis>-<C Axis> The unit is Rad. (It can be switched to Deg using the PRGMDEG parameter.)
<L1 Axis>-<L2 Axis> The unit depends on "AXUNT" Parameter.

[Reference Program]
1 P1=P_Curr
2 For M1=0 to 100 SETP 10
3 M2=P1.Z+M1
4 P2=SetPos(P1.X, P1.Y, M2) ' Only for the value of the Z axis, it is rotated by 10 mm each time.

The same value is used for the A and succeeding axes.
5 Mov J2
6 Next M1

[Explanation]
(1) The value of each axis in joint variables can be changed.
(2) Variable can be described as arguments.
(3) Arguments can be omitted except for the X axis. They can be omitted for all subsequent axes.

(Arguments such as SetPos(10,10,,,,10) cannot be described.)
(4) In an argument, it is not allowed to describe a function with an argument. If described, an error occurs

when executed.

[Reference]
SetJnt

[Related parameter]
AXUNT, PRGMDEG

<<Position Variable>>=SetPos(<X Axis>[,<Y Axis>[,<Z Axis>

 [,<A Axis>[,<B Axis>[,<C Axis>[,<L1 Axis>[,<L2 Axis>]]]]]]])
-480 Detailed Explanation of Functions

 4MELFA-BASIC VI
Sgn

[Function]
Checks the sign of the equation.

[Format]

[Reference Program]
1 M1=-12
2 M2=Sgn(M1) ' -1 is assigned to M2.

[Explanation]
(1) Checks the sign of the equation and returns the following value.

Positive value 1
0 0
Negative value -1

Sin

[Function]
Calculates the sine.

[Format]

[Reference Program]
1 M1=Sin(Rad(60)) ' 0.866025 is assigned to M1.

[Explanation]
(1) Calculates the sine to which the given equation evaluates.
(2) The range of values will be the entire range that numerical values can take.
(3) The range of the return value will be from -1 to 1.
(4) The unit of arguments is in radians.

[Reference]
Cos, Tan, Atn/Atn2

<Numeric Variable>=Sgn(<Equation>)

<Numeric Variable>=Sin(<Equation>)
 Detailed Explanation of Functions 4-481

4

4MELFA-BASIC VI
SplECord

[Function]
Saves the Ex-T coordinate system origin data registered in the spline file in the position variable.

[Format]

[Terminology]
<Position Variable> The variables for a result to be substituted.
<Spline No.> The number of the spline file holding information on the path to obtain

is designated with a constant or numerical variable.
Setting range: 1 to 99

<Frame transformation> The details for executing frame transformation are designated with
a constant or numerical variable.
Setting range:

0: Frame transformation is not executed.
1: Frame transformation is executed using coordinate system set

in spline file.
2: Frame transformation is executed using coordinate system set

with SetCalFrm command.
When omitted: Frame transformation is not executed.

[Reference Program]
1 P_WkCord(1) = SplECord(8) ' The origin data of the Ex-T coordinate system registered in spline file

8 is substituted to the work coordinate 1.
2 P1 = SplECord(5) ' The Ex-T coordinate system origin data registered in spline file 5 is

substituted to the position variable P1.
3 P2 = SplECord(10,1) ' Substitutes frame converted data for the Ex-T coordinate system

origin data registered in spline file 10 for P2.

[Explanation]
(1) Returns the Ex-T coordinate system origin data registered in the spline file specified by <Spline No.>.
(2) If a spline file corresponding to the <Spline No.> is not saved in the controller, the error L2610 (Can't

open spline file) will occur.
(3) If "1 (execute using coordinate system set in spline file)" or "2 (execute using coordinate system set with

SetCalFrm command) is designated in <Frame transformation>, the Ex-T coordinate system origin data
is converted based on the designated method, and the adjusted data is returned.

(4) If the coordinate system is not set in the spline file even though "1 (execute using coordinate system set
in spline file)" is designated in <Frame transformation>, error L2042 (Frame transformation coordinates
are not set) will occur.

(5) If the coordinate system cannot be calculated when "1 (execute using coordinate system set in spline
file)" is designated in <Frame transformation>, error L2041 (Can't calculate frame transformation
coordinates) will occur.

(6) If "2 (execute using coordinate system set with SetCalFrm command)" is designated for <Frame
transformation>, frame conversion is executed using the coordinate system set with the SetCalFrm
command executed last. If the SetCalFrm command has not been executed even once and the
coordinate system is not set, error L2042 (Frame transformation coordinates are not set) will occur.

(7) If a spline file does not have the Ex-T coordinate settings , the error L2610 (The setting of Ex-T is illegal)
will occur.

<Position Variable>=SplECprd(<Spline No.> [, <Frame transformation>])
-482 Detailed Explanation of Functions

 4MELFA-BASIC VI
SplPos

[Function]
Saves a random path point data registered in the spline file in the position variable.

[Format]

[Terminology]
<Position Variable> The variables for a result to be substituted. The value of the path

point data registered in the specified spline file is substituted to
the configuration flag.

<Path point No.> Specify the path point number to obtain with the constant or the numeric
variable.
Setting range: 1 to 5000

<Frame transformation> The details for executing frame transformation are designated with
a constant or numerical variable.
Setting range:

0: Frame transformation is not executed.
1: Frame transformation is executed using coordinate system set

in spline file.
2: Frame transformation is executed using coordinate system set

with SetCalFrm command.
When omitted: Frame transformation is not executed.

[Reference Program]
1 P1 = SplPos(1,5) ' Substitutes spline file 1 path point 5 position data for position variable

P1.
2 P2 = SplPos(1,10,1) ' Substitutes frame converted data for spline file 1 path point 10 position

data for position variable P2.

[Explanation]
(1) Returns path point position data corresponding to the <Path point No.> registered in the spline file

specified with the <Spline No.>.
(2) The value of the path point data registered in the specified spline file is substituted to the configuration

flag.
(3) If a spline file corresponding to the <Spline No.> is not saved in the controller, the error L2610 (Can't

open spline file) will occur.
(4) If a path point information corresponding to the <Path point No.> is not saved in the spline file, the error

L2610 (Path point is not registered) will occur.
(5) If "1 (execute using coordinate system set in spline file)" or "2 (execute using coordinate system set with

SetCalFrm command) is designated in <Frame transformation>, the path point data is converted based
on the designated method, and the path point data is returned.

(6) If the coordinate system is not set in the spline file even though "1 (execute using coordinate system set
in spline file)" is designated in <Frame transformation>, error L2042 (Frame transformation coordinates
are not set) will occur.

(7) If the coordinate system cannot be calculated when "1 (execute using coordinate system set in spline
file)" is designated in <Frame transformation>, error L2041 (Can't calculate frame transformation
coordinates) will occur.

(8) If "2 (execute using coordinate system set with SetCalFrm command)" is designated for <Frame
transformation>, frame conversion is executed using the coordinate system set with the SetCalFrm
command executed last. If the SetCalFrm command has not been executed even once and the
coordinate system is not set, error L2042 (Frame transformation coordinates are not set) will occur.

<Position Variable>=SplPos(<Spline No.>, <Path point No.> [, <Frame transformation>])
 Detailed Explanation of Functions 4-483

4

4MELFA-BASIC VI
SplSpd

[Function]
Calculates the maximum speed which can be specified without an error in the spline interpolation
commands (MvSpl, EMvSpl).

[Format]

[Terminology]
<Position Variable> The variables for a result to be substituted.
<Spline No.> The number of the spline file holding information on the path to obtain

is designated with a constant or numerical variable.
Setting range: 1 to 99

[Reference Program]
1 MS = SplSpd(8) ' Substitutes the maximum speed that can be specified without an error

occurring when spline interpolation is executed using spline file 8 path
point data for MS.

2 MvSpl 8,MS,50 ' Executes spline interpolation to pass through the spline file 8 path
point at the speed specified with MS.

[Explanation]
(1) Calculates the maximum speed which can be specified without an error from the path point data

registered in the spline file specified by Spline No.
(2) The calculated maximum speed is the speed when the program override is 100%.
(3) If spline interpolation is executed using the calculated speed, a speed-over error may occur if the robot

posture changes greatly.
(4) If a spline file corresponding to the <Spline No.> is not saved in the controller, the error L2610 (Can't

open spline file) will occur.

<Numeric Variable>=SplSpd(<Spline No.>)
-484 Detailed Explanation of Functions

 4MELFA-BASIC VI
Sqr

[Function]
Calculates the square root of an equation value.

[Format]

[Reference Program]
1 M1=Sqr(2) ' 1.414214 is assigned to M1.

[Explanation]
(1) Calculates the square root of the value to which the given equation evaluates.
(2) An error will be generated if the equation given by the argument evaluates to a negative value.

StrLwr

[Function]
Decapitalizes a character string.

[Format]

[Terminology]
<Character String Variable> Sets the character string variable to be substituted.
<Character String> Sets the character string to be decapitalized.

[Reference Program]
1 C1$ = StrLwr("ABC") ' Sets "abc" in C1$.

[Explanation]
(1) A character string can be decapitalized.

[Reference]
StrUpr

<Numeric Variable>=Sqr(<Equation>)

<Character String Variable> = StrLwr(<Character String>)
 Detailed Explanation of Functions 4-485

4

4MELFA-BASIC VI
StrUpr

[Function]
Capitalizes a character string.

[Format]

[Terminology]
<Character String Variable> Sets the character string variable to be substituted.
<Character String> Sets the character string to be capitalized.

[Reference Program]
1 C1$ = StrUpr("abc") ' Sets "ABC" in C1$.

[Explanation]
(1) A character string can be capitalized.

[Reference]
StrLwr

Strpos

[Function]
Searches for a specified string in a string.

[Format]

[Reference Program]
1 M1=Strpos("ABCDEFG","DEF") ' 4 is assigned to M1.

[Explanation]
(1) Returns the position of the first occurrence of the string specified by argument 2 from the string specified

by argument 1.
(2) An error will be generated if the length of the argument 2 is 0.
(3) For instance, if argument 1 is "ABCDEFG" and argument 2 is "DEF", 4 will be returned.
(4) If the search string could not be found, 0 will be returned.
(5) It is not possible to describe a function that contains an argument in <Character String 1> and

<Character String 2>. If such a function is described, an error will be generated during execution.

<Character String Variable> = StrUpr(<Character String>)

<Numeric Variable>=Strpos(<Character String 1>, <Character String 2>)
-486 Detailed Explanation of Functions

 4MELFA-BASIC VI
Str$

[Function]
Converts the value of the equation into a decimal string.

[Format]

[Reference Program]
1 C1$=Str$(123) ' "123" is assigned to C1$.

[Explanation]
(1) Converts the value of the equation into a decimal string.
(2) Val is a command that performs this procedure in reverse.

[Reference]
Bin$, Hex$, Val

Tan

[Function]
Calculates the tangent.

[Format]

[Reference Program]
1 M1=Tan(Rad(60)) ' 1.732051 is assigned to M1.

[Explanation]
(1) Returns the tangent of the value to which the equation evaluates.
(2) The range of arguments will be the entire range of values that are allowed.
(3) The range of return values will be the entire range that numerical values can take.
(4) The unit of arguments is in radians.

[Reference]
Sin, Cos, Atn/Atn2

<Character String Variable >=Str$(<Equation>)

<Numeric Variable>=Tan(<Equation>)
 Detailed Explanation of Functions 4-487

4

4MELFA-BASIC VI
Val

[Function]
Converts the value in the string into a numerical value.

[Format]

[Reference Program]
1 M1=Val("15")
2 M2=Val("&B1111")
3 M3=Val("&HF")

[Explanation]
(1) Converts the given character string expression string into a numerical value.
(2) Binary (&B), decimal, and hexadecimal (&H) notations can be used for the string.
(3) In the example above, M1, M2 and M3 evaluate to the same value (15).

[Reference]
Bin$, Hex$, Str$

<Numeric Variable>=Val(<Character String Expression>)
-488 Detailed Explanation of Functions

 4MELFA-BASIC VI
Zone

[Function]
Checks if the specified position is within the specified area (a rectangular solid defined by two points).

[Format]

[Terminology]
<Position 1> The position to be checked.
<Position 2> The position of the first point that specifies the area.
<Position 3> The position of the second point that specifies the area. (diagonal point)

Positions 1 to 3 set the XYZ coordinates variable system (P variable X, Y, Z, A, B, C, L1 and L2).

[Reference Program]
1 M1=Zone(P1,P2,P3)
2 If M1=1 Then Mov P_Safe Else End

[Explanation]
(1) This will check if position 1 is inside the rectangular solid defined by the two points, position 2 and

position 3. (The two points will become the diagonal points of the rectangular solid.) If the point is inside
the rectangular solid, 1 is returned; otherwise, 0 is returned.

(2) To check whether position 1 is inside that area, each element of position 1 (X, Y, Z, A, B, C, L1 and L2)
will be checked if it is between the values for position 2 and position 3.

(3) As for the posture angles (A, B, and C), they are checked by rotating in the positive direction from the
angle in position 2 to position 3 and by seeing if the target value is inside the swiped range.
Example) If P2.A is -100 and P3.A is +100, if P1.A is 50, the value is within the range. Similar checking
will be performed for B and C axes. (Refer to diagram below.)

(4) For components that are not checked or do not exist, if the unit is in degrees, position 2 will be set to -
360 and position 3 will be set to 360. If the unit is in millimeters, position 2 will be set to -10000 and
position 3 will be set to 10000.

(5) It is not possible to describe a function that contains an argument in <Position 1>, <Position 2> and
<Position 3>. If such a function is described, an error will be generated during execution.

<Numeric Variable>=Zone(<Position 1>, <Position 2>, <Position 3>)

X

Y

Z

P2 P3

P1

+ -

±0°

<Position 2><Position 3>

±180°

Example) If the value passes through 0 from -90 to +90,
 the following setting is necessity.
 Sets the negative value to ABC of <position 2>.
 Sets the positive value to ABC of <position 3>.

Example) If the value passes through 180 from -90 to +90,
 the following setting is necessity.
 Sets the positive value to ABC of <position 2>.
 Sets the negative value to ABC of <position 3>.

+ -

±0°

<Position 3><Position 2>

±180°
 Detailed Explanation of Functions 4-489

4

4MELFA-BASIC VI
Zone 2

[Function]
Checks if the specified position is within the specified area (Cylindrical area defined by two points).

[Format]

[Terminology]
<Position 1> The position to be checked.
<Position 2> The position of the first point that specifies the area.
<Position 3> The position of the second point that specifies the area.
<Equation> Radius of the hemisphere on both ends.

[Reference Program]
1 M1=Zone2(P1,P2,P3,50)
2 If M1=1 Then Mov P_Safe Else End

[Explanation]
(1) This will check if position 1 is inside the cylindrical area (Refer to diagram below) defined by the two

points, position 2 and position 3, and the radius represented by the equation. If the point is inside the
space, 1 is returned; otherwise, 0 is returned.

(2) This function checks whether the check position (X, Y, and Z coordinates) is within the specified area,
but does not take the posture components into consideration.

(3) It is not possible to describe a function that contains an argument in <Position 1>, <Position 2>,
<Position 3> and <Equation>. If such a function is described, an error will be generated during
execution.

<Numeric Variable>=Zone2(<Position 1>, <Position 2>, <Position 3>, <Equation>)

P2 P3

P1
r
-490 Detailed Explanation of Functions

 4MELFA-BASIC VI
Zone3

[Function]
Checks if the specified position is within the specified area (The cube which consists of the three points).

[Format]

[Terminology]
<Position 1> The position to be checked
<Position 2> The position of the first point that specifies the area.
<Position 3> The position of the second point that specifies the area.
<Position 4> The position of the point of specifying the plane which constitutes the area with

<the position 2> and <the position 3>
<Equation W> Width of the cube which constitutes the area. [mm]
<Equation H> Height of the cube which constitutes the area. [mm]
<Equation L> Each depth from <the position 2> and <the position 3> of the cube which

constitutes the area. [mm]

[Reference Program]
1 M1=Zone3(P1,P2,P3,P4,100,100,50)
2 If M1=1 Then Mov P_Safe Else End

[Explanation]
(1) This will check if position 1 is inside the cube area (Refer to diagram below) defined by the three points,

position 2, position 3 and position 4, and the Equation W, Equation H and Equation L.
 If the point is inside the space, 1 is returned; otherwise, 0 is returned.

(2) This function checks whether the check position (X, Y, and Z coordinates) is within the specified area, but
does not take the posture components into consideration.

(3) It is not possible to describe a function that contains an argument in <Position 1>, <Position 2>,
<Position 3>, <Position 4>, <Equation W>, <Equation H> and <Equation L>. If such a function is
described, an error will be generated during execution.

(4) If the negative value is inputted into <Equation W> and <Equation H>, the error occurs.
(5) Since the specified area cannot be created if the same position or the position on the same straight line

is inputted into <Position 2>- <Position 4>, return -1, without checking.
By the negative number, <Equation L> returns -1, without checking, if the absolute value is less than
the half of the distance for <Position 2> and <Position 3>.

<Numeric Variable>=Zone3(<Position 1>, <Position 2>, <Position 3>, <Position 4>, <Equation

W>, <Equation H>, <Equation L>)

H

W L L
P1

P2
P3

P4
 Detailed Explanation of Functions 4-491

5

5Functions set with parameters
5 Functions set with parameters
This controller has various parameters listed below. It is possible to change various functions and default
settings by changing the parameter settings.

For the parameters regarding dedicated I/O signals, refer to Page 637, "6.2 PLC link I/O function". After
changing the parameters, make sure to turn the robot controller's power OFF and then turn ON.
Parameter settings will not be in effect until the power is turned on again. For detailed operating method for
parameters, refer to Page 94, "3.15 Operation of parameter screen".

When changing parameters, check thoroughly the function and setting values first.
Otherwise, the robot may move unexpectedly, which could result in personal injury or
property damage.

5.1 Movement parameter
These parameters set the movement range, coordinate system and the items pertaining to the hand of the
robot.

Table 5-1:List Movement parameter

No. Classification Content Reference

1 Movement parameter These parameters set the movement range, coordinate system and the items
related to the hand of the robot.

Page 492

2 Signal parameter These parameters set the items related to signals. For the dedicated signals,
refer to Page 637, "6.2 PLC link I/O function".
For the CR800-Q series, replace the "CPU buffer memory" described in this
chapter with the "CPU shared memory".

Page 508

3 Operation parameter These parameters set the items related to the operations of the controller, T/B
and so forth.

Page 516

4 Command parameter These parameters set the items related to the robot language. Page 520

5 Communication parameter These parameters set the items related to communications. Page 524

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Joint movement
range

MEJAR Real value 16 Set the overrun limit value for the joint coordinate system.
Sets the movement range for each axis. Expanding of the
movement range is not recommended, since there is possibility
that the robot may strike the mechanical stopper.
Note) Please note that the joint movement range of J1 axis

cannot be changed after the J1 axis offset angle
(J1OFFSET) is specified in vertical 5-axis type robot.

Set the minus and plus directions. (-J1,+J1,-J2,+J2,......-J8,+J8)
Unit:deg

Setting value for
each mechanism

XYZ movement
range

MEPAR Real value 6 Set the overrun limit value for the XYZ coordinate system.
The movement range of the robot will be limited based on XYZ
coordinate system. This can be used to prevent the robot from
striking peripheral devices during manual operation when the
robot is installed within the device.
Set the minus and plus directions. (-X,+X,-Y,+Y,-Z,+Z) Unit:mm

(-X,+X,-Y,+Y,-Z,+Z)=
-10000,10000,
-10000,10000,
-10000,10000

Narrow angle/Wide
angle limit function
* Only RV-4FR/

7FR/13FR/20FR
series

MELTEXS Integer 1 The function protected so that the robot arm head may not
interfere with the base is operating. Designate the valid/invalid
of this function.
Sets "0" to this parameter, when it is necessary to move the
head of arm near the base. In this case, take care that the arm
head and the base do not interfere.
Refer to Operating range diagram in separate manual: “Standard
Specifications” about area of Narrow angle/Wide angle limit.
 0:Invalid
 1: Valid

1(Valid)
* Only RV-4FR/

7FR/13FR/20FR
series.
Other types are 0
(invalid).

 CAUTION
-492 Movement parameter

 5Functions set with parameters
J1 axis offset angle J1OFFSET Real value 2 Specify the J1 axis offset angle for vertical 5-axis type robot.
This setting is invalid for other types of robot, do not change the
default setting.
Note) Since the J1 axis direction is changed from J1=0 degree

(front direction) by specifying parameter J1OFFSET, the
joint movement range (MEJAR) is automatically corrected.
Please note that the joint movement range of J1 axis
cannot be changed while parameter J1OFFSET is set.

Element 1: Specify whether to enable/disable this function. Set
1.0 to enable, or 0.0 to disable this function.

Element 2: Specify the offset angle. The J1 axis direction is
shifted by the set angle from J1=0 degree (X axis).
(Unit: deg.)

Setting range: -360 <= [Element 2] <= +360

When parameter J1OFFSET is set, the origin setting is required
in the J1 axis. Set the origin by procedure below. Refer to the
separate manual: "Robot arm setup & maintenance" for details
of the origin setting.
1) Set the value to the parameter J1OFFSET.
2) Power ON the controller again.
3) Align the J1 axis with zero degree position.
4) Perform J1 origin setting by jig method
5) Display the joint coordinate values in T/B's jog screen, and　

confirm that the angle of J1 axis is what was set up at 1).
6) Record the changed origin data to the followings.

- Origin data label inside of the robot.

0.0,0.0

Standard tool
coordinates

Refer to
"4.4Coordinate
system description
of the robot",
"5.6Standard Tool
Coordinates".

MEXTL Real value 6 Initial values will be set for the hand tip (control point) and the
mechanical interface (hand mounting surface). The factory
default setting is set to the mechanical interface as the control
point. Change this value if a hand is installed and the control
point needs to be changed to the hand tip.
 (This will allow posture control at the hand tip for XYZ or tool jog
operation.)
(X, Y, Z, A, B, C) Unit: mm, ABC deg.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

Tool coordinate 1 to
16
Refer to
"M_Tool"

MEXTL1
 :
MEXTL16

Real value 6
each

If the M_Tool variable is substituted by 1 to 16, the tool
conversion data can be switched using this parameter value
each.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

Tool function
settings

TOOLSPEC Integer 1 Select whether to reset tool parameter MEXTL (all components
to 0) at the same time as when tool number 0 is selected.
0: Reset
1: Not reset
Supported with controller software version A4 or later.

0 (Reset)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

+X(J1=0)
+X'(J1=0)

+Y

+Y'

O

+ -

J1OFFSET
 Movement parameter 5-493

5

5Functions set with parameters
Tool base
coordinates

Refer to
"4.4Coordinate
system description
of the robot",
"5.7About Standard
Base Coordinates"

MEXBS Real value 6 Sets the positional relationship between the base coordinate
system and the robot coordinate system. The factory default
setting is set so that the base coordinate system and the robot
coordinate system are identical.
This will be set when the coordinate system for the whole device
is changed. This parameter does not need to be changed very
often. This is set when the coordinate system for the whole
device is to be identical.
(X, Y, Z, A, B, C) Unit: mm, ABC deg.
Note) The value cannot be changed during program execution or

pausing.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

Standard base
coordinates

Refer to
"4.4Coordinate
system description
of the robot"

MEXBSNO Real value 1 Sets world coordinate system by specifying a base coordinate
number (base conversion).
Displays current settings, as well.
Description of set values:
0:Designates P_NBase (system's initial value). (Because

P_NBase = (0, 0, 0, 0, 0, 0), base conversion is cleared.)
1~8: Designates a set value for work coordinate systems 1

through 8 (parameters: WK1CORD through WK8CORD).
-1:Base conversion data is specified directly by a base

command or by a reference base coordinate parameter
MEXBS.
(Note: The set value "-1" is valid for read only.)

Note) The value cannot be changed during program execution or
pausing.

-1

Base coordinate
data for system

MEXSBS Real value 6 Sets the positional relationship between the world coordinate
system and the base coordinate system.
The world coordinate system and the base coordinate system
match at factory default.
This parameter is not changed by the Base command.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,0.0,
0.0, 0.0

Tool coordinate
data for system

MEXSTL Real value 6 Sets the initial values for the relationship between the hand tip
(control point) and the mechanical interface (hand mounting
surface).
This parameter is not changed by the Tool command or M_Tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,0.0,
0.0, 0.0

User area

Refer to
"5.8About user-
defined area"

Specify the user definition area (maximum of 32 area) and the action when the robot enters in
the area.
AREA*CS
* is 1 to 32

Integer 1 Specify the coordinate system of the user definition area *.
0: Base coordinate system (conventional compatibility)
1: Robot coordinate system

0

AREA*P1
* is 1 to 32

Real value 8 Designates position coordinates of the diagonal point 1 of the
user-defined area n and coordinates of posture data/additional
axes. Definitions are given, starting with the 1st element, to X, Y,
Z, A, B, C, L1, and L2 in the order listed.

<NOTES>
*Specify values in the coordinate system which was designated
by AREA*CS.
*If a posture check is not to be made, set A, B and C coordinates
to -360.
*If additional axes are used, specify elements L1 and L2.
*In regard to elements X, Y, Z, L1 and L2, defined area remains
unchanged if parameter interchange is made to AREA*P2.

(X,Y,Z,A,B,C,L1,L2)
= 0.0, 0.0, 0.0,
-360.0, -360.0,
-360.0, 0, 0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Item Details Unit

X, Y, Z
elements

Specify position coordinates of the
diagonal point 1.

mm

A, B, C
elements

Specify posture area. deg

L1, L2
elements

Specify additional axis area. mm,
deg
-494 Movement parameter

 5Functions set with parameters
User area AREA*P2
* is 1 to 32

Real value 8 Designates position coordinates of the diagonal point 2 of the
user-defined area * and coordinates of posture data/additional
axes. Definitions are given, starting with the 1st element, to X, Y,
Z, A, B, C, L1, and L2 in the order listed.

<NOTES>
*Specify values in the coordinate system which was designated
by AREA*CS.
*If a posture check is not to be made, set A, B and C coordinates
to +360.
*If additional axes are used, specify elements L1 and L2.
*In regard to elements X, Y, Z, L1 and L2, defined area remains
unchanged if parameter interchange is made to AREA*P1.

(X,Y,Z,A,B,C,L1,L2)
= 0.0, 0.0, 0.0,
-360.0, -360.0,
-360.0, 0, 0

AREA*ME
* is 1 to 32

Integer 1 Designate the mechanism No. for which the user-defined area*
is to be validated.
The mechanism No. is 1 to 3, but normally 1 is set.
0: Invalid (Don't do the area check)
1: Mechanism 1 (usually set up)
2: Mechanism 2
3: Mechanism 3

0

AREA*AT
* is 1 to 32

Integer
1Outside of the

area

Specify desired behavior when the robot enters the user-defined
area.
0: Invalid (This function will be invalid)
1: In-zone signal output (The dedicated output and the status
variable output)
2: Error output.
<Details of the setting>

<NOTES>
If error output is opted for, a check is performed only in the
position area, ignoring the posture area and additional axis area.

0(Invalid)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Item Details Unit

X, Y, Z
elements

Specify position coordinates of the
diagonal point 2.

mm

A, B, C
elements

Specify posture area. deg

L1, L2
elements

Specify additional axis area. mm,
deg

*1: Set up the signal number of the dedicated I/O by USRAREA
*2: System status variable (M_Uar32, M_Uar)

Setting Inside of the area Outside of the area

Signal
output

The dedicated output
signal ON (*1)

The dedicated output
signal OFF

Turn on the
correspondence bit of
the status variable. (*2)

Turn off the
correspondence bit of
the status variable.

Error
output

The stop by the error
output (H2090 error
occurrence)

-

 Movement parameter 5-495

5

5Functions set with parameters
Free plane limit

Refer to
"5.9Free plane
limit"

This is the overrun limit set on a free plane.
Create a plane with three coordinate points, and set the area that does not include the origin as
the outside-movement area. Up to eight limits can be set using the following three types of
parameters.
SFC*P
* is 1 to 8

Real value 9 Designate three points for creating the plane.
X1,Y1,Z1:Origin position in the plane
X2,Y2,Z2:Position on the X-axis in the plane
X3,Y3,Z3:Position in the positive Y direction of the X-Y plane in
the plane

(X1,Y1,Z1,
X2,Y2,Z2,
X3,Y3,Z3)=0.0,0.0,0
.0,0.0,0.0,0.0,0.0,0.
0,0.0

SFC*ME
* is 1 to 8

Integer 1 Designate the mechanism No. for which the free plane limit is to
be validated.
The mechanism No. is 1 to 3, but normally 1 is set.

0

SFC*AT
* is 1 to 8

Integer 1 Designate the valid/Invalid of the set free plane limit.
 0:Invalid
 1: Valid (The operable area is the robot coordinate origin side.)
-1: Valid (The operable area is the side where the robot

coordinate origin does not exist.)

0(Invalid)

Cylinder limit

*Available robot

Robot:
RH-3FRHR series

Movement can be limited in the cylinder area centering on the J1 axis.
Set the radius centering on the J1 axis as the parameter
MECAR Real value 2 Constitution of the parameter : (The radius, J2 axis limitation

angle)
Set the radius as the 1st element. Unit: mm(Valid to two digits
decimal)

If the radius is 0, this function does not function.
If the radius is minus value or the distance can not arrive, the
error occurs at inputting the value.

The cylinder limit makes the limitation of J2 axis operating area
The limitation angle of the J2 axis is calculated automatically and
sets as the 2nd element in the absolute value. (read only, can
not change)
* As compared with the Joint movement range parameter

(MEJAR), limitation of operation is performed in the smaller
one.

Notes) This function is limited to RH-3FRHR series.

0, 0

Safe point position JSAFE Real value 8 Specifies the safe point position. Robot moves to the safe point
position if the robot program executes Mov P_Safe instruction or
receives input of the SAFEPOS signal, which is an external
signal.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

It varies with models.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Radius
(Set as the
1st element)

J1 axis

J2 axis

 Cylinder area
 (Upper face figure)

J2 axis limitation angle
(Sets as the 2nd element
automatically)

 Shaft
-496 Movement parameter

 5Functions set with parameters
Align type selection ALIGNTYP Integer 1 Specifies how to find the hand posture used for the hand
alignment movement and the Align function. The robot performs
the hand alignment movement toward its hand posture. The
Align function returns the XYZ coordinate values set for the hand
alignment.
 0: Normal

For each of the A, B, and C components of the XYZ
coordinate posture, find the closest XYZ postures (0 degree,
+/-90 degrees, and +/-180 degrees).
Specify this method for the RV-type robot.

1: Cylindrical
Find the position whose posture axis (C) is changed along
the straight line connecting the origin ((x, y)=(0, 0)) and the
control point.
When the workpiece is arranged cylindrically for the RH-type
robot, this method may be useful.
Do not specify this method for the RV-type robot.

2 or later: Reserved

0

Origin setting
completion status

MEINST Integer 1 Indicates the origin setting completion status.
By setting the origin, this parameter is automatically set.

0

Pulse number for
the origin setting

MEINSZ Integer 8 Sets the number of pulses at 0 position for the origin setting.
By setting the origin, this parameter is automatically set.

0,0,0,0,0,0,0,0

Pulse position
within one
revolution for the
origin setting

MEOFFZ Integer 8 Sets the pulse position within one revolution at 0 position for the
origin setting.
By setting the origin, this parameter is automatically set.

0,0,0,0,0,0,0,0

Check data for the
origin setting

MEINSD Integer 1 Sets the check data for MEISZ.
By setting the origin, this parameter is automatically set.

0

Mechanical stopper
origin

MORG Real value 8 Designate the mechanical stopper origin.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

It varies with models.

User-designated
origin

USERORG Real value 8 Designate the user-designated origin position. This normally
does not need to be set.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

It varies with models.

User origin setting
method

UORGSPEC Integer 1 Set the user origin setting method. Setting the high accuracy
method will perform compensation considering sagging due to
the gravity applied to the robot when the user origin setting is
used.
0: Normal
1: High accuracy
For details on this parameter, refer to the "RV-FR Series Robot
Arm Setup and Maintenance".
*This parameter is available for robot controllers with version C2j
or later.

0

Select the function
of singular point
adjacent alarm
Refer to "5.17About
the singular point
adjacent alarm"

MESNGLSW Integer 1 Designate the valid/invalid of the singular point adjacent alarm.
(Invalid/Valid=0/1)
When this parameter is set up "VALID", this warning sound is
buzzing even if parameter: BZR (buzzer ON/OFF) is set up
"OFF".

1(Valid)

Jog setting JOGJSP Real value 3 Designate the joint jog and step operation speed.
(Inching H, inching L, maximum override.)
Inching H: Feed amount when jog speed is set to High Unit: deg.
Inching L: Feed amount when jog speed is set to Low Unit: deg.
Maximum override: Operates at OP override x maximum
override.

Setting value for
each mechanism

JOGPSP Real value 3 Designate the XYZ jog and step operation speed.
(Inching H, inching L, maximum override.)
Inching H: Feed amount when jog speed is set to High
Unit: deg.
Inching L: Feed amount when jog speed is set to Low
Unit: deg.
Maximum override: Operates at OP override x maximum
override.
Operation exceeding the maximum speed 250 mm/s cannot be
performed.

Setting value for
each mechanism

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Movement parameter 5-497

5

5Functions set with parameters
Jog speed limit
value

JOGSPMX Real value 1 Limit the robot movement speed during the teach mode.
Unit: mm/s
Even if a value larger than 250 is set, the maximum value will be
limited to 250.

250.0

Work coordinates WKnCORD
"n" is 1 to 8

Real value 6 The work coordinates for work jog operation
(X,Y,Z,A,B,C) Unit: mm or degree

It is used as standard coordinates and work coordinate data in
the work jog. It is also used as the control point in the Ex-T
control (Ex-T coordinates).
Refer to Page 764, "7.3 Ex-T control" for Ex-T control.
When using it as work coordinate data, the valid axial element
differ depending on the robot type.
Refer to Page 530, "5.7 About Standard Base Coordinates".
The work coordinates defined by operation of T/B are set.
However, inputting the coordinate value into this parameter can
also define work coordinates. In this case, each coordinate value
of the three teaching points for defining the work coordinates is
cleared by 0. (Parameter: WKnWO, WKnWX, WKnWY ("n" is 1-
8))

Note) To manage easily, you should teach work coordinates in
the condition that not convert the base coordinates. (Base
coordinates and the world coordinate are in
agreement.)Especially, it is necessary when defining two
or more work coordinates.

(0.00, 0.00, 0.00,
0.00, 0.00, 0.00)

WKnWO
"n" is 1 to 8

Real value 3 Set the position of the work coordinates origin as a teaching
position of work coordinates. (Correspond to "WO" of the
teaching operation by T/B. Refer to above figure)
(X, Y, Z) Unit: mm
Notes) The work coordinates are not defined by merely inputting

this coordinate value. Calculate the work coordinates by
performing [DEFINE] on the TB work coordinate setting
screen or by performing [Write] on the RT ToolBox3 work
coordinate parameter screen.

(0.00, 0.00, 0.00)

WKnWX
"n" is 1 to 8

Real value 3 Set the position of "+X" axis of work coordinates as a teaching
position of work coordinates. (Correspond to "WX" of the
teaching operation by T/B. Refer to above figure)
(X, Y, Z) Unit: mm
Notes) The work coordinates are not defined by merely inputting

this coordinate value. Calculate the work coordinates by
performing [DEFINE] on the TB work coordinate setting
screen or by performing [Write] on the RT ToolBox3 work
coordinate parameter screen.

(0.00, 0.00, 0.00)

WKnWY
"n" is 1 to 8

Real value 3 Set the position at the side of "+Y" axis on the X-Y plane of work
coordinates. (Correspond to "WY" of the teaching operation by
T/B. Refer to above figure)
(X, Y, Z) Unit: mm
Notes) The work coordinates are not defined by merely inputting

this coordinate value. Calculate the work coordinates by
performing [DEFINE] on the TB work coordinate setting
screen or by performing [Write] on the RT ToolBox3 work
coordinate parameter screen.

(0.00, 0.00, 0.00)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

+Zw

+Xw
+Yw

+Z

+Y

+X

Base coordinates

Work coordinates
WKnCORD

Teaching point: WO
WKnWO

Work

Teaching point: WX
WKnWX

Teaching point: WY
WKnWY
-498 Movement parameter

 5Functions set with parameters
WORK jog
operation mode

WKnJOGMD
"n" is 1 to 8

Integer 1 The operation mode in WORK jog operations is specified for
each work coordinate.
 0: WORK jog (The operation of A, B, and C elements is rotation

around the axis parallel to the X, Y, and Z axes of the work
coordinates. The control point position does not change.)

 1: Ex-T jog (The operation of A, B, and C elements is rotation
around the X, Y, and Z axes of the work coordinates with the
control point moving.

0

Selected work
coordinate number

WKJOGNO Integer 1 Sets the selected work coordinate number.
By changing the work coordinates, the parameter is
automatically set.

0

Automatic return
setting after jog feed
at pause

Refer to
"5.10Automatic
return setting after
jog feed at pause"

RETPATH Integer 1 While running a program, if the program is paused by a stop and
then the robot is moved by a jog feed for instance, at the time of
restart, this setting makes the robot return to the position at
which the program was halted before continuing. If this function
is disabled, movement instructions will be carried out from the
current position until the next point. The robot does not return to
the position where the program was halted.
 0: Invalid.
 1: Return by JOINT interpolation.
 2: Return by XYZ interpolation.
Note) When returning by XYZ interpolation, carry out shorter

circuit movement by 3 axis XYZ interpolation.
Note) In the circle interpolation (Mvc, Mvr, Mvr2, Mvr3)

command, this function is valid for H4 or later. Moreover,
in the circle interpolation command and the Mva
command, even if set up with 0, the operation is same as
1.

1

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Movement parameter 5-499

5

5Functions set with parameters
The gravity
direction

* RV-FR series
(excluding RV-
35FR/50FR/80FR
series), RV-
8CRL, RV-5AS
only

MEGDIR Real value 4 This parameter specifies the direction and magnitude of
gravitational acceleration that acts on the robot according to the
installation posture for the X, Y, and Z axes of the robot
coordinate system, respectively (unit: m/second2).
There are four elements: installation posture, gravitational
acceleration in the X axis direction, gravitational acceleration in
the Y axis direction, and then gravitational acceleration in the Z
axis direction, in this order from the left.

The example of the setting of gravity acceleration is shown
below.
Example: If the robot is tilted 30 degrees forward (see the figure
below):
The direction gravity acceleration of X axis (Xg) = 9.8 x sin(30
degrees) = 4.9 .
The direction gravity acceleration of the Z axis (Zg) = 9.8 x
cos(30 degrees) = 8.5 .
Note that the value is set to -8.5 because the direction is
opposite to the Z axis of the robot coordinate system.
The direction gravity acceleration of the Y axis (Yg) = 0.0
Therefore, the set value is (3.0, 4.9, 0.0, and -8.5)

0.0, 0.0, 0.0, 0.0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Installation
posture

Setting value (Installation posture,
gravitational acceleration in the X axis

direction, gravitational acceleration in the Y
axis direction, and then gravitational
acceleration in the Z axis direction)

On floor (0.0, 0.0, 0.0, 0.0)
Against
wallNote1)

Note1) The RV-5AS is not available for wall mounting.

(1.0, 0.0, 0.0, 0.0)

HangingNote2)

Note2) In RH-3FRHR series, the current setting of first element
(Installation posture; 0.0) should not be changed.

(2.0, 0.0, 0.0, 0.0)

Optional
postureNote3)

Note3) "***" indicates the numerical value
Refer to the lower example about the set value of the
optional postures.

(3.0, ***, ***, ***)
-500 Movement parameter

 5Functions set with parameters
Hand initial state

Refer to
"5.13About default
hand status"

HANDINIT Integer 8 Set the pneumatic hand I/F output for when the power is turned
ON.
This parameter specifies the initial value when turning ON the
power to the dedicated hand signals (900’S) at the robot's tip.
To set the initial status at power ON when controlling the hand
using general-purpose I/Os (other than 900’S) (specifying a
signal other than one in 900’S by the HANDTYPE parameter),
do not use this HANDINIT parameter, but use the ORS*
parameter.
The value set by the ORS* parameter becomes the initial value
of signals at power ON.

1,0,1,0,1,0,1,0

Hand type

Refer to
"5.12About the
hand type"

HANDTYPE Character
string 8

Set the single/double solenoid hand type and output signal No.
(D: double solenoid, S: single solenoid).
Set the signal No. after the hand type.
When D900 is set, the signal No. 900 and 901 will be output.
In the case of D (double solenoid), please configure the setting
so that the signals do not overlap

CR800-D/R/Q:
D900,D902,D904,D
906,,,,
CR860-D/R/Q:
D764,D766,D768,D
770,,,,

Hand I/O type HIOTYPE Integer 1 Set the electric specifications (sink type/source type) of the built-
in air hand interface.
Please set the value according to the specification of your
solenoid valve, etc.
-1: Not set, 0: Source type, 1: Sink type

-1

Hand and
workpiece
conditions
(Used in optimum
acceleration/
deceleration and
impact detection)

Refer to "5.16Hand
and Workpiece
Conditions
(optimum
acceleration/
deceleration
settings)"

Set the hand conditions and work conditions for when Oadl ON is set with the program.
Up to eight conditions can be set. The condition combination is selected with the LoadSet
command.
Note) You should set up the hand and work-piece conditions correctly. If a setting is performed

in such a way that it falls below the mounted load actually, the life span of the
mechanism elements used in the robot may be shortened.

HNDDAT0 Real value 7 Set the initial condition of the hand. (Designate with the tool
coordinate system.)
Immediately after power ON, this setting value is used.
To use the impact detection function during jog operation, set the
actual hand condition before using. If it is not set, erroneous
detection may occur.

(Weight, size X, size Y, Size Z, center of gravity X, center of
gravity Y, center of gravity Z) Unit: Kg, mm

Setting value for
each mechanism

HNDDAT*
* is 1 to 8

Real value 7 Set the initial condition of the hand. (Designate with the tool
coordinate system.)
(Weight, size X, size Y, Size Z, center of gravity X, center of
gravity Y, center of gravity Z) Unit: Kg, mm

Standard load
,0.0,0.0,0.0,0.0,0.0,
0.0

WRKDAT0 Real value 7 Set the work conditions. (Designate with the tool coordinate
system.)
Immediately after power ON, this setting value is used.
(Weight, size X, size Y, Size Z, center of gravity X, center of
gravity Y, center of gravity Z) Unit: Kg, mm

0.0,0.0,0.0,0.0,0.0,0.0,
0.0

WRKDAT*
* is 1 to 8

Real value 7 Set the work conditions. (Designate with the tool coordinate
system.)
(Weight, size X, size Y, Size Z, center of gravity X, center of
gravity Y, center of gravity Z) Unit: Kg, mm

0.0,0.0,0.0,0.0,0.0,0
.0,0.0

HNDHOLD*
* is 1 to 8

Integer 2 Set whether to grasp or not grasp the workpiece when HOpen
(or HClose) is executed.
(Setting for Open, setting for Close)
(No grasp/grasp = 0/1)

0,1

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Movement parameter 5-501

5

5Functions set with parameters
Hand condition set-
ting check

HNDCHK Integer 1 Enable or disable whether to notify that the HNDDAT parameter
is not set.
0: Disabled
1: Enabled
When this parameter is set to "1" (enabled), error C0330 will
occur upon power on of the controller if all the values of the hand
condition parameter HNDDAT* (* = 0 to 8) are not set (not
changed from the initial values).
When this parameter is set to "0" (disabled), the above settings
are not checked, and error C0330 does not occur even if the
hand conditions are not set.
This parameter is available with controller software version C2d
or later.

1

Maximum
acceleration/
deceleration setting

Refer to "5.16Hand
and Workpiece
Conditions
(optimum
acceleration/
deceleration
settings)"

ACCMODE Integer 1 Sets the initial value and enables/disables the optimum
acceleration/deceleration mode. (Invalid/Valid=0/1)

1

Optimum
acceleration/
deceleration
adjustment rate

JADL Real value 8 Set the initial value (value at power ON) of the acceleration/deceleration
adjustment rate (%) during optimum acceleration/deceleration. This is
the rate applied to the acceleration/deceleration speed calculated by the
optimum acceleration/deceleration control. Highspeed operation can be
performed by setting this value to a larger value. However, if the robot is
operated continuously for a certain period of time at high speed, an
overload error, overheat error, or excessive regenerative error may
occur. If an error occurs, lower the setting value.
The initial value is set so as to prevent an overload error, overheat error,
or excessive regenerative error from occurring.
Setting a higher value may also increase the power consumption.
The value is applied to both the deceleration and acceleration speeds.

* Overload error
This error occurs when the load rate reaches a certain value to prevent
the motor from being damaged by heat from high-speed rotation.
* Overheat error
This error occurs when the temperature reaches a certain value to
prevent the position detector from being damaged by heat from high-
speed rotation.
* Excessive regenerative error
This error occurs when the regeneration level reaches a certain level to
prevent the regenerative resistance from being damaged by heat during
regeneration due to deceleration from high-speed rotation.

Setting value for
each mechanism

Acceleration-and-
deceleration
optimization
pattern selection
* RH-FRH series

only (excluding
RH-CRH/RH-
3FRHR series)

MAPMODE Integer 1 For the RH-FRH series (excluding RH-3FRHR series), select the
acceleration-and-deceleration optimization pattern corresponding to the
height of the shaft (J3 axis) from the standard acceleration-and-
deceleration pattern or the high-speed acceleration-and-deceleration
pattern.
0: Standard acceleration-and-deceleration rate (initial value), 1 : High
acceleration-and-deceleration rate.

*Initial setting is the standard acceleration-and-deceleration rate,
and vibration (remains vibration to include) is suppressed to the
minimum. When this vibration does not affect the robot's
operations, the high acceleration-and-deceleration rate can be
chosen, and the robot can be operated at high speed. Refer to
the separate "standard specification" for details of the
acceleration-and-deceleration rate.

0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-502 Movement parameter

 5Functions set with parameters
Optimum speed
control adjustment
coefficient

OPTOVC Real value 1 Set the adjustment coefficient for the optimum speed control.
Setting range: 0.30 to 1.00

The optimum speed control is a function to use the Spd command to
designate the optimum speed for the linear and the circular arc
interpolation movements that do not specify the speed by themselves.
Increasing the setting value enables the robot to operate in high speed.
However, when the operation posture of the robot is largely changed
near the position such as a singular point, a speed overlimit error occurs
easily.
In such cases, reducing the setting value suppresses the occurrence of
the speed overlimit error but lowers the operation speed of the robot.

* Speed overlimit error
The error number is H213n. (The letter "n" indicates the axis number 1
to 8.)
This error occurs when the setting value of the speed command to the
motor exceeds the permissible value.

It varies with
models.

Speed optimization
interpolation
functional switch

*Available robot
RH-3FRHR series

SPDOPT Integer 1 Set enable/disable of speed optimization interpolation function
just after the power supply turned on
 1: Enable
 (Enable the speed optimization interpolation function at the
power on)
 0: Disable
 (Disable the speed optimization interpolation function at the
power on)
If the value of this parameter is 1 or 0, it is possible to switch
between enabling and disabling the speed adjustment
interpolation function using the SpdOpt instruction in a program.
Note) This function is supported by limited models of RH-3FRHR
series.

RH-3FRHR series is
1
(Other model are 0)

Impact Detection

Note that this
parameter cannot
be used together
with the multi-
mechanism control
function.

COL Integer 3 Define whether the impact detection function can/cannot be
used, and whether it is enabled/disabled immediately after
power ON.
Element 1: The impact detection function can (1)/cannot (0) be

used.
Element 2: Enable (1)/disable (0) as the initial state at automatic

operation.
Element 3: Enable (1)/disable (0)/NOERR mode (2) during jog

operation
The NOERR mode does not issue an error even if impact is
detected. It only turns off the servo. Use the NOERR mode if it is
difficult to operate because of frequently occurred errors when
an impact is detected. The specification depends on the setting
for jog operation (element 3) in cases other than program
operation (including position jump and step feed).

RH-3FRH/6FRH/
12FRH/20FRH
series:
1,0,1
RV-FR series:
0,0,1
RH-3FRHR series:
1,1,1

Detection level COLLVL Integer 8 Set the initial value of the detection level (sensitivity) of each
joint axis during automatic operation.
Setting range: 1 to 500, unit: %

The setting varies
depending on the
model.

Detection level
during jog
operation

COLLVLJG Real value 8 Set the detection level (sensitivity) during jog operation
(including pause status) for each joint axis. Unit: %
Decrease the value to increase the detection level (sensitivity).
Increase the value if an impact detection error occurs even
though no impact is detected during jog operation.
Setting range: 1 to 500, unit: %

The setting varies
depending on the
model.

Servo status after
collision detection

COLSERVO Integer 1 Specifies the servo status after the collision detection. For this
function, using the impact detection in the NOERR mode is
required.

0: Servo off
1: Servo on held

0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Movement parameter 5-503

5

5Functions set with parameters
Selection of wrist
rotation angle (axis
A) coordinate
system

RCD Integer 1 Switch the control and display method of the wrist rotation angle
(axis A of the XYZ coordinates system) of a vertical 5-axis type
robot. This parameter is invalid for robots of other types.
2: General angle method

Control axis A such that the hand's posture is maintained if
the value of axis A is the same before and after an operation.
Note that there are cases where the hand's posture cannot be
maintained depending on the attitude of the wrist (axis B of
the XYZ coordinates system). Under normal circumstances,
use this method without changing the setting at shipment from
the factory.

2 (general angle
method)

Warm-up operation
mode setting

WUPENA Integer 1 Designate the valid/invalid of the Warm-up operation mode.
0:Invalid
1: Valid

Note: If a value other than the above is set, everything will be
disabled.

Note: For multiple mechanisms, this mode is set for each
mechanism.

0(Invalid)

Warm-up operation
mode target axis

WUPAXIS Integer 1 Specify the joint axis that will be the target of control in the warm-
up operation mode by selecting bit ON or OFF in hexadecimal
(J1, J2, from the lower bits).

Bit ON: Target axis
Bit OFF: Other than target axis

A joint axis that will generate an excessive difference error when
operated at low temperature will be a target axis.
Note: If the bit of a non-existent axis is set to ON, it will not be a

target axis.
Note: If there is no target axis, the warm-up operation mode will

be disabled.
Note: For multiple mechanisms, this mode is set for each

mechanism.

0

Warm-up operation
mode control time

WUPTIME Real value 2 Specify the time to be used in the processing of warm-up
operation mode. (Valid time, resume time) Unit: min.

Valid time: Specify the time during which the robot is operated in
the warm-up operation status and at a reduced
speed. (Setting range: 0 to 60)

Resume time: Specify the time until the warm-up operation
status is set again after it has been canceled if a
target axis continues to stop. (Setting range: 1 to
1440)

Note: If a value outside the setting range is specified, it is
processed as if the closest value in the setting range is
specified.

Note: If the valid time is 0 min, the warm-up operation mode will
be disabled.

Note: For multiple mechanisms, this mode is set for each
mechanism.

1, 60

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-504 Movement parameter

 5Functions set with parameters
Warm-up operation
override

WUPOVRD Integer 2 Perform settings pertaining to the speed in the warm-up
operation status.
(Initial value, ratio of value constant time) Unit: %

Initial value: Specify the initial value of an override (warm-up
operation override) to be applied to the operation
speed when in the warm-up operation status.
(Setting range: 50 to 100)

Ratio of value constant time: Specify the duration of time during
which the override to be applied to the operation
speed when in the warm-up operation status does
not change from the initial value, using the ratio to
the valid time. (Setting range: 0 to 50)

The correspondence between the values of warm-up operation
overrides and the setting values of various elements is shown in
the figure below.

Note: If a value outside the setting range is specified, it is
processed as if the closest value in the setting range is
specified.

Note: If the initial value of an override is 100%, the warm-up
operation mode will be disabled.

Note: For multiple mechanisms, this mode is set for each
mechanism.

70, 50

Functional setting
of compliance error

CMPERR Integer 1 Setting this parameter prevents errors 2710 through 2740 (errors
that occur if the position command generated in compliance
control is abnormal) from occurring.

1: Enable error generation
0: Disable error generation

The contents of applicable errors are as follows:
2710: The displacement from the original position command

is too large.
2720: Exceeded the joint limit of the compliance command
2730: Exceeded the speed of the compliance command
2740: Coordinate conversion error of the compliance

command

If these errors occur, compliance control is not functioning
normally. It is thus necessary to re-examine the teaching position
and the program content to correct the causes of these errors.
Change this parameter value to 0 (disable error generation) only
when you can determine that doing so does not cause any
operational problem even if the current operation is not
suspended by an error.

1 (Enable error
generation)

Current limit level
for Cmp Jnt

CMPJCLL Integer 1 Change the motor current limit level of each axis in the
compliance mode (Cmp Jnt instruction) of the joint coordinate
system.

Setting range: 1 (High) to 10 (Low).
While operation is performed in the compliance mode of the joint
coordinate system, if the Excessive error 1 (H096n) occurs,
increase the set value of this parameter to suppress the error.
(The set valve after the change will be applied from the next
execution of Cmp Jnt instruction.)

1

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

100%

Value constant time

Valid time of the warm-up operation status

Warm-up
operation override

Time during
which a target

axis is operating

Initial value
(First element)

Value constant time = Valid time x
Ratio of value constant time(Second element)
 Movement parameter 5-505

5

5Functions set with parameters
Optimization of
overload detection
level

OLTMX Integer 1 Set the upper limit of the ambient temperature for the robot’s
working environment.
The overload detection level for robot movement is optimized
based on this setting value. (Unit: °C)
Setting range: 0-40
Please refer to Page 576, "5.22 Optimizing the overload level"
for details of this parameter's function.

RH-3FRH/6FRH/
12FRH/20FRH: 40
RV-2FR series: 40
RV-4FR/7FR/13FR/
20FR series, RH-
3FRHR: 30

Motor overheat
warning

MOHW Specifies whether or not to warn before a motor overheat error
occurs.

0: Disable
1: Enable

1

Occurrence interval
of battery error

ITBATERR Integer 1 Specifies a time interval at which to generate a battery
exhaustion time error alarm
(in hours)

Setting range: 1 to 336
When a set value is less than 1, "1" is taken as being
specified; when a set value is greater than 336, "336" is taken
as being specified

24

Synchronize time
with PLC
(CR800-R/Q series
only)

TIMESYNC Integer 1 Choose whether to synchronize time of the robot controller and
the PLC.

(Synchronize/ Not synchronize = 1/0)

1

Definition of the
Wait command
function

PRSPEC Integer 1 Set the execution method of the Wait command.
0: Conditional command (two or more conditional expressions

can be written.)
1: Operation command (only one conditional expression can

be written.)

0

WthIf command
function

WTHFUNC Integer 1 Specifies a stop type of WthIf command.
0: stop type 1
1: stop type 2

Refer to a explanation of Def Act command about the stop type.

0

Specification of the
end conditions of
an operation
command when
Cnt command is
invalid

MVTERM Integer 1 Specifies the end conditions of an operation command when Cnt
command is invalid.

For the FR series (RV-2FR/2FRL and RH-3FRHR are excluded)
and RV-8CRL, the completion conditions for movement
instructions have been changed in order to achieve higher target
position attainability performance when Cnt is set to 0. The
operation time may become longer when a program created by
any model earlier than the F series (SD/SQ series) is used by
the FR series (RV-2FR/2FRL and RH-3FRHR are excluded) and
RV-8CRL as it is. When priority is given to the operation speed,
change this parameter and use the Fine P or Dly instruction,
etc., for positions that require positioning.

0: speed command output is completed
1: corresponds to Cnt 1
2: speed command generation is completed

0: FR series (RV-
2FR/2FRL and
RH-3FRHR are
excluded), and
RV-8CRL.

2: RV-2FR/2FRL,
RH-3FRHR, RH-
3/6CRH series

Safe point return
mode

ESCMODE Integer 1 Choose tool defining position or mechanical interface origin
position as a current position when returning the safe point.

0: set to TCP position (tool defining position)
1: set to mechanical interface origin position

0

Controller CPU
drive mode

DRVMODE Integer 1 Specifies whether the connection with a robot is required or not
when simulating by a software.

0: Normal mode
(Connection with robot is required.)

1: Robot servo separation mode
(Connection with robot is not required.)

0

Feedback gain
adjustment
coefficient

FBGAIN Integer 8 Adjusts the speed loop gain for each joint axis.
 Unit: [%]
 Setting range: 50 to 150

Setting a smaller value suppresses the motor oscillation or the
disturbance influence on driving units.
By setting a larger value, the trajectory accuracy or the settling
time will be improved, and yet the motor may oscillate. Increase
the value gradually while checking the condition.

100, 100, 100, 100,
100, 100, 100, 100

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-506 Movement parameter

 5Functions set with parameters
Fixation of gain PG1 Integer 1 Disables the active gain control and fixes the gain. Sets this
parameter when tracking accuracy is poor in tracking operation,
etc.
 Setting range: 0.00 to 120.00

Less than 1.0: Enables the active gain control.
1.0 to 120.0: Fixes the gain.

Normally, set to about 20. Reduces the setting value when the
vibration occurs. Increasing the setting value may cause
vibrations.

0.0

Servo simulation
function

SRVSIM Integer 1 Specifies enable/disable of the load factor simulation for the RT
ToolBox3 simulation.

0: Disable
1: Enable

1

Vision sensor
calibration data

VSCALBn
n=1 to 8

Integer 12 Stores the vision sensor calibration data defined in the 2D vision
calibration function of RT ToolBox3.
Corresponds to 8 calibration data of the calibration numbers n=1
to 8.

0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0

Setting value when
the MVA2
command
argument is
omitted

MVACNT1 Real value 4 Specifies the setting value when the MVA2 command argument
is omitted.

Element 1: Neighborhood distance 1 [mm]
Setting range: Real value more than or equal to -1/0

Element 2: Neighborhood distance 2 [mm]
Setting range: Real value more than or equal to -1/0
* When -1 is specified, the operation is the same
as Cnt1.

Element 3: Positioning distance [mm]
Setting range: Real value more than or equal to 0

Element 4: Settling time [sec]
Setting range: Real value more than or equal to 0

0, 0, 0.1, 0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Movement parameter 5-507

5

5Functions set with parameters
5.2 Signal parameter
These parameters set the items pertaining to signals.

Table 5-2:List Signal parameter

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Dedicated I/O
signal

For the parameters of the dedicated I/O signal, refer to Page
649, "6.3 Dedicated input/output".

Reads the
program number
from the numerical
input when the
start signal is
input.

PST Integer 1 To select a program from the normal external input signal, set
the numerical input signal (IODATA) to the program number,
establish the number with the program select signal (PRGSEL),
and start with the START signal. If this function is enabled, the
program select signal becomes unnecessary, and when the
START signal turns ON, the program number is read from the
numerical input signal (IODATA).
(Function invalid/Valid=0/1)

0(Invalid)

Stop input normal
close designation

INB Integer 1 Change the dedicated input (stop) between the normal open
and normal close.
(Normal open/Normal close = 0/1)
The input signal changed is shown below.
*The dedicated input signal: STOP, STOP2 *The dedicated stop
input signal for the controller: SKIP Refer to separate manual:
“Standard Specifications or Special Specifications” for details of
SKIP.

0(Normal open)

Robot error output ROBOTERR Integer 1 Set the error level that opens the robot error output terminal.
When shipped from the factory, this setting is set so that it will
open at any error level.
For example, if the warning level is ignored and either or both a
low level or high level error occurs, set 3 to open this output
terminal.

For details, refer to "Emergency stop input and output etc." in
the Instruction Manual "Controller setup, basic operation, and
maintenance".

7 (Open for any
error level)

CC-Link error
release
permission.
(* CR800-D series
only)

E7730 Integer 1 If the controller is used without connecting CC-Link even though
it is equipped with the CC-Link option, error 7730 is generated
and the controller becomes inoperable. This error cannot be
canceled under normal circumstances, but it becomes possible
to temporarily cancel the error by using this parameter.
(Enable temporary error cancellation/disable error cancellation =
1/0)

This parameter becomes valid immediately after the value is
changed by the T/B or Personal Computer support software. It is
not necessary to turn the power supply off and on again. Note,
however, that the value of this parameter returns to 0 again (it is
no longer possible to cancel the error) when the power supply is
turned off and on because changes of the parameter value are
not stored.

0 (disable error
cancellation)

Setting
Error Level

Warning Low High

0 - - -

1 - - Open

2 - Open -

3 - Open Open

4 Open - -

5 Open - Open

6 Open Open -

7 Open Open Open
-508 Signal parameter

 5Functions set with parameters
Output signal reset
pattern

Refer to
"5.14About the
output signal reset
pattern"

Set the operation to be taken when the general-purpose output signal for the Clr command or
dedicated input (OUTRESET) is reset. Signals are output in the pattern set here even when the
power is turned ON.
Set with a 32-bit unit for each signal using the following parameters.(OFF/ON/hold=0/1/*)
Note) A bit set to "* (maintain)" is turned off when the power is turned on.
ORST0 Character

string 4
Set the signal No. 0 to 31. 00000000,000000

00,00000000,0000
0000

ORST32
 :
ORST8016

Character
string 4

Set the signal No. 32 to 63.
 :
Set the signal No. 8016 to 8047
Note) Output signals 700 to 715 are system reserved areas and
cannot be set.
When the CR860-D/R/Q series is used, the output signals 764
to 771 are assigned to the hand output signals and must be set
in HANDINIT.

00000000,000000
00,00000000,0000
0000
 :

ORS10000
 :
ORS18160

Character
string 4

Set the signal No. 10000 to 10031.
 :
Set the signal No. 18160 to 18191.

00000000,000000
00,00000000,0000
0000
 :

Output reset at
reset

SLRSTIO Integer 1 Designate the function to carry out general-purpose output
signal reset when the program is reset.
(Invalid/Valid=0/1)

0(Invalid)

Multi CPU quantity
setting
(* CR800-R/Q
series only)

QMLTCPUN Integer 1 At the multi CPU system, set the number of CPU units with
which the standard base unit is equipped.

2

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Signal parameter 5-509

5

5Functions set with parameters
CPU buffer
memory periodical
communication
area setting
(* CR800-R series
only)

QMLTCPUn
n=1 to 4

Integer 4 At the multi CPU system, read the number of points transmitting
and receiving data by the CPU buffer memory periodical
communication area of the multi CPU No. 1 to 4 from the multi
CPU No. 1, and set it automatically. It is not necessary to
change the value.

First element: Size of the periodical communication area (K
word)

Range: 0 to 12
*The total size of all multi CPUs is 24K words at maximum.

Second element: No. of auto refresh points (word)
Range: 0 to 14335
The robot CPU does not support auto refresh, and therefore
the number of points for auto refresh should always be set to
0.

Third element: System reservation

Fourth element: Multi CPU synchronous start-up (1: Yes, 2: No)
Robot CPUs take some time to start up and therefore the
current setting of 1 (synchronous start-up) should not be
changed.

1,0,1,1

Multi CPU No. n
high-speed
communication
area setting
(* CR800-Q series
only)

At the multi CPU system, set the number of points performing
transmission and receipt between each CPU unit for the high
speed communication function between multi CPU nos. 1 to 4.
It is necessary to match the parameter settings for all CPUs. An
error will occur at the PLC CPU If the parameter settings do not
match, and therefore care should be taken to ensure that the
parameter settings for each CPU match.

First element: User free area size (k points)
Range: 1 to 14 (Max. *) * The max. value will differ based on
the number of multi CPUs as shown below.

Second element: No. of auto refresh points (points)
Range: 0 to 14335
The robot CPU does not support auto refresh, and therefore
the number of points for auto refresh should always be set to
0.

Third element: System area size (K points)
Range: 1 or 2

Fourth element: Multi CPU synchronous start-up (1: Yes, 2: No)
Robot CPUs take some time to start up and therefore the
current setting of 1 (synchronous start-up) should not be
changed.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

CPU Qty Setting Range

2 0 to 14K points

3 0 to 13K points

4 0 to 12K points
-510 Signal parameter

 5Functions set with parameters
Multi CPU input
offset
(* CR800-R series
only)

QMLTCPUS Integer 1 With the CR800-R series, set an offset to the input signal of the
robot in the multiple CPU system.

Specify an offset from HG0 in 1K word units, and read as an R/C
input from the specified CPU buffer memory. Set as required if
mixing other iQ Platform compatible CPUs (motion CPU or
NCCPU) and you wish to prevent the CPU buffer
memory used at each CPU from overlapping.
Setting range: -1 to 14 (integer value)

(-1: Not use / 0 to 14 K words)
(A) By setting to -1, the offset will be automatically fixed based

on the installed slot. (Compatible with previous versions
(N4a and prior).)

(B) By setting to 0 to 14, the input offset is set based on the
value.
* Refer to cases (A) and (B) in "5.2.1About multiple CPU

input offsets (CR800-R/Q series only)" on the following
pages.

Please note that by connecting multiple robots and setting this
parameter to the same value (anything other than -1), it is also
possible to input the same signal status from the PLC to multiple
robots almost simultaneously.
For the multi CPU system, refer to the manual of the RCPU
(MELSEC iQ-R CPU Module User's Manual (Application)).

-1

Multi CPU input
offset
(* CR800-Q series
only)

With the CR800-Q series, set an offset to the input signal of the
robot in the multiple CPU system.

Specify an offset from G10000 in 1K word units, and read as an
R/C input from the specified shared memory. Set as required if
mixing other iQ Platform compatible CPUs (motion CPU or
NCCPU) and you wish to prevent the shared memory used at
each CPU from overlapping.
Setting range: -1 to 14 (integer value)

(-1: Not use / 0 to 14 K words)
(A) By setting to -1, the offset will be automatically fixed based

on the installed slot. (Compatible with previous versions
(N4a and prior).)

(B) By setting to 0 to 14, the input offset is set based on the
value.
* Refer to cases (A) and (B) in "5.2.1About multiple CPU

input offsets (CR800-R/Q series only)" on the following
pages.

Please note that by connecting multiple robots and setting this
parameter to the same value (anything other than -1), it is also
possible to input the same signal status from the PLC to multiple
robots almost simultaneously.
Refer to the QCPU User’s Manual (Multi CPU System Edition)
SH(Name)-080475 for details on the multi CPU system.

Processing mode
of the signal output
Note1)

 SYNCIO Integer 1 Specify the processing mode of signal output by M_Out/
M_Outb/M_Out8/M_Outw/M_Out16/M_Out32/M_Dout and Def
Io.
Compatibility mode/High-speed mode 1/High-speed mode 2

Compatibility mode: Process by compatibility conventional,
without accelerating the renewal cycle of
the signal.

High-speed mode 1: Accelerate the signal output of M_Out/
M_Outb/M_Out8/M_Outw/M_Out16/
M_Out32.

High-speed mode 2: In addition to the high-speed mode 1,
also accelerate the signal output in
M_Dout.

2: High-speed
mode 2

Dedicated input
filter

IOFIL Integer 1 Prevents erroneous input due to noise, etc. in the dedicated
input signals.

0: Disable filter
1: Enable filter

0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Signal parameter 5-511

5

5Functions set with parameters
Note1) This parameter makes speedy processing of the external output signal by system status variable M_Out etc.
In the program example 1 shown in the following, output signal processing of Steps 1 and 4 gets speedy.
<Program example 1>

1 M_Out(9)=1 'Turn on the output signal 9.
2 *ack_check '
3 If M_In(7)=0 Then *ack_check ' Wait until the input signal 7 turns on (interlock).
4 M_Out(9)=0 'Turn off the output signal 9.
5 End

* Reference value of speed improvement:
In the program example above, processing time is reduced about 80%.
For the CC-Link, PROFIBUS, and parallel I/O interfaces (cards) of the CR800-D series, speed improvement is effective when
the external signal output instruction is described in multiple lines. In the following program example 2, the processing time is
reduced about 75%.
<Program example 2>

1 M_Out(9)=1 'Turn on the output signal 9.
2 M_Out8(10)=&H1F '&H1F is outputted to 8-bit width from the output signal 10.
3 M_Out16(18)=&H3FFF '&H3FFF is outputted to 16-bit width from the output signal 18.
4 M_Out32(33)=&H7FFFFFFF '&H7FFFFFFF is outputted to 32-bit width from the output signal 33.
5 End

Always make interlock of signal to take synchronization. Failure to observe this could lead to cause
of malfunction by the signal transmitted incorrectly.
In addition, the "Conventional compatibility mode" is prepared for if needing the same processing
time as the conventional. The initial value of SD series is Conventional compatibility mode. However,
sure under the interlocking of the signal, because of to performance improvement, recommends use
in the High-speed mode

 CAUTION
-512 Signal parameter

 5Functions set with parameters
5.2.1 About multiple CPU input offsets (CR800-R/Q series only)
(1) Case (A)

When using no offset for input (Parameter: when QMLTCPUS = -1)

Table 5-3:CPU buffer memory and robot I/O signal compatibility

The following figure shows the memory map for the CR800-R series. For the CR800-Q series, refer to the
Table 5-3 and replace the device numbers with the corresponding device numbers in the figure.

Fig.5-1:CPU buffer memory and robot I/O signal compatibility (Case (A))

PLC (word device)
Robot (bit device)

Controller CR800-R series CR800-R series

Output

U3E0\HG0 to
U3E0\HG511

U3E0\G10000 to
U3E0\G10511

Input

Robot CPU No.1 / 10000 to 18191

U3E0\HG512 to
U3E0\HG1023

U3E0\G10512 to
U3E0\G11023 Robot CPU No.2 / 10000 to 18191

U3E0\HG1024 to
U3E0\HG1535

U3E0\G11024 to
U3E0\G11535 Robot CPU No.3 / 10000 to 18191

Input

U3E1\HG0 to
U3E1\HG511

U3E1\G10000 to
U3E1\G10511

Output

Robot CPU No.1 / 10000 to 18191

U3E2\HG0 to
U3E2\HG511

U3E2\G10000 to
U3E2\G10511 Robot CPU No.2 / 10000 to 18191

U3E3\HG0 to
U3E3\HG511

U3E3\G10000 to
U3E3\G10511 Robot CPU No.3 / 10000 to 18191

PLC
output
robot (No.1)
0.5kwords

Robot
input

(Not used)

Robot CPU
(No.1)

Robot CPU
(No.2)

Robot CPU
(No.3)Robot I/O no.

(bit units)
Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

10000

18191

10000

18191

10000

18191

CPU buffer memory
(word units)

U3E0\HG0

U3E0\HG511

U3E0\HG512

U3E0\HG1023

U3E0\HG1024

U3E0\HG1535

10000

18191

U3E1\HG0

U3E1\HG511

10000

18191

U3E2\HG0

U3E2\HG511

10000

18191

U3E3\HG0

U3E3\HG511

PLC

PLC
output
robot (No.2)
0.5kwords
PLC
output
robot (No.3)
0.5kwords

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)Robot
input

Robot
input

Robot CPU
(No.1)PLC

PLC
output
robot (No.1)
0.5kwords

(Not used) (Not used)

Robot
output

Robot I/O no.
(bit units)(word units)

(word units)

(word units)

PLC

PLC

Robot CPU
(No.2)

Robot CPU
(No.3)

(Not used)

(Not used)

(Not used)

(Not used)

Robot
output

Robot
output

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

PLC
output
robot (No.2)
0.5kwords

PLC
output
robot (No.3)
0.5kwords

CPU buffer memory

CPU buffer memory

CPU buffer memory
 Signal parameter 5-513

5

5Functions set with parameters
(2) Case (B)
When using an offset for input (Parameter: when QMLTCPUS = 0 to 14)

(*1) = (Robot CPU No.1 QMLTCPUS) * 1024
(*2) = (Robot CPU No.2 QMLTCPUS) * 1024
(*3) = (Robot CPU No.3 QMLTCPUS) * 1024

Table 5-4:CPU buffer memory and robot I/O signal compatibility

PLC (word device)
Robot (bit device)

Controller CR800-R series CR800-R series

Output

U3E0\HG0+(*1) to
U3E0\HG511+(*1)

U3E0\G10000+(*1) to
U3E0\G10511+(*1)

Input

Robot CPU No.1 / 10000 to 18191

U3E0\HG0+(*2) to
U3E0\HG511+(*2)

U3E0\G10512+(*2) to
U3E0\G11023+(*2) Robot CPU No.2 / 10000 to 18191

U3E0\HG0+(*3) to
U3E0\HG511+(*3)

U3E0\G11024+(*3) to
U3E0\G11535+(*3) Robot CPU No.3 / 10000 to 18191

Input

U3E1\HG0 to
U3E1\HG511

U3E1\G10000 to
U3E1\G10511

Output

Robot CPU No.1 / 10000 to 18191

U3E2\HG0 to
U3E2\HG511

U3E2\G10000 to
U3E2\G10511 Robot CPU No.2 / 10000 to 18191

U3E3\HG0 to
U3E3\HG511

U3E3\G10000 to
U3E3\G10511 Robot CPU No.3 / 10000 to 18191
-514 Signal parameter

 5Functions set with parameters
The following figure shows the memory map for the CR800-R series. For the CR800-Q series, refer to the
Table 5-4 and replace the device numbers with the corresponding device numbers in the figure.

Fig.5-2:CPU buffer memory and robot I/O signal compatibility (Case (B))

10000
～

18191

U3E1\HG0
～

U3E1\HG511

10000
～

18191

U3E2\HG0
～

U3E2\HG511

10000
～

18191

U3E3\HG0
～

U3E3\HG511

10000
～

18191

U3E0\HG0+(*1)
～

U3E0\HG511 +(*1)

10000
～

18191

U3E0\HG0+(*2)
～

U3E0\HG511+(*2)

10000
～

18191

U3E0\HG0+(*3)
～

U3E0\HG511 +(*3)

CPU buffer memory
(word units)

CPU buffer memory
(word units)

CPU buffer memory
(word units)

CPU buffer memory
(word units)

CPU buffer memory
(word units)

CPU buffer memory
(word units)

PLC

PLC

PLC

PLC

PLC

PLC

PLC
output
robot (No.1)
0.5kwords

PLC
output
robot (No.2)
0.5kwords

PLC
output
robot (No.3)
0.5kwords

Robot
input

Robot
input

Robot
input

Robot
output

Robot
output

Robot
output

PLC
input
robot (No.1)
0.5kwords

PLC
input
robot (No.2)
0.5kwords

PLC
input
robot (No.3)
0.5kwords

(Not used) (Not used)

(Not used) (Not used)

(Not used) (Not used)

(Not used) (Not used)

(Not used)

(Not used) (Not used)

(Not used)

Robot CPU
(No.1)

Robot CPU
(No.2)

Robot CPU
(No.3)

Robot CPU
(No.1)

Robot CPU
(No.2)

Robot CPU
(No.3)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)
 Signal parameter 5-515

5

5Functions set with parameters
5.3 Operation parameter
These parameters set the items pertaining to the operations of the controller, T/B and so forth.

Table 5-5:List Operation parameter

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Buzzer ON/OFF BZR Integer 1 Specifies the on/off of the buzzer sound that can be heard when
an error occurs in the robot controller.
(OFF/ON=0/ÇP)

1(ON)

Program reset
operation rights

PRSTENA Integer 1 Whether or not the operation right is required for program reset
operation
 (Required/Not required = 0/1)

If operation rights are abandoned, program can be reset from
anywhere. However, this is not possible under the teaching
mode for safety reasons.

0(Required)

Program reset
when key switch is
switched

MDRST Integer 1 Program paused status is canceled when mode of the controller
is changed.
(Invalid/Valid=0/1)

0(Invalid)

Operation panel
display mode

OPDISP Integer 1 The 5-digit LED display mode when the mode of the controller is
switched is set.
0: Override is displayed when the mode is changed. (Default)
1: Current display mode is held even when the mode is
changed.
The program name is displayed at power on.

0 (Override display)

Program selection
rights setting

OPPSL Integer 1 Program selection using external signals is enabled when the
operation panel has operation rights.
(External/OP=0/1)
When External (0) is set, programs can be selected using
external signal even though the operation panel has operation
rights. (The upper left dot LED on the display panel is on.)

1 (OP)

RMTPSL Integer 1 Program selection using the operation panel is enabled when
the external I/O has operation rights.
(External/OP=0/1)
When OP (1) is set, programs can be selected from the
operation panel even though the operation panel does not have
operation rights. (The upper left dot LED on the display panel is
off.)

0 (External)

OVRD limitation
from the operation
panel

OPNOOVRD Integer 1 The override value change from the operation panel of the
controller is enabled or disabled.
0: Enabled
1: Disabled
If Disabled (1) is set, the override value cannot be changed from
the operation panel even though the operation panel has
operation rights. (The upper left dot LED on the display panel is
on.)

0 (Enabled)

Display panel
scroll speed

OPSCRSPD Integer 1 The LED display scroll speed on the operation panel can be
changed. Use the default value.
When a smaller value is set, the speed becomes faster. When a
larger value is set, the speed becomes slower.
(This parameter can be set only for the controller with the
operation panel.)
Setting range: 1 to 1000 [ms]

120
-516 Operation parameter

 5Functions set with parameters
TB override
operation rights

OVRDTB Integer 1 Specifies whether the operation rights are required when
changing override from T/B.
(Not required/Required = 0/1)

Note) When OVRDTB = 1 (Required), whether the operation
rights are required (T/B enable) or not (T/B disable)
depends on the OVRDENA setting and the controller
mode. Refer to the following table.

1(Required)

Speed setting
during mode
change

OVRDMD Integer 2 Override is set automatically when the mode is changed.
First element: override value when the mode is automatically

changed from teaching mode
Second element: Override value when the mode is changed

from AUTOMATIC to MANUAL.
Current status is maintained if changed to 0.

0,0

Override change
operation rights

OVRDENA Integer 1 Specifies whether the operation rights are required when
changing override from the external device.
(Required/Not required = 0/1)

Note) Even when OVRDENA = 1 (Not required), override
cannot be changed if the controller mode is "MANUAL"

0(Required)

Access target of a
program.

ROMDRV Integer 1 The access target of a program.

2: High-speed RAM mode (Using DRAM memory)
 * Cannot be changed.

2 (DRAM mode.)

Maintenance
forecast setting

MFENA Integer 1 This sets enable/disable of the maintenance forecast function.
0: Disable
1: Enable

* When the function is disabled, the information related to the
maintenance forecast function is not gathered. Therefore, the
maintenance timing is not calculated precisely.

1

Maintenance
forecast warning
day

MFWRNDAY Integer 1 This sets the number of remaining days until the maintenance
time. When the number of remaining days calculated by the
maintenance forecast function becomes equal to or falls below
the number of days specified by the parameter, an alarm is
generated.
Setting range: 1 to 365
Unit: days

14

Operating hours
per day

MFOPTIME Real value 1 This sets the estimated robot operating hours per day to be
used for the maintenance forecast function.
Setting range: 1 to 24
Unit: hours

16.0

Maintenance
forecast execution
interval

MFINTVL Integer 2 This sets the interval of collecting data for maintenance
forecast.
1st element: Data collection level -- 1 (lowest) to 5 (highest)
2nd element: Forecast check execution interval (unit: hours)

1(lowest),6(hour)

Maintenance
forecast
announcement
method

MFREPO Integer 2 This sets the maintenance forecast announcement method. Set
0 in order to stop a warning or signal output.
1st element...... 1: Generates a warning

0: Does not generate a warning
2nd element 1: Outputs a dedicated signal

0: Does not output a dedicated signal

1(Generates a
warning),
0 (Does not output
a signal)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Mode of the
controller OVRDENA=0 OVRDENA=1

AUTOMATIC
(T/B disable)

Cannot changes the
override.

Override is
changeable.

MANUAL
(T/B enable)

Override is
changeable.

Override is
changeable.
 Operation parameter 5-517

5

5Functions set with parameters
Resetting
Maintenance
Forecast

Note)
When reading this
parameter form
the teaching
pendant, enter all
parameter names
and then read.

MFGRST Integer 1 Reset the accumulated data relating to grease in the
maintenance forecast function.
* When axes generated a warning (numbered in 7530's) that

prompts the replenishment of grease in the maintenance
forecast function and, as a result, grease was replenished, the
data relating to grease accumulated on the controller must be
reset.
Generally, a reset operation is performed on the Maintenance
Forecast screen in Personal Computer Support software.
However, if a personal computer cannot be readied, the
accumulated data can be reset by entering this parameter
from the teaching pendant instead.

0: Reset all axes.
1 to 8: Reset the
specification axis.

MFBRST Integer 1 Reset the accumulated data relating to the belt in the
maintenance forecast function.
* When axes generated a warning (numbered in 7540's) that

prompts the replacement of the belt in the maintenance
forecast function and, as a result, the belt was replaced, the
data relating to the belt accumulated on the controller must be
reset.
Generally, a reset operation is performed on the Maintenance
Forecast screen in Personal Computer Support software.
However, if a personal computer cannot be readied, the
accumulated data can be reset by entering this parameter
from the teaching pendant instead.

0: Reset all axes.
1 to 8: Reset the
specification axis.

Position
Restoration
Support

DJNT Real value 8 The OP correction data obtained by the Position Restoration
Support tool is input. Do not change it with any tool other than
the Position Restoration Support tool. It can only be referenced
on a dedicated parameter screen in the Personal Computer
Support software.

The setting varies
depending on the
model.

MEXDTL Real value 6 The standard tool correction data obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL1 Real value 6 The correction data for tool number 1 obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL2 Real value 6 The correction data for tool number 2 obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL3 Real value 6 The correction data for tool number 3 obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL4 Real value 6 The correction data for tool number obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDBS Real value 6 The correction data for the base obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

Program operation
by T/B

TBOP Integer 1 Specifies whether the program operation by T/B is able or not.
0: disable/1: enable

1

T/B buzzer sound TBBZR Integer 1 Specifies the on/off of the T/B buzzer sound that can be heard
when an error occurs. However, the key touch sound of R32TB
is not muted.
0: Buzzer OFF
1: Buzzer ON

1

Hand open/close
operation delay
time

HNDT Integer 8 Specifies the hand response delay time when the open/close
operation of the hands is performed by R32TB. Setting this
prevents the hand from responding immediately to unintentional
pressing of the key because continuously pressing the key is
required for the specified duration.
Unit: [0.1 sec]

(+C,-C,+B,-B,+A,-
A,+Z,-Z)=
0,0,0,0,0,0,0,0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-518 Operation parameter

 5Functions set with parameters
Behavior selection
of the [RESET]
key input at the
error occurrence
on dual system

CATEGORY Integer 1 Set the behavior of the [RESET] key input at the error
occurrence on dual system.
3: Enable the error reset
4: Disable the error reset

Target errors are following.
H0039 (Door Switch Signal line is faulty.)
H0046 (Faulty wiring (Enabling Device).)
H0051 (Wiring of the external emergency stop is abnormal.)

3

Controller software
version
(CR800-R/Q
series only)

RCDUVER Character
string 1

The software versions of CR800-R and CR800-Q controllers
can be checked.
Use this parameter to check the controller software version
when a software version error "C0099" occurs.

The setting varies
depending on the
software version.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Operation parameter 5-519

5

5Functions set with parameters
5.4 Command parameter
This parameter sets the items pertaining to the program execution and robot language.

Table 5-6: List Program Execution Related Parameter

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

No. of multitasks TASKMAX Integer 1 Designate the number of programs to be executed
simultaneously.

8

Slot table
(Set during
multitask
operation.)

Operation conditions for each task slot is set during multitask operations. These are set when
the program is reset.
SLT*
* is 1 to 32

Character
string 4

Designate the [program name], [operation mode], [starting
conditions], [order of priority].

Program name: Selected program name. Use uppercase letters
when using alphabet. Lowercase characters are not recognized.

Operation mode: Continuous/1 cycle = REP/CYC
REP:The program will be executed repeatedly.
CYC:The program ends after one cycle is completed. (The

program does not end if it runs in an endless loop created
by a GoTo instruction.)

Starting conditions: Normal/Error/Always =START/Error/
ALWAYS
START: This is executed by the start key on the <operation

panel> or by the start signal.
ALWAYS: This is executed immediately after the controller's

power is turned on. This program does not affect the
status such as startup. To edit a program whose attribute
is set to ALWAYS, first cancel the ALWAYS attribute.
A program with the ALWAYS attribute is being executed
continuously and therefore cannot be edited. Change
ALWAYS to START and turn on the controller's power
again to stop the constant execution.

Error: This is executed when an error is generated. This
program does not affect the status such as startup.
Programs with ALWAYS or Error set as the starting
condition cannot execute the following movement
instructions. An error will be generated if any of them is
executed.

Mov,Mvs,Mvr,Mvr2,Mvr3,Mvc,Mva,
DRIVE, GetM, RelM, JRC

Order of priority: 1 to 31 (31 is the maximum)
This value shows the number of lines to be executed at a time.
This has the same meaning as the number of lines in the
Priority instruction. For instance, when two slots are used
during execution, if SLT1 is set to 1 and SLT2 is set to 2, after
one line of program in SLT1 is executed, two lines of program
in SLT2 is executed.
Therefore, more SLT2 programs will be executed and as a
result, priority of SLT2 is higher.

"",REP,START,1
-520 Command parameter

 5Functions set with parameters
Program selection
save

SLOTON Integer 1 This parameter specifies whether or not to store the program
name in the SLT1 parameter at program selection, as well as
whether or not to maintain the program selection status at the
end of cycle operation.

(1) Enabling program name storage at program selection
 (Bit 0, enable/disable storage = 1/0)
Enable storage: The name of the current program is stored in

the SLT1 parameter at program selection for slot
1. Moreover, the program specified in the SLT1
parameter is selected when the power supply is
turned on.

Disable storage: The name of the current program is not stored
in SLT1 parameter at program selection for slot
1. In the same way as when the storage is
enabled, the program specified in the SLT1
parameter is selected when the power supply is
turned on.

(2) Maintaining program at the end of cycle operation
 (Bit 1, maintain/do not maintain = 1/0)
Maintain: The status of program selection is maintained at

the end of cycle operation. The parameter value
does not become P.0000.

Do not maintain: The status of program selection is not
maintained at the end of cycle operation. The
parameter value becomes P.0000.

Setting values and operations

0: Disable storage, do not maintain
1: Enable storage, do not maintain (initial value)
2: Disable storage, maintain
3: Enable storage, maintain

1(Enable storage,
do not maintain)

Setting that allows
the execution of
X** instructions
and Servo
instruction in an
ALWAYS program.

ALWENA Integer 1 XRun, XLoad, XStp, XRst, Servo and Reset Err instructions
become available in a program whose SLT* parameter is set to
"constantly execute" (startup condition is set to ALWAYS).

Enable/Disable = 1/0

0(Disable)

User base
program

Refer to
"4.3.24User-
defined external
variables"

PRGUSR Character
string 1

User base program is a program that is set when user-defined
external variables are to be used. In case of DEF number,
variable declaration instructions such as INTE and Dim are
described.
If an array variable is declared in the user base program using
the Dim instruction, the same variable name must be redefined
using the Dim instruction in the program that uses the user base
program. Variables need not be redefined if the variable is not
an array.

""(Non)

Continue function CTN Integer 1 Reserved 0(Invalid)
JRC command
(Multiple rotation
function of axes)

Set the execution status of the JRC instruction.
JRCEXE Integer 1 Set the validity of the JRC command execution.

Execution valid/invalid = (1/0)
0(Execution
invalid)

JRCQTT Real value 8 Set the change amount to increment or decrement with the JRC
command in the order of J1, J2, J3 to J8 axes from the head
element.
The setting is valid only for the user-defined axis, so the J7 and
J8 axes will be valid for the robot's additional axis, and a random
axis for the mechanism's additional axis.
The unit relies on the parameter AXUNT.

JRC execution
valid robot
0,0,0,0,0,360,0,0
or
0,0,0,360,0,0,0,0

JRC execution
invalid robot
0,0,0,0,0,0,0,0

JRCORG Real value 8 Set the origin coordinate value for executing the JRC O
command and setting the origin.
This setting is valid only for the user-defined axis.
The unit relies on the parameter AXUNT.

0,0,0,0,0,0,0,0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Command parameter 5-521

5

5Functions set with parameters
Setting of
additional axis

AXUNT Integer 16 Set the unit system for the additional axis.
0: Angle (degree)
1: Length (mm)
2: Length (mm) when using a linear servo motor
When using a linear servo motor, set this parameter to 2.

0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0

User error setting UER1
 to UER20

Integer 1,
Character

string 3

Sets the message, cause, and method of recovery for errors
from the Error instruction. Maximum of 20 user errors can be
set.
First element: error number to set (9000 to 9299 is the available

range). The default value 9900 is not available. Change the
value before proceeding.

Second element: Error message
Third element: Cause
Fourth element: Method of recovery
If a space character is included in the message, enclose the
entire message in double quotation marks (""). When changing
the message, enclose the entire message in double quotation
marks ("") too.
Example)9000,"Time Out","No Signal","Check Button"
•The message cannot include a comma (,), semicolon (;), and

backslash (\).
•The value of the first digit can function in an auxiliary manner.

For example, enter a message in No. 9000, and the message
will be displayed when any of the error of Nos. 9001 to 9009
occurs.

9900,"message","c
ause","treat"

Unit setting for the
rotational element
of position data

PRGMDEG Integer 1 Specifies the unit used for describing the rotational element of
position data in the robot program.
0:Rad
1:Deg
Example)M1=P1.A (Unit for this case is specified.)
(Default unit for referencing data components is radian.)
The default rotational element for the position constant
(P1=(100, 0, 300, 0, 180, 0, 180) (7, 0)) is Deg. This parameter
is irrelevant.

0(Rad)

Decimal place PRGDPNTM Integer 1 Specify the number of decimal digits for the position-type
variable and the joint-type variable.
Specify two or three places after the decimal point.

3: RH-FRH, RH-
CRH, RH-
3FRHR

2: Other than
above

Robot language
setting

RLNG Integer 1 Select the robot language
3:MELFA-BASIC VI
2:MELFA-BASIC V

3

Display language
Note1)

LNG Character
string 1

Set up the display language.
"JPN":Japanese
"ENG":English

The following language is changed.
(1) Personal computer support software.

*alarm message of the robot.
*Parameter explanation list.

(2)Alarm message that read from the robot with external
communication. (Standard RS232C, Extended serial I/F,
Ethernet I/F)

The "JPN" is
Japanese
specification.
The "ENG" is
English
specification.

Extension of
external variable

PRGGBL - Sets "1" to this parameter, and turns on the controller power
again, then the capacity of each program external variable will
double.
However, if a variable with the same name is being used as a
user-defined external variable, an error will occur when the
power is turned ON, and it is not possible to expand. It is
necessary to correct the user definition external variable.

1

Compile mode PRGMODE Integer 1 Program processing speed is improved when compile execution
mode is valid.
0: compile mode is invalid
1: compile mode is valid

1

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
-522 Command parameter

 5Functions set with parameters
Duplication
function of
program

PRGDUP Integer 1 Specifies whether or not to duplicate the program. Performing
the duplication enables automatic restoration when a program
error occurs due to noise, etc.
0: Disable
1: Enable
Note) By duplicating the program, the capacity of the program
save area is reduced to 1/2.

0

Program autosave
at the time of
automatic
operation

AUTOSAVE Integer 1 Specifies whether or not to save the local variables
automatically after the program operation. The autosave is
performed at the following timings.
• When the End command called up by the CallP command is

executed in a sub program
• When the program is switched
• When the XClr command is executed
• When the program is cleared after the cycle operation
0: Not saved
1: Saved

1

Combining other
program read
commands with
Function
procedure

FUNCSPEC Integer 1 Set whether to combine with other program read commands
(CallP, XLoad, XRun, #Include).
Changing the setting to "1" will increase tact time slightly when
using read commands of other programs.
0: Do not combine
1: Combine

0 (Do not combine)

Note1) The parameter is set up based on the order specifications before shipment.
Order to dealer when the instruction manual of the other language is necessity.
More, the caution seals that stuck on the robot arm and the controller are made based on the
language of the order specification. Use it carefully when selecting the other language.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Command parameter 5-523

5

5Functions set with parameters
5.5 Communication parameter
These parameters set the items pertaining to communications.

Table 5-7:List Communication parameter

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

RT ToolBox3
Communication
method setting

COMSPEC Integer 1 Specify the communication method of the robot controller and
RT ToolBox3. (The conventional communication method / high
reliability communication method)

0: Conventional communication method
1: High reliability communication method

Compared with the conventional communication method,
speed is slow. However, in periphery environment where
many noises exist, it is the high reliability communication
method.

1

Communication
setting

COMDEV Character string
8

This configures which lines will be assigned to COM1 and COM2
when using communication lines in the Open instruction.
This parameter must be set if data link (used by the Open
instruction) is to be performed.
This parameter specifies the device that corresponds to COMn
specified in the Open statement in the program (n is between 1
and 8). Parameters are starting from the left COM1, COM2, ... ,
COM8 in that order.
When the data link is applied by ethernet I/F, setting is
necessary.
OPT11 to OPT19 are allocated. Here, RS-232C of the controller
is previously allocated to COM1: .
Note)Since the communication interface is not prepared for robot

CPU of the notes CRnQ-700 series, and the drive unit, this
parameter cannot be used.

"RS232", , , , , , ,

For ethernet NETIP Character string
1

IP address of robot controller.
When the CR800-D series is used, the address 192.168.100.xxx
cannot be set.
When the parameter is restored using RT ToolBox3, this
parameter is enabled after resetting power supply twice.

192.168.0.20

NETMSK Character string
1

Sub-net-mask 255.255.255.0

NETPORT Numerical
value 10

Port No. Range 0 to 32767

For real-time external control functions,
Correspond to OPT11 to 19 of COMDEV (OPT11),

(OPT12),
(OPT13),
(OPT14),
(OPT15),
(OPT16),
(OPT17),
(OPT18),
(OPT19)

10000,
10001,
10002,
10003,
10004,
10005,
10006,
10007,
10008,
10009

CPRCE11
CPRCE12
CPRCE13
CPRCE14
CPRCE15
CPRCE16
CPRCE17
CPRCE18
CPRCE19

Numerical
value 9

Protocol 0: No-procedure, 1: Procedure, 2: Data link
(1: Procedure has currently no function.)
When the data link is applied by ethernet I/F, setting is
necessary.

Correspond to OPT11 to 19 of COMDEV (OPT11),
(OPT12),
(OPT13),
(OPT14),
(OPT15),
(OPT16),
(OPT17),
(OPT18),
(OPT19)

0,
0,
0,
0,
0,
0,
0,
0,
0

-524 Communication parameter

 5Functions set with parameters
End code

CTERME11
CTERME12
CTERME13
CTERME14
CTERME15
CTERME16
CTERME17
CTERME18
CTERME19

Integer 9 Specifies the end code of the communication message.
0: CR, 1: CR+LF

Correspond to OPT11 to 19 of COMDEV (OPT11),
(OPT12),
(OPT13),
(OPT14),
(OPT15),
(OPT16),
(OPT17),
(OPT18),
(OPT19)

0,
0,
0,
0,
0,
0,
0,
0,
0

Ethernet packet
specification for
datalink

NETPSPEC Integer 1 Specifies the specifications for packet reception of the datalink
communication via Ethernet.

0: Old
For reception without use of the end code. The Input
command waits until one packet of data is received. The
data cannot be received correctly when the packet is
divided.

1: New
For reception with use of the end code. The Input command
waits until the end code is received even if the packet is
divided.

0

Ethernet
communication
protocol
termination code

NETTERM Integer 9 Specifies the use of the termination code for the datalink
communication via Ethernet.
The elements 1 to 9 correspond to COM1 to COM9.

0: Disable
1: Enable

0,0,0,0,0,0,0,0,0

GOT port number GOTPORT Integer 1 Specifies the GOT port number for GOT direct connection.
Match the setting with the GOT port number. When the GOT
default setting is not changed, leave it as is.

5001

For ethernet NETMODE Numerical
value 9

Server designation (1: Server, 0: Client)
When the data link is applied by ethernet I/F, setting is necessary.

Correspond to OPT11 to 19 of COMDEV (OPT11),
(OPT12),
(OPT13),
(OPT14),
(OPT15),
(OPT16),
(OPT17),
(OPT18),
(OPT19)

1,
1,
1,
1,
1,
1,
1,
1,
1

NETHSTIP Character string
9

The IP address of the data communication destination server.
When the data link is applied by ethernet I/F, setting is necessary.
* It is valid if specified as the client by NETMODE only.

Correspond to OPT11 to 19 of COMDEV (OPT11),
(OPT12),
(OPT13),
(OPT14),
(OPT15),
(OPT16),
(OPT17),
(OPT18),
(OPT19)

192.168.0.2 ,
192.168.0.3 ,
192.168.0.4 ,
192.168.0.5 ,
192.168.0.6 ,
192.168.0.7 ,
192.168.0.8 ,
192.168.0.9 ,
192.168.0.10

MXTTOUT Numerical
value 1

(0 to 32767)

Timeout time for executing the real-time external control
command
CR800-Q series: A multiple of 7.1 ms
CR800-D/R series: A multiple of 3.5 ms (7.1 ms when user
mechanism is set)
Set -1 to disable timeout.

-1

Timeout time for
loading a
visionprogram

NVJBTOUT Integer 1 Specify the timeout time for loading a program of a network
vision sensor.
(Unit: seconds, Setting range: 1 to 32767)

90

Initial tag name of
EBRead command

EBRDTAG Character string
1

Set an initial symbolic tag name (128 characters or less) for the
vision sensor designated in the EBRead command.
This parameter setting value is specified when the tag name is
omitted in the description of the EBRead command.

"Job.Robot.
FormatString"

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Communication parameter 5-525

5

5Functions set with parameters
Initial tag name of
EBWrite command

EBWRTAG Character string
1

Set an initial symbolic tag name (128 characters or less) for the
vision sensor designated in the EBWrite command.
This parameter setting value is specified when the tag name is
omitted in description of the EBWrite command.

““(None)

User name NVUSER Character
string 1

The user name to log on the vision sensor is set.
 (no more than 15 characters)

"admin"

Password NVPSWD Character
string 1

The password to log on the vision sensor is set.
(no more than 15 characters)

""

Timing of trigger NVTRGTMG Integer1 Defines about processing of NVRun command and NVTrg
command.
The content of each set value is as follows.

- Trigger : The next command is executed after the
communication of the image processing instruction
(taking picture demand) and the vision sensor is
completed.
It is possible to shorten the tact time by setting this
value when another process of the robot is executed
while the vision sensor is processing the image.

-Trigger + Image processing : The robot controller request the
image processing (capture request) to the vision
sensor. And, the next command of the robot is
executed after the vision image processing is
completed.
When the robot requests the image processing to the
vision sensor and gets the recognition results
(EBRead command is executed) with next step,
please set this value.

Please set 1 to parameter NVTRGTMG when EBRead
command is executed immediately after NVRun command.
When parameter NVTRGTMG is factory shipment setting
(NVTRGTMG=2), the next command is executed without waiting
the completion of the vision recognition processing. Therefore,
there is a possibility being gotten the last recognition result when
EBRead command is continuously executed.

2

Initial value of tag
name specified by
EBRead command

EBRDTAG Character
string 1

Sets up an initial value of the "symbolic tag name" used with
EBRead command (it is 128 characters or less)
When the tag name of EBRead command is omitted, the value of
this parameter is specified.

"Job.Robot.
FormatString"

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

value NVRun NVTrg

0 Trigger Trigger

1 Trigger+
Image processing

Trigger+
Image processing

2 Trigger Trigger+
Image processing
-526 Communication parameter

 5Functions set with parameters
IP address filtering
function enable/
disable setting

NETIPFLT Integer1 Enable/disable the IP address filtering function.
When the function is enabled, either "transparent" or "block" can
be selected. Use NETIPFLS and NETIPFLE parameters to
specify IP addresses for filtering.
Transparent: Allow access from the specified IP address range.
Block: Block access from the specified IP address range.

0: Disabled (The IP address filtering function is not used. All
accesses are allowed.)
1: Enabled/transparent (Access from the specified IP address
range is allowed.)
2: Enable/block (Access from the specified IP address range is
prohibited.)

When this function is enabled, set the start and end addresses
on the same network without reversing the order of IP
addresses. Otherwise, an error occurs upon power on, disabling
this function.

0

IP address filtering
function start
address

NETIPFLS Character
string 1

Specify the start address for the IP address filtering function.
This parameter is used when NETIPFLT parameter (IP address
filtering function enable/disable setting) is enabled (1 or 2).

192.168.0.2

IP address filtering
function end
address

NETIPFLE Character
string 1

Specify the end address for the IP address filtering function.
This parameter is used when NETIPFLT parameter (IP address
filtering function enable/disable setting) is enabled (1 or 2).

192.168.0.2

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting
 Communication parameter 5-527

5

5Functions set with parameters
5.6 Standard Tool Coordinates
Tool conversion data must be set if the robot's control point is to be set at the hand tip when the hand is
installed on the robot. The setting can be done in the following three manners.

1) Set in the MEXTL parameter.
2) Set in the robot program using the Tool instruction.
3) Set a tool number in the M_Tool variable.The values set by the MEXTL1 to 16 parameters are used as

tool conversion data.
Refer to Page 416, " M_Tool".

The default value at the factory default setting is set to zero, where the control point is set to the mechanical
interface (flange plane).

Structure of tool conversion data: X, Y, Z, A, B, C
X, Y and Z axis:Shift from the mechanical interface in the tool coordinate system

A axis: X-axis rotation in the tool coordinate system
B axis: Y-axis rotation in the tool coordinate system
C axis: Z-axis rotation in the tool coordinate system

<A case for a vertical 6-axis
robot>
1) Sample parameter setting

Parameter name: MEXTL
Value: 0, 0, 95, 0, 0, 0

2) Sample Tool instruction setting
1 Tool (0,0,95,0,0,0)

A 6-axis robot can take various
postures within the movement
range.

<A case for a vertical 5-axis
robot>
1) Sample parameter setting

Parameter name: MEXTL
Value: 0, 0, 95, 0, 0, 0

2) Sample Tool instruction setting
1 Tool (0,0,95,0,0,0)

Only the Z-axis component is
valid for a 5-axis robot for
movement range reasons. Data
input to other axes will be ignored.

Zt

Yt

Xt

Mechanical interface

Default tool coordinate system：Ｘｔ，Ｙｔ，Ｚｔ
Zr

Yr
Xr

Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ

Tool coordinate
system after the change：Ｘｔ，Ｙｔ，Ｚｔ

Example） 95mm

Zt

Yt

Xt

A case for a vertical 6-axis robot

World coordinate system: Xw, Yw, Zw

Xw
Yw

Zw

Zt

Default tool coordinate system：Ｚｔ

Zr

Yr
Xr

Zt

 A case for a vertical 5-axis robot

Mechanical interface

Tool coordinate
system after the change：Ｚｔ

Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ

Example） 95mm

World coordinate system: Xw, Yw, Zw

Xw
Yw

Zw
-528 Standard Tool Coordinates

 5Functions set with parameters
<A case for a horizontal 4-axis robot>
1) Sample parameter setting

Parameter name: MEXTL
Value: 0, 0, -10, 0, 0, 0

2) Sample Tool instruction setting
1 Tool (0,0,-10,0,0,0)

Horizontal 4-axis robots can basically
offset using parallel shifting. Note that
the orientation of the tool coordinate
system is set up differently from that
of vertical robots.

An axis element of the tool conversion data may or may not be valid depending on the robot model.
See Table 5-8 to set the appropriate data.

Table 5-8:Valid axis elements of the tool conversion data depending on the robot model

Type Number of
axis

An axis element of the tool conversion data Note1)

Note1) ○ : Valid, △ : Unused. This is meaningless and ignored if set., ×: The setting value is fixed to 0.
If a value other than 0 is set, operation may be adversely affected.

X Y Z A B C

RV-2FR, RV-4FR/4FRL, RV-7FR
series, RV-13FR series, RV-
20FR

6 ○ ○ ○ ○ ○ ○

RV-4FRJL 5 △ △ ○ △ △ ×

RH-3FRH/6FRH/12FRH/20FRH
series, RH-3FRHR series 4 ○ ○ ○ △ △ ○

Xw

Yw

Zw

Zt

Yt
Xt

World coordinate system: Xw, Yw, Zw

A case for a horizontal 4-axis robot

mechanical interface

Default tool coordinate system:
Xt, Yt, Zt
 Standard Tool Coordinates 5-529

5

5Functions set with parameters
5.7 About Standard Base Coordinates
The position of the world coordinate system is set to zero (0) before leaving the factory, and therefore, the

base coordinate system (robot's installation position) is in agreement with the world coordinate system
(coordinate system which is the basis for robot's current position).
By utilizing the base conversion function, you can set the origin point of the world coordinate system at a
location other than the center of the J1 axis.
Executing the base conversion function causes a change in the positional relation between the world
coordinate system and the base coordinate system, and the robot, if allowed to move to a position to which
it has been taught to move, will move to other than the position it used to. Therefore, you should maintain
positive control over relation between the base conversion and the position which the robot is taught to take
so that an effective use of the base conversion function is insured. Four methods are available for setting
the world coordinate system:

1) Specifying parameter MEXBS directly with base conversion data
2) Specifying parameter MEXBSNO with a base coordinate number
3) Specifying the J1axis offset angle using parameter J1OFFSET (vertical 5-axis type robot only)
4) Executing a relevant base command under the robot program

The factory default setting value is set to zero at the base coordinate system position, which is identical to
the robot origin.
Structure of base coordinate system data: X, Y, Z, A, B, and C

X, Y and Z axis: The position of robot coordinate system from the base coordinate system origin
A axis: X-axis rotation in the world coordinate system
B axis: Y-axis rotation in the world coordinate system
C axis: Z-axis rotation in the world coordinate system

(Example)
1) Sample parameter setting

Parameter name: MEXBS
Value: 100,150,0,0,0,-30

2) Sample Base instruction setting
1 Base (100,150,0,0,0,-30)

Normally, the base coordinate system
need not be changed. If you wish to
change it, see the sample above when
configuring the system. Note that the
Base instruction within the robot
program may shift the robot to an
unexpected position. Exercise caution
when executing the instruction.
An axis element of the base conversion
data may or may not be valid depending
on the robot model.
See Table 5-9 to set the appropriate
data.

Table 5-9:Valid axis elements of the base conversion data depending on the robot model

Since the performance of the base conversion causes the reference for the robot's current
position to change, data taught till then becomes unusable as it is.
If the robot is inadvertently allowed to move to a position taught before the performance of
the base conversion, it can stray to an unexpected position, possibly resulting in property
damage or personal injury.
When using the base conversion function, be sure to maintain positive control over relation
between the base coordinate system subject to conversion and the position which the
robot is taught to take so that a proper robot operation and an effective use of the base
conversion function are insured.

Type Number of
axis

An axis element of the base conversion data Note1)

Note1) ○ : Valid, △ : Unused. This is meaningless and ignored if set., ×: The setting value is fixed to 0.

X Y Z A B C
RV-2FR, RV-4FR/4FRL, RV-7FR
series, RV-13FR series, RV-
20FR

6 ○ ○ ○ ○ ○ ○

RV-4FRJL 5 ○ ○ ○ △ △ ○ Note2)

Note2) Set a value in parameter J1OFFSET.

RH-3FRH/6FRH/12FRH/20FRH
series, RH-3FRHR series 4 ○ ○ ○ △ △ ○

150mm

Cr
-30°

Zw

Yw

Xw Yb

Xb

Zb

100mm

World coordinate system: Xw, Yw, Zw

Base coordinate system:
Xb, Yb, Zb

Note) This figure is an example using a vertically articulated 6-axis robot.
The example also applies to horizontally articulated robots.

 CAUTION
-530 About Standard Base Coordinates

 5Functions set with parameters
5.8 About user-defined area
The user-defined area has the function of continuously monitoring whether or not the robot control point falls
within any position area which is specified by parameter settings. The user can choose between the option
to output the state of the robot control point being within or outside that area and the option to effect an
error-stop when the robot control point is within that area, by using dedicated input/output or state variables.
This function is instrumental in letting the robot operate in coordination of its peripherals or in avoiding
interference between the robot and the peripherals, where the robot shares work space with the peripherals.
Besides position area, this function can be used for making judgment on the robot in relation to posture area
or additional axis area, as well.

This function can be used by the following parameter setting.
1) Selecting a coordinate system which serves as a reference system (parameter: AREAnCS)
2) Specifying a user-defined area (parameter: AREAnP1 and AREAnP2)
3) Specifying a mechanism to be checked (parameter: AREAnME)
4) Specifying a desired behavior when the robot enters user-defined area (parameter: AREAnAT)

The following is a detail description of the respective parameter settings.
 About user-defined area 5-531

5

5Functions set with parameters
5.8.1 Selecting a coordinate system
This function, when the user proceeds with operation after changing the base coordinate system by a Base
command or the like, permits the user to choose between the option to move user-defined area concurrently
or the option to keep it fixed. This choice is accomplished by specifying by the parameter AREAnCS that the
reference coordinate system is "world coordinate system" (for moving user-defined area concurrently) or
that the same is "base coordinate system" (keeping user-defined area fixed).
If the user does not make any change to the base coordinate system, the user-defined area remains
unchanged regardless of the choice he makes.

Table 5-10:Explanation of coordinate system

Fig.5-3:Difference between "World coordinate system" and "Base coordinate system"

Coordinate system Description (feature)
World coordinate system When the base coordinate system is changed, the user-defined area moves concurrently. A change

occurs in the relative positional relation between the robot arm and the user-defined area.
Base coordinate system Change of base coordinate system does not cause the user-defined area to move. Relative

positional relation between the robot arm and the user-defined area is stationary.
This provision helps when the user proceeds with operation after making a change to the base
coordinate system but wants to keep stationary relative positional relation between the robot arm
and the user-defined area.

ﾍﾞｰｽ座標系
変更

定義領域

ベース座標系

ワールド座標系

ロボット

定義領域

ベース座標系

ワールド座標系

ロボット

ﾍﾞｰｽ座標系
変更

ベース座標を変更しても、
ロボットと定義領域との
相対位置関係が変化しな い

ベース座標変更により、
ロボットと定義領域との
相対位置関係が変化する

定義領域

ワールド座標系

ベース座標系

ロボット

【ベース座標系を選択した場合】

【ワールド座標系を選択した場合】

定義領域

ワールド座標系

ベース座標系

ロボット

Definition area
Robot

Base coordinate
system

Robot

Base coordinate
systemChange the

base
coordinate
system

 World coordinate system

 World coordinate system

Change to base coordinate
system causes a change to
relative positional relation
between the robot body and
the user-defined area

<Select the world coordinate system>

Definition area

<Select the base coordinate system>

Definition area

Robot

Base coordinate
system

World coordinate system

Change to base coordinate
system causes no change to
relative positional relation
between the robot body and
the user-defined area.

Change the
base
coordinate
system

Definition area

Base coordinate
system

World coordinate system

Robot

Note) A top-down view of a vertically articulated 6-axis robot is used as an example in these figures. The example
also applies to horizontally articulated robots.
-532 About user-defined area

 5Functions set with parameters
5.8.2 Setting Areas
Areas to be set include a position area, posture area, and additional axis area.
The following is a description of the steps that are followed to set these areas.

(1) Position Area
A position area for user-defined area is defined by the coordinates of a diagonal point which is determined
by the elements X, Y and Z in the parameters AREA*P1 and AREA*P2(* is 1 to 32).
The coordinate values thus determined are those which refer to the coordinate system selected by the
parameter AREA*CS(* is 1 to 32).

<NOTES>
1) If you proceed with operation after making a change to a world coordinate system by the Base

command or the like and, in addition, select a "base coordinate system" from the coordinate system
options for the user-defined area, make area settings, taking note of the following points:
Coordinate values to be specified for elements X, Y and Z in the parameters AREAnP1 and
AREAnP2 must be those that were specified for the coordinate system selected in the parameter
AREAnCS.
XYZ coordinate values displayed on the T/B, RT ToolBox or the like are those that refer to the world
coordinate system. Thus, when "base coordinate system" is selected in the parameter AREAnCS,
coordinate values appearing on the display differ from those to be specified.
In this case, it is necessary to make settings either by converting the displayed coordinate values into
those for the base coordinate system or by temporarily returning the world coordinate system to its
initial state. (The base coordinate system and world coordinate system are in agreement at factory
shipping)

2) The judgments of inside or outside of the user definition area are 0.001mm and 0.001 degree unit.
Therefore, if the boundary line of the area, the judgment result may get unfixed.

3) If elements X, Y and Z in the parameter AREAnP1 are interchanged with those in the parameter
AREAnP2, user-defined area remains the same.

対角点2

ユーザ定義領域1
対角点1

ユーザ定義領域2

座標系は、AREAｎCSで定義する。

Diagonal point 2
Diagonal
point 1User-defined area 1

User-defined area 2

Set up the coordinate system by AREAnCS
 About user-defined area 5-533

5

5Functions set with parameters
(2) Posture Area
A posture area for the user-defined area is defined by specifying elements A, B and C in the parameters
AREAnP1 and AREAnP2. Set up the value based on the coordinate system selected by AREAnCS.

In the 6-axis type robot, if the current coordinate value of B axis is near the +/-90
degrees, the coordinate value of A and C axes are changed a lot by even the
posture movement slightly. Sign is reversed etc.
This originates in control of the robot. Therefore, if the robot is near B axis = +/-90
degrees, since the posture area judging of A and C axis may change regardless of
the robot movements, it is not suitable. Please use this posture area judging
function in robot operation which the current coordinate value of B axis does not
consist of near the +/-90 degrees.

<NOTES>
1) If you proceed with operation after making a change to a world coordinate system by the Base

command or the like and, in addition, select a "base coordinate system" from the coordinate system
options for the user-defined area, make area settings, taking note of the following points:
Coordinate values to be specified for elements A, B and C in the parameters AREAnP1 and
AREAnP2 must be those that were specified for the coordinate system selected in the parameter
AREAnCS.
XYZ coordinate values displayed on the T/B, RT ToolBox or the like are those that refer to the world
coordinate system. Thus, when "base coordinate system" is selected in the parameter AREAnCS,
coordinate values appearing on the display differ from those to be specified.
In this case, it is necessary to make settings either by converting the displayed coordinate values into
those for the base coordinate system or by temporarily returning the world coordinate system to its
initial state. (The base coordinate system and world coordinate system are in agreement at factory
shipping)

2) Defined area differs depending on relative locations assigned to elements A, B and C in the
parameters AREAnP1 and AREAnP2. (See the figure below.)

3) When the posture area is not checked, A, B, and C element of AREAnP1 will be set as -360 degree,
and A, B, and C element of AREAnP2 will be set as +360 degrees.

4) The judgments of inside or outside of the user definition area are 0.001mm and 0.001 degree unit.
Therefore, if the boundary line of the area, the judgment result may get unfixed.

[If the relative locations of posture elements are set for AREAnP2 > AREAnP1]

[If the relative locations of posture elements are set for AREAnP1 > AREAnP2]

(3) Additional Axis Area
The additional axis area for the user-defined area is defined by specifying elements L1 and L2 in the
parameters AREAnP1 and AREAnP2.
When the additional axis area is defined, it is judged contained in the user-defined area when all of position
area, posture area and additional axis area are within the area.

<NOTES>
1) The elements of L1 and L2 in the parameter AREAnP1 and AREAnP2 are not affected by the

coordinate system that defined by the parameter AREAnCS.

 CAUTION

-180° +180°

AREAnP1 AREAnP2

姿勢定義領域Posture definition area

-180° +180°

AREAnP2 AREAnP1

姿勢定義領域Posture definition area
-534 About user-defined area

 5Functions set with parameters
2) If elements L1 and L2 in the parameter AREAnP1 are interchanged with those in the parameter
AREAnP2, user-defined area remains the same.

3) When the additional axis area is defined, it is judged contained in the user-defined area when all of
position area, posture area and additional axis area are within the area.

4) The judgments of inside or outside of the user definition area are 0.001mm and 0.001 degree unit.
Therefore, if the boundary line of the area, the judgment result may get unfixed.

5) If no additional axes (axes J7 and J8) are in use, the additional axis area need not be defined.

5.8.3 Selecting mechanism to be checked
Specify the mechanism to check the user-defined area with parameter AREA*ME. Normally, specify
Mechanism 1 (1). When using the multi-mechanism etc, set up the corresponding mechanism number.

5.8.4 Specifying behavior within user-defined area
Specify the behavior of whether the robot is in the user-defined area area by setting of parameter AREAnAT.
The behavior prepared is shown in Table 5-11.

Table 5-11:Specifying behavior within user-defined area
Settings Within user-defined area Outside user-defined area

0: Invalid System's behavior is not specified. System's behavior is not specified.
1: Signal output and
status variable
setting

Dedicated output signal USRAREA is turned on.
Corresponding bit of system status variable
(M_Uar32,M_Uar) is turned on.

Dedicated output signal USRAREA is turned off.
Corresponding bit of system status variable
(M_Uar32,M_Uar) is turned off.

2. Error output Error H2090 occur and the robot stops.
* In this case, checks the position area only, ignoring
posture area and additional axis area.
* To move the robot out of area, use the jog operation
by "Temporarily Reset an Error that Cannot Be
Canceled"

-

 About user-defined area 5-535

5

5Functions set with parameters
5.8.5 Example of settings
For instance, in the following diagram, the following parameter setting will output the signal 10 when
operating in area (1) and output the signal 11 when operating in area (2).

Parameter name Meaning of the value Value
AREA1CS Selects coordinate system for Area (1). 0
AREA1P1 Position data of diagonal point 1 in Area (1): X, Y, Z,

A, B, C, L1, L2
x11, y11, z11, -360, -360, -360,0,0

AREA1P2 Position data of diagonal point 2 in Area (1): X, Y, Z,
A, B, C, L1, L2

x12, y12, z12, 360, 360, 360,0,0

AREA1ME Target mechanism number: Usually 1 1
AREA1AT Area (1) (disable/signal output/error): 0/1/2 1
AREA2CS Selects coordinate system for Area (2). 0
AREA2P1 Position data of diagonal point 1 in Area (2): X, Y, Z,

A, B, C, L1, L2
x21, y21, z21, -360, -360, -360,0,0

AREA2P2 Position data of diagonal point 2 in Area (2): X, Y, Z,
A, B, C, L1, L2

x22, y22, z22, 360, 360, 360,0,0

AREA2ME Target mechanism number: Usually 1 1
AREA2AT Area (2) (disable/signal output/error): 0/1/2 1
USRAREA Output signal: starting number, end number 10, 11

X

Y

Z

AREA1P1

(x11,y11,z11)
AREA1P2

(x12,y12,z12)
AREA2P1

(x21,y21,z21)
AREA2P2

(x22,y22,z22)

(1) (2)

<Area (1)>
Coordinate system: World
coordinate system
Posture check is unnecessary
Mechanism 1 usage
Additional axis is unused

<Area (2)>
Coordinate system: World
coordinate system
Posture check is unnecessary
Mechanism 1 usage
Additional axis is unused
-536 About user-defined area

 5Functions set with parameters
5.9 Free plane limit
Defines any plane in the world coordinate system, determines the front or back of the plane, and generates
a free plane limit error.

5.9.1 The definition of a free plane limit
As can be seen in the diagram to the left, any
plane can be defined by three points (P1, P2, and
P3), after which an evaluation of which side of the
plane it is in (the side that includes the robot origin
or the other side) can be performed.
This function can be used to prevent collision with
the floor or interference with peripheral devices.
Maximum of eight planes can be monitored.
There is no limit to the plane.

After setting the parameters above, turn the controller's power ON again. This will allow the generation of
free plane limit error when it crosses the plane.

Parameter and value Explanation

SFCnP(n=1 to 8) Specifies the 3 points that define the plane.
P1 coordinates X1, Y1, and Z1: The origin of the plane
P2 coordinates X2,Y2,Z2: A position on the X axis of the plane
P3 coordinates X3,Y3,Z3: A position in the positive Y direction of the X-Y plane in the plane

SFCnME(n=1 to 3) Specifies the mechanism number to which the free plane limit applies. Usually, set up 1.
In the case of multiple mechanisms, the mechanism numbers are specified.

SFCnAT(n=1 to 8) Designate the valid/Invalid of the set free plane limit.
 0:Invalid
 1: Valid (The operable area is the robot coordinate origin side.)
-1: Valid (The operable area is the side where the robot coordinate origin does not exist.)

Ｐ１

Ｐ２

P３

Note) This figure is an example using a vertically articu-
lated 6-axis robot. The example also applies to hor-
izontally articulated robots.
 Free plane limit 5-537

5

5Functions set with parameters
5.9.2 Selection of a coordinates system for a free plane limit
This function, when the user proceeds with operation after changing the base coordinates system by a Base
command or the like, permits the user to choose between the option to move a free plane limit concurrently
or the option to keep it fixed. This choice is accomplished by specifying by the parameter SFCnCS that the
reference coordinate system is "world coordinate system" (for moving a free plane limit concurrently) or that
the same is "base coordinate system" (keeping a free plane limit fixed).
If the user does not make any change to the base coordinate system, the free plane limit remains
unchanged regardless of the choice he makes.
Refer to Page 159, "4.4 Coordinate system description of the robot" for details of the coordinate system.

Coordinate system Explanation

World coordinate system
(SFCnCS=0)

When the base coordinate system is changed, the free plane limit moves concurrently. A change
occurs in the relative positional relation between the robot arm and the free plane limit.

Base coordinate system
(SFCnCS=1)

Change of base coordinate system does not cause the free plane limit to move. Relative positional
relation between the robot arm and the free plane limit is stationary. This provision helps when the
user proceeds with operation after making a change to the base coordinate system but wants to
keep stationary relative positional relation between the robot arm and the free plane limit.

<Select the World coordinate system (SFCnCS=0)>

Robot

Change of base coordinates

Base coordinate system

Free plane limit

World coordinate system

The relation between a free
plane limit and the robot
changes.

Robot

Change of base coordinates

Base coordinate system

Free plane limit

World coordinate system

The relation between a free
plane limit and the robot
dose not change.

The relation between the
world coordinate and base
coordinate changes.

<Select the Base coordinate system (SFCnCS=1)>
-538 Free plane limit

 5Functions set with parameters
5.10 Automatic return setting after jog feed at pause
This specifies the path behavior that takes place when the robot is paused during automatic operation or
during step feed operation, moved to a different position using a jog feed with T/B, and the automatic
operation is resumed or the step feed operation is executed again. See the following diagram.

[Caution] If movement other than a joint jog (XYZ, tools, cylindrical, etc.) has been used when the
"RETPATH" parameter is set to 1, joint interpolation will be used to return to the original position at
the time pause took place. Therefore, be careful not to interfere with peripheral devices.

[Caution] If the parameter "RETPATH" is set to 2 for a robot whose structure data is valid or with multiple
rotations, and the robot is moved from a suspended position by joint jog, the robot is moved to a
position different from the original structure data and/or multiple-rotation data and may become
unable to return to the suspended position. In this case, adjust the position of the robot to the
suspended position and resume moving the robot.

If "RETPATH=1 or 2" is set as shown in the figure below, and the robot is operated continuously (continuous
path operation) using the Cnt instruction, the robot returns to a position on the travel path from P1 to P2
instead of the suspended position. When "RETPATH=0" is set, the robot moves to the target position from
the current position.

Parameter and value Description of the operation

RETPATH=1 (Default) 1) Returns to the original position where the pause took place using joint interpolation.
2) Resumes from the line that was paused.

RETPATH=0 Resumes from the line that was paused from the position resulting after the jog operation. Therefore,
movement will take place using the interpolation method of the instruction under execution from the
current position to the next target position.

RETPATH=2 1) Return by XYZ interpolation to the interrupted position.
2) Resume the interrupted line.

RETPATH=1 or 2 RETPATH=0

Move to target
positionJog feed

Interrupt here

Resume the
automatic
execution

Return to interrupted position
RETPATH=1:JOINT interpolation

RETPATH=2:XYZ interpolation

Jog feed

Interrupt here

Move to target
position

Resume the
automatic
execution

P1

P2

P1

P2

RETPATH=1 or 2 RETPATH=0

Move to target
position

Jog feed

Interrupt here

Resume the
automatic
execution

Jog feed

Move to target
position

Resume the
automatic
execution

Interrupt here
 Automatic return setting after jog feed at pause 5-539

5

5Functions set with parameters
5.11 Automatic execution of program at power up
The following illustrates how to automatically run a robot program when the controller's power is turned on.
However, since the robot starts operating simply by turning the power on, exercise caution upon using this
function.

Related parameters

(1) First, create an ALWAYS program and an operating program.
<Program #2, ALWAYS program>

< Program #1, operating program > (this can be any program)

(2) Set the parameter.

After the setting is complete, turn the controller's power OFF.

(3) Turn the power ON.
In the sample above, after the controller is powered on, when the controller mode is set to AUTOMATIC,
program #1 is executed and the robot starts its operation.

Parameter and value Description of the operation

SLT* Exmple) SLT2=2,ALWAYS,REP
Specifies the program name, start condition, and operation status. The point here is the start condition.

ALWENA 0→1
In the ALWAYS program, it is possible to execute multitask-related instructions such as XRun and
XLoad, and also the Servo instruction.

1 ' Auto Start Sample Program
2 '
3 ' Execute Program #1 if the key switch is AUTOMATIC.
4 ' Stop the program and return the execution line to the beginning of the program if the key switch is not

AUTOMATIC.
5 '
6 If M_Mode<>2 And (M_Run(1)=1 Or M_Wai(1)=1) Then GoSub *MTSTOP
7 If M_Mode=2 And M_Run(1)=0 And M_Wai(1)=0 Then GoSub *MTSTART
8 If M_Mode=1 Then Hlt ' for DEBUG
9 End
10 '
11 *MTSTART
12 XRun 1,"1"
13 Rerurn
14 '
15 *MTSTOP
16 XStp 1
17 Wait M_Run(1)=0
18 XRst 1
19 Rerurn

1 'Main Program
2 Servo On
3 M_Out(8)=0
4 Mov P1
5 M_Out(8)=1
6 Mov P2
7 End
P1=(+300.00,-200.00,+200.00,+0.00,+180.00,+0.00)(6,0)
P2=(+300.00,+200.00,+200.00,+0.00,+180.00,+0.00)(6,0)

Parameter and value Description of the operation

SLT2 SLT2=2,ALWAYS,REP ’Execute program #2 in ALWAYS mode.

ALWENA 0→1
In the ALWAYS program, it is possible to execute multitask-related instructions such as XRun and
XLoad, and also the Servo instruction.
-540 Automatic execution of program at power up

 5Functions set with parameters
5.12 About the hand type
(1) Solenoid valve types and signal numbers

Set the parameters according to the type of solenoid valve being used, and the output signal being
connected.
The following details can be set.

a) Solenoid valve sink type/source type setting Parameter: HIOTYPE
Note) When this parameter is set, the hand input signal’s logic will be set to the sink type or source type at the

same time.
b) Solenoid valve single solenoid type/double solenoid type setting....... Parameter: HANDTYPE
c) Output signal number that drives solenoid valve................................. Parameter: HANDTYPE

The default settings assume that the double solenoid type solenoid valve is being used.
When using a different type of solenoid valve or when using the general-purpose output signals, change the
parameters shown in Table 5-12.

Table 5-12:Factory default parameter settings
Parameter name Value and explanation

HIOTYPE

Setting value at shipment: -1

Set the sink type/source type for the solenoid valve and sink type/source type for the
hand input signal logic.
-1: Not set
1: Sink type
0: Source type

HANDTYPE

Setting value at shipment:
CR800-D/R/Q: D900,D902,D904,D906, , , ,
CR860-D/R/Q: D764,D766,D768,D770, , , ,

Set the single solenoid type/double solenoid type for the solenoid valve, and the output
signal number for driving the solenoid valve.
From the left, the values correspond to hand #1, #2, and so on. The default value is
shown below.
CR800-D/R/Q:
Hand 1 = accesses signals #900 and #901
Hand 2 = accesses signals #902 and #903
Hand 3 = accesses signals #904 and #905
Hand 4 = accesses signals #906 and #907
CR860-D/R/Q:
Hand 1 = accesses signals #764 and #765
Hand 2 = accesses signals #766 and #767
Hand 3 = accesses signals #768 and #769
Hand 4 = accesses signals #770 and #771
The hand numbers 1 through 4 (or 8) will be used as the argument in the hand open/close
instructions (HOpen or HClose).

<Setting method>
When a double-solenoid type is used, 'D' must be added in front of the signal number to
specify the number.
In the case of double-solenoid type, hand number will be from 1 to 4.
When a single-solenoid type is used, 'S' must be added in front of the signal number to
specify the number.
In the case of single-solenoid type, hand number will be from 1 to 8.

<Example>
* Each following is the example which connected the valve of customer preparation to the
general-purpose output signal with external wiring.
1) To assign two hands of the double-solenoid type from the general-purpose signal #10
HANDTYPE=D10,D12, , , , ,
2) To assign three hands of the double-solenoid type from the general-purpose signal #10
HANDTYPE=S10,S11,S12, , , , ,
3) To assign hand 1 to the general-purpose signal #10 as the single-solenoid type while
assigning hand 2 to the general-purpose signal #12 as the single-solenoid type
HANDTYPE=D10,S12, , , , ,
 About the hand type 5-541

5

5Functions set with parameters
5.13 About default hand status
The factory default setting is shown below.

The default parameters are set as shown below so that all hands start as "Open" immediately after power
up.

The above describes the situation for standard configuration (one unit is connected).

If for instance hand 1 alone needs to be closed when the power is turned ON, the following should be set.

[Caution] If you set the initial hand status to "Open," note that the workpiece may be dropped when the
power is turned ON.

[Caution] This parameter specifies the dedicated signal initial status at power ON for the hand located at the
robot's tip.
To set the initial status at power ON when controlling the hand using general-purpose I/Os, use
the ORS* parameter instead of this HANDINIT parameter. The status set by the ORS* parameter
becomes the initial status of the signal at power ON.

Hand type Status
Status of output signal number

CR800 controller CR860 controller
Double-solenoid is assumed Hand 1 = Open

Hand 2 =Open

Hand 3 =Open

Hand 4 =Open

900=1
901=0
902=1
903=0
904=1
905=0
906=1
907=0

764=1
765=0
766=1
767=0
768=1
769=0
770=1
771=0

Parameter name
Value

CR800 controller: 900, 901, 902, 903, 904, 905, 906, 907
CR860 controller: 764, 765, 766, 767, 768, 769, 770, 771

HANDINIT 1, 0, 1, 0, 1, 0, 1, 0

Parameter name Value

HANDINIT 0, 1, 1, 0, 1, 0, 1, 0
-542 About default hand status

 5Functions set with parameters
5.14 About the output signal reset pattern
The factory default setting sets all general-purpose output signals to OFF (0) at power up. The status of
general-purpose output signals after power up can be changed by changing the following parameter. Note
that this parameter also affects the general-purpose output signal reset operation (called by dedicated I/O
signals) and the reset pattern after executing the Clr instruction.

Parameter name Value (Values are all set to 0 at the factory default setting.)

R
em

ot
e

I/O

ORST0 Signal number
0----------7 8---------15 16--------23 24--------31
00000000, 00000000, 00000000, 00000000

ORST32 32--------40 41--------49 50-------57 58-------66 (Same as above)
00000000, 00000000, 00000000, 00000000

ORST64 00000000, 00000000, 00000000, 00000000

ORST96 00000000, 00000000, 00000000, 00000000

ORST128 00000000, 00000000, 00000000, 00000000

ORST160 00000000, 00000000, 00000000, 00000000

ORST192 00000000, 00000000, 00000000, 00000000

ORST224 00000000, 00000000, 00000000, 00000000

PR
O

FI
BU

S
op

tio
n

ORST2000 00000000, 00000000, 00000000, 00000000

ORST2032 00000000, 00000000, 00000000, 00000000

ORST2064 00000000, 00000000, 00000000, 00000000

ORST2096 00000000, 00000000, 00000000, 00000000

ORST2128 00000000, 00000000, 00000000, 00000000

ORST2160 00000000, 00000000, 00000000, 00000000

ORST2192 00000000, 00000000, 00000000, 00000000

ORST2224 00000000, 00000000, 00000000, 00000000

ORST2256 00000000, 00000000, 00000000, 00000000

ORST2288 00000000, 00000000, 00000000, 00000000

 : :

 : :

 : :

ORST5008 00000000, 00000000, 00000000, 00000000

ORST5040 00000000, 00000000, 00000000, 00000000

C
C

-L
in

k
op

tio
n

ORST6000 00000000, 00000000, 00000000, 00000000

ORST6032 00000000, 00000000, 00000000, 00000000

ORST6064 00000000, 00000000, 00000000, 00000000

ORST6096 00000000, 00000000, 00000000, 00000000

ORST6128 00000000, 00000000, 00000000, 00000000

ORST6160 00000000, 00000000, 00000000, 00000000

ORST6192 00000000, 00000000, 00000000, 00000000

ORST6224 00000000, 00000000, 00000000, 00000000

ORST6256 00000000, 00000000, 00000000, 00000000

ORST6288 00000000, 00000000, 00000000, 00000000

 : :

 : :

 : :

ORST7984 00000000, 00000000, 00000000, 00000000

ORST8016 00000000, 00000000, 00000000, 00000000
 About the output signal reset pattern 5-543

5

5Functions set with parameters
The value corresponds to bits from the left.
Setting is "0", "1", or "*".
"0" = Set to off
"1" = Set to on
"*" = Maintain status with no change. (Set to off at power up.)
For instance, if you want to always turn ON immediately after power up 10138, 10139, 10140, 10160, 10161
and 10168 of the general-purpose signals, the robot should be set to the configuration shown below.

In addition to the above, to make 10148, 10143 and 10150 retain their individual on/off status upon a
general-purpose output signal reset, the robot should be set to the configuration shown below.

In the case above, general-purpose signals 10148, 10149, 10150 will start up as 0 (off) after a power up.
The setting cannot be made in such a way that will turn the signal to 1 (on) after power up and will retain the
current status upon a general-purpose output signal reset.

[Caution] When editing the parameters, do not enter an incorrect number of zeros. If the number of zeros is
incorrect, an error is generated next time the power is turned on.

PL
C

 li
nk

 N
ot

e1
)

ORST10000 Signal number
10000---10007 10008---10015 10016---10023 10024---10031

 | | | | | | | |

 00000000、 00000000、 00000000、 00000000

ORST10032 10032---10039 10040---10047 10048---10055 10056---10063

 | | | | | | | |

 00000000、 00000000、 00000000、 00000000

ORST10064 00000000、 00000000、 00000000、 00000000

ORST10096 00000000、 00000000、 00000000、 00000000

ORST10128

　 　 |

　 　 |

　 　 |

　 　 |

　 　 |

　 　 |

ORST18160

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

Note1) PLC link is for the CR800-R/Q Series only.

Parameter name Value

ORST10128 10128---10135 10136---10143 10144---10151 10152---10159

 | | | | | | | |

 00000000、 00000000、 00000000、 00000000.........At the factory default setting

 00000000、 00111000、 00000000、 00000000.........Setting value

ORST10160 10160---10167 10168---10175 10176---10183 10184---10191

 | | | | | | | |

 00000000、 00000000、 00000000、 00000000.........At the factory default setting

 11000000、 10000000、 00000000、 00000000.........Setting value

Parameter name Value

ORST10128 00000000、 00111000、 0000***0、 00000000

ORST10160 11000000、 10000000、 00000000、 00000000

Parameter name Value (Values are all set to 0 at the factory default setting.)
-544 About the output signal reset pattern

 5Functions set with parameters
5.15 About the communication setting (Ethernet)
The port number used for communication is shown in Table 5-13.

Table 5-13: Port number to use

5.15.1 Details of parameters
(1) NETIP (IP address of robot controller)

The IP address of the robot controller is set. IP address is like the address of the mail.
The format of IP address is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.
For example, it is set as 192.168.0.1.
If the controller and network personal computer are directly connected to each other one-to-one, it is
allowed to set default value (a random value) but if it is connected to the local area network (LAN), IP
address must be set as instructed by the manager of customer's LAN system.
If any IP addresses are overlapped, the function will not properly operate. Therefore, take care to prevent it
from being overlapped with another during setting.
The personal computer used for communication with the robot controller must be located on the same
network.

(2) NETMSK (sub-net-mask)
Set the sub-net-mask of the robot controller. Among the IP addresses, the sub-net-mask is set to define the
sub-net-work.
The format of the sub-net-mask is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.
For example, it is set as 255.255.255.0 or 255.255.0.0.
As usual, it is allowed to set default value. If it is connected to the local area network (LAN), the sub-net-
mask must be set as instructed by the manager of customer's LAN system.

(3) NETPORT (port No.)
The port No. of the robot controller is set. The port No. is like the name of the mail.
For the nine elements, the port numbers are each expressed with a value.
The first element (element No. 1) is used for real-time control.
The second to ninth elements (elements No. 2 to 9) are used for the support software or data link.
Normally, the default value does not need to be changed. Make sure that the port numbers are not
duplicated.

Port number Application Parameter Note1)

Note1) With a few exceptions, the port number can be changed by parameter. The setting range is 0 to 65535.

20 Reserved

21 Reserved

23 COGNEX vision sensor Cannot be changed

111 Reserved

502 Reserved

1024 Reserved

5001 GOT communication GOTPORT

10000 Mxt command NETPORT

10001 RT ToolBox3 (This port can also be used for Data link) NETPORT

10002 to 10009 Data link (This port can also be used for RT ToolBox3) NETPORT

11000 R56TB Cannot be changed (TBPORT)

12000 Oscillograph function MONPORT

43815 Reserved

43816 Reserved
 About the communication setting (Ethernet) 5-545

5

5Functions set with parameters
(4) CRRCE11 to 19 (protocol)
When using the data link function, the setup is necessary.
Sets the protocol (procedure) for communication. The protocol has three kinds of no-procedure, procedure
and data link.
0... No-procedure: The protocol is applied to use the personal computer Support Software .
1... Procedure: Reserved. (Since it is not any function, don't set it by mistake.)
2... Data link: The protocol is used to use OPEN/INPUT/PRINT commands for communication.

(5) COMDEV (Definition of devices corresponding to COM1: to 8)
When using the data link function, the setup is necessary.
Definition of device corresponding to COM1: to 8 is set. COM1: to 8 is used for OPEN command of the robot
program.
Be sure to set it only when the data link is specified on setting of the protocol (CPRCE11 to 19).
The setting values of the Ethernet interface option correspond to the port Nos. which are set at the
parameter NETPORT.
* In the following parameters NETOPORT (n) and COMDEV(n), n indicates the element No. of that

parameter.

For example, if the port No. specified at NETPORT(4) is allocated to the data link of COM:3, the following
will be applied.
COMDEV(3) = OPT13 * OPT13 is set at 3rd element of COMDEV.
CPRCE13 = 2 * Set up as a data link.

(6) NETMODE (server specification).
Set up, when using the data link function.
Set the TCP/IP communication in the data link function of the robot controller as the server or the client.
It is necessary to change with the application of the equipment connected to the robot controller.
This function corresponds to the software version H7 or later.
In the version older than H7, the robot controller operates only as a server.

(7) NETHSTIP (The IP address of the server of the data communication point).
Set up, when using the robot controller as a client by the data link function.
Specify the IP address of the partner server which the robot controller connects by the data link function.
Set up, when only set the robot controller to the client by server specification of NETMODE.

(8) MXTTOUT (Timeout setting for executing real-time external control command)
The communication timeout time with the controller when executing the real-time external control command
is set. Set a multiple of one control cycle. One control cycle is approx. 7.1 ms with the CR800-Q series and
approx. 3.5 ms (approx. 7.1 ms when user mechanism is set) with the CR800-D/R series. While the real-
time external control command is being executed, the timeout time is counted up when no communication
data is sent from the personal computer to the robot controller. When the count reaches the value set in this
parameter, an error (H7820) occurs and the operation stops. For example, to generate an error when there
is no communication for approx. 7 seconds, set 2000 (for CR800-D/R series) or 1000 (for CR800-Q series
and CR800-D/R series when user mechanism is set).
This value is -1 (timeout disabled) by factory default setting.

n The device name set up by COMDEV(n) Port number
1 OPT11 The port number specified by NETPORT(2)
2 OPT12 The port number specified by NETPORT(3)
3 OPT13 The port number specified by NETPORT(4)
4 OPT14 The port number specified by NETPORT(5)
5 OPT15 The port number specified by NETPORT(6)
6 OPT16 The port number specified by NETPORT(7)
7 OPT17 The port number specified by NETPORT(8)
8 OPT18 The port number specified by NETPORT(9)
9 OPT19 The port number specified by NETPORT(10)
-546 About the communication setting (Ethernet)

 5Functions set with parameters
5.15.2 Example of setting of parameter 1 (When the Support Software is used)
The setting example to use the Support Software is shown below.
Set the parameters for the robot controller, and the network for the personal computer OS being used.

Set the robot controller parameters as shown below.
If the default settings are to be used, the parameters do not need to be changed.

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties
screen.
Windows Vista (lower screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in
network computer). Because the set-up screen differs with versions of Windows, refer to the manuals
enclosed with Windows, etc., for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting
and using the personal computer support software.

Item Setting value

IP address of robot controller 192.168.0.20

IP address of personal computer 192.168.0.2

Port No. of robot controller 10001 10001

Parameter name to be changed Before/after change Parameter value

NETIP Before 192.168.0.20

After 192.168.0.20 (With the default value.)

NETPORT Before 10001

After 10001 (With the default value.)
 About the communication setting (Ethernet) 5-547

5

5Functions set with parameters
5.15.3 Example of setting of parameter 2-1
(When the data link function is used: When the controller is the server)
Shows the example of the setting, when the controller is server by the data link function.

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties
screen.
Windows Vista (lower screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in
network computer). Because the set-up screen differs with versions of Windows, refer to the manuals
enclosed with Windows, etc., for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting
and using the personal computer support software.

Item Setting value

Robot controller IP address 192.168.0.20

Personal computer IP address 192.168.0.2

Robot controller port No. 10003

Communication line No.
Open command COM No. COM3:

Parameter name to be
changed Before/after change Parameter value

NETIP Before 192.168.0.20

After 192.168.0.20 (With the default value.)

NETPORT Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(Default value)

CPRCE13 Before 0

After 2

COMDEV Before RS232, , , , , , ,

After RS232, , OPT13, , , , ,
-548 About the communication setting (Ethernet)

 5Functions set with parameters
5.15.4 Example of setting parameters 2-2
(When the data link function is used: When the controller is the client)
Shows the example of the setting, when the controller is client by the data link function.

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties
screen.
Windows Vista (lower screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in
network computer). Because the set-up screen differs with versions of Windows, refer to the manuals
enclosed with Windows, etc., for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting
and using the personal computer support software.

Item Setting value

Robot controller IP address 192.168.0.20

Personal computer IP address 192.168.0.2

Robot controller port No. 10003

Communication line No.
Open command COM No. COM3:

Parameter name to be

changed
Before/after change Parameter value

NETIP Before 192.168.0.20

After 192.168.0.20 (With the default value.)

NETPORT Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(Default value)

CPRCE13 Before 0

After 2

COMDEV Before RS232, , , , , , ,

After RS232, , OPT13, , , , ,

NETMODE Before 1,1,1,1,1,1,1,1,1

After 1,1,0,1,1,1,1,1,1

NETHSTIP Before 192.168.0.2, 192.168.0.3, 192.168.0.4, 192.168.0.5, 192.168.0.6,
192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

After 192.168.0.2, 192.168.0.3, 192.168.0.2, 192.168.0.5, 192.168.0.6,
192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10
 About the communication setting (Ethernet) 5-549

5

5Functions set with parameters
5.15.5 Example of setting parameters 3
(for using the real-time external control function)
An example of the settings for using the real-time external control function is shown below.

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties
screen.
Windows Vista (lower screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in
network computer). Because the set-up screen differs with versions of Windows, refer to the manuals
enclosed with Windows, etc., for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting
and using the personal computer support software.

Item Setting value

Robot controller IP address 192.168.0.20

Personal computer IP address 192.168.0.2

Robot controller port No. 10000

Parameter name to
be changed Before/after change Parameter value

NETIP Before 192.168.0.20

After 192.168.0.20 (With the default value.)

NETPORT Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(Default value)

MXTTOUT Before -1

After -1 (Default value)

MXTCOM1 Before 192.168.0.2

After 192.168.0.2 (Default value)
-550 About the communication setting (Ethernet)

 5Functions set with parameters
5.15.6 Connection confirmation
Before use, confirm the following items again.

5.15.7 Checking the connection with the Windows ping command
The method for checking the connection with the Windows ping command is shown below.
Start up the " MS-DOS Prompt " from the Windows " Start " - " Programs " menu, and designate the robot
controller IP address as shown below.
If the communication is normal, " Reply from ... " will appear as shown below.
If the communication is abnormal, " Request time out " will appear.

No. Confirmation item Check

1 Is the teaching pendant securely fixed?

2 Is the Ethernet cable properly connected between the controller and personal computer?

3 Is any proper Ethernet cable used?
(This cross cable is used to connect the personal computer and controller one-on-one. When using a
hub with LAN, use a straight cable.)

4 Is the parameter of the controller properly set? (Refer to 2.3 in this manual.)

5 Is the power supply of the controller turned off once after the parameter is set?
 About the communication setting (Ethernet) 5-551

5

5Functions set with parameters
5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)
Optimum acceleration/deceleration control allows the optimum acceleration/deceleration to be performed by
LoadSet and Oadl instructions automatically in response to the load at the robot tip. The following
parameters must be set correctly in order to obtain the optimum acceleration/deceleration.
This parameter is also used in the impact detection function installed in the RV-SD/RH-SDH series.
When using the impact detection function during jog operation, set HNDDAT0 and WRKDAT0 correctly.
The factory default setting is as follows.

Parameter values define, from the left in order, weight, size X, Y, and Z, and center of gravity X, Y, and Z. Up
to eight hand conditions and eight workpiece conditions can be set. For the size of a hand, enter the length
of a rectangular solid that can contain a hand. Optimal acceleration/deceleration will be calculated from the
hand condition and the workpiece condition specified by a LoadSet instruction.

Parameter values that define grasping or not grasping is shown from the left for cases where the hand is
open or closed.
"0" = Set to not grasping
"1" = Set to grasping
Depending on the hand's open/close status, optimum acceleration/deceleration calculation will be
performed for either hand-alone condition or hand-and-workpiece condition.

The hand's open/close status can be changed by executing the HOpen/HClose instruction.

Parameter Value

se
tti

ng
 th

e
ha

nd
 c

on
di

tio
ns

HNDDAT0 It varies with models.

HNDDAT1 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT2 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT3 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT4 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT5 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT6 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT7 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT8 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

se
tti

ng
 th

e
w

or
kp

ie
ce

 c
on

di
tio

ns

WRKDAT0 It varies with models.

WRKDAT1 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT2 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT3 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT4 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT5 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT6 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT7 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT8 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

Parameter Value(Factory default)
HNDHOLD1 0, 1

HNDHOLD2 0, 1

HNDHOLD3 0, 1

HNDHOLD4 0, 1

HNDHOLD5 0, 1

HNDHOLD6 0, 1

HNDHOLD7 0, 1

HNDHOLD8 0, 1
-552 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)

 5Functions set with parameters
The coordinate axes used as references when setting the hand and workpiece conditions are shown below
for each robot model. The references of the coordinate axes are the same for both the hand and workpiece
conditions. Note that all the sizes are set in positive values.

*Vertically articulated robots

*Horizontally articulated robots

+Z

Definitions of Coordinate Axes
The tool coordinate is used for the coordinate axes.

Axes that must be set:
Only the X, Y and Z elements of the center of gravity and the X, Y
and Z elements of the size must be set.

+Y

+X

6-axis type

Definitions of Coordinate Axes
In the coordinate system with the tip of
the J4 axis as the origin:
Z axis: The upward direction is positive.
X axis: The direction of extension in the

arm orientation is positive.
Y axis: A right hand coordinate system

Axes that must be set:
Only the X element of the center of
gravity and the X and Y elements of the
size must be set.

+Z
+Y+X
 Hand and Workpiece Conditions (optimum acceleration/deceleration settings) 5-553

5

5Functions set with parameters
5.17 About the singular point adjacent alarm
When a robot having a singular point is being operated using a T/B, a singular point adjacent alarm is
generated to warn the operators of the robot if the control point of the robot approaches a singular point.
Even if an alarm is generated, the robot continues to operate as long as it can perform operation unless
operation is suspended. Also, an alarm is reset automatically when the robot moves away from a singular
point. The following describes the details of the singular point adjacent alarm.

(1) Operations that generate an alarm
An alarm is generated if the control point of a robot approaches a singular point while a robot is performing
any of the following operations using the T/B.

1) Jog operation (other than in joint jog mode)
2) Step feed and step return operations
3) MS position moving operation
4) Direct execution operation

If the robot approaches a singular point by any of the operations listed above, the buzzer of the controller
keeps buzzing (continuous sound).

(2) Operations that do not generate an alarm
No alarm is generated when a robot is performing any of the operations listed below even if the control point
of the robot approaches a singular point.

1) Additional axis jog operation initiated in joint jog mode using the T/B
2) When the joint interpolation instruction is executed even by an operation from the T/B

(Execution of the Mov command, MO position moving operation)
3) When the program is running automatically
4) Jog operation using dedicated input signals (such as JOGENA and JOGM)
5) When the robot is being operated using external force by releasing the brake
6) When the robot is stationary
-554 About the singular point adjacent alarm

 5Functions set with parameters

 High-speed RAM operation function 5-555

5.18 High-speed RAM operation function

The programs are executed as DRAM operation (high-speed RAM operation) to increase processing speed.
When using the high-speed RAM operation function, some restrictions apply to the program operation and
data saving. Thoroughly understand the specifications before using this function.

(1) Overview
The robot programs are saved in the flash ROM.
The programs are executed as DRAM operation to increase processing speed. As such, some variables
used in the programs cannot be saved when the power is shut off.
Restrictions

DRAM operation: Program external variables and user-defined external variables are saved. Local
variables are discarded.

(2) Precautions on saving variables at power off
Variable values used in running programs can be changed with high-speed RAM operation. Note that these
changed values are discarded when the power to the controller is shut off. Use the following method to
retain the variables at power off.

* When variables must be retained at power off:
Use program external variables and user-defined external variables, select a program before shutting
off the power, or execute the CallP instruction to end the program (run until the End instruction of the
CallP destination).
 Note that the user-defined external variables are excluded.

Table 5-14:Saving variables with high-speed RAM operation (DRAM operation)

Variable Note1)

Note1) The variables include numeric variables, character string variables, position variables and joint variables.

During high-speed RAM operation
(DRAM operation)

Local variable The program variables being executed at power off are discarded.
The variables are saved when the program is selected or when the CallP
instruction ends. By using the Save command, a robot program including local
variables can be saved.

Program external variable Variable values are retained even after the power is shut off.
User-defined external variable Variable values are retained even after the power is shut off.

5

5Functions set with parameters
5.19 Warm-Up Operation Mode

(1) Functional Overview
The acceleration/deceleration speed and servo system of Mitsubishi robots are adjusted so that they can be
used with the optimum performance in a normal temperature environment. Therefore, if robots are operated
in a low temperature environment or after a prolonged stop, they may not exhibit the intrinsic performance
due to change in the viscosity of grease used to lubricate the parts, leading to deterioration of position
accuracy and a servo error such as an excessive difference error. In this case, we ask you to operate robots
in actual productions after conducting a running-in operation (warm-up operation) at a low speed. To do so,
a program for warm-up operation must be prepared separately.
The warm-up operation mode is the function that operates the robot at a reduced speed immediately after
powering on the controller and gradually returns to the original speed as the operation time elapses. This
mode allows you to perform a warm-up operation easily without preparing a separate program. If an
excessive difference error occurs when operating the robot in a low temperature environment or after a
prolonged stop, enable the warm-up operation mode.

*To Use the Warm-Up Operation Mode
To use the warm-up operation mode, specify 1 (enable) in the WUPENA parameter and power on the
controller again.

*When the Warm-Up Operation Mode Is Enabled
When the warm-up operation mode is enabled, powering on the controller enters the warm-up operation
status (the speed is automatically reduced). In the warm-up operation status, the robot operates at a speed
lower than the specified operation speed, then gradually returns to the specified speed as the operation time
of a target axis elapses. The ratio of reducing the speed is referred to as the warm-up operation override.
When this value is 100%, the robot operates at the specified speed. In parameter setting at shipment from
the factory, the value of a warm-up operation override changes as shown in the Fig. 5-4 below according to
the operation time of a target axis.

Fig.5-4:Changes in Warm-Up Operation Override

Even in the warm-up operation status, the robot does not decrease its speed if the
MODE switch on the controller's front panel is set to "TEACH," for a jog operation or
for an operation by real-time external control (MXT instruction), and operates at the
originally specified speed.

In the warm-up operation status, because the robot operates at a speed lower than
the originally specified speed, be sure to apply an interlock with peripheral units.

100%

Time during which
values are constant

(30 sec)
Valid time of the warm-up operation status

(60 sec)

Warm-up operation
override

Time during
which a target

axis is operating

Initial value
(70%)

 CAUTION

 CAUTION
-556 Warm-Up Operation Mode

 5Functions set with parameters
If the operating duty of the target axis is low, a servo error such as an excessive
difference error may occur even when the warm-up operation mode is enabled.
In such a case, change the program, and lower the speed as well as the acceleration/
deceleration speed.

When a target axis operates and the warm-up operation status is canceled, the robot operates at the
specified speed. Note that the joint section cools down at a low temperature if the robot continues to stop
after the warm-up operation status is canceled. Therefore, if a target axis continues to stop for a prolonged
period (the setting value at shipment from the factory is 60 min), the warm-up operation status is set again
and the robot operates at a reduced speed.

Note 1: When powering off the controller and then powering on again, if the power-off period is short, the
temperature of the robot's joint section does not decrease too much. Therefore, when powering off
the controller and then powering on again after the warm-up operation status is canceled, if the
power-off period is short, the robot starts in the normal status instead of the warm-up operation
status.

Note 2: A target axis refers to the joint axis that is the target of control in the warm-up operation mode. It is
the joint axis specified in the WUPAXIS parameter.

 CAUTION
 Warm-Up Operation Mode 5-557

5

5Functions set with parameters
(2) Function Details
1)Parameters, Dedicated I/O Signals and Status Variables of the Warm-Up Operation Mode
The following parameters, dedicated I/O signals and status variables have been added in the warm-up
operation mode. Refer to Page 492, "5.1 Movement parameter", Page 649, "6.3 Dedicated input/output" and
Page 107, "4 MELFA-BASIC VI" for details.

Table 5-15:Parameter List of the Warm-Up Operation Mode

Table 5-16:Dedicated I/O Signal List of Warm-Up Operation Mode

Table 5-17:Status Variable of Warm-Up Operation Mode

Parameter name Description and value
WUPENA Designate the valid/invalid of the Warm-up operation mode.

0:Invalid/ 1: Valid
WUPAXIS Specify the joint axis that will be the target of control in the warm-up operation mode by selecting bit ON or

OFF in hexadecimal (J1, J2, from the lower bits).
Bit ON: Target axis/ Bit OFF: Other than target axis

WUPTIME Specify the time (unit: min.) to be used in the processing of warm-up operation mode. Specify the valid time in
the first element, and the resume time in the second element.
Valid time: Specify the time during which the robot is operated in the warm-up operation status and at a

reduced speed. (Setting range: 0 to 60)
Resume time: Specify the time until the warm-up operation status is set again after it has been canceled if a

target axis continues to stop. (Setting range: 1 to 1440)
WUPOvrd Perform settings pertaining to the speed in the warm-up operation status. Specify the initial value in the first

element, and the value constant time in the second element. The unit is % for both.
Initial value: Specify the initial value of an override (warm-up operation override) to be applied to the operation

speed when in the warm-up operation status. (Setting range: 50 to 100)
Ratio of value constant time: Specify the duration of time during which the override to be applied to the

operation speed when in the warm-up operation status does not change from
the initial value, using the ratio to the valid time. (Setting range: 0 to 50)

Parameter name Class Function

MnWUPENA (n=1t o 3)
(Operation right required)

Input Enables the warm-up operation mode of each mechanism. (n: FMechanism No.)
Output Outputs that the warm-up operation mode is currently enabled. (n: FMechanism No.)

MnWUPMD(n=1 to 3) Output Outputs that the status is the warm-up operation status, and thus the robot will operate at a
reduced speed. (n: FMechanism No.)

Status variable Function

M_Wupov Returns the value of an override (warm-up operation override) to be applied to the command speed in
order to reduce the operation speed when in the warm-up operation status.

M_Wuprt Returns the time during which a target axis in the warm-up operation mode must operate to cancel the
warm-up operation status.

M_Wupst Returns the time until the warm-up operation status is set again after it has been canceled.
-558 Warm-Up Operation Mode

 5Functions set with parameters
2) To Use the Warm-Up Operation Mode
To use the warm-up operation mode, enable its function with parameters. The function can also be enabled
or disabled with a dedicated input signal.

*Specifying with a Parameter
To enable the warm-up operation mode with a parameter, set 1 in the WUPENA parameter. After changing
the parameter, the warm-up operation mode is enabled by powering on the controller again. In the following
cases, however, the warm-up operation mode will not be enabled even if 1 is set in the WUPENA parameter.
• When 0 is set in the WUPAXIS parameter (a target axis in the warm-up operation mode does not exist)
• When 0 is set in the first element of the WUPTIME parameter (the warm-up operation status period is 0

min)
• When 100 is set in the first element of the WUPOvrd parameter (the speed is not decreased even in the

warm-up operation status)
When using the warm-up operation mode, change these parameters to appropriate setting values.

*Switching with a Dedicated Input Signal
By assigning the MnWUPENA (n = 1 to 3: mechanism number) dedicated input signal, the warm-up
operation mode can be enabled or disabled without powering on the controller again. Also, the current
enable/disable status can be checked with the MnWUPENA (n = 1 to 3: mechanism number) dedicated
output signal.

Note 1:In order for the dedicated input signal above to function, it is necessary to enable the warm-up
operation mode in advance by setting the parameters described previously.

Note 2:This dedicated input signal requires the operation right of external I/O. Also, no input is accepted
during operation or jog operation.

Note 3:The enable/disable status specified by this dedicated input signal is held even after the control right
of external I/O is lost.

3) When the Warm-Up Operation Mode Is Enabled
When the warm-up operation mode is enabled, powering on the controller enters the warm-up operation
status.
In the warm-up operation status, the robot operates at a speed lower than the actual operation speed by
applying a warm-up operation override to the specified speed. The operation speed is gradually returned to
the specified speed as the operation time of a target axis elapses. When the warm-up operation status is
canceled, the robot will start operating at the specified speed.

*Initial Status Immediately After Power On
When the warm-up operation mode is enabled, powering on the controller enters the warm-up operation
status.
However, when powering off the controller and then powering on again after the warm-up operation status is
canceled, if the power-off period is short, the robot starts in the normal status instead of the warm-up
operation status as the temperature of the robot's joint section has not been lowered much from power-off.
To be specific, the robot starts in the normal status if the following condition is satisfied:
Condition: The robot starts in the normal status if the time during which a target axis continues to stop from

the cancellation of the warm-up operation status to powering on is shorter than the time specified
in the second element of the WUPTIME parameter (the resume time of the warm-up operation
status).

Note that if the warm-up operation mode is switched to be enabled with the MnWUPENA (n = 1 to 3:
mechanism number) dedicated input signal, the warm-up operation status is always set.
 Warm-Up Operation Mode 5-559

5

5Functions set with parameters
*Methods to Check the Warm-Up Operation Status
Whether the current status is the warm-up operation status or normal status can be checked in the following
two methods:
• Checking with a status variable

The current status can be checked by monitoring the value of the M_Wupov status variable (the value of
a warm-up operation override). In the normal status, the value of M_Wupov is set to 100%; in the warm-
up operation status, it is below 100%.

• Checking with a dedicated output signal
In the warm-up operation status, the MnWUPMD (n = 1 to 3: mechanism number) dedicated output
signal is output.

*Switching Between the Normal Status and the Warm-Up Operation Status
When in the warm-up operation status, if a target axis in the warm-up operation mode continues operating
and its operation time exceeds the valid time of the warm-up operation status, the warm-up operation status
is canceled and the normal status is set. Thereafter, if the robot continues to stop, the joint section is cooled
down in a low temperature environment. When a target axis continues to stop over an extended period of
time and the resume time of the warm-up operation status is exceeded, the normal status switches to the
warm-up operation status again.

• Canceling the warm-up operation status
If the accumulated time a target axis has operated exceeds the valid time of the warm-up operation
status, the warm-up operation status is canceled and the normal status is set. Specify the valid time of
the warm-up operation status in the first element of the WUPTIME parameter. (The setting value at
shipment from the factory is 1 min.) If a multiple number of target axes exist, the warm-up operation
status is canceled when all target axes exceed the valid time. Note that, with the M_Wuprt status
variable, you can check when the warm-up operation status will be canceled after how much more time a
target axis operates.

• Switching from the normal status to the warning-up operation status
If the time during which a target axis continues to stop exceeds the resume time of the warm-up operation
status, the normal status switches to the warm-up operation status. Specify the resume time of the warm-
up operation status in the second element of the WUPTIME parameter. (The setting value at shipment
from the factory is 60 min.)
If a multiple number of target axes exist, the warm-up operation status is set when at least one of the axes
exceeds the resume time of the warm-up operation status.
Note that, with the M_Wupst status variable, you can check when the status is switched to the warm-up
operation status after how much more time a target axis continues to stop.
Note: If a target axis is not operating even when the robot is operating, it is determined that the target axis

is stopping.
-560 Warm-Up Operation Mode

 5Functions set with parameters
The following Fig. 5-5 shows an example of a timing chart for switching from the normal status to the warm-
up operation status.

Fig.5-5:Example of Switching Between the Normal Status and the Warm-Up Operation Status

*Warm-Up Operation Override Value
An override to be applied to the operation speed in order to reduce the speed in the warm-up operation
status is referred to as the warm-up operation override. The warm-up operation override changes as shown
in the figure below according to the time during which a target axis operates, and is immediately reflected in
the operation of the robot. Specify the initial value of the warm-up operation override and the ratio of the time
during which the override does not change in relation to the valid time of the warm-up operation status using
the WUPOVRD parameter. (The initial value is 70% and the ratio is 50% (= 30 sec) in the settings at
shipment from the factory.)
These values can be checked with the M_Wupov status variable.

Fig.5-6:Changes in Warm-Up Operation Override

Normal status

Operating

Stopping

Accumulated value
of target axis

operation time

Time during which
a target axis

continues to stop

Warm-up
operation status

Valid time

Resume time

Because the accumulated
operation time reaches the valid
time, the warm-up operation
status is canceled.

Target axis
operation

Because a target axis
continues to stop for the
time specified as the
resume time, the status
changes to the warm-up
operation status again.

Time

100%

Value constant time

Valid time of the warm-up operation status

Warm-up operation
override

Time during which a
target value is operating

Initial value

Change to the warm-up operation status Cancel the warm-up operation status

・Initial value: First element of the WUPOVRD parameter
・Valid time: Second element of the WUPTIME parameter
・Value constant time: Valid time x ratio specified in the second

element of the WUPOVRD parameter
 Warm-Up Operation Mode 5-561

5

5Functions set with parameters
Note that the actual override in the warm-up operation status is as follows:
• During joint interpolation operation = (T/B override setting value) x (program override (Ovrd instruction)) x

(joint override (JOvrd instruction)) x warm-up operation override
• During linear interpolation operation = (T/B override setting value) x (program override (Ovrd instruction))

x (linear specification speed (Spd instruction)) x warm-up operation override

Note 1:If the MODE switch on the controller's front panel is set to "TEACH," or for a jog operation or an
operation by real-time external control (MXT instruction), the warm-up operation override is not
reflected and the robot operates at the originally specified speed.

Note 2:In the warm-up operation status, because the robot operates at a speed lower than the originally
specified speed, be sure to apply an interlock with peripheral units.

Note 3:If a multiple number of target axes exist, the warm-up operation override is calculated using the
minimum operation time among the target axes. If a certain target axis does not operate and the
value of the M_Wuprt status variable does not change, the value of the warm-up operation
override does not change regardless how much other target axes operate.
Also, the value may return to the initial value before reaching 100% depending on whether each
target axis is operating or stopping.
For example, when the value of a warm-up operation override is larger than the initial value, if a
certain target axis switches from the normal status to the warm-up operation status, the operation
time of that axis becomes the smallest (the operation time is 0 sec) and the warm-up operation
override returns to the initial value.

(3) If alarms are generated
1) An excessive difference error occurs even if operating in the warm-up operation status.
• If an error occurs when the warm-up operation override is set to the initial value, decrease the value of the

initial value (the first element of the WUPOvrd parameter).
• If an error occurs while the warm-up operation override is increasing to 100%, the valid time of the warm-

up operation status or the value constant time may be too short. Increase the value of the first element of
the WUPTIME parameter (valid time) or the second element of the WUPOvrd parameter (value constant
time ratio).

• If an error cannot be resolved after taking the above actions, change the operation program, and lower the
speed and/or the acceleration/deceleration speed.

2) An excessive difference error occurs if the warm-up operation status is canceled.
• Increase the value of the first element of the WUPTIME parameter, and extend the valid time of the

warm-up operation status.
• Check to see if the robot's load and the surrounding temperature are within the specification range.
• Check whether the target axis continues to stop for an extended period of time after the warm-up

operation status has been canceled. In such a case, decrease the value of the second element of the
WUPTIME parameter, and shorten the time until the warm-up operation status is set again.

• If an error cannot be resolved after taking the above actions, change the operation program, and reduce
the speed and/or the acceleration/deceleration speed.

3) The warm-up operation status is not canceled at all.
• Check the setting value of the WUPAXIS parameter to see if a joint section that does not operate at all is

set as a target axis in the warm-up operation mode.
• Check to see if a target axis has been stopping longer than the resume time (the second element of the

WUPTIME parameter) of the warm-up operation status.
• Check to see if an operation is continuing at an extremely low specified speed (about 3 to 5% in override

during joint interpolation). If the specified speed is low, there is no need to use the warm-up operation
mode. Thus, disable the warm-up operation mode.
-562 Warm-Up Operation Mode

 5Functions set with parameters
5.20 About singular point passage function
(1) Overview of the function

Mitsubishi's robots calculate linear interpolation movement and store teaching positions as position data in
the XYZ coordinates system. In the case of a vertical 6-axis robot, for example, the position data is
expressed using coordinate values of the robot's X, Y, Z, A, B and C axes, but the robot can be in several
different postures even if the position data is the same. For this reason, the robot's position can be selected
among the possible options using the coordinate values and the structure flag (a flag indicating the posture).
However, there can be an infinite number of combinations of angles that a particular joint axis can take.
Even if the structure flag is used, at the positions where this flag is switched, it may not be possible to
operate the robot with the desired position and posture (for example, in the case of a vertical 6-axis robot,
axes J4 and J6 are not uniquely determined when axis J5 is 0 degree). Such positions are called singular
points, and they cannot be reached through XYZ jog and linear interpolation-based operation. To avoid this
problem in the past, the operation layout had to be designed such that no singular points would exist in the
working area, or the robot had to be operated using joint interpolation if it could not avoid passing a singular
point.
The singular point passage function allows a robot to pass singular points through XYZ jog and linear
interpolation, which helps increasing the degree of freedom for the layout design by enlarging the working
area by linear interpolation.

*Positions of singular points that can be passed
The positions of singular points that the singular point passage function allows the robot to pass are as
follows.

In the case of vertical 6-axis robots

<1> Positions where axis J5 = 0 degree
In these positions, the structure flag
switches between NonFlip and Flip.

<2> Positions where the center of axis J5 coincides with the
rotation axis of axis J1

In these positions, the structure flag switches between Right
and Left.

In the case of vertical 5-axis robots

<1> Positions where the center of mechanical interface coincides with the rotation
axis of axis J1

In these positions, the structure flag switches between Right and Left.
 About singular point passage function 5-563

5

5Functions set with parameters
*Operation when the singular point passage function is valid
When the singular point passage function is made valid, the robot can move from position A to position C via
position B (the position of a singular point) and vice versa through XYZ jog and linear interpolation
operation. In this case, the value of the structure flag switches before and after passing position B.
If the singular point passage function is invalid (or not supported), the robot stops before moving from
position A to position B, as an error occurs. The robot stops immediately before position B in the case of
XYZ jog operation.

The robot can pass a singular point when the robot's motion path passes through the singular point. If the
motion path does not go through the singular point (passes near the singular point), the robot continues
operation without switching the value of the structure flag.
•Positions D -> E -> F: The robot's motion path passes through a singular point

(the structure flag switches before and after position E).

•Positions G -> H -> I: The robot's motion path passes near a singular point
(the structure flag is not switched).

When passing near a singular point, the robot may rotate in a wide circle as in the
case of position H in the figure above. Be sure to keep an eye on the robot and avoid
getting in the way when working near the robot, such as when teaching positions.

Position A Position B Position C

Position D Position E Position F

Position G Position H Position IPosition H

 CAUTION
-564 About singular point passage function

 5Functions set with parameters
*How to use the singular point passage function
In order to use the singular point passage function in jog operation, specify 1 (valid) for parameter
FSPJOGMD and turn the power supply to the controller off and on again. To use the function in automatic
operation, specify 2 for constant 2 in the TYPE specification of the interpolation instruction.

* Available robot models
Following models are available for the singular point passage function.

When the singular point passage function is enabled for the models other than the target models, normal
operation (in which the posture is maintained and the structure flags are not switched) is performed for jog
operation and an error occurs in automatic operation.

*Limitations
There are the following limitations to the use of the singular point passage function.

(1) The singular point passage function cannot be used if additional axes are used for multiple
mechanisms.

(2) The singular point passage function cannot be used if synchronization control is used for additional
axes of a robot.

(3) The singular point passage function cannot be used if the compliance mode is valid.
(4) The singular point passage function cannot be used if the collision detection function is valid.
(5) The information collection level of the maintenance forecast function must be set to level 1 (factory

setting).

(2) Singular point passage function in jog operation
In case of jog operation, the singular point passage function is specified to be valid (1) or invalid (0) by
parameter FSPJOGMD.

1) The normal XYZ/TOOL/WORK jog operation refers to the operation in which the posture is maintained
and the structure flags are not switched.

2) For robots that cannot use the singular point passage function, changing the setting value of parameter
FSPJOGMD has no effect; robots perform the normal operation (The posture is maintained and the
structure flags are not switched.)
The models supporting the singular point passage function are RV-FR series robots. (Refer to Available
robot models in details.)

3) It is not possible to specify multiple axes to perform jog operation at the same time when passing a
singular point. If it is attempted to operate an axis while another axis is operating, the operation is
ignored.

4) A singular point adjacent alarm is generated if the robot comes near a singular point when performing jog
operation using a T/B. See Page 563, "5.20 About singular point passage function".

5) The specification of parameter FSPJOGMD is reflected in jog operation via dedicated input signals as
well.

Available robot models
RV-2FR, RV-4FR series, RV-7FR series, RV-7FRLL,
RV-13FR series, RV-20FR, RV-8CRL

FSPJOGMD XYZ jog Tool jog Work jog 3-axis XYZ jog CYLINDER jog JOINT jog
0

(Factory setting)
Normal XYZ jog
operation

Normal Tool jog
operation

Normal Work
jog operation

The setting
value does not
affect.
(For the X, Y,
and Z axes, the
posture is
maintained and
the structure
flags are not
switched.)

The setting
value does not
affect.
(The posture is
maintained and
the structure
flags are not
switched.)

The setting
value does not
affect.1

Singular point
passage XYZ
jog

Singular point
passage Tool
jog

Singular point
passage Work
jog
 About singular point passage function 5-565

5

5Functions set with parameters
(3) Singular point passage function in position data confirmation (position jump)
The specification of parameter FSPJOGMD is also reflected in position data confirmation (position jump).

If an interpolation instruction (e.g., Mvs P1) is executed directly from T/B when
parameter FSPJOGMD is set to 1 (valid), the robot operates with the singular point
passage function enabled even if the function is not made valid by the TYPE
specification.

(4) Singular point passage function in automatic operation
In order to use the singular point passage function in automatic operation, make the function valid in the
TYPE specification for each target interpolation instruction.

TYPE (Type)

[Function]
Specify the singular point passage function in the TYPE specification of an interpolation instruction. The
interpolation instructions that support this function are linear interpolation (Mvs), circular interpolation (Mvr,
Mvr2 and Mvr3).

[Format]

[Terminology]
<Constant 1> 0/1 : Short cut/detour
<Constant 2> 0/1/2 : Equivalent rotation/3-axis XYZ/singular point passage

[Reference Program]
1 Mvs P1 TYPE 0,2 ' Perform linear interpolation from the current position to P1 with the

singular point passage function enabled.
2 Mvr P1,P2,P3 TYPE 0,2 ' Perform circular interpolation from P1 to P3 with the singular point

passage function enabled.

[Explanation]
(1) A runtime error occurs if 2 is specified for constant 2 for robots that do not support the singular point

passage function.
(2) The structure flag is not checked between the starting point and the end point if the singular point passage

function is specified. Moreover, since the structure flag of the target position cannot be identified, the
movement range is not checked for the target position and intermediate positions before the start of
operation.

(3) If a speed is specified with the Spd instruction, the specified speed is set as the upper limit and the robot
automatically lowers the speed down to the level where a speed error does not occur near a singular point.

(4) The optimal acceleration/deceleration is not applied for interpolation instructions for which the singular
point passage function is specified; the robot operates with a fixed acceleration/deceleration. At this point, if
the acceleration time and the deceleration time are different due to the specification of the Accel instruction,
the longer time is used for both acceleration and deceleration.

(5) The specification of the Cnt instruction is not applied to interpolation instructions for which the singular
point passage function is specified; the robot operates with acceleration/deceleration enabled.

FSPJOGMD MO position movement MS position movement

0
(Factory setting) The setting value does not affect.

The position moves in the joint mode.

Normal position movement
(The posture is maintained and the structure
flags are not switched.)

1 Singular point passage position movement

TYPE[]<Constant 1>, <Constant 2>

 CAUTION
-566 About singular point passage function

 5Functions set with parameters
(6) If the current position and the starting point position are different when a circular interpolation instruction is
set to be executed, the robot continues to operate until the starting point using 3-axis XYZ linear
interpolation, even if the singular point passage function is specified in the TYPE specification.

(7) If an interpolation for which the singular point passage function is specified is paused and the operation is
resumed after jog movement, the robot moves to the position at which the operation was paused according
to parameter RETPATH. If parameter RETPATH is set to 0 (invalid: do not return to the paused position),
the structure flag is not switched unless the motion path after resuming the operation does not pass a
singular point as in the figure below. Thus, the posture of the robot at the completion of interpolation may be
different from the case where the operation is not paused.

(8) If the singular point passage function is specified, the operation speed may be lowered compared to
normal linear interpolation, etc. Moreover, the singular point passage function may affect the execution
speed of programs as the function involves complicated processing. Specify the singular point passage
function only for interpolation instructions where the function is required.

NonFlip

Singular point

The structure flag changes from NonFlip to
Flip as the robot passes a singular point

NonFlip

Singular point

The structure flag remains NonFlip as the
robot does not pass a singular point

Pause

Jog
Resume
 About singular point passage function 5-567

5

5Functions set with parameters
5.21 About the collision detection function
(1) Overview of the function

When the robot is operated to perform various tasks, it may interfere with workpieces and peripheral
devices due to operation mistakes of operators, errors in operation programs and so on. Conventionally, in
such cases, the robot would be stopped by protection functions (such as excessive error detection) of
servos that control the motor drive of the robot to prevent damage to the robot hands and arms, workpieces
and peripheral devices. However, because the robots operate at higher speeds and with larger motors, it
becomes difficult to prevent damage solely by the servo protection functions if the load applied at
interference increases.
The collision detection function detects interferences at higher sensitivity than the servo's conventional
protection functions and stops the robot more quickly in order to avoid damage.

Even if the collision detection function is enabled, it is not possible to prevent injury
to operators in case they get hit by moving robots. The prescribed safety rules must
always be observed in all cases, whether the collision detection function is enabled
or disabled.

Even if the collision detection function is enabled, it is not possible to prevent
damage to robots, hands and workpieces due to interference with peripheral
devices completely. As a general rule, pay sufficient attention to avoid interference
with peripheral devices when operating and handling robots.

*Interference detection principle
If a robot interferes with peripheral devices, the actual position does not follow the position instruction of
each joint axis and greater torque is generated due to the feedback control of a servo. Unless the
interference is ended, the generated torque will increase further and become much larger than when there
is no interference.
The collision detection function detects interferences using such servo characteristics. First, the torque
required for each joint axis is estimated based on the current position instruction and load setting. Next, the
values are compared with the actually generated torques for each axis one by one. If the difference exceeds
the allowable range (detection level), the function judges that an interference occurred. It immediately turns
the servo off and stops the robot.

Fig.5-7:Interference detection principle

 WARNING

 CAUTION

Estimated torque

Actual torque
Torque

Time

Detect interference

Interference occurs

Allowable range + side
(detection level + side)

Allowable range - side
(detection level - side)
-568 About the collision detection function

 5Functions set with parameters
(2) Related parameters
The following parameters are related to the collision detection function. Refer to Page 492, "5.1 Movement
parameter" and Page 552, "5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration
settings)" for the detailed explanation of these parameters.

Table 5-18:Parameters related to the collision detection function

Parameter
name Description and value Setting value at

shipment

COL Define whether to enable or disable the collision detection function as well as
whether it is valid or invalid immediately after turning the power supply on.
Element 1: Specify whether to enable (1) or disable (0) the collision detection

function
Element 2: Specify the initial state in program operation. Enable (1)/disable (0)
Element 3: Specify whether the function is enabled or disabled at jog operation.

Enabled (1)/disabled (0)/NOERR mode (2)

RH-3FRH/6FRH/
12FRH/20FRH
series:
1,0,1
RV-FR series:
0,0,1
RH-3FRHR series:
1,1,1

COLLVL Set the initial value of the detection level (sensitivity) of each joint axis at program
operation. This value is a scaling factor that amplifies the detection level standard
value prescribed in the collision detection function. The smaller the value, the
higher the detection level.
Setting range: 1 to 500, unit: %

The setting varies
depending on the
model.

COLLVLJG Set the detection level (sensitivity) of each joint axis at jog operation (including
pause status). This value is a scaling factor that amplifies the detection level
standard value prescribed in the collision detection function. The smaller the
value, the higher the detection level.
Setting range: 1 to 500, unit: %

The setting varies
depending on the
model.

HNDDAT*
* is 1 to 8

Set the hand conditions (via tool coordinates).
HNDDAT0 is employed as the initial condition immediately after turning the power
supply on. (Weight, size X, size Y, size Z, center of gravity X, center of gravity Y,
center of gravity Z) Unit: kg, mm

The setting varies
depending on the
model.

WRKDAT*
* is 1 to 8

Set the workpiece conditions (via tool coordinates).
WRKDAT0 is employed as the initial condition immediately after turning the
power supply on. (Weight, size X, size Y, size Z, center of gravity X, center of
gravity Y, center of gravity Z) Unit: kg, mm

0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0

HNDHOLD*
* is 1 to 8

Specify whether to grab (1) or not grab (0) workpieces when the HOpen and
HClose instructions are executed.
Element 1: Specify the status when the HOpen instruction is executed.
Element 2: Specify the status when the HClose instruction is executed.

0,1
 About the collision detection function 5-569

5

5Functions set with parameters
(3) How to use the collision detection function
To use the collision detection function, first specify "Enable (1)" for element 1 of the COL parameter and turn
on the power supply to the control again. Next, make settings for the collision detection function (specify to
enable/disable the function and the detection level) for jog operation and program operation, respectively.
(Refer to Page 569, "Table 5-18: Parameters related to the collision detection function" as well.)

1) How to use the function during jog operation
During jog operation, all the settings for the collision detection function are made via parameters. For this
reason, if settings such as enabled/disabled are changed while the power supply to the controller is turned
on, the changes are not reflected until the power supply is turned on again the next time. Table 5-19 lists
parameters used when setting the collision detection function for jog operation.

Table 5-19:Parameters set for the collision detection function used during jog operation

*Adjustment of collision detection level
The detection level (sensitivity) at jog operation is set relatively low. If a higher detection level is required,
use the COLLVLJG parameter to adjust the level. Be sure to set the HNDDAT0 and WRKDAT0 parameters
properly as well in order to estimate the torque accurately.

It is possible to choose "Ref. value of COL level" (reference value of the collision detection level) for the
oscillograph function of RT ToolBox3. This function can be easy to adjust the detection level of COLLVLJG
parameter. Refer to Page 574, " 3) Supplement" for details.

*Behavior when interference is detected
If an interference with peripheral devices or similar is detected during jog operation, an error numbered in
the 1010's (the least significant digit is the axis number) is generated and the robot is stopped as the servo
is turned off. If the robot is in the NOERR mode (2 is specified for element 3 of the COL parameter), no error
is generated, but the robot stops as the servo is turned off (an error numbered in the 1010's will be recorded
in the error history, however).

*Operation after interference
If the servo is turned on while a hand or arm is in contact with peripheral devices or similar, the collision is
detected again, which may prevent the servo from being turned on. If an error occurs repeatedly when
attempting to turn the servo on, move the arm by releasing the brake once or perform jog operation by

Prameter
name Description and value Setting value at

shipment

COL Define whether to enable or disable the collision detection function as well as
whether it is valid or invalid immediately after turning the power supply on.
Element 1: Enables (1) the collision detection function (enable (1)/disable (0))
Element 3: Specify whether the function is enabled or disabled at jog operation.

Enabled (1)/disabled (0)/NOERR mode (2)

RH-3FRH/6FRH/
12FRH/20FRH
series:
1,0,1
RV-FR series:
0,0,1
RH-3FRHR series:
1,1,1

COLLVLJG Set the detection level (sensitivity) of each joint axis at jog operation (including
pause status).

The setting varies
depending on the
model.

HNDDAT0 Set the hand conditions (via tool coordinates). The setting varies
depending on the
model.

WRKDAT0 Set the workpiece conditions (via tool coordinates). 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0

Point
If the detection level is set too high (the setting value is too small), interference may be detected
erroneously depending on the robot position and posture. In such cases, lower the detection level (make
the setting value larger) before using.
-570 About the collision detection function

 5Functions set with parameters
referring to Page 71, "3.11 Operation to Temporarily Reset an Error that Cannot Be Canceled" to ensure that
there is no interference.

*Method for disabling collision detection temporarily during jog operation
Perform servo-on and jog operation while holding down the [RESET] key on the TB. Collision detection is
disabled as long as the key is pressed.

 2)How to use the function at program operation
The initial state of the collision detection function at program operation is specified by a parameter. In
practice, however, the function is used by changing the setting in a program using a MELFA-BASIC VI
instruction. The parameters for setting the initial state and instructions related to the collision detection
function are shown in the table below. Refer to Page 180, "4.12 Detailed explanation of command words"
and Page 356, "4.13 Detailed explanation of Robot Status Variable" for the detailed explanation of the
instructions.

Table 5-20:Parameters to be set for the collision detection function at program operation.

Table 5-21:MELFA-BASIC VI commands and status variables used in the collision detection function at
program operation

Prameter
name Description and value Setting value at

shipment

COL Define whether to enable or disable the collision detection function as well as
whether it is valid or invalid immediately after turning the power supply on.
Element 1: Enables (1) the collision detection function (enable (1)/disable (0))
Element 2: Set enable (1) as the initial state of the collision detection function

at program operation (enable (1)/disable (0)).

RH-3FRH/6FRH/
12FRH/20FRH
series:
1,0,1
RV-FR series:
0,0,1
RH-3FRHR series:
1,1,1

COLLVL Set the detection level (sensitivity) of each joint axis at jog operation (including
pause status).

The setting varies
depending on the
model.

HNDDAT*
* is 1 to 8

Set the hand conditions (via tool coordinates). The setting varies
depending on the
model.

WRKDAT*
* is 1 to 8

Set the workpiece conditions (via tool coordinates). 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0

HNDHOLD*
* is 1 to 8

Specify whether to grab (1) or not grab (0) workpieces when the HOpen and
HClose instructions are executed.

0,1

Command/
Status variable Description

ColChk Enables or disables the collision detection function or specifies the NOERR mode.
Example: ColChk ON 'Enable the collision detection function.

ColLvl Specifies the detection level (sensitivity) of the collision detection function for each joint axis. This
value is a scaling factor that amplifies the detection level standard value prescribed in the collision
detection function (unit: %).
Example: ColLvl 80, 120, 120, 120, 50, 80, 'Specify the detection levels of axes J1 to J6.

LoadSet Specifies the hand and workpiece conditions. Use this instruction when the hand to be used or
workpieces to be grabbed are changed during program operation.
Example: LoadSet 1, 0 'Specify conditions of the HNDDAT1 and WRKDAT0 parameters.

J_ColMxl Returns the maximum difference value between the estimated torque and actual torque by
converting it to the detection level. It is referenced when adjusting the arguments of the ColLvl
command (unit: %).

M_ColSts Returns 1 when an interference is detected. It is used as interrupt condition in the NOERR mode.
 About the collision detection function 5-571

5

5Functions set with parameters
*Adjustment of collision detection level
Adjust the detection level (sensitivity) at program operation according to the robot operation. As a reference,
an example of adjustment procedure is shown below. be sure to set the workpiece condition and hand
condition properly as well in order to estimate the torque accurately.

Table 5-22:Example of detection level adjustment procedure at program operation

It is possible to choose "Ref. value of COL level" (reference value of the collision detection level) for the
oscillograph function of RT ToolBox3. This function can be easy to adjust the detection level of ColLvl
command. Refer to Page 574, " 3) Supplement" for details.

P_ColDir Returns the robot operation direction (operation ratios in the X, Y and Z directions) when an
interference is detected. It is used in retreat operation in the NOERR mode.

Step Description

1 Add the ColLvl and ColChk commands before and after operations for which the collision detection function
is used.

2 Set the detection level low (the argument of the ColLvl command is set to a large value such as 300) in
order to prevent erroneous detection of interference.

3 Run the program and monitor the value of J_ColMxl in the target operation. Note that the value may
fluctuate; repeat the target operation several times and record the J_ColMxl value each time.

4 Obtain the maximum value for each joint axis from multiple J_ColMxl values and add some margin (e.g.,
20%) to the value. Then set this value as the argument of the ColLvl command.

5 Set the value obtained in step 4 to the ColLvl command and run the program to check that no erroneous
detection occurs at the operation for which the collision detection function is used. If an interference is
erroneously detected, gradually increase the value of the argument of the ColLvl command to lower the
detection level until no erroneous detection occurs.

Command/
Status variable Description

Point
If the collision detection function is enabled for the entire program, the probability of erroneous detection
becomes higher accordingly. Hence, the detection level must be lowered in order to eliminate erroneous
detection. As a result, the interference detection sensitivity may be lowered for operations for which
collision detection is required. Thus, it is a good idea to use the collision detection function only for
operations that may cause interference, so that the detection sensitivity may be kept high when in use.

Point
If the collision detection function is enabled, the execution time (tact time) may become longer depending
on the program. In order to reduce influence on the tact time, use the collision detection function only for
operations that may cause interference, rather than enabling the function for the entire program.

Point
When the operation speed is changed, it may become necessary to change the detection level. Operate
the robot at the actual operation speed and then adjust the detection level.

Point
If the collision detection function is used for multiple robots, it may become necessary to adjust the
detection level for each robot even for the same operation, due to individual differences of robots due to
differences in motor characteristics and usage environment. Note also that if there are several robot
models, the detection level must be adjusted for each robot.
-572 About the collision detection function

 5Functions set with parameters
*Behavior when interference is detected
If an interference with peripheral devices or similar is detected during program operation, an error numbered
in the 1010's (the least significant digit is the axis number) is generated and the robot is stopped as the
servo is turned off. If the robot is in the NOERR mode, no error is generated, but the robot stops as the
servo is turned off (an error numbered in the 1010's will be recorded in the error history, however).
 About the collision detection function 5-573

5

5Functions set with parameters
*Program example
This program moves the robot to a retreat position by interrupt processing if an interference is detected.

1 Def Act 1,M_ColSts(1)=1 GoTo *HOME,S ' Define processing to be executed if an interference is detected
by interruption.

2 Act 1=1
3 ColLvl 80,120,120,100,80,80,, ' Set the detection level.
4 ColChk ON,NOErr ' Enable the collision detection function in the NOERR mode.
5 Mov P1
6 Mov P2 ' Jump to the interrupt processing if an interference is detected

while executing step 5 to 8.
7 Mov P3
8 Mov P4
9 ColChk OFF ' Disable the collision detection function.
10 Act 1=0
 :
1000 *HOME ' Interrupt processing when an interference is detected
1001 ColChk OFF 'Disable the collision detection function.
1002 Servo On ' Turn the servo on.
1003 PESC=P_ColDir(1)*(-5) ' Calculate the retreat amount (reverse operation of

approximately 5 mm).
1004 PDst=P_Fbc(1)+PESC ' Create a retreat position.
1005 Mvs PDst ' Move to the retreat position.
1006 Error 9100 ' Pause the operation by generating user-defined L-level error.
 :

3) Supplement
*Collision detection function predicts an imminent collision by estimating the amounts of torque required at

respective articulated arm axes on the basis of an prevailing position command, load settings, etc. and
comparing the values thus obtained with the torques which are actually developing.
This function, even if a real collision does not happen, will identify a collision when the robot arm receives
an external force during normal operation. For example, the robot hand may experience a drag from
interference with a piping or cabling. Depending on the amount of resultant external force, the collision
detection function judges that a collision has occurred. Check to see if the robot is not subjected to any
force other than those originating from a collision while the collision detection function is enabled.

*Distinction between jog operation and program operation
The robot operation speed and tasks are quite different at jog operation and program operation. The
settings for these operations are thus made independently in order to optimize the collision detection
function for each type of operation. Here, the terms "at jog operation" and "at program operation" refer to
the following.

At jog operation: During jog operation or during pause of automatic operation
At program operation: During automatic operation, during step feed/

return operation or during position data check operation

When these operations are executed, the status switches as shown in Fig. 5-8.

Fig.5-8:State transition diagram illustrating switch between program operation and jog operation

Impact detection function
at jog operation

Impact detection function
at program operation

Power on

End of operation
Stop input
H/L level errors occur

During jog operation
During pause of automatic operation

Operation start
Step feed/return

Position data check

During automatic operation
During step feed/return operation
During position data check operation
-574 About the collision detection function

 5Functions set with parameters
Thus, if the collision detection function at jog operation is enabled, for example, then even if the collision
detection is set to be disabled in program operation, the setting is switched to that at jog operation if the stop
button is pressed to pause the operation and the collision detection is enabled.

*Collision detection function while servo off
The collision detection function is temporarily disabled while the servo is turned off at both jog operation and
program operation.

*About “Ref. value of COL level” of the oscillograph function
It is possible to choose "Ref. value of COL level" (reference value of the collision detection level) for the
oscillograph function of RT ToolBox3.
“Ref. value of COL level” expressed the difference between the estimated torque and the actual torque in
the collision detection level (set value of ColLvl command and COLLVL, COLLVLJG parameters), it will be
an indication when deciding the set value.

Fig.5-9:Oscillograph screen of “Ref. value of COL level”

As shown in Fig. 5-9, when the collision detection function is effective and servo power is on, the collision
detection level is output by real time to the oscillograph. This value is consulted and the collision detection
level is set to the movement which makes the collision detection effective.
An example of adjustment procedure is shown below. Be sure to set the workpiece condition and hand
condition properly as well in order to estimate the torque accurately.

Table 5-23:Example of the collision detection level adjustment procedure at program operation
Step Description

1 Add the ColLvl and ColChk commands before and after operations for which the collision detection function
is used.

2 Set the detection level low (the argument of the ColLvl command is set to a large value such as 300) in
order to prevent erroneous detection of interference.

3 Run the program and monitor the value of “Ref. value of COL level” of the oscillograph function in the target
operation. Note that the value may fluctuate; repeat the target operation several times and record the
maximum value for each joint axis.

4 Add some margin (e.g. 20%) to the maximum value for each joint axis obtained in step 3. Then set this
value as the argument of the ColLvl command.

 About the collision detection function 5-575

5

5Functions set with parameters
5.22 Optimizing the overload level
When the actual ambient temperature of the robot in use is 40°C or less, the overload error detection level
(function which protects the motor from overheating), which activates during robot movement, can be
optimized to match the working environment. Set the actual ambient temperature in parameter: OLTMX.
The continuous operability improve.

[Available robot type] RH-FRH series/RH-CRH series/RV-FR series

Parameter: OLTMX is explained in Table 5-24.
If the robot’s ambient temperature is controlled to 40°C or less, set the actual ambient temperature in this
parameter to utilize the robot effectively.

Table 5-24:Related parameters

5 Set the value obtained in step 4 to the ColLvl command and run the program to check that no erroneous
detection occurs at the operation for which the collision detection function is used. If interference is
erroneously detected, gradually increase the value of the argument of the ColLvl command to lower the
detection level until no erroneous detection occurs.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Optimization of
overload detection
level

OLTMX Integer 1 Set the upper limit of the ambient temperature for the
robot’s working environment. Note1)

The overload detection level for robot movement is
optimized based on this setting value. (Unit: °C)

Setting range: 0-40

Note1) Caution for setting ambient temperature
If the surrounding temperature of the robot fluctuates throughout the year, set the maximum
temperature within the fluctuation range. Setting a temperature lower than the actual surrounding
temperature may cause premature component failure, or the motor overheat error to occur before
the overload error occurs.
The effect of the ambient temperature parameter change on the continuous operability differs by the
model and moving axis.
The continuous operability may not change even if the parameter is changed.

RH-3FRH/6FRH/
12FRH/20FRH: 40
RV-2FR series: 40
RV-4FR/7FR/
13FR/20FR series,
RH-3FRHR: 30

Step Description
-576 Optimizing the overload level

 5Functions set with parameters
5.23 Multi-rotational restrictions for the pallet definition instruction
When the pallet definition instruction: DEFPLT is used for the robot types in which the J1 axis or the J4 axis
can exceed +/-180 degrees (RV-2FR, etc.), the palette that the joint angle of the J1 axis or the J4 axis
straddles +/-180 degrees cannot be specified. If a position that straddles multiple rotations is specified, an
error will be generated when the pallet definition instruction is executed. Change the parameter to execute
the instruction.

Table 5-25:Related parameters

In addition to the hand end axis (J6 axis for RV models and J4 axis for RH models), the J1 pivot shaft and
the J4 forearm twist axis of RV models can make multiple rotations exceeding +/-180 degrees.
These axes cannot rotate straddling multiple rotations with the pallet definition instruction. If a multi-rotation
flag specifies a different position using the pallet definition instruction to move the robot, the J1 axis rotates
in an opposite direction for joint interpolation that specifies the detour. Because the J1 axis may make
unexpected movements, the following restrictions apply to the pallet definition instruction.

1) When the multi-rotation flag at the start point is different from that at end point A, end point B, or the
diagonal point:
A comparison check is performed for the multi-rotation flag of the multi-rotational axis (the J1 axis and
J4 axis for RV models with six J axes, the J1 axis for RV models with five axes, and RH models) at
each pallet definition point. If at least one multi-rotation flag is different, error L3750 will be generated
when the pallet definition instruction is executed, resulting in operation being stopped. A comparison
check is performed for both the normal pallet and the arc pallet.

2) When a joint angle is greatly different even if the multi-rotation flag from "1)" matches:
Each point of the pallet definition is compared with the start point for the joint coordinate position of
the multi-rotational axis (the J1 axis and J4 axis for RV models with six J axes, the J1 axis for RV
models with five axes, and RH models). If a joint angle is different by +/-180 degrees or more, error
L3760 will be generated when the pallet definition instruction is executed, resulting in operation being
stopped. A comparison check is performed for both the normal pallet and the arc pallet.

A multi-rotation check is performed for robot axes (J1 pivot shaft and J4 forearm twist axis of RV models),
and not performed for multiple rotations of additional axes and user-defined mechanism.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Pallet specification PLTSPEC Integer 1 Enables the error check for multi-rotational positions at
each point of a specified pallet.
0: Error check for multi-rotational position disabled
1: Error check for multi-rotational position enabled

When 1 (Error check for multi-rotational position
enabled) is set, if a position that straddles multi-
rotational positions or a position to which the J1 axis or
the J4 axis makes a large rotation is specified for the
robot types, such as RV-2FR, in which the joint angle of
the J1 axis or the J4 axis makes multiple rotations
exceeding +/-180 degrees, an error will be generated
when the pallet definition command is executed.

When 0 (Error check for multi-rotational position
disabled) is set, no error will be generated. However, it
is necessary to create a program that takes into
account multiple rotations for specifying a shortcut
operation (TYPE) with the movement command and
the multi-rotation flag (FL2). Incorrect specification may
rotate the joint axis 360 degrees, interfering with
peripheral devices. Be sure to confirm operation for all
points on the pallet at a low speed.

1: RV-FR series
0: Other models
 Multi-rotational restrictions for the pallet definition instruction 5-577

5

5 Functions set with parameters
5.24 Interference avoidance function
This function allows the robot to move while performing interference check. The interference check tar-
gets are: 1) between robots (CR800-R/Q series only) and 2) between robot and free plane limit.
Damage to robots and peripheral devices can be reduced by detecting interference between robots or
between robot and free plane limit and stopping the movement during jog operation or automatic opera-
tion.
When interference is detected, the robot movement will stop. The robot can be programmed to generate
an alarm or restore operation.

[Available models]
Between robots: CR800-R/Q series of the RH-FRH/RV-FR series only (User mechanism not supported)
Between robot and free plane limit: RH-FRH/CRH series, RV-FR series, RV-8CRL, RV-5AS (User mecha-
nism not supported)
* In Q series, if the CR700-Q controller and the CR800-Q controller are mounted on the same base unit, this
function cannot be executed even if the function is set to be enabled.

Fig.5-10:Interference check during robot operation (automatic operation, jog operation)

This interference avoidance function makes simulated robot arm, hand and
workpiece. If these simulated components overlap and pose the risk of
interference, the robot movement is controlled so that interference does not
actually occur.
Simulated components that match the robot movement must be registered, and this
function does not completely ensure that interference will be prevented.

Examples of avoidable interference
By using this function, control can be executed to prevent interference caused by the
following robot movements.
1) Robot collisions during jog operation caused by incorrect operations.
2) Robot collisions during automatic operation caused by program mistakes.
3) Robot or peripheral device collisions due to unintentional sequence entered

during restoration work.
4) Robot collisions caused by improper interlock for an automatic robot operation

performed at high-speed for the first time.
5) Robot collision between two robots moved at different overrides.

 CAUTION
-578 Interference avoidance function

 5 Functions set with parameters
5.24.1 Operation procedures
The outline of procedures for using the interference avoidance function is given below.

(1) Checking for interference between robots (CR800-R/Q series only)

(2) Checking for interference between robot and free plane limit

<Flow of operations>
(1)Preparing and connecting the

devices
... Prepare two or three target robots and a personal computer equipped with RT

ToolBox3.
Refer to Page 580, "5.24.2 Preparing and connecting the devices" for details.

(2)Registering simulated
components for interference
check

... Using the robot arm as the reference, set the position and size with parameters
for the robot arm, hand and workpiece for which the interference is to be
checked and avoided.
Refer to Page 582, "5.24.3 Registering the simulated components for interfer-
ence check" for details.

(3)Setting the additional axis
synchronization

... When using a linear axis, such as a locomotion axis, as an additional axis, set
the synchronous control parameters.
Refer to Page 592, "5.24.5 Support of additional axes" for details.

(4)Setting the direct communication
between robot CPUs

... Set the CPU buffer memory expanded function with parameters.
(This function has a CPU buffer memory for communication between robot
CPUs.)
Refer to Page 593, "5.24.6 Setting the CPU buffer memory expanded function
(Checking for interference between robots)" for details on setting the function.

(5)Calibrating and checking the
robots

... Set and confirm the positional relation of multiple robots.
Refer to Page 596, "5.24.7 Calibration between robots (Checking for interfer-
ence between robots)" for details.

(6)Setting the interference avoidance
function

Enable the interference avoidance function with parameters.
Refer to Page 598, "5.24.8 Enabling and disabling the interference avoidance
function" for details.

(7)Using the interference avoidance
function

... The interference avoidance operation during jog operation and program
execution are explained in the section starting on Page 598, "5.24.9 Using the
interference avoidance function".
Sample programs are given on Page 600, "5.24.10 Sample programs".

<Flow of operations>
(1)Preparing and connecting the

devices
... Prepare target robots and a personal computer equipped with RT ToolBox3.

Refer to Page 580, "5.24.2 Preparing and connecting the devices" for details.

(2)Registering simulated
components and free plane limits
to check for interference

... Using the robot arm as a reference point, set the position and size of the robot
arm, hand, workpiece, and free plane limit with parameters for the interference
and avoidance check.
Refer to Page 591, "5.24.4 Registering a free plane limit" for details.

(3)Setting the additional axis
synchronization

... When using a linear axis, such as a locomotion axis, as an additional axis, set
the synchronous control parameters.
Refer to Page 592, "5.24.5 Support of additional axes" for details.

(4)Setting the interference avoidance
function

Enable the interference avoidance function with parameters.
Refer to Page 598, "5.24.8 Enabling and disabling the interference avoidance
function" for details.

(5)Using the interference avoidance
function

... The interference avoidance operation during jog operation and program
execution are explained in the section starting on Page 598, "5.24.9 Using the
interference avoidance function".
Sample programs are given on Page 600, "5.24.10 Sample programs".
 Interference avoidance function 5-579

5

5 Functions set with parameters
5.24.2 Preparing and connecting the devices
The devices required to use this function are shown in Table 5-26, and an example of the connection is
given in Fig. 5-11.
Refer to the figure and connect the required devices.

(1) Checking for interference between robots (CR800-R/Q series only)
*CR800-R controller

Table 5-26:Required devices (CR800-R controller)

Fig.5-11:Connecting the devices (CR800-R controller)

*CR800-Q controller
Table 5-27:Required devices (CR800-Q controller)

Fig.5-12:Connecting the devices (CR800-Q controller)

No. Device Remarks

1 Up to two or three robots
(CR800-R controller)

This function uses direct communication between robot CPUs via the
iQPlatform’s CPU buffer memory.

2 Personal computer equipped with RT ToolBox3 Connects the robot CPUs.

No. Device Remarks

1 Up to two or three robots
(CR800-Q controller)

This function uses direct communication between robot CPUs via the
iQPlatform’s shared memory.

2 Personal computer equipped with RT ToolBox3 Connects the robot CPUs.

Robot CPUs communicate via
CPU buffer memory

Personal computer
(RT ToolBox3)
Connected to robot
CPU with USB, etc.

Drive unit

Drive unit

Robot arm

Robot arm

Note) This figure shows an example of connecting two robots.

Robot CPUs communicate via
iQ shared memory

Personal computer
(RT ToolBox3)
Connected to robot
CPU with USB, etc.

Drive unit

Drive unit

Robot arm

Robot arm

Note) This figure shows an example of connecting two robots.
-580 Interference avoidance function

 5 Functions set with parameters
(2) Checking for interference between robot and free plane limit
Table 5-28:Required devices

Fig.5-13:Connecting the devices (CR800-D controller)

Fig.5-14:Connecting the devices (CR800-R controller)

Fig.5-15:Connecting the devices (CR800-Q controller)

No. Device Remarks

1 One robot Checking for interference with only free plane limit of own robot.

2 Personal computer equipped with RT
ToolBox3

Connects the robot CPUs.

Personal computer
(RT ToolBox3)
Connected to robot
CPU with USB, etc.

Drive unit
Robot arm

<CR800-D controller>

Robot CPUs communicate via
CPU buffer memory

Personal computer
(RT ToolBox3)
Connected to robot
CPU with USB, etc.

Drive unit
Robot arm

Note) This figure shows an example of connecting one robot.

<CR800-R controller>

Robot CPUs communicate via
iQ shared memory

Personal computer
(RT ToolBox3)
Connected to robot
CPU with USB, etc.

Drive unit
Robot arm

Note) This figure shows an example of connecting one robot.

<CR800-Q controller>
 Interference avoidance function 5-581

5

5 Functions set with parameters
5.24.3 Registering the simulated components for interference check
Register simulated components to be checked for interference (hereinafter, "simulated components")
using the robot arm as a reference point.

Fig.5-16:Example of simulated component registration

The required registration details are shown in Table 5-29. Up to eight simulated component types can be
registered for each of the robot arm, hand and workpiece.

Table 5-29:Details of simulated component registration

Setting items for
simulated component

Simulated component type

Simulated robot arm Note1)

Note1) The initial settings for each model are set at the factory.

Simulated hand Simulated workpiece

Relationship
・ Robot arm:

Set where in the robot
arm a simulated
component is
registered to.

・ Hand, workpiece:
Set the number for
each simulated
component (hand No.,
workpiece No.).

Set how each registered
simulated component
constitutes the Jn axis.
(Set whether a simulated
component constitutes in the
base section, the Jn axis
section, or the flange section.)

Note) The shape of a simulated
component is a sphere
and a cylinder.

Parameters: CAVKDA1 to 8

The set hand number is
interlinked to the hand condition
number for the Loadset (Load
Set) command.

Note) The shape of a simulated
component is a sphere
and a cylinder.

Parameters: CAVKDH1 to 8

The set workpiece number is
interlinked to the workpiece
condition number for the Loadset
(Load Set) command.

Note) The shape of a simulated
component is a sphere and
a cylinder.

Parameters: CAVKDW1 to 8

The simulated hand and workpiece subject to the interference check
can be changed dynamically with the LoadSet command.

Center position Using the robot arm installation
face or the rotation center of
each axis as the reference point,
set the simulated component’s
center position as a distance
from that reference point.
Parameters: CAVPSA1 to 8

Designate the simulated component’s center as a distance from the
Mechanical interface coordinate system‘s origin point (tip of J3 axis).

Parameters: CAVPSH1 to 8 Parameters: CAVPSW1 to 8

Simulated component
size

Set the size of each simulated component as a radius.

Parameters: CAVSZA1 to 8 Parameters: CAVSZH1 to 8 Parameters: CAVSZW1 to 8

Enable/disable for each
simulated component

Set whether to enable/disable a simulated component, and whether to temporarily disable a simulated
component when T/B is enabled.
Note) The simulated hand and workpiece must be disabled during teaching.

Parameters: CAVSCA1 to 8 Parameters: CAVSCH to 8 Parameters: CAVSCW1 to 8

Simulated robot arm
(Early models are
registered as a default)

* The figure shows a screen image (setting example) from the RT
ToolBox3. The shape of a simulated component is a sphere and a
cylinder. The simulated components for hand and workpiece must
be registered by the user.

<RH-FRH series> <RV-FR series>

Simulated handSimulated workpiece

Simulated hand

Simulated workpiece
-582 Interference avoidance function

 5 Functions set with parameters
Each parameter is explained in the following section.

(1) Simulated component registration parameter
Parameters listed in Table 5-29 are explained in detail in this section.
Up to eight simulated component types can be registered for each of the robot arm, hand and workpiece.
The last digit of a parameter name indicates the simulated component type.

1) Simulated components for robot arm
<1> Registration section and shape of simulated components: CAVKDA1 to 8

Table 5-30:Simulated component setting parameter (robot arm: CAVKDA1 to 8)
Parameter Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Registration
section and
shape of
simulated
component
(robot arm)

CAVKDA1 to 8 Integer 2 Set the registration section (Jn axis) and
shape of a simulated component. Up to eight
simulated component types can be
registered. (Each type corresponds to the
last digit (1 to 8) of the parameter name.)
1st element: Registration section (Jn axis)

0: Base section
1 to 6: Jn axis

2nd element: Shape
0: a sphere
1: a cylinder
Note) The shape of a simulated component
is a sphere.

RH-3/6/12/20FRH
series, RH-3/
6CRH series:
CAVKDA1=0, 1
CAVKDA2=0, 0
CAVKDA3=1, 0
CAVKDA4=2, 0
CAVKDA5=2, 0
CAVKDA6=2, 0
CAVKDA7=2, 0
CAVKDA8=4, 1
Note) The setting
value of
RH-3FRH35xx, and
RH-6FRH35xx and
RH-12FRH55xx is
CAVKDA3=0,0.

RH-3FRHR
series
CAVKDA1=0, 0
CAVKDA2=1, 1
CAVKDA3=1, 0
CAVKDA4=2, 1
CAVKDA5=2, 1
CAVKDA6=3, 1
CAVKDA7=0, 0
CAVKDA8=0, 0

RV-FR series,
RV-8CRL:
CAVKDA1=0, 0
CAVKDA2=0, 1
CAVKDA3=2, 1
CAVKDA4=4, 1
CAVKDA5=5, 0
CAVKDA6=0, 0
CAVKDA7=0, 0
CAVKDA8=0, 0
Note) The setting
value of RV-2FR is
CAVKDA2=0,0
CAVKDA4=3,0
CAVKDA5=4,1
CAVKDA6=5,0.
RV-8CRL is
CAVKDA4=3,0
CAVKDA5=4,1
CAVKDA6=5,1.
 Interference avoidance function 5-583

5

5 Functions set with parameters
Fig.5-17:Registration sections of simulated components of RH-FR series (supplement)

Fig.5-18:Registration sections of simulated components of RV-FR series (supplement)

Note) The numbers in parentheses indicate the 1st element (registration section (Jn axis)) setting values of the parameters:
CAVKDA1 to 8 (registration section and shape of simulated components).

Base section (0)J1 axis reference (1)

J3 axis
reference (3)

J2 axis reference (2)

(Base)

(J1 axis)

(J2 axis)

(J3, J4 axis)

<RH-3FRH/6FRH/12FRH/20FRH series> <RH-3FRHR series>

(Base)

(J1 axis)
Base section (0)

J1 axis reference (1)
(J2 axis)

J2 axis reference (2)

J3 axis
reference (3)

(J3, J4 axis)

Note) The numbers in parentheses indicate the 1st element
(registration section (Jn axis)) setting values of the
parameters: CAVKDA1 to 8 (registration section and
shape of simulated components).

<RV-FR series>

(Base)

(J1 axis)

(J2 axis)

(J3 axis)

(J4 axis)

(J5 axis)

(J6 axis)

J2 axis reference (2)

J3 axis reference (3)

Base section (0)

J1 axis reference (1)

J4 axis reference (4)

J5 axis
reference (5)

J6 axis reference (6)
-584 Interference avoidance function

 5 Functions set with parameters
Fig.5-19:Example of registration sections and simulated component type settings

<RH-FRH series> <RV-FR series>

CAVKDA2=0, 0

CAVKDA1=0, 1

CAVKDA3=1, 0

CAVKDA4=2, 0

CAVKDA5=2, 0CAVKDA6=2, 0

CAVKDA7=2, 0

CAVKDA8=4, 1

CAVKDA1=0, 0CAVKDA2=0, 1

CAVKDA3=2, 1CAVKDA4=4, 1

CAVKDA5=5, 0

Note) These are simulated hand and workpiece.
 Interference avoidance function 5-585

5

5 Functions set with parameters
<2>Center position of simulated components: CAVPSA1 to 8
Table 5-31:Simulated component setting parameter (Robot arm: CAVPSA1 to 8)

Fig.5-20:XYZ direction of reference point (Jn axis) for each simulated component

[Supplement]: XYZ direction of each reference point (Jn axis)
RH-FRH series
When the posture is J1, J2, J4 axis = 0 degrees and the J3 axis is at the lowest end position a simulated
component’s XYZ direction matches the base coordinate system.
RV-FR series

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Center position of
the simulated
component
(robot arm)

CAVPSA1 to 8 Real number 6 Set up the position of each simulated component as the
distance and the rotation angle from each reference
point. (Each simulated component corresponds to the
last digit (1 to 8) of the parameter name.)

1st element: Distance in X axis direction (mm)
2nd element: Distance in Y axis direction (mm)
3rd element: Distance in Z axis direction (mm)
4th element: angle of rotation on X axis (degree)
5th element: angle of rotation on Y axis (degree)
6th element: angle of rotation on Z axis (degree)
Note) Calculate the rotation angle in order of Z -> Y -> X

axis. If shape is the sphere, setting of the rotation
angle is unnecessary.

<The position of the simulated component to set up>

Sphere Cylinder

Center

Length

Radius

Endpoint
of length

Note) <1> The numbers in parentheses indicate the 1st element (registration
section) setting values of the parameters CAVKDA1 to 8 (registration
sections and simulated component types).

<2> Top line: registration section
Bottom line: reference point of Jn axis

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

<RH-FRH series> <RV-FR series>

J1 axis reference
point (1)
J1 axis rotation
center,
No.1 arm base

Base section (0)
Installation
surface center

J2 axis reference point (2)
J2 axis rotation center,
No. 2 arm base

J4 axis reference point (4)
J4 axis rotation center

J3 axis reference
point (3)
J3 bottom lower
end position

Base section (0)
Installation
surface center

J1 axis reference point (1)
J1 axis rotation center

J2 axis reference point (2)
J2 axis rotation center

J3 axis reference point (3)
J3 axis rotation center

J4 axis reference point (4)
J4 axis rotation center

J5 axis reference point (5)
J5 axis rotation center

J6 axis reference point (6)
J6 axis rotation center
-586 Interference avoidance function

 5 Functions set with parameters
When the posture is all axis = 0 degrees a simulated component’s XYZ direction matches the base
coordinate system.

<3>Simulated component size: CAVSZA1 to 8
Table 5-32:Simulated component setting parameter (Robot arm: CAVSZA1 to 8)

Fig.5-21:Simulated component size (supplement)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Simulated
component (robot
arm) size

CAVSZA1 to 8 Real number 4 Set the size of each simulated component. (Each
simulated component corresponds to the last digit (1 to
8) of the parameter name.)

1st element: Radius (mm)
2nd element: Length (mm)
3rd element: Fixed to 0
4th element: Fixed to 0
Note) Setting of length is unnecessary if shape is the

spheric.

Radius

<RH-FRH series>

<RV-FR series>

Set the size of a cylinder simulated
component as a radius and a length.

Length

Radius

Set the size of a sphere simulated
component as a radius.
 Interference avoidance function 5-587

5

5 Functions set with parameters

0, 0
0, 0
0, 0
0, 0
0, 0
0, 0
0, 0
0, 0
g
R
s
,0.
<4>Simulated component enable/disable: CAVSCA1 to 8
Table 5-33:Simulated component setting parameter (Robot arm: CAVSCA1 to 8)

2) Simulated components for hand
The parameters required to register a simulated hand are shown in Table 5-34.

Table 5-34:Simulated component setting parameters (hand)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Simulated
component
enable/disable
(robot arm)

CAVSCA1 to 8 Integer 3 Set whether to check (enable or disable)
interference for each simulated component. (Each
simulated component corresponds to the last digit
(1 to 8) of the parameter name.)

1st element: Enable/disable the setting
(0: Disable, 1: Enable)

2nd element: Set whether to let the interference
avoidance function to temporarily
disable interference checks during
jog operation. (Refer to Temporarily
canceling the interference avoidance
function.)
(0: Disable, 1: Maintain enabled
state)
Note) If interference is inevitable

during jog operation for
teaching, setting the simulated
hand or workpiece to “0:
Disable” can be convenient.

3rd element: Fixed to 0

RH-3/6/12/20FRH
series, RH-3/
6CRH series:
CAVSCA1=1, 0, 0
CAVSCA2=0, 0, 0
CAVSCA3=1, 0, 0
CAVSCA4=1, 0, 0
CAVSCA5=1, 0, 0
CAVSCA6=1, 0, 0
CAVSCA7=1, 0, 0
CAVSCA8=1, 0, 0
Note) The setting
value of
RH-3FRH35xx, and
RH-6FRH35xx and
RH-12FRH55xx is
CAVSCA3=0,0,0.

RH-3FRHR series
CAVSCA1=1, 0, 0
CAVSCA2=1, 0, 0
CAVSCA3=1, 0, 0
CAVSCA4=1, 0, 0
CAVSCA5=1, 0, 0
CAVSCA6=1, 0, 0
CAVSCA7=0, 0, 0
CAVSCA8=0, 0, 0

RV-FR series:
CAVSCA1=1,
CAVSCA2=1,
CAVSCA3=1,
CAVSCA4=1,
CAVSCA5=1,
CAVSCA6=0,
CAVSCA7=0,
CAVSCA8=0,
Note) The settin
value of RV-2F
and RV-8CRL i
CAVSCA6=1,0

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Hand number and
shape
(hand)

CAVKDH1 to 8 Integer 2 Set the hand number and shape of a simulated hand to
be registered. Up to eight simulated hand types can be
registered. (Each type corresponds to the last digit (1 to
8) of the parameter name.)
1st element: Hand number

Corresponds to the hand condition number
for changing the simulated component with
the Loadset (Load Set) command.

0: Simulated component type set as default.
1 to 8: Hand condition number designated with the

Loadset (Load Set) command
2nd element: Shape

0: a sphere
1: a cylinder

Set all parameters
(CAVKDH1 to 8) to
“0, 0”.

Center position of
simulated
component
(hand)

CAVPSH1 to 8 Real number 6 For each simulated component, designate the center
position and pose of the simulated component from the
origin point of the Mechanical interface coordinate
system. (Each simulated component corresponds to the
last digit (1 to 8) of the parameter name.)

1st element: Distance in X axis direction (mm)
2nd element: Distance in Y axis direction (mm)
3rd element: Distance in Z axis direction (mm)
4th element: angle of rotation on X axis (degree)
5th element: angle of rotation on Y axis (degree)
6th element: angle of rotation on Z axis (degree)
Note) Calculate the rotation angle in order of Z → Y → X

axis. If shape is the sphere, setting of the rotation
angle is unnecessary.

Set all parameters
(CAVPSH1 to 8) to
“0, 0, 0, 0, 0, 0”.
-588 Interference avoidance function

 5 Functions set with parameters
3)Simulated components for workpiece
The parameters required to register a simulated workpiece are shown in Table 5-35.

Table 5-35:Simulated component setting parameters (workpiece)

Simulated
component size
(hand)

CAVSZH1 to 8 Real number 4 Set the size of each simulated component.
(Each simulated component corresponds to the last digit
(1 to 8) of the parameter name.)

1st element: Radius (mm)
2nd element: Length (mm)
3rd element: Fixed to 0
4th element: Fixed to 0
Note) If shape is the sphere, setting of the length is

unnecessary.

Set all parameters
(CAVSZH1 to 8) to
“0, 0, 0, 0”.

Simulated
component
enable/disable
(hand)

CAVSCH to 8 Integer 3 Set whether to check (enable or disable) interference for
each simulated component.
(Each simulated component corresponds to the last digit
(1 to 8) of the parameter name.)

1st element: Enable/disable setting
(0: Disable, 1: Enable)

2nd element: Set whether to let the interference
avoidance function to temporarily disable
interference checks during jog operation.
(Refer to Temporarily canceling the
interference avoidance function.)
(0: Disable, 1: Maintain enabled state)
Note) If interference is inevitable during

jog operation for teaching, setting
the simulated hand or workpiece to
“0: Disable” can be convenient.

3rd element: Fixed to 0

Set all parameters
(CAVSCH1 to 8) to
“0, 0, 0”.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Workpiece
number and
shape
(workpiece)

CAVKDW1 to 8 Integer 2 Set the workpiece number and shape of simulated
workpiece to be registered. Up to eight simulated
workpiece types can be registered. (Each type
corresponds to the last digit (1 to 8) of the parameter
name.)

1st element: Workpiece number
Corresponds to the workpiece condition
number for changing the simulated
component with the Loadset (Load Set)
command.

0: Simulated component type set as default.
1 to 8: Workpiece condition number designated with

the Loadset (Load Set) command
2nd element: Shape

0: a sphere
1: a cylinder

Set all parameters
(CAVKDW1 to 8)
to “0, 0”.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Changing the simulated component to be checked at program execution (hand, workpiece)
When a program is executed, the simulated hand and workpiece targeted for the interference check
with the Loadset (Load Set) command can be changed so that the interference is checked according to
the hand type actually being used or the workpiece type actually being grasped.
The Loadset (Load Set) command designates a hand number or workpiece number, which is set with
parameter beforehand.
 Interference avoidance function 5-589

5

5 Functions set with parameters
Center position of
simulated
component
(workpiece)

CAVPSW1 to 8 Real number 6 For each simulated component, designate the center
position and pose of the simulated component from the
origin point of the Mechanical interface coordinate
system. (Each simulated component corresponds to the
last digit (1 to 8) of the parameter name.)

1st element: Distance in X axis direction (mm)
2nd element: Distance in Y axis direction (mm)
3rd element: Distance in Z axis direction (mm)
4th element: angle of rotation on X axis (degree)
5th element: angle of rotation on Y axis (degree)
6th element: angle of rotation on Z axis (degree)
Note) Calculate the rotation angle in order of Z → Y → X

axis. If shape is the sphere, setting of the rotation
angle is unnecessary.

Set all parameters
(CAVPSW1 to 8) to
“0, 0, 0, 0, 0, 0”.

Simulated
component size
(workpiece)

CAVSZW1 to 8 Real number 4 Set the size of each simulated component.
(Each simulated component corresponds to the last digit
(1 to 8) of the parameter name.)

1st element: Radius (mm)
2nd element: Length (mm)
3rd element: Fixed to 0
4th element: Fixed to 0
Note) If shape is the sphere, setting of the length is

unnecessary.

Set all parameters
(CAVSZW1 to 8) to
“0, 0, 0, 0”.

Simulated
component
enable/disable
(workpiece)

CAVSCW1 to 8 Integer 3 Set whether to check (enable or disable) interference for
each simulated component.
(Each simulated component corresponds to the last digit
(1 to 8) of the parameter name.)

1st element: Enable/disable setting
(0: Disable, 1: Enable)

2nd element: Set whether to let the interference
avoidance function to temporarily disable
interference checks during jog operation.
(Refer to Temporarily canceling the
interference avoidance function.)
(0: Disable, 1: Maintain enabled state)
Note) If interference is inevitable during

jog operation for teaching, setting
the simulated hand or workpiece to
“0: Disable” can be convenient.

3rd element: Fixed to 0

Set all parameters
(CAVSCW1 to 8)
to “0, 0, 0”.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Changing the simulated component to be checked at program execution (hand, workpiece)
When a program is executed, the simulated hand and workpiece targeted for the interference check
with the Loadset (Load Set) command can be changed so that the interference is checked according to
the hand type actually being used or the workpiece type actually being grasped.
TheLoadset (Load Set) command designates a hand number or workpiece number, which is set with
parameter beforehand.

Executing interference check only when workpiece is grasped
Interference checks are performed for a simulated workpiece only while the workpiece is grasped with
the parameter HNDHOLD*. (Interlinked with hand open/close)
-590 Interference avoidance function

 5 Functions set with parameters
5.24.4 Registering a free plane limit
Register a free plane limit used for checking for interference. The required registration details are shown
in Table 5-36. Maximum of eight planes can be used for checking for interference.

An interference check is executed only by registered CPU.

As can be seen in the diagram to the left, any
plane can be defined by three points (P1, P2,
and P3).

Table 5-36:Details of free plane limit registration

Parameter and value Explanation

SFCnP(n=1 to 8) Specifies the 3 points that define the plane.
P1 coordinates X1, Y1, and Z1: The origin of the plane
P2 coordinates X2,Y2,Z2: A position on the X axis of the plane
P3 coordinates X3,Y3,Z3: A position in the positive Y direction of the X-Y plane in the plane

CAVSCFn(n=1 to 8) Specifies the valid/Invalid of checking for interference with the set free plane limit.
0:Invalid (default)
1: Valid

 CAUTION

Ｐ１

Ｐ２

P３

Note) This figure is an example using a vertically articu-
lated 6-axis robot. The example also applies to hor-
izontally articulated robots.
 Interference avoidance function 5-591

5

5 Functions set with parameters
5.24.5 Support of additional axes
If the robot uses additional axes, the interference avoidance function can be set to consider the
movement of the additional axis by setting the additional axis synchronous control parameter. (Only linear
axis such as locomotion axis.)
Refer to Table 5-37 and set the parameter according to the usage state.
Note) Set the traveling axis coordinate as “0” for the positional relation between robots, which are

explained in a later section, "5.24.7Calibration between robots (Checking for interference between
robots)".

Fig.5-22:Example of using locomotion axis

Table 5-37:Additional axis synchronous control parameter
Parameter Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Interference
avoidance
additional axis
(locomotion axis)
number

CAVAXJNO Integer 1 Set up the axial number of the additional axis (locomotion axis)
made into the target of interference avoidance.
The interference check is not made other than 7 and 8 axes.
Setting value: 0, 7 or 8

0

Additional axis
Synchronization
direction

AXDIR Real number 3 Convert the coordinate using the locomotion axis’ +
direction as the X axis to the coordinate of the robot
coordinate system.

1st element: Rotation angle around X axis
2nd element: Rotation angle around Y axis
3rd element: Rotation angle around Z axis
Note) As the default, the robot X axis matches the

locomotion axis’ + direction.

0.0, 0.0, 0.0

図

Locomotion axis + direction

In this case, parameter AXDIR is set to 0.0, 0.0, -90.0.
(-90 degree rotation around robot’s Z axis.)

Robot +X axis

Robot +Y axis

Locomotion axis
Robot arm
-592 Interference avoidance function

 5 Functions set with parameters
5.24.6 Setting the CPU buffer memory expanded function (Checking for interference between robots)
Set the CPU buffer memory expanded function with the parameters.
When the shared memory expanded function is selected, the CPU buffer memory is occupied. (Refer to
Fig. 5-23.)

(1) Parameter setting
Set the parameter: IQMEM bit 4 to "1" and enable the interference avoidance function.
Set the number of CPU modules mounted on the main base unit in the multi-CPU system in parameter:
QMLTCPUN, and set the parameter: QMLTCPUn element 1 to “2”.

Table 5-38:CPU buffer memory expanded function selection parameter
Parameter Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

CPU buffer
memory expanded
function selection

IQMEM Real number 1 Select the CPU buffer memory expanded function.
A function is assigned to each bit. 1/0 = Enable/disable

00000000 00000000

Number of CPU
modules

QMLTCPUN Integer 1 Set the number of CPU modules mounted in the main
base unit of the multi-CPU system.

2

15 0

 00000000 00000000

 | || ...bit0: Enable expanded function
 | |....bit1: PLC direct execution function
 |

 | ... bit4: Interference avoidance function

Bits 2, 3, and
5 to 15 are not
used.
 Interference avoidance function 5-593

5

5 Functions set with parameters
CPU buffer
memory periodical
communication
area setting
(* CR800-R series
only)

QMLTCPUn
n=1 to 4

Integer 4 At the multi CPU system, read the number of points
transmitting and receiving data by the CPU buffer
memory periodical communication area of the multi
CPU No. 1 to 4 from the multi CPU No. 1, and set it
automatically. It is not necessary to change the value.

Element 1: Size of the periodical communication area (K
word)
Range: 0 to 12
*The total size of all multi CPUs is 24K words

at maximum.

Element 2: Number of automatically refreshed points
(word)
Range: 0 to 14335
The robot CPU does not support automatic
refreshing, so always set the number of
automatically refreshed points to 0.

Element 3: System reservation

Element 4: Multi-CPU synchronous startup
(1: Enable, 0: Disable)
The robot CPU takes time to start up, so
basically do not change this setting. Leave
it set to 1 (Enable synchronization).

1,0,1,1

Multi CPU No. n
high-speed
communication
area setting
(* CR800-Q series
only)

At the multi CPU system, set the number of points
performing transmission and receipt between each CPU
unit for the high speed communication function between
multi CPU nos. 1 to 4.
It is necessary to match the parameter settings for all
CPUs. An error will occur at the PLC CPU If the
parameter settings do not match, and therefore care
should be taken to ensure that the parameter settings
for each CPU match.

First element: User free area size (k points)
Range: 1 to 14 (Max. *) * The max. value will differ
based on the number of multi CPUs as shown below.

Second element: No. of auto refresh points (points)
Range: 0 to 14335
The robot CPU does not support auto refresh, and
therefore the number of points for auto refresh should
always be set to 0.

Third element: System area size (K points)
Range: 1 or 2

Fourth element: Multi CPU synchronous start-up (1:
Yes, 2: No)

Robot CPUs take some time to start up and therefore
the current setting of 1 (synchronous start-up) should
not be changed.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

CPU Qty Setting Range

2 0 to 14K points

3 0 to 13K points

4 0 to 12K points
-594 Interference avoidance function

 5 Functions set with parameters
(2) CPU buffer memory map
This section shows the memory map of the robot’s CPU output area in the CPU buffer memory, which is
allocated based on the parameter: IQMEM setting.
The following figure shows the memory map for the CR800-R series. For the CR800-Q series, refer to the
Table 5-3 and replace the device numbers with the corresponding device numbers in the figure.

Fig.5-23:CPU buffer memory map

Note 1) The interference avoidance function address is fixed regardless of the
expanded function enable/disable state.

Note 2) “n” in U3En\ of the CPU buffer memory address corresponds to the
robot No. Each slot position in the robot CPU system (iQPlatform) has
a fixed robot No.

 U3En\G10000

ユーザエリア
(0.5k ワード)

U3En\G10512

U3En\G11024

U3En\G12047

拡張機能エリア
(0.5k ワード)

合計 2k ワード

Module No. 4 = Robot No. 3
Module No. 3 = Robot No. 2
Module No. 2 = Robot No. 1

Module No. 1 = PLC CPU

Robot CPU system

Note 2)

Note 2)

<CPU buffer memory map> <Relation of slot and robot number>

User area
(0.5k word)

Expanded
function area
(0.5k word)

Interference
avoidance
function area
(1.0k word)

Note 1)

Total 2k words

U3En\HG512

U3En\HG0

U3En\HG1024

U3En\HG2047
 Interference avoidance function 5-595

5

5 Functions set with parameters
5.24.7 Calibration between robots (Checking for interference between robots)
Set the positional relation for multiple robots which are using the interference avoidance function.
Set a common coordinate system origin point between the robots based on the system layout drawing,
etc. Then, set the Base coordinate system origin point of each robot in parameter: RBCORD looking from
that common coordinate system.

Fig.5-24:Image of calibration between robots

+Z

+X

+Y

+Zb3

+Xb3

+Yb3

+Zb2

+Xb2

+Yb2

+Zb1

+Xb1

+Yb1

*1)

*1)

*1)

Robot 3 base
coordinate system

Rotation angle
Zb3

Rotation angle
Bb3

Rotation angle
Ab3

Robot 1 base
coordinate system

Robot 2 base
coordinate system

Rotation angle
Zb1

Rotation angle
Bb1

Rotation angle
Ab1

Rotation angle
Zb2

Rotation angle
Bb2

Rotation angle
Ab2

*1) The robot's base coordinate system origin point looking from the common coordinate system.
Set these coordinate values in parameter: RBCORD for each robot.
-596 Interference avoidance function

 5 Functions set with parameters
(1) Setting the calibration
Set the Base coordinate system origin point for each robot, looking from the common coordinates
between robots, in parameter: RBCORD with the X, Y, Z, A, B and C coordinate values.
Note) When using a locomotion axis, set the positional relation for when the locomotion axis coordinate

value is “0”.

Table 5-39:Set parameters for calibration between robots

(2) Checking the calibration setting results
Check that each robot has been correctly calibrated with the following steps.
1) Looking at the system layout drawing, etc., set one reference point for each robot. (Fig. 5-25 a)

(Hereinafter, reference point)
2) Move the tip of the robot hand to the set reference point using jog operations.
3) Check the robot (system) status variable: P_CurrR (current robot position looking from common

coordinates) using T/B, etc.
4) Compare the above P_CurrR value to the value on the layout drawing, etc.

Only the XYZ values are compared. If the values match, the robot has been correctly calibrated. If the
values do not match, correct the parameter: RBCORD setting value.

5) Carry out the above steps for all robots which are using the interference avoidance function.

Fig.5-25:Checking the setting for calibration between robots

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Common
coordinates for
robots

RBCORD Real number 6 The robot's Base coordinate system origin point looking
from the common coordinates between robots.
(Designate with X, Y, Z, A, B and C coordinate values)

1st element: X-axis coordinate value (mm)
2nd element: Y-axis coordinate value (mm)
3rd element: Z-axis coordinate value (mm)
4th element: A-axis coordinate value (deg)

(Rotation angle around X axis)
5th element: B-axis coordinate value (deg) (Rotation

angle around Y axis)
6th element: C-axis coordinate value (deg) (Rotation

angle around Z axis)

Note 1) For the A, B and C-axis coordinate values
(rotation angles), set the values obtained by
rotating in the order of around Z axis → around
Y axis → around X axis.

0.00, 0.00, 0.00,
0.00, 0.00, 0.00,

Set to the reference point

 Check details
Compare the robot (system) status variable: P_CurrR
and the value from the layout diagram, etc. The
setting is correct if the values match.

a) Reference point
Refer to layout drawing,
etc., and determine.
 Interference avoidance function 5-597

5

5 Functions set with parameters
5.24.8 Enabling and disabling the interference avoidance function
Whether to enable/disable the interference avoidance function in general, and whether to enable/disable it
during program execution and jog operation can be set by setting the parameter: CAV.
Details of the parameter are given in Table 5-40.

Table 5-40:Interference avoidance function enable/disable setting parameter

5.24.9 Using the interference avoidance function
The interference avoidance operation during jog operation and program execution is explained below. Set
the 1st element of parameter: CAV to “1” (Enable). (Refer to Page 598, "5.24.8 Enabling and disabling the
interference avoidance function".)

(1) Interference avoidance during jog operation
When the 3rd element of parameter: CAV is set to Enable (“1” or “2”), the interference avoidance function
can be used during jog operation.
When interference is detected, the robot decelerates to a stop and performs the following operation
according to the parameter’s setting value.
Setting value = 1: Alarm (L241n) occurs. The alarm must be reset to resume jog operation.
Setting value = 2: A buzzer sounds. The robot can be jogged in the direction where there is no

interference.

Temporarily canceling the interference avoidance function
Press the [CLEAR] key on T/B to temporary cancel the interference avoidance function for the
simulated components. It can be temporarily canceled by setting "0" (temporarily disable) to the
second element of the simulated component enable/disable setting parameters: CAVSCA1 to 8
(robot arm), CAVSCH to 8 (hand) and CAVSCW1 to 8 (workpiece).
Every time the [CLEAR] key is pressed, the status switches between Enable and Disable. “CAV” is
displayed at the bottom center of the T/B screen when set to Enable.

If the robot cannot be restarted from an interference state by [CLEAR] key (if the operator manually
puts the robot into the interference area during servo OFF, etc.), carry out Page 71, "3.11 Operation
to Temporarily Reset an Error that Cannot Be Canceled" (jog operation while [RESET] is pressed).
The interference avoidance function can be temporarily canceled and the robot can be moved.

Note) The robot will not stop at the movement range limit when using this operation. Do not
move in the direction outside of the movement range.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Interference
avoidance
function

CAV Integer 1 Set whether to enable or disable the interference
avoidance function in general.
When set to enable, additionally set to enable/disable
the interference avoidance function during program
execution, and enable (including movement during
interference)/disable the function during jog operation.

1st element: Use of the interference avoidance function
(0: Disabled/1: Enabled)

2nd element: Initial state at program execution
(0: Disabled/1: Enabled)

3rd element: Disable/enable setting for jog operation
(0: Disabled, 1: Enabled with error
occurrence, 2: Enabled with only buzzer
sound)

0, 1, 1

<CURRENT> JOINT 100% P1 B1
 J1: 0.00 J5: 0.00
 J2: 0.00 J6: 0.00
 J3: 90.03 :
 J4: 0.00 :

123TOOLXYZ ⇒CYLNDR3-XYZ

CAV

Enable = “CAV” displayed
Disable = Blank
-598 Interference avoidance function

 5 Functions set with parameters
(2) Interference avoidance during program execution
The interference avoidance function can be used during program execution (during automatic operation)
by setting the 2nd element of parameter: CAV to Enable (“1”), and using the instructions shown in Table 5-
41 and the external variables shown in Table 5-42.

Table 5-41:Commands (Interference avoidance function)

Table 5-42:Robot (system) status variables (Interference avoidance function)

[Supplement]
When an interference is detected, the robot decelerates to a stop. The movement is determined according

to whether “NOErr” is designated with the CavChk On (CavChk On) instruction.
NOErr not designated: Alarm (L240n) occurs. The alarm must be reset to resume automatic operation.
NOErr designated: An alarm does not occur, and instead the interrupt process designated in the

program is executed.
Note) To designate NOErr, an interrupt program, which is executed when an interruption is

detected, must be set.
An alarm will occur if this instruction is executed without an interrupt process being set.

Overview of interrupt process: An interference is detected when the robot (system) status
variable M_CavSts value changes from “0”. Make a
declaration to execute the interrupt process in this state.
A sample program is given on Page 600, "5.24.10 Sample
programs".

If origin setting is not completed, the current joint position of all axes will be
executed as 0 always.
For this reason, this function does not operate correctly. Executes this function,
after making origin setting certainly complete.

Command Details Explanation page
CavChk Enable/disable the interference avoidance function, and set whether to generate an

alarm when an interference is detected.

CavChk <ON/OFF>[, <Robot CPU No.>[,NOErr]]

Page 191

Variable name Details Explanation page
P_CordR The robot’s base coordinate system origin point looking from common coordinate

system.
Data type: Position type

Page 434

P_CurrR Local robot’s current position looking from the common coordinate system
Data type: Position type

Page 436

P_CavDir The robot’s movement direction when interference is detected
Data type: Position type

Page 432

M_CavSts Interference state
0: No interference
1 to 3: The number of the interfering robot when interference is detected
Data type: Integer type

Page 371

 CAUTION
 Interference avoidance function 5-599

5

5 Functions set with parameters
5.24.10 Sample programs
(1) Starting and ending the interference avoidance function (all robots)

<Program example> Note) The step numbers are omitted.
:

'--- Default state (Interference avoidance function enabled) ---;When interference check is enabled
with parameter: CAV.

:
MVS P1 'Movement when the interference avoidance function is enabled

:
'--- Interference avoidance disabled for all robots ---
CavChk OFF 'Function disabled for all robots when no robot No. is specified

:
MVS P2 'Movement when the interference avoidance function is disabled

:
'--- Interference avoidance enabled for all robots---
CavChk ON 'Function enabled for all robots when no robot No. is specified

:
MVS P3 'Movement with the interference avoidance function is enabled

:

(2) Starting and ending interference avoidance function (designated robot)
<Program example> Note) The step numbers are omitted.

:
'--- To end the interference avoidance function with the No. 2 robot ---
CavChk OFF,2 'End the interference avoidance function with the robot No. 2

:
MVS P5 'Movement when the interference avoidance function with the robot No. 2 is

disabled
:

'--- To start the interference avoidance function with the No. 2 robot ---
CavChk ON,2 'Resume the interference avoidance function with the robot No. 2

:
MVS P6 'Movement when the interference avoidance function with the robot No. 2 is

enabled
:

(3) Changing the simulated hand and workpiece types
<Program example> Note) The step numbers are omitted.

:
'--- Change the simulated hand type ---
LoadSet 2,2 'Designate the simulated hand and workpiece type 2

:
MVS P7 'Execute the interference avoidance function with the simulated hand and

workpiece type 2
:

'--- Change the simulated component for interference check (workpiece) ---
LoadSet 1,2 'Designate the simulated hand type 1, simulated workpiece type 2

:
MVS P8 'Execute the interference avoidance function with the simulated hand type 1 and

the simulated workpiece type 2
:

'--- Change the simulated component for interference check (workpiece) ---
LoadSet 0,0 'Return the simulated hand and workpiece types to default values

:
MVS P9 '

:

-600 Interference avoidance function

 5 Functions set with parameters
(4) Executing avoidance operation after detecting interference (interrupt process)
<Program example> Note) The step numbers are omitted.

Def Act 1,M_CavSts<>0 GoTo *Home,S ' Define a process to be executed as an interrupt when
interference is detected

Act 1=1
CavChk On,0,NOErr ' Enable the interference avoidance function in error disabled mode
Mov P1 ' Movement when the interference avoidance function is enabled
Mov P2 ' Movement when the interference avoidance function is enabled
Mov P3 ' Movement when the interference avoidance function is enabled

:
:

*Home ' Step to interrupt when interference is detected
CavChk Off
M_CavSts=0 ' Clear the interference state
MDist=Sqr(P_CavDir.X*P_CavDir.X+P_CavDir.Y*P_CavDir.Y+P_CavDir.Z*P_CavDir.Z)

 ' Find the movement rate ratio
PESC=P_CavDir(1)*(-50)*(1/MDist)

' Create movement amount for avoidance operation (move back 50mm
from the interference position)

PDST=P_Fbc(1)+PESC ' Create an avoidance destination
Mvs PDST ' Avoidance movement
Mvs PHome ' Move to the avoidance destination

:

 Interference avoidance function 5-601

5

5 Functions set with parameters
5.25 Direct control of the PLC input/output module
This section explains the function by which the robot CPU controls three types of modules for the PLC:
"input module", "output module", and "I/O combined module".
The setting procedure differs between the CR800-R series and the CR800-Q series. For the CR800-R
series, refer to Page 602, "5.25.1 CR800-R series". For the CR800-Q series, refer to Page 616, "5.25.2
CR800-Q series"

5.25.1 CR800-R series
(1) Operation procedure

The operation procedure for controlling the PLC I/O module is shown below.

(2) Configuration example of the hardware
The following shows the system configurations "1 robot CPU + 3 types of I/O modules" as the example 1,
and "2 robot CPUs + 3 types of I/O modules + extension base (added)" as the example 2.

*System configuration example 1: 1 robot CPU + 3 types of I/O modules

Start.

Set "Multiple CPU Setting" of GX Works3.

Set "I/O Assignment" of GX Works3.

Is the PLC started normally?No

Yes

Reset the PLC.

Control the module using status variables.

•••●Set the parameters in "Multiple CPU Setting " of GX
Works3.

•••●Set the parameters in "I/O Assignment" of GX Works3.

•••●Perform the reset operation of the PLC or turn off and on
the power to reset the PLC.

Check the input information with the status variables
"M_XDev", "M_XDevB", "M_XDevW", and "M_X-
DevD", and output a signal to the module controlled by
the host CPU with the status variables "M_YDev",
"M_YDevB", "M_YDevW", and "M_YDevD".
(Refer to "(5)Controlling with status variables".)

I/O2:Input

I/O3:Output

I/O4:I/O Mix

　　　

Main

RT ToolBox3

R32TB R56TB
-602 Direct control of the PLC input/output module

 5 Functions set with parameters
*System configuration example 2: 2 robot CPUs + 3 types of I/O modules + extension base (added)

(3) Setting the parameters for the system configuration example 1
Under the condition of the system configuration example 1 (1 robot CPU + 3 types of I/O modules),
arrange the base, power module, PLC CPU, and robot CPU to be used in "Module Configuration" of GX
Works3.

[Main]
I/O2:Input
I/O3:Output
I/O4:I/O Mix
[Extension]
I/O0:Input
I/O2:Output

Main

RT ToolBox3

R32TB R56TB
 Direct control of the PLC input/output module 5-603

5

5 Functions set with parameters
Arrange the input module, output module, and I/O combined module to be used.

When the Module Configuration screen is closed after arranging the modules, the following dialogue will
appear. Click the [Yes] button.

I/O2:RX10
I/O3:RY10R2
I/O4:RH42C4NT2P
-604 Direct control of the PLC input/output module

 5 Functions set with parameters
Open the System Parameter screen to set up the multiple CPU.
 Direct control of the PLC input/output module 5-605

5

5 Functions set with parameters
Setting Item Description Setting Value
Communication
Setting between
CPUs

PLC Unit Data Set up this to avoid data separation at data
communications by refresh. When data of more
than 64 bit data is handled, data croaking may
occur.

Enable
Disable

The update cycle of the PLC link I/O
function of the robot CPU is as follows.
< PLC Unit Data - Disable >
It will be the specified periodic
communication interval.
< PLC Unit Data - Enable >
Even when setting the periodic
communication interval setting to "0.444
ms" or less, it will be 0.888 ms.
* The update period of other data is
described in each chapter.

Fixed Scan
Communication
Function

Select whether the fixed scan communication
function is used or not.
Always select "Use" when using together with a
robot CPU.

Use

Fixed Scan
Communication
Area Setting

Set up the range of transmission area of each
device in the fixed scan communication area.
The necessary area Note1) for robot is as follows:
CPU buffer memory extended functions are valid:
 Robot input area: 1.0K
 Robot output area: 1.0K
CPU buffer memory extended functions are invalid:
 Robot input area: 0.5K
 Robot output area: 0.5K

Note1) For information about multiple CPUs and fixed scan communication area, refer to the RCPU manual (MELSEC
iQ-R CPU Module User's Manual (Application)).

<CPU buffer memory extended
functions are valid:>
 Device #1: Sum of the size (1K) of the

data to be sent to the robot and the
size of the data to be sent to other
devices

 Robot device: Set 1K for it
 Other devices: Set its own transmission

size
<CPU buffer memory extended
functions are invalid:>
 Device #1: Sum of the size (0.5K) of

the data to be sent to the robot and the
size of the data to be sent to other
devices

 Robot device: Set 1K for it Note2)

 Other devices: Set its own transmission
size

Note2) Because the area is set up in 1K unit, allocate 1K even in case of 0.5K.

0.05ms Unit
Setting

Specify whether to set the fixed scan
communication cycle in increments of 0.05ms.
Please be sure to select "Not Set" when combining
with robot CPU.

Not Set

Fixed Scan
Interval Setting
(Not set in
0.05ms unit)

Select the fixed scan communication cycle to be
set from the list items. The same option should be
specified only for CPU modules which will use the
fixed scan communication function.
Please select "0.888ms" or less regardless of the
PLC Unit Data. When using cooperative control
function or interference avoidance function of the
robot CPU.

0.222ms
0.444ms
0.888ms
1.777ms
3.555ms
7.111ms

Operation Mode
Setting

Stop Setting If a moderate or major error occurs at any of the
CPUs, set whether to stop or continue operation
for all CPUs.

Major: All Station Stop, Moderate: All
Station Continue.
* Set for all CPUs.

Synchronous
Startup Setting

Set up this to synchronize startup time of CPU
modules in multiple CPUs system.
* Always select "Synchronize" due to the robot

CPU takes as long as 18 seconds to startup.

Synchronize

Other PLC
Control Module
Setting

I/O Setting
Outside Group

Set up this to import the input (X) ON/OFF data of
the module outside the control and the output (Y)
ON/OFF data of other PLC CPU.

Import
-606 Direct control of the PLC input/output module

 5 Functions set with parameters
Set up "Multiple CPU Setting" in the parameter menu of RT ToolBox3 as follows.
The settings of "Multiple CPU Synchronous Startup" and "Multiple CPU High Speed Transmission Area
Setting" are not required since their setting values are automatically acquired from the PLC CPU.

Set up "I/O Assignment" with the CPU parameters of GX Works3 as follows.

Control PLC Settings of
Output unit and I/O unit
are PLC No.2
 Direct control of the PLC input/output module 5-607

5

5 Functions set with parameters
With this setting, the PLC controls the input module, and the robot CPU No. 1 controls the output module
and I/O combined module.
If there is any empty slot, set "Setting of Points Occupied by Empty Slot" as follows.

After setting the above parameters, reset the power of the PLC and robot CPU.
-608 Direct control of the PLC input/output module

 5 Functions set with parameters
(4) Setting the parameters for the system configuration example 2
Under the condition of the system configuration example 2 (2 robot CPUs + 3 types of I/O modules +
extension base), arrange the base, power module, PLC CPU, and robot CPU to be used in "Module
Configuration" of GX Works3.

Arrange the extension base, input module, output module, and I/O combined module to be used.
 Direct control of the PLC input/output module 5-609

5

5 Functions set with parameters
When the Module Configuration screen is closed after arranging the modules, the following dialogue will
appear. Click the [Yes] button.

Open the System Parameter screen to set up the multiple CPU.
-610 Direct control of the PLC input/output module

 5 Functions set with parameters
Setting Item Description Setting Value
Communication
Setting
between CPUs

PLC Unit Data Set up this to avoid data separation at data
communications by refresh. When data of more
than 64 bit data is handled, data croaking may
occur.

Enable
Disable

The update cycle of the PLC link I/O
function of the robot CPU is as follows.
< PLC Unit Data - Disable >
It will be the specified periodic
communication interval.
< PLC Unit Data - Enable >
Even when setting the periodic
communication interval setting to "0.444
ms" or less, it will be 0.888 ms.
* The update period of other data is
described in each chapter.

Fixed Scan
Communication
Function

Select whether the fixed scan communication
function is used or not.
Always select "Use" when using together with a
robot CPU.

Use

Fixed Scan
Communication
Area Setting

Set up the range of transmission area of each
device in the fixed scan communication area.
The necessary area Note1) for robot is as follows:
CPU buffer memory extended functions are valid:
 Robot input area: 1.0K
 Robot output area: 1.0K
CPU buffer memory extended functions are invalid:
 Robot input area: 0.5K
 Robot output area: 0.5K

Note1) For information about multiple CPUs and fixed scan communication area, refer to the RCPU manual
(MELSEC iQ-R CPU Module User's Manual (Application)).

<CPU buffer memory extended functions
are valid:>
 Device #1: Sum of the size (1K) of the

data to be sent to the robot and the size
of the data to be sent to other devices

 Robot device: Set 1K for it
 Other devices: Set its own transmission

size
<CPU buffer memory extended functions
are invalid:>
 Device #1: Sum of the size (0.5K) of the

data to be sent to the robot and the size
of the data to be sent to other devices

 Robot device: Set 1K for it Note2)

 Other devices: Set its own transmission
size

Note2) Because the area is set up in 1K unit, allocate 1K even in case of 0.5K.

0.05ms Unit
Setting

Specify whether to set the fixed scan
communication cycle in increments of 0.05ms.
Please be sure to select "Not Set" when combining
with robot CPU.

Not Set

Fixed Scan
Interval Setting
(Not set in
0.05ms unit)

Select the fixed scan communication cycle to be
set from the list items. The same option should be
specified only for CPU modules which will use the
fixed scan communication function.
Please select "0.888ms" or less regardless of the
PLC Unit Data. When using cooperative control
function or interference avoidance function of the
robot CPU.

0.222ms
0.444ms
0.888ms
1.777ms
3.555ms
7.111ms

Operation
Mode Setting

Stop Setting If a moderate or major error occurs at any of the
CPUs, set whether to stop or continue operation
for all CPUs.

Major: All Station Stop, Moderate: All
Station Continue.
* Set for all CPUs.

Synchronous
Startup Setting

Set up this to synchronize startup time of CPU
modules in multiple CPUs system.
* Always select "Synchronize" due to the robot

CPU takes as long as 18 seconds to startup.

Synchronize

Other PLC
Control Module
Setting

I/O Setting
Outside Group

Set up this to import the input (X) ON/OFF data of
the module outside the control and the output (Y)
ON/OFF data of other PLC CPU.

Import
 Direct control of the PLC input/output module 5-611

5

5 Functions set with parameters
Set up "Multiple CPU Setting" in the parameter menu of RT ToolBox3 as follows.
The settings of "Multiple CPU Synchronous Startup" and "Multiple CPU High Speed Transmission Area
Setting" are not required since their setting values are automatically acquired from the PLC CPU.

[Robot CPU No. 1 (= CPU No. 2)]

[Robot CPU No. 2 (= CPU No. 3)]
-612 Direct control of the PLC input/output module

 5 Functions set with parameters
Set up "I/O Assignment" with the CPU parameters of GX Works3 as follows.

With this setting, the PLC controls the input module, and the robot CPU No. 1 and No. 2 control the output
module and I/O combined module.
If there is any empty slot, set "Setting of Points Occupied by Empty Slot" as follows.

After setting the above parameters, reset the power of the PLC and robot CPU.

Control PLC Settings of Output unit and

I/O unit are PLC No.2 or No.3
 Direct control of the PLC input/output module 5-613

5

5 Functions set with parameters
(5) Controlling with status variables
The following types of status variables are provided to control the PLC I/O module.

For example, the system configuration example 2 is set as follows.

To check the input information of the input module mounted on the slot 0 of the extension base 1 that is
controlled by the CPU No. 1 (= PLC), prepare the robot program in the CPU No. 2 (= robot CPU No. 1) as
follows.

Variable
name Details

M_XDev Reads the PLC input signal (X) per bit.
ex.) 1 M1%=M_XDev (1) ' The value of the PLC input signal 1 (1 or 0) is substituted to M2.

M_XDevB Reads the PLC input signal (X) per byte.
ex.) 1 M2%=M_XDevB(&H10) ' The value of 8-bit width from 10 (hexadecimal number) of PLC input sig-

nals is substituted to M2.

M_XDevW Reads the PLC input signal (X) per word.
ex.) 1 M4%=M_XDevW(&H20) ' The value of 16-bit width from 20 (hexadecimal number) of PLC input sig-

nals is substituted to M4.

M_XDevD Reads the PLC input signal (X) per double word.
ex.) 1 M5&=M_XDevD(&H100) ' The value of 32-bit width from 100 (hexadecimal number) of PLC input sig-

nals is substituted to M5.

M_YDev Reads/Writes the PLC output signal (Y) per bit.
ex.) 1 M_YDev(2)=1 'Turns on the PLC output signal No. 2.

M_YDevB Reads/Writes the PLC output signal (Y) per byte.
ex.) 1 M_YDevB(&H10)=&HFF 'Turns on the 8-bit width from 10 (hexadecimal number) of PLC output sig-

nals.

M_YDevW Reads/Writes the PLC output signal (Y) per word.
ex.) 1 M_YDevW(&H20)=&HFFFF ' Turns on the 16-bit width from 20 (hexadecimal number) of PLC output

signals.

M_YDevD Reads/Writes the PLC output signal (Y) per double word.
ex.) 1 M_YDevD(&H100)=P1.X * 1000 ' Outputs the multiplication result value of X coordinate value of the position

variable P1 by 1000 to 32-bit width from 100 (hexadecimal number) of
PLC output signals.

M1&=M_XDevD(&H40)

Specify the "Start I/O No." of the corresponding module.

Status variable that reads input signals for 32 bits
-614 Direct control of the PLC input/output module

 5 Functions set with parameters
The following describes the settings when outputting a signal to the output module controlled by the user
or the I/O module.

For example, to output a signal to the output module mounted on the slot 2 of the extension base 1 shown
in the above, prepare a robot program in the CPU No. 3 (= robot CPU No. 2) as follows.

M_YDevD(&H100) = &H1234

Specify the data to be output.

Specify the "Start I/O No." of the corresponding module.

Status variable that outputs data for 32 bits
 Direct control of the PLC input/output module 5-615

5

5 Functions set with parameters
5.25.2 CR800-Q series
(1) Operation procedure

The operation procedure for controlling the PLC I/O module is shown below.

(2) Configuration example of the hardware
The following shows the system configurations "1 robot CPU + 3 types of I/O modules" as the example 1,
and "2 robot CPUs + 3 types of I/O modules + extension base (added)" as the example 2.

*System configuration example 1: 1 robot CPU + 3 types of I/O modules

Start.

Set "Multiple CPU Setting" of GX Works2 and

"Multiple CPU Setting" of RT ToolBox3.

Set "I/O Assignment" of GX Works2.

Is the PLC started normally?No

Yes

Reset the PLC.

Control the module using status variables.

Set "IO Unit" of RT ToolBox3 while checking

"System monitor" of GX Works2.

•••●Set the parameters in "Multiple CPU Setting" of GX
Works2.
This also can be set from GX Developer and GX Works3.

●Set the parameters in "Multiple CPU Setting " of RT Tool-
Box3.

•••●Set the parameters in "I/O Assignment" of GX Works2.

•••●Perform the reset operation of the PLC or turn off and on
the power to reset the PLC.

•••●Check "System monitor" of GX Works2.
●Set the parameters in "IO Unit" of RT ToolBox3.

Check the input information with the status
variables "M_XDev", "M_XDevB", "M_XDevW",
and "M_XDevD", and output a signal to the
module controlled by the host CPU with the status
variables "M_YDev", "M_YDevB", "M_YDevW",
and "M_YDevD".
(Refer to "(6)Controlling with status variables".)

I/O3:Input
I/O4:Output
I/O5:I/O Mix

　　　

Main

RT ToolBox3

R32TB R56TB
-616 Direct control of the PLC input/output module

 5 Functions set with parameters
*System configuration example 2: 2 robot CPUs + 3 types of I/O modules + extension base (added)

(3) Setting the parameters for the system configuration example 1
Under the condition of the system configuration example 1 (1 robot CPU + 3 types of I/O modules), set
"Multiple CPU Setting" in the PLC parameter of GX Works2 and "Multiple CPU Setting" of RT ToolBox3.

Set "Multiple CPU Setting" with the PLC parameter of GX Works2 as follows.

Setting Item Description Setting Value

No. of PLC Set the number of CPU modules to be used in the
multiple CPU system.

2

I/O Sharing When
Using Multiple
CPUs

Set this item to import the input (X) ON/OFF data of the
module outside the control and the output (Y) ON/OFF
data of other PLC CPU.

Put a check mark.

Multiple CPU High
Speed Transmission
Area Setting

Set this item when transferring data using the multiple
CPU high speed transmission areaNote1)

Note1) For information about multiple CPUs and multiple CPU high speed transmission area, refer to the
QCPU manual (QCPU User's Manual (Multiple CPU System)).

• PLC No. 1 (= PLC): Sum of the size (1K) of
the data to be sent to the robot and the size of
the data to be sent to other devices

• PLC No. 1 (= Robot No. 1): Set 1K for it.

Main

RT ToolBox3

R32TB R56TB

[Main]
I/O3:Input
I/O4:Output
I/O5:I/O Mix
[Extension]
I/O0:Input
I/O2:Output

 Direct control of the PLC input/output module 5-617

5

5 Functions set with parameters
In the same way, set "Multiple CPU Setting" in the parameter menu of RT ToolBox3 as follows.

Set "I/O Assignment" with the PLC parameter of GX Works2 as follows.

QX41: Input

QY41: Output

QH42P: I/O mix
-618 Direct control of the PLC input/output module

 5 Functions set with parameters
Click the "Detailed Setting" button and set the control CPU as follows.

With this setting, the PLC controls the input module, and the robot CPU No. 1 controls the output module
and I/O combined module.
 Direct control of the PLC input/output module 5-619

5

5 Functions set with parameters
Reset the power of the PLC before setting the parameters of RT ToolBox3.
When the PLC is started, select [System Monitor] from the [Diagnostics] menu of GX Works2.

Set the parameters of RT ToolBox3 for the I/O module controlled by the robot CPU.
Double-click "IO unit" in the "Parameter" menu to open the "IO Unit" parameter window.
-620 Direct control of the PLC input/output module

 5 Functions set with parameters
On the "System Monitor" window of GX Works2, click the corresponding module, and the [Product
Information List] button, and then set the "IO Unit" parameters of RT ToolBox3 while checking the
displayed "Product Information List" window.

A single robot CPU can control up to four I/O modules.
"1" to "4" can be set for [Unit #]. It indicates the setting order of the module among four modules.

Set "IO Sharing When Using Multiple CPUs (QXYREAD)" according to the "Q Parameter Setting" window
of GX Works2 shown below.

Set the items as shown in

the "Q Parameter Setting"

window.
 Direct control of the PLC input/output module 5-621

5

5 Functions set with parameters
Set the second module.
On the "System Monitor" window of GX Works2, click the corresponding module, and the [Product
Information List] button, and then set the "IO Unit" parameters of RT ToolBox3 while checking the
displayed "Product Information List" window.

Set "Response Time" according to the value on the window that is displayed by clicking the "Detailed
Setting" button in "Q Parameter Setting".

After setting the above parameters, reset the power of the PLC and robot CPU.
-622 Direct control of the PLC input/output module

 5 Functions set with parameters
(4) Setting the parameters for the system configuration example 2
Under the condition of the system configuration example 2 (2 robot CPUs + 3 types of I/O modules +
extension base), set up "Multiple CPU Setting" in PLC parameter of GX Works2 and "Multiple CPU
Setting" of RT ToolBox3.

Set "Multiple CPU Setting" with the PC parameter of GX Works2 as follows.

Setting Item Description Setting Value

No. of PLC Set the number of CPU modules to be used in the
multiple CPU system.

3

I/O Sharing When
Using Multiple
CPUs

Set this item to import the input (X) ON/OFF data of the
module outside the control and the output (Y) ON/OFF
data of other PLC CPU.

Put a check mark.

Multiple CPU High
Speed Transmission
Area Setting

Set this item when transferring data using the multiple
CPU high speed transmission areaNote1)

Note1) For information about multiple CPUs and multiple CPU high speed transmission area, refer to the
QCPU manual (QCPU User's Manual (Multiple CPU System)).

• PLC No. 1 (= PLC): Sum of the size (1K) of
the data to be sent to the robot and the size of
the data to be sent to other devices

• PLC No. 1 (= Robot No. 1): Set 1K for it.
• PLC No. 3 (= Robot No. 2): Set 1K for it.
 Direct control of the PLC input/output module 5-623

5

5 Functions set with parameters
In the same way, set "Multiple CPU Setting" in the parameter menu of the robot CPU No. 1 and No. 2 as
follows with RT ToolBox3.

[Robot CPU No. 1 (= PLC No. 2)]

[Robot CPU No. 2 (= PLC No. 3)]
-624 Direct control of the PLC input/output module

 5 Functions set with parameters
Set up "I/O Assignment" with the PC parameter of GX Works2 as follows.

Click the "Detailed Setting" button and set the control CPU as follows.

With this setting, the PLC controls the input module, and the robot CPU No. 1 and No. 2 control the output
module and I/O combined module.
 Direct control of the PLC input/output module 5-625

5

5 Functions set with parameters
Reset the power of the PLC before setting the parameters of RT ToolBox3.
When the PLC is started, select [System Monitor] from the [Diagnostics] menu of GX Works2.

Set the parameters of RT ToolBox3 for the I/O module controlled by the robot CPU.
For both the robot CPU No. 1 and No. 2, double-click "IO unit" in the "Parameter" menu to open the "IO
Unit" parameter window.
-626 Direct control of the PLC input/output module

 5 Functions set with parameters
First, set the robot CPU No. 1.
On the "System Monitor" window of GX Works2, click the corresponding module, and the [Product
Information List] button, and then set the "IO Unit" parameters of RT ToolBox3 while checking the
displayed "Product Information List" window.

A single robot CPU can control up to four I/O modules.
"1" to "4" can be set for [Unit #]. It indicates the setting order of the module among four modules.

Set "IO Sharing When Using Multiple CPUs (QXYREAD)" according to the "Q Parameter Setting" window
of GX Works2 shown below.

Set the items as shown in

the "Q Parameter Setting"

window.
 Direct control of the PLC input/output module 5-627

5

5 Functions set with parameters
Next, set the robot CPU No. 2.
On the "System Monitor" window of GX Works2, click the corresponding module, and the [Product
Information List] button, and then set the "IO Unit" parameters of RT ToolBox3 while checking the
displayed "Product Information List" window.

Set "Response Time" according to the value on the window that is displayed by clicking the "Detailed
Setting" button in "Q Parameter Setting".
-628 Direct control of the PLC input/output module

 5 Functions set with parameters
Set the second module.
On the "System Monitor" window of GX Works2, click the corresponding module, and the [Product
Information List] button, and then set the "IO Unit" parameters of RT ToolBox3 while checking the
displayed "Product Information List" window.

After setting the above parameters, reset the power of the PLC and robot CPU.
 Direct control of the PLC input/output module 5-629

5

5 Functions set with parameters
(5) Details of robot parameters
The following describes the details of the parameters set with RT ToolBox3.

The above parameters are set with the following window of RT ToolBox3.

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Setup of the
reference to PLC
input output
signal
(* CR800-Q
series only)

QXYREAD Integer 2 Set up to import the input and output status of the I/O module
(including the I/O combined module) that is controlled by
other CPU.
[Element 1] Reference of input signal (X) [0: Invalid / 1:valid]
[Element 2] Reference of output signal (Y) [0: Invalid / 1:valid]

0,0

Setup of the PLC
input output unit
(* CR800-Q
series only)

QXYUNITn
n: 1 to 4

Integer 7 Specify the input output unit/input output mixing unit which
robot CPU's manage.(Invalid/Valid=0/1)
[Element 1] Unit type

0: With no target unit
1: Not use (with no meaning)
2: Output unit
3: Input output mixing unit

[Element 2] Top input output number
0-4080 (decimal number)

[Element 3] Base number
0: Basic base unit
1-7: Extension base unit

[Element 4] Slot number
0-11 (decimal number)

[Element 5] Width of input output points
0: 16 points/ 1: 32 points/ 2: 48 points/ 3: 64
points/
4: 128 points/ 5: 256 points/ 6: 512 points/ 7:
1024 points

[Element 6] Output mode at error
0: Clear
1: Holding

[Element 7] Response time
0: 10ms/ 4: 1.0ms/ 5: 5.0ms/ 6: 20ms/ 7: 70ms

[Element 8] Unused

0,0,0,0,0,0,0,0
-630 Direct control of the PLC input/output module

 5 Functions set with parameters
(6) Controlling with status variables
The following types of status variables are provided to control the PLC I/O module.

For example, the system configuration example 2 is set as follows.

To check the input information of the input module mounted on the slot 0 of the extension base 1 that is
controlled by the PLC No. 1 (= PLC), prepare the robot program in the PLC No. 2 (= robot CPU No. 1) as
follows.

Variable
name Details

M_XDev Reads the PLC input signal (X) per bit.
ex.) 1 M1%=M_XDev (1) ' The value of the PLC input signal 1 (1 or 0) is substituted to M2.

M_XDevB Reads the PLC input signal (X) per byte.
ex.) 1 M2%=M_XDevB(&H10) ' The value of 8-bit width from 10 (hexadecimal number) of PLC input sig-

nals is substituted to M2.

M_XDevW Reads the PLC input signal (X) per word.
ex.) 1 M4%=M_XDevW(&H20) ' The value of 16-bit width from 20 (hexadecimal number) of PLC input sig-

nals is substituted to M4.

M_XDevD Reads the PLC input signal (X) per double word.
ex.) 1 M5&=M_XDevD(&H100) ' The value of 32-bit width from 100 (hexadecimal number) of PLC input sig-

nals is substituted to M5.

M_YDev Reads/Writes the PLC output signal (Y) per bit.
ex.) 1 M_YDev(2)=1 'Turns on the PLC output signal No. 2.

M_YDevB Reads/Writes the PLC output signal (Y) per byte.
ex.) 1 M_YDevB(&H10)=&HFF 'Turns on the 8-bit width from 10 (hexadecimal number) of PLC output sig-

nals.

M_YDevW Reads/Writes the PLC output signal (Y) per word.
ex.) 1 M_YDevW(&H20)=&HFFFF ' Turns on the 16-bit width from 20 (hexadecimal number) of PLC output

signals.

M_YDevD Reads/Writes the PLC output signal (Y) per double word.
ex.) 1 M_YDevD(&H100)=P1.X * 1000 ' Outputs the multiplication result value of X coordinate value of the position

variable P1 by 1000 to 32-bit width from 100 (hexadecimal number) of
PLC output signals.

M1&=M_XDevD(&H60)

 Status variable that reads input signals for 32 bits
Specify the "Start I/O No." of the corresponding module.
 Direct control of the PLC input/output module 5-631

5

5 Functions set with parameters
The information of the input module controlled by the PLC can be checked with the CPU No. 3 (= robot
CPU No. 2) using the same program.
However, the first element of the parameter "QXYREAD" must be set to "1".
Set the following window for RT ToolBox3.

The following describes the settings when outputting a signal to the output module controlled by the user
or the I/O module.

For example, to output a signal to the output module mounted on the slot 2 of the extension base 1 shown
in the above, prepare a robot program in the PLC No. 3 (= robot CPU No. 2) as follows.

M_YDevD(&H80) = &H1234

Specify the "I/O Address" number of the corresponding module.

Specify the data to be output.

Status variable that outputs data for 32 bits
-632 Direct control of the PLC input/output module

 5 Functions set with parameters
5.26 Direct communication with robot CPUs
This function is to exchange the signals directly with two or more robot CPUs in the robot controller of
CR800-R/Q series.
Since the rudder program of the PLC is not needed, the exchange of the signal can be executed more
speedily. And, the reference of CPU buffer memory information other than robot CPUs, such as motion
CPU, is also possible.

Fig.5-26:Direct communication with robot CPUs

(1) Specification
Specification is shown in Table 5-43.

Table 5-43:Specification

(2) Description of the status variable
Explains the outline of the Robot Status Variable to Table 5-44. Refer to each description page of Page
356, "4.13.2 Explanation of Each Robot Status Variable" for details.

Table 5-44:Related Robot Status Variable (CR800-R series)

Table 5-45:Related Robot Status Variable (CR800-Q series)

No Item Specification

1 Available device range Range that can be specified by the CPU buffer memory access device.

2 Assignment of the dedicated input
output signal

The control of the robot by dedicated signal is executed by the PLC (No. 1).
The dedicated input output parameter cannot be assigned to the CPU buffer memory
access device No. 2 or later.
Always assign the dedicated input output signal to the CPU buffer memory access
device of the PLC (No. 1).

Variable name Details Reference
page

M_GDev/ M_GDevW/
M_GDevD

Writing or referencing numerical values to CPU buffer memory Page 384

M_HGDev/ M_HG-
DevW/ M_HGDevD

Writing or referencing numerical values to periodical communication area Page 388

P_GDev Writing or referencing positional data to CPU buffer memory Page 440

P_HGDev Writing or referencing positional data to periodical communication area Page 443

Variable
name Details Reference

page

M_UDevW Read/Write the multi-CPU shared device per word. (U3En\G□) Page 419

M_XDevD Read/Write the multi-CPU shared device per double word. (U3En\G□) Page 419

P_UDev Read/Write the multi-CPU shared device per position data. (U3En\G□) Page 446

Robot CPU system
Robot CPU unit

Direct communication with robot CPUs
 Direct communication with robot CPUs 5-633

5

5 Functions set with parameters
5.27 Parameter for behavior selection at the error occurrence on dual system
When the parameter CATEGORY is set for the error on dual system shown in Table 5-46, the behavior of
the [RESET] key input at the error occurrence on dual system can be selected.

Table 5-46:Target error list

The behavior of the [RESET] key input is set as shown in Table 5-47.

Table 5-47:Action to the settings

To reflect the settings of this parameter, you must turn the controller's power on again.

[Note]
The setting shown in this section is to select the behavior in a state without any abnormalities on the
related signal lines or wiring.
With the abnormalities, the errors shown above cannot be reset regardless of the parameter setting.

Error number Content

H0039 Door Switch Signal line is faulty.

H0046 Faulty wiring (Mode sel. switch).

H0051 Wiring of the external emergency stop is abnormal.

Parameter settings Content

3 (Enable the error reset) Error can be reset. (Default settings)

4 (Disable the error reset) Error cannot be reset.
-634 Parameter for behavior selection at the error occurrence on dual system

 5 Functions set with parameters
5.28 Security function
(1) IP address filtering function

When the robot controller is connected to Ethernet, this function is used to prevent unauthorized access
from external devices such as personal computers by identifying their IP addresses.
Access from external devices can be restricted by setting an IP address range to allow or block access.
This function is supported with robot controller software Ver. C2 or later.

Two access limiting methods, "transparent" and "block", are available. Enable the parameters shown in
Table 5-48 to limit the IP address range for filtering. For details on parameters, refer to Page 524, "5.5
Communication parameter".
<1> Transparent Setting the IP address range to allow communication enables access from the speci-

fied range. Access from IP addresses outside of the range is prohibited.
<2> Block............... Setting the IP address range to prohibit communication disables access from the

specified range. Access from IP addresses outside of the range is allowed.

In addition to the IP address filtering function, take preventive measures such as
setting up a firewall to protect the robot system security against unauthorized
access from external devices through the network.

Table 5-48:Parameters related to the IP address filtering function
Parameter name Details

NETIPFLT Enable/disable the IP address filtering function.
When the function is enabled, either "transparent" or "block" can be selected. Use NETIPFLS and
NETIPFLE parameters to specify IP addresses for filtering.
Transparent: Allow access from the specified IP address range.
Block: Block access from the specified IP address range.

0: Disabled (The IP address filtering function is not used. All accesses are allowed. Default setting
value.)
1: Enabled/transparent (Access from the specified IP address range is allowed.)
2: Enable/block (Access from the specified IP address range is prohibited.)

When this function is enabled, set the start and end addresses on the same network without reversing
the order of IP addresses. Otherwise, an error occurs upon power on, disabling this function.

NETIPFLS Specify the start address for the IP address filtering function.
This parameter is used when NETIPFLT parameter (IP address filtering function enable/disable setting)
is enabled (1 or 2).

NETIPFLE Specify the end address for the IP address filtering function.
This parameter is used when NETIPFLT parameter (IP address filtering function enable/disable setting)
is enabled (1 or 2).

LAN Access allowed
Access blocked

Access blocked
Internet

Router

PCPC

Robot
controller

Ethernet

 CAUTION
 Security function 5-635

6

6External input/output functions
6 External input/output functions
6.1 Types

(1) Dedicated input/output............. These are I/O signals that indicate the status of remote commands such
as robot program execution and stoppage, information during execution
and the servo power status and so on.
Assign functions to each I/O signal. Functions can be assigned either by
setting used signal numbers to each dedicated parameter (Refer to
Page 649, "6.3 Dedicated input/output".) or by an emergency stop output
(Refer to Page 679, "6.7 Emergency stop input".)

(2) General-purpose input/output .. These signals are used for communication with the PLC and so at the
robot program. This is used at such times as when reading positioning
signals from peripheral equipment and when checking the robot position.

(3) Hand input/output These are control signals for the hand and are used for reading hand
open and close instructions and information from sensors attached to
the hand. These signals can be controlled at the user program and are
wired up to near the tip of the hand. (Hand output signals are optional.)

(4)Devices As with PLCs, devices include bit devices, such as X and Y, used to
store data in bits and word devices, such as D, used to store data in
words. These devices are used to exchange data with GOTs and SLMP-
compatible equipment. They are used to publish robot information and
provide instructions to robots from external equipment.

Table 6-1:Overall I/O signal map

Item I/O signal no. Usage method

Hand input/output CR800-D/R/Q:
(Input) 900 to 907
(Output) 900 to 907
CR860-D/R/Q:
(Input) 764 to 775
(Output) 764 to 771

Reference/substitution with M_In, M_Inb, M_Inw, M_Out,
M_Outb, M_Outw variables
Also possible with HOpen, HClose commands.
Example) If M_In(900)=1 Then M_Out(900)=1

PLC link input/output 10000 to 18191 Reference/substitution with M_In, M_Inb, M_Inw, M_Out,
M_Outb, M_Outw variables

Example) If M_In(10080)=1 Then M_Out(10080) = 1
Note: It is not possible to output using M_Out, M_Outb, or

M_Outw variables for signals to which dedicated outputs
have been assigned.

SKIP input 800 to 803 800: Exclusively for stop input
801 to 803: Reference with M_In variables
-636 Types

 6External input/output functions
6.2 PLC link I/O function
Only CR800-R/Q series support this function. The RnCPU/QnUD(H)CPU (hereafter referred to as PLC
CPU) and the R16RTCPU/Q172DSRCPU (hereafter referred to as robot CPU) use the CPU buffer memory
between CPUs, and perform data communication by ladder programs. The "CPU buffer memory periodical
communication area" in the CPU buffer memory is used for data communication. The robot CPU uses the
signal numbers 10000 to 18191 for both input signals and output signals.

6.2.1 Parameter setting
It is necessary to set multi CPU related parameters for both the PLC CPU and robot CPU In order to use the
PLC link function.
For the robot CPU, use RT ToolBox or a teaching box (R32TB, R56TB) to set the parameters, and for the
PLC CPU, use GX Works. Refer to the operation manual for each setting tool for further details.

(1) PLC CPU parameter setting
* CR800-R series

Use GX Works3 to perform multi CPU parameter settings. The following figure shows a setting example for
the system which has a PLC CPU and a robot CPU.
Set up a module configuration before set up PLC's multiple CPUs. Based on the actual module
configuration, arrange the modules as shown below.

Fig.6-1:GX Works3 module configuration screen (one robot)
 PLC link I/O function 6-637

6

6External input/output functions
When the module configuration screen is closed after arranging the modules, the following dialogue will
appear. Click [Yes] button.

Open the system parameter screen to set up the multiple CPUs.
The number of points is set in units of K words. Robot CPUs can use only up to 1K word, so this setting
should be set to 1K word.
-638 PLC link I/O function

 6External input/output functions
* CR800-Q series
Use GX Works to perform multi CPU parameter settings.

1) CPU quantity
At the multi CPU system, set the number of CPU units with which the standard base unit is equipped.
The following figure shows a setting example for the system which has a PLC CPU and a robot CPU.

2) Synchronous start-up between multi CPUs
It takes the robot CPU system several seconds to start up from the time the power is turned ON. It is

Setting Item Description Setting Value
Communication
Setting between
CPUs

PLC Unit Data Set up this to avoid data separation at data
communications by refresh. When data of more
than 64 bit data is handled, data croaking may
occur.

Enable
Disable

The update cycle of the PLC link I/O
function of the robot CPU is as follows.
< PLC Unit Data - Disable >
It will be the specified periodic
communication interval.
< PLC Unit Data - Enable >
Even when setting the periodic
communication interval setting to "0.444
ms" or less, it will be 0.888 ms.

Fixed Scan
Communication
Function

Select whether the fixed scan communication
function is used or not.
Always select "Use" when using together with a
robot CPU.

Use

Fixed Scan
Communication
Area Setting

Set up the range of transmission area of each
device in the fixed scan communication area.
The necessary area Note1) for robot is as follows:
CPU buffer memory extended functions are
valid:
 Robot input area: 1.0K
 Robot output area: 1.0K
CPU buffer memory extended functions are
invalid:
 Robot input area: 0.5K
 Robot output area: 0.5K

Note1) For information about multiple CPUs and fixed scan communication area, refer to the RCPU manual (MELSEC
iQ-R CPU Module User's Manual (Application)).

<CPU buffer memory extended functions
are valid:>
 Device #1: Sum of the size (1K) of the

data to be sent to the robot and the size
of the data to be sent to other devices

 Robot device: Set 1K for it
 Other devices: Set its own transmission

size
<CPU buffer memory extended functions
are invalid:>
 Device #1: Sum of the size (0.5K) of the

data to be sent to the robot and the size
of the data to be sent to other devices

 Robot device: Set 1K for it Note2)

 Other devices: Set its own transmission
size

Note2) Because the area is set up in 1K unit, allocate 1K even in case of 0.5K.

0.05ms Unit
Setting

Specify whether to set the fixed scan
communication cycle in increments of 0.05ms.
Please be sure to select "Not Set" when
combining with robot CPU.

Not Set

Fixed Scan
Interval Setting
(Not set in
0.05ms unit)

Select the fixed scan communication cycle to be
set from the list items. The same option should be
specified only for CPU modules which will use the
fixed scan communication function.
Please select "0.888ms" or less regardless of the
PLC Unit Data. When using cooperative control
function or interference avoidance function of the
robot CPU.

0.222ms
0.444ms
0.888ms
1.777ms
3.555ms
7.111ms

Operation Mode
Setting

Stop Setting If a moderate or major error occurs at any of the
CPUs, set whether to stop or continue operation
for all CPUs.

Major: All Station Stop, Moderate: All
Station Continue.
* Set for all CPUs.

Synchronous
Startup Setting

Set up this to synchronize startup time of CPU
modules in multiple CPUs system.
* Always select "Synchronize" due to the robot

CPU takes as long as 18 seconds to startup.

Synchronize
 PLC link I/O function 6-639

6

6External input/output functions
therefore recommended that synchronous start-up be set (check box selected) at the multi CPU
system.

3) High-speed communication area between multi-CPUs setting
Set the number of points in K word units. The robot CPU uses only 1K word or less and therefore 1K
word should be set.

Fig.6-2:PLC CPU: Setting screen on GX Works (example)

A user free area and auto refresh area can be set for the high-speed communication area between multi
CPUs, however, the robot CPU (Q172DSRCPU) does not support the auto refresh area, and therefore the
number of points for the auto refresh area should always be set to 0. In addition, please refer to the
instructions manual of each CPU for the setup of the CPUs other than robot CPU.
-640 PLC link I/O function

 6External input/output functions
(2) Robot CPU parameter setting
Use RT ToolBox to perform multi CPU parameter settings.

Table 6-2:Robot CPU parameter settings

Parameter name Details Factory setting

QMLTCPUN Multi CPU quantity setting
At the multi CPU system, set the number of CPU units with which the standard
base unit is equipped.
Range: 1 to 4

2

QMLTCPUn
 n = 1 to 4

[CR800-R series]
CPU buffer memory periodical communication area setting (n = 1 to 4)
At the multi CPU system, read the number of points transmitting and receiving
data by the CPU buffer memory periodical communication area of the multi
CPU No. 1 to 4 from the multi CPU No. 1, and set it automatically.
It is not necessary to change the value.

First element: Size of the periodical communication area (K word)
Range: 0 to 12

*The total size of all multi CPUs is 24K words at maximum.

Second element: No. of auto refresh points (word)
Range: 0 to 14335
However, the robot CPU does not support auto refresh, and therefore the
number of points for the robot CPU auto refresh are should always be set to
0.

Third element: System reservation
Fourth element: Multi CPU synchronous start-up (1: Yes, 2: No)

Robot CPUs take some time to start up and therefore the current setting of 1
(synchronous start-up) should not be changed.
Make the same settings for all CPUs.

1,0,1,1

[CR800-Q series]
Multi CPUn high-speed communication area setting (n = 1 to 4)
At the multi CPU system, set the number of points performing transmission and
receipt between each CPU unit for the high speed communication function
between multi CPU nos. 1 to 4.
It is necessary to match the parameter settings for all CPUs.
An error will occur at the PLC CPU If the parameter settings do not match, and
therefore care should be taken to ensure that the parameter settings for each
CPU match.

First element: User free area size (k points)
Range: 1 to 14 (Max.)

Second element: No. of auto refresh points (points)
Range: 0 to 14335
However, the robot CPU does not support auto refresh, and therefore the
number of points for the robot CPU auto refresh are should always be set to
0.

Third element: System area size (K points)
Range: 1 or 2

Fourth element: Multi CPU synchronous start-up (1: Yes, 2: No)
Robot CPUs take some time to start up and therefore the current setting of 1
(synchronous start-up) should not be changed.
Make the same settings for all CPUs.

Table 6-3:Setting range by number of CPU
CPU quantity Setting range

2 0 to 14K point

3 0 to 13K point

4 0 to 12K point
 PLC link I/O function 6-641

6

6External input/output functions
Fig.6-3:Robot CPU: Setting screen on RT ToolBox (example)

IQMEM Note1) Select the CPU buffer memory expanded function.
The function is assigned for each bit. 1/0 = available/unavailable

000000000000
0000

IQSPEC Note1) Set up CR800-R/Q series robot's function
The function is assigned for each bit.

000000000000
0001

Note1) For details, refer to the "CR800-R/CR800-Q series controller iQ Platform Supporting Extended
Function Instruction Manual" (BFP-A3528).

Parameter name Details Factory setting

15 0
00000000 00000000
 | | |...bit0: Enable expanded function
 | |.....bit1: PLC direct execution function
 |
 |..........bit4: Interference avoidance function

 Bits 2, 3, and
5 to 15 are
not used.

15 0
00000000 00000000
 |...bit0:The direction of CPU buffer memory

write-in
=0: Read-out and write-in process are both

executed in order of head address to final
address

=1:Read-out process is executed in order of
head address to final address. Write-in
process is executed in order of final

 bit2-15 is
unused

CR800-R series CR800-Q series
-642 PLC link I/O function

 6External input/output functions
Applicable Multi CPUs
Multi CPUs are the following iQ Platform compatible CPUs and bases. (Current as of In March, 2018)

To set parameters, use RT ToolBox or a teaching box (R32TB, R56TB) for the robot CPU, GX Works or GX Developer
for the PLC CPU, MT Works or MT Developer for the motion controller CPU, and Remote Monitor Tool for the NC
CPU. Refer to the operation manual for each setting tool for further details.

CPU type
Model

Remarks
CR800-R series CR800-Q series

PLC CPU R00CPU, R01CPU,
R02CPU, R04CPU,
R08CPU, R16CPU,
R32CPU, R120CPU
Safety CPU Note1)

R08SFCPU-SET,
R16SFCPU-SET,
R32SFCPU-SET,
R120SFCPU-SET

Note1) Supported versions
• Robot controller: Ver.A5n or later
• Safety CPU: Ver.20 or later

Universal model
QCPU
Q03UD(E)CPU,
Q04UD(E)HCPU,
Q06UD(E)HCPU,
Q10UD(E)HCPU,
Q13UD(E)HCPU,
Q20UD(E)HCPU,
Q26UD(E)HCPU,
Q50UDEHCPU,
Q100UDEHCPU

・ The first CPU must be a PLC CPU.

Robot CPU R16RTCPU Q172DSRCPU

Motion CPU R16MTCPUV,
R32MTCPU,
R64MTCPU

Q172DCPU,
Q173DCPU,
Q173DSCPU

NCCPU R16NCCPU Q172NCCPU

Base The high-speed basic
base between multi-
CPUs
R35B, R38B, R312B

The high-speed
basic base between
multi-CPUs
Q38DB, Q312DB

・ The base which is corresponding to the high-
speed communication between multi-CPUs
 PLC link I/O function 6-643

6

6External input/output functions
6.2.2 CPU buffer memory and robot I/O signal compatibility
At the PLC CPU, the CPU buffer memory is accessed like U3E0\HG511 (U3E0\G10511 for the CR800-Q
series). The robot CPU No. n CPU buffer memory accesses like U3En\HG511 (U3En\G10511 for the
CR800-Q series).
(n = 1 to 3, Up to a maximum of three robot CPUs can be used.)
The robot CPU I/O signal numbers are all from 10000 to 18191.
Word devices are used at the PLC side and bit devices are used at the robot side, and therefore caution is
advised.
Please note that the CPU buffer memory and robot I/O signal compatibility is as shown in the following table
and cannot be changed.

Table 6-4:CPU buffer memory and robot I/O signal compatibility

6.2.3 Sequence ladder example
The following is an example in which the X0 "Enable robot operation permissions" button at the operation
panel is turned ON and the robot operation permissions enabled status is output to the Y20 "Robot
operation permissions enabled lamp" at the operation panel. The multi CPU configuration is as follows.
•CR800-R series

A PLC RnCPU for the first multi CPU, and a robot R16RTCPU for the second multi CPU
•CR800-Q series

A PLC QnUD(H)CPU for the first multi CPU, and a robot Q172DSRCPU for the second multi CPU

[Explanation]
The following explanation is for the CR800-R series. For the CR800-Q series, referring to the Table 6-4 and
replace the device numbers.

<0 to 16th row>
M100 to M131 is written to the U3E0\HG0 and U3E0\HG1 shared device memory, and this represents
the input from the PLC to the robot. The U3E1\HG0 and U3E1\HG1 shared device memory is read to
the bit devices for M200 to M231, and this represents the output from the robot to the PLC.

<17 to 22nd row>
By turning X0 ON, M105 turns ON and the PLC U3E0\HG0 bit 5 corresponding to M105 turn ON.
Consequently, robot input 10005 turns ON, and the operation permissions assigned with the dedicated
input signal are enabled.
When operating permissions are enabled, robot output 10005 assigned with the dedicated output
signal turns ON, and the robot U3E1\HG0 bit 5 turns ON. Consequently, the PLC M205 corresponding
to U3E1\HG0 bit 5 turns ON, and Y20 turns ON.

PLC (word device) Robot (bit device)

Controller CR800-R CR800-Q

Output U3E0\HG0 to
U3E0\HG511

U3E0\G10000 to
U3E0\G10511

Input Robot CPU No.1 / 10000 to 18191

U3E0\HG512 to
U3E0\HG1023

U3E0\G10512 to
U3E0\G11023

Robot CPU No.2 / 10000 to 18191

U3E0\HG1024 to
U3E0\HG1535

U3E0\G11024 to
U3E0\G11535

Robot CPU No.3 / 10000 to 18191

Input U3E1\HG0 to
U3E1\HG511

U3E1\G10000 to
U3E1\G10511

Output Robot CPU No.1 / 10000 to 18191

U3E2\HG0 to
U3E2\HG511

U3E2\G10000 to
U3E2\G10511

Robot CPU No.2 / 10000 to 18191

U3E3\HG0 to
U3E3\HG511

U3E3\G10000 to
U3E3\G10511

Robot CPU No.3 / 10000 to 18191
-644 PLC link I/O function

 6External input/output functions
Please note that bit device M201 (U3E0\HG0 bit 1 / in other words robot output 10001) in this example
indicates controller power ON complete (A signal indicating that external input signals can be received
is output.)

Fig.6-4:Sequence ladder example

Stop input

Robot numerical
value input

Under the waiting

Robot numerical
value output

Operation rights
input

Operation
rights is robot

Operation
rights
button
(robot)

Complete of
controller
power ON.

Complete
of
controller
power ON.

Operation
rights

HG0

HG2

HG0

HG2
 PLC link I/O function 6-645

6

6External input/output functions
6.2.4 Assignment of the dedicated I/O signal. (at factory shipping)
Assignment of the dedicated I/O signal at factory shipments is shown in Table 6-5.

Table 6-5:Assignment of the dedicated I/O signal. (at factory shipping)

Parameter
name

Input signal name
(*: Operation rights is necessity) Output signal name Input Output

G deviceNote1)

CR800-R
series

CR800-Q
series

STOP Stop input
(assignment change is impossible)

Pausing output 10000 10000

HG0 G10000

RCREADY - Controller power ON ready - 10001

ATEXTMD - Remote mode output - 10002

TEACHMD - Teaching mode output - 10003

ATTOPMD - Teaching mode output - 10004

IOENA Operation rights input signal Operation rights output signal 10005 10005

START Start input (*) Operating output 10006 10006

STOPSTS - Stop signal input - 10007

SLOTINIT Program reset (*) Program selection enabled
output

10008 10008

ERRRESET Error reset input signal Error occurring output signal 10009 10009

SRVON Servo ON input signal (*) In servo ON output signal 10010 10010

SRVOFF Servo OFF input signal Servo ON disable output signal 10011 10011

CYCLE Cycle stop input signal In cycle stop operation output
signal

10012 10012

SAFEPOS Safe point return input signal (*) In safe point return output signal 10013 10013

BATERR - Battery voltage drop - 10014

OUTRESET General-purpose output signal
reset (*)

- 10015 -

HLVLERR - High level error output signal - 10016

HG1 G10001

LLVLERR - Low level error output signal - 10017

CLVLERR - Warning level error output signal - 10018

EMGERR - Emergency stop output signal - 10019

PRGSEL Program selection input signal (*) - 10020 -

OVRDSEL Override selection input signal (*) - 10021 -

PRGOUT Program No. output request Program No. output signal 10022 10022

LINEOUT Line No. output request Line No. output request 10023 10023

OVRDOUT Override value request Override value output signal 10024 10024

ERROUT Error No. output request Error No. output signal 10025 10025

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -
-646 PLC link I/O function

 6External input/output functions
IODATA Numeric value input 0 Numeric value output 0 10032 10032

HG2 G10002

Numeric value input 1 Numeric value output 1 10033 10033

Numeric value input 2 Numeric value output 2 10034 10034

Numeric value input 3 Numeric value output 3 10035 10035

Numeric value input 4 Numeric value output 4 10036 10036

Numeric value input 5 Numeric value output 5 10037 10037

Numeric value input 6 Numeric value output 6 10038 10038

Numeric value input 7 Numeric value output 7 10039 10039

Numeric value input 8 Numeric value output 8 10040 10040

Numeric value input 9 Numeric value output 9 10041 10041

Numeric value input 10 Numeric value output 10 10042 10042

Numeric value input 11 Numeric value output 11 10043 10043

Numeric value input 12 Numeric value output 12 10044 10044

Numeric value input 13 Numeric value output 13 10045 10045

Numeric value input 14 Numeric value output 14 10046 10046

Numeric value input 15 Numeric value output 15 10047 10047

HNDCNTL1 - Hand output signal state 900 - 10048

HG3 G10003

- Hand output signal state 901 - 10049

- Hand output signal state 902 - 10050

- Hand output signal state 903 - 10051

- Hand output signal state 904 - 10052

- Hand output signal state 905 - 10053

- Hand output signal state 906 - 10054

- Hand output signal state 907 - 10055

HNDSTS1 - Hand input signal state 900 - 10056

- Hand input signal state 901 - 10057

- Hand input signal state 902 - 10058

- Hand input signal state 903 - 10059

- Hand input signal state 904 - 10060

- Hand input signal state 905 - 10061

- Hand input signal state 906 - 10062

- Hand input signal state 907 - 10063

Parameter
name

Input signal name
(*: Operation rights is necessity) Output signal name Input Output

G deviceNote1)

CR800-R
series

CR800-Q
series
 PLC link I/O function 6-647

6

6External input/output functions
USRAREA - User-designated area 8-points 1 - 10064

HG4 G10004

- User-designated area 8-points 2 - 10065

- User-designated area 8-points 3 - 10066

- User-designated area 8-points 4 - 10067

- User-designated area 8-points 5 - 10068

- User-designated area 8-points 6 - 10069

- User-designated area 8-points 7 - 10070

- User-designated area 8-points 8 - 10071

Note1) The address of the multi-CPU share device. (Address seen from the PLC CPU side)

Parameter
name

Input signal name
(*: Operation rights is necessity) Output signal name Input Output

G deviceNote1)

CR800-R
series

CR800-Q
series
-648 PLC link I/O function

 6External input/output functions
6.3 Dedicated input/output
The functions shown in Table 6-6 are available for the dedicated input/output signals. These are used by the
parallel input/output unit by assigning the signal No. in the parameter.
The signal No. is assigned by the signal No. used in the order of "input signal" and "output signal" in each
parameter. Refer to Page 94, "3.15 Operation of parameter screen" for details on setting the parameters. If
a "-1" is designated for the assigned signal No., that signal will be invalidated.
The I/O parameters can be set on the T/B parameter screen or by using the maintenance tool of the PC
support software (optional). And refer to Page 671, "6.5.2 Timing chart example" for time chart.
To use the dedicated I/O signals, set the controller mode to AUTOMATIC, and turn on the operation rights
input signal (IOENA) beforehand.

Table 6-6:Table of dedicated input/output

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series

RCREADY Input - - -1(No meaning),

10001

-1(No meaning),

-1
Output Controller power ON

ready
Outputs that the power has been turned ON
and that the external input signal can be
received.

ATEXTMD Input - - -1(No meaning),

10002

-1(No meaning),

-1
Output Remote mode output This output indicates that the controller mode

is set to AUTOMATIC and remote operation
mode.
This signal must be turned ON before any
control tasks using I/O signals can be
performed.

TEACHMD Input - - -1(No meaning),

10003

-1(No meaning),

-1
Output Teaching mode output This output indicates that the controller mode

is set to Teaching mode.
ATTOPMD Input - - -1(No meaning),

10004

-1(No meaning),

-1
Output Automatic mode output This output indicates that the controller mode

is set to AUTOMATIC.
IOENA Input Operation rights input

signal
Sets the validity of the operation rights for the
external signal control.

Level 10005,

10005

5,

3
Output Operation rights output

signal
Outputs the operation rights valid state for the
external signal control.
The operation right is given when the
operation right input signal is ON, the
controller mode is set to AUTOMATIC, and
there is no other device that currently has the
operation right.
 Dedicated input/output 6-649

6

6External input/output functions
START
(Operation
right
required)

Input Start input This input starts a program. To start a specific
program, select the program using the
program selection signal "PRGSEL" and
numerical input "IODATA," and then input the
start signal. Note that when the parameter
"PST" is enabled, the system reads the
program number from the numerical input
(IODATA) and starts the corresponding
program (i.e., program selection becomes no
longer necessary).
All task slots are executed during multitask
operation.
However, slots whose starting condition is set
to ALWAYS or ERROR via a parameter "SLT*"
will not be executed.

Edge 10006,

 10006

3,

 0
Output Operating output This output indicates that a program is being

executed. During multitask operation, this
signal turns ON when at least one task slot is
operating.
However, slots whose starting condition is set
to ALWAYS or ERROR via a parameter "SLT*"
will not be executed.

STOP Input Stop input This input stops the program being executed.
(This does not apply to slots whose starting
condition is set to ALWAYS or ERROR.)
The stop input signal No. is fixed to 0, and
cannot be changed.
All task slots are stopped during multitask
operation.
However, slots whose starting condition is set
to ALWAYS or ERROR via a parameter
"SLT**" will not be executed.
Normal open and normal close may be
changed using the parameter INB.

Level 10000
(Cannot
change),

10000

0(Cannot
change),

-1
Output Pausing output This output indicates that the program is

paused.
Turns ON when there is not slot multitask
running, and at least one slot is pausing.
However, slots whose starting condition is set
to ALWAYS or ERROR via a parameter
"SLT**" will not be executed.

STOP2 Input Stop input This input stops the program being executed.
(The specification is the same as for the STOP
parameter.)
Unlike the STOP parameter, signal numbers
can be changed.

Level -1,

-1

-1

-1
Output Pausing output This output indicates that the program is

paused.
(The specification is the same as for the STOP
parameter.)

STOPSTS Input - - -1(No meaning),

 10007

-1(No meaning),

-1
Output Stop signal input Outputs that the stop is being input. (Logical

ADD of all devices.)

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
-650 Dedicated input/output

 6External input/output functions
SLOTINIT
(Operation
right
required)

Input Program reset This input cancels the paused status of the
program and brings the executing line to the
top. Executing a program reset makes it
possible to select a program.
In the multitask mode, the program reset is
applied to all task slots.
However, slots whose starting condition is set
to ALWAYS or ERROR via a parameter
"SLT**" will not be executed.

Edge 10008,

10008

-1,

-1
Output Program selection

enabled output
Outputs that in the program selection enabled
state.
Turns ON when program are not running or
pausing.
In multitask operation, this output turns ON
when all task slots are neither operating nor
paused.
However, slots whose starting condition is set
to ALWAYS or ERROR via a parameter
"SLT**" will not be executed.

ERRRESET Input Error reset input signal Releases the error state. Edge 10009,

10009

2,

2
Output Error occurring output

signal
Outputs that an error has occurred.

SRVON
(Operation
right
required)

Input Servo ON input signal This input turns ON the servo power supply for
the robot.
With a multi-mechanism configuration, the
servo power supplies for all mechanisms will
be turned ON.

Edge 10010,

10010

4,

1
Output In servo ON output

signal
This output turns ON when the servo power
supply for the robot is ON. If the servo power
supply is OFF, this output also remains OFF.
With a multi-mechanism configuration, this
output turns ON when the servo of at least one
mechanism is ON.

SRVOFF Input Servo OFF input signal This input turns OFF the servo power supply
for the robot.(Applicable to all mechanisms)
The servo cannot be turned ON while this
signal is being input.

Level 10011,

10011

1,

-1
Output Servo ON disable

output signal
This output indicates a status where the servo
power supply cannot be turned ON. (Echo
back)

AUTOENA Input Automatic operation
enabled input

Disables automatic operation when inactive. If
this signal is inactive, and the AUTOMATIC
mode is entered, a low level error L5010 will
occur.
This input is used to interlock the operations
via the operation panel with the I/O signals.
Use of this input is not a requirement.

Level -1,

 -1

-1,

 -1Output Automatic operation
enabled output

Outputs the automatic operation enabled
state.

CYCLE Input Cycle stop input signal Starts the cycle stop. Edge 10012,

10012

-1,

-1
Output In cycle stop operation

output signal
Outputs that the cycle stop is operating.
Turns OFF when the cycle stop is completed.

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
 Dedicated input/output 6-651

6

6External input/output functions
MELOCK
(Operation
right
required)

Input Machine lock input
signal

Sets/releases the machine lock state for all
mechanisms.
This can be set or released when all slots are
in the program selection state.
Signal level will be set to Level when program
selection is enabled.

Level -1,

-1

-1,

-1
Output In machine lock state

output signal
Outputs the machine lock state.
This turns On when at least one mechanism is
in the machine lock state. During the machine
lock state, the robot will not move, and
program operation will be enabled.

SAFEPOS
(Operation
right
required)

Input Safe point return input
signal

Requests the safe point return operation.
This signal initiates a joint interpolation
movement to the position set by the parameter
"JSAFE." The speed is determined by the
override setting. Be careful not to interfere with
peripheral devices.

Edge 10013,

10013

-1,

-1
Output In safe point return

output signal
Outputs that the safe point return is taking
place.

BATERR Input - - -1(No meaning),

10014

-1(No meaning),

-1
Output Battery voltage drop Outputs that the controller battery voltage is

low. The output is turned off when the
controller power supply is reconnected after
the battery replacement.

*The cumulative time where the controller
power supply is turned off exceeds 14600
hours.
The output is turned off if the battery depletion
time is reset.

OUTRESET
(Operation
right
required)

Input General-purpose output
signal reset

Resets the general-purpose output signal.
The operation at the input is set with
parameters ORST0 to ORS18160.

Edge 10015,

-1(No meaning)

-1,

-1(No meaning)Output - -
HLVLERR Input - - -1(No meaning),

10016

-1(No meaning),

-1
Output High level error output

signal
Outputs that a high level error is occurring.

LLVLERR Input - - -1(No meaning),

10017

-1(No meaning),

-1
Output Low level error output

signal
Outputs that a low level error is occurring.

CLVLERR Input - - -1(No meaning),

10018

-1(No meaning),

-1
Output Warning level error

output signal
Outputs that a warning level error is occurring.

EMGERR Input - - -1(No meaning),

10019

-1(No meaning),

-1
Output Emergency stop output

signal
Outputs that an emergency stop is occurring.
[EMGERR output conditions]
• External emergency stop error:

H0050, H0051 (Dual line is faulty)
• Operation panel emergency stop error:

H0060, H0061 (Dual line is faulty)
• T/B emergency stop error:

H0070, H0071 (Dual line is faulty)
• Door switch signal faulty:

H0039, H0040 (Dual line is faulty)
• Wiring error of EMG connector:

H0141

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
-652 Dedicated input/output

 6External input/output functions
SnSTART
(n=1 to 32)
(Operation
right
required)

Input Slot n start input Starts each slot. n=1 to 32 Edge -1,
-1

-1,
-1Output Slot n in operation

output
Outputs the operating state for each slot. n=1
to 32

SnSTOP
(n=1 to 32)

Input Slot n stop input Outputs the operating state for each slot. n=1
to 32

Level -1,
-1

-1,
-1

Output Slot n in pausing output Outputs that each slot and program is
temporarily stopped.
n=1 to 32

MnSRVOFF
(n=1 to 3)

Input Mechanism n servo
OFF input signal

This signal turns OFF the servo for each
mechanism. n=1 to 3
The servo cannot be turned ON while this
signal is being input.

Level -1,

-1

-1,

-1Output Mechanism n servo ON
disabled output signal

Outputs the servo ON disabled state. (Echo
back)

MnSRVON
(n=1 to 3)
(Operation
right
required)

Input Mechanism n servo ON
input signal

Turns the servo for each mechanism ON.
n=1 to 3

Edge -1,

-1

-1,

-1Output Mechanism n in servo
ON output signal.

Turns the servo for each mechanism ON.
n=1 to 3

BRKLOCK Input Brake lock input This input signal is turned on to lock the brake
during servo on. This function is available for
all of the axes with brakes.

Level -1,

-1

-1,

-1
Output Output during brake

lock
This output signal is turned on when the brake
lock input signal is turned on.

MnMELOCK
(n=1 to 3)
(Operation
right
required)

Input Mechanism n machine
lock input signal

Sets/releases the machine lock state for each
mechanism.
n=1 to 3

Level -1,
-1

-1,
-1

Output Mechanism n in
machine lock output
signal

Outputs that the machine lock state is entered.
n=1 to 3

PRGSEL
(Operation
right
required)

Input Program selection input
signal

Designates the setting value for the program
No. with numeric value input signals.
The program for slot 1 is selected. Output this
signal when at least 15 ms has elapsed
following the start of output to the numerical
input (IODATA). This signal should also be
output to the robot for at least 15 ms.

Edge 10020 -1,

Output - -
OVRDSEL
(Operation
right
required)

Input Override selection input
signal

Designates the setting value for the override
with the numeric value input signals.
Output this signal when at least 15 ms has
elapsed following the start of output to the
numerical input (IODATA). This signal should
also be output to the robot for at least 15 ms.

Edge 10021 -1,

Output - -

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
 Dedicated input/output 6-653

6

6External input/output functions
IODATA Input Numeric value input
(Start bit number,
 end bit number)

Numerical values are read as binary values.
*Program number (Read by the PRGSEL)
 If the parameter "PST" is enabled, it is read by
the start signal.
*Override (Read by the OVDSEL)
The bit width can be set arbitrarily. However,
the accuracy of output values cannot be
guaranteed when they exceed the set bit
width.
Output this input to the robot for at least 15 ms
before inputting the PRGSEL or other setting
signals.

Level Note2)

10032(Start bit),
10047(End bit),

10032(Start bit),
10047(End bit)

Note2)
-1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)

Output Numeric value output
(Start bit number,
 end bit number)

Numerical values are output as binary values.
*Program number (Output by the PRGOUT),
*Override (Output by the OVRDOUT),
*Outputs the line number (output by the
LINEOUT)
*Error number (output by the ERROUT).
The bit width can be set arbitrarily. However,
the accuracy of output values cannot be
guaranteed when they exceed the set bit
width.
Read this signal when at least 15 ms has
elapsed following the start of input of a
program number (PRGOUT) or other signal to
the robot.

PRGOUT Input Program No. output
request

The program number for task slot 1 is output to
the numerical output (IODATA). After the start
of inputting this signal to the robot, wait at least
15 ms before reading the numerical output
(IODATA) signal.

Edge 10022,

10022

-1,

-1Output Program No. output
signal

The "program number output in progress"
status is output to the numerical output.

LINEOUT Input Line No. output request The line number for task slot 1 is output to the
numerical output (IODATA). After the start of
inputting this signal to the robot, wait at least
15 ms before reading the numerical output
(IODATA) signal.

Edge 10023,

10023

-1,

-1Output Line No. output signal The "line number output in progress" status is
output to the numerical output.

OVRDOUT Input Override value request The OP override is output to the numerical
output (IODATA). After the start of inputting
this signal to the robot, wait at least 15 ms
before reading the numerical output (IODATA)
signal.

Edge 10024,

10024

-1,

-1Output Override value output
signal

The "override output in progress" status is
output to the numerical output.

ERROUT Input Error No. output
request

The error number is output to the numerical
output (IODATA). After the start of inputting
this signal to the robot, wait at least 15 ms
before reading the numerical output (IODATA)
signal.

Edge 10025,

10025

-1,

-1Output Error No. output signal The "error number output in progress" status is
output to the numerical output.

JOGENA
(Operation
right
required)

Input Jog valid input signal Jogs the designated axis in the designated
mode.
Operation takes place while this signal is ON.

Level -1,

-1

-1,

-1Output Jog valid output signal Outputs that the jog operation is entered.

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
-654 Dedicated input/output

 6External input/output functions
JOGM Input Jog mode input
(start No., end No.)

Designates the jog mode.
0/1/2/3/4/5 = Joint/ XYZ/ Cylindrical/ 3-axis

XYZ/ tool/Work (Ex-T)
Note) For Ex-T control or Ex-T jog, refer to

Page 764, "7.3 Ex-T control".

Level Note3)

-1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)

Note3)
-1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)

Output Jog mode output
(start No., end No.)

Outputs the current jog mode.

JOGMENO Input Jog mechanism
number input
(start No., end No.)

Designates the mechanism number.
If this parameter is not specified, mechanism
number is fixed to machine 1.

Level -1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)

-1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)

Output Jog mechanism
number output
(start No., end No.)

Outputs the current mechanism number.

JOG+ Input Jog feed plus side for 8-
axes
(start No., end No.)

Designates the jog operation axis.
JOINT jog mode: J1, J2, J3, J4, J5, J6, J7 and
J8 axes from the start number.
XYZ jog mode: X, Y, Z, A, B, C, L1 and L2
axes from the start number.
CYLINDER jog mode: X, θ, Z, A, B, C, L1 and
L2 axes from the start number.
3-axis XYZ jog mode: X, Y, Z, J4, J5 and J6
axes from the start number.
Tool jog mode: X, Y, Z, A, B and C axes from
the start number.
WORK jog mode (Ex-T jog mode): X, Y, Z, A,
B and C axes from the start number.
Note) For Ex-T control or Ex-T jog, refer to

Page 764, "7.3 Ex-T control".

Level Note4)

-1,
-1

Note4)
-1,
-1

Output - -
JOG- Input Jog feed minus side for

8-axes
(start No., end No.)

Designates the jog operation axis.
JOINT jog mode: J1, J2, J3, J4, J5, J6, J7 and
J8 axes from the start number.
XYZ jog mode: X, Y, Z, A, B, C, L1 and L2
axes from the start number.
CYLINDER jog mode: X, θ, Z, A, B, C, L1 and
L2 axes from the start number.
3-axis XYZ jog mode: X, Y, Z, J4, J5 and J6
axes from the start number.
Tool jog mode: X, Y, Z, A, B and C axes from
the start number.
WORK jog mode (Ex-T jog mode): X, Y, Z, A,
B and C axes from the start number.
Note) For Ex-T control or Ex-T jog, refer to

Page 764, "7.3 Ex-T control".

Level Note4)
-1,
-1

Note4)
-1,
-1

Output - -

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
 Dedicated input/output 6-655

6

6External input/output functions
JOGWKNO Input Work coordinates
number

Specify the work coordinates number (Ex-T
coordinates number) for the standard of work
jog operation with numerical value 1 to 8.
Note) Specify the work coordinates number for

the standard of work jog operation with
numerical value 1 to 8.
 This input signal is read with the edge
(change from off to on) of Jog valid input
signal: JOGENA. When you change the
work coordinates number, please once
change Jog valid input signal: JOGENA
from off to on.

Note) For Ex-T control or Ex-T coordinates
number, refer to Page 764, "7.3 Ex-T
control".

Level Note3)
-1(Start bit),
-1(End bit),
-1(Start bit),
-1(End bit)

Note3)
-1(Start bit),
-1(End bit),
-1(Start bit),
-1(End bit)

Output The current value inputted to the Work
coordinates number (Ex-T coordinates
number) is outputted.
Note) For Ex-T control or Ex-T coordinates

number, refer to Page 764, "7.3 Ex-T
control".

JOGNER
(Operation
right
required)

Input Errors during jog
operation
Temporarily ignoring
input signal

Temporarily ignores errors that cannot be
reset during jog operation.

Level -1,

-1

-1,

-1Output Errors during jog
operation
Temporary ignoring
output signal

Outputs that the error is being ignored
temporarily.
* This signal is applicable to only machine 1.

HNDCNTL1 Input - -

HNDCNTL1
10048(Start bit),
10055(End bit)

-1(Start bit),
-1(End bit)

Output Mechanism 1 hand
output signal status
(start No., end No.)

CR800: Outputs the status of the hand output
900 to 907.
CR860: Outputs the status of the hand output
764 to 771
Example) To output the four points from 900
through 903 to general-purpose output signals
3, 4, 5, and 6, set the HNDCNTL1 to (3, 6).

HNDSTS1 Input - -
HNDSTS1
10056(Start bit),
10063(End bit)
* To use nine
points or more,
the end bit
assignment
needs to be
changed.

-1(Start bit),
-1(End bit)

Output Mechanism n hand
input signal state
(start No., end No.)

Outputs the status of the hand input 900 to
907.
Outputs the status of the hand input 764 to
775.
Example) To output the four points from 900
through 903 to general-purpose output signals
3, 4, 5, and 6, set the HNDCNTL1 to (3, 6).

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
-656 Dedicated input/output

 6External input/output functions
HANDENA Input Mechanism 1 hand
input signal status (start
No., end No.)

Permit or prohibit control of the robot hand by
the external signal.
1/0 = permission / prohibition

Notes) The control of the robot's hand is
available during automatic execution.
The interlocking of the robot and external
equipment, such as the PLC, is
necessary sure because of the safety.
When the control of robot's hand by an
external signal is permitted, the
commands: HOpen/HClose, of a
program becomes invalid.

Level -1,

-1

-1,

-1

Output Hand control
permission output

The permission condition of control of robot's
hand by the external signal is outputted.
1/0 = permission / prohibition
When the hand control permission input signal
is turned on and T/B is not available, this
signal turns on.

HANDOUT Input Hand output control
signal

Set up the external input-signal range for
controlling the robot hand.
The input signal set up here is matched in
order with the hand signal set up by
parameter: HANDTYPE
Element 1: Hand output control signal start

number
Element 2: Hand output control signal finish

number

Edge -1,
-1

-1,
-1

Output - -
HNDERRn
(n=1 to 3)

Input Mechanism n hand
error input signal

Requests the hand error occurrence.
A LOW level error (error number 30) will be
generated.

Level -1,

-1

-1,

-1Output Mechanism n hand
error output signal

Outputs that a hand error is occurring.

AIRERRn
(n=1 to 5)

Input Mechanism n
pneumatic pressure
error input signal

Request the pneumatic pressure error
occurrence.
A LOW level error (error number 31) will be
generated.

Level -1,

-1

-1,

-1Output Mechanism n
pneumatic error output
signal

Outputs that a pneumatic pressure error is
occurring.

USRAREA

Refer to Page
531, "5.8
About user-
defined area"

Input - - Note5)

10064(Start bit),
10071(End bit)

Note5)
-1(Start bit),
-1(End bit)

Output User-designated area
8-points
(start No., end No.)

Outputs that the robot is in the user-
designated area.
The output is made sequentially for areas 1, 2
and 3, as designed from the one closest to the
start number.
The area is set with parameters AREA1P1,
AREA1P2 to AREA8P1 and AREA8P2.
Setting example)
When USRAREA is used as an example:
If only area 1 is used, USRAREA: 8, 8 Setting
valid
If only area 1,2 is used, USRAREA: 8, 9
Setting valid
USRAREA:-1,-1 to Setting invalid
USRAREA: 8,-1 to Setting invalid(No Error)
USRAREA:-1,8 to Setting invalid(No Error)
USRAREA:9,8 to Setting invalid(Error L6643)

MnPTEXC
(n=1 to 3)

Input - - -1(No meaning),

-1

-1,(No meaning)

-1
Output Warning for

maintenance parts
replacement time

This output notifies that the replacement time
of maintenance parts has been reached.

Level

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
 Dedicated input/output 6-657

6

6External input/output functions
MnWUPENA
(n=1 to 3)
(Operation
right
required)

Input Mechanism n warm-up
operation mode enable
input signal

Enables the warm-up operation mode of each
mechanism. (n=1 to 3)
Note: To switch the warm-up operation
mode from enable to disable or vice
versa using this input signal, it is
necessary to enable the warm-up
operation mode with the WUPENA
parameter, etc. If the warm-up operation
mode has been disabled with a
parameter, inputting this input signal will
not enable the mode.

Level -1,

-1

-1,

-1Output Mechanism n warm-up
operation mode output
signal

Outputs that the warm-up operation mode is
currently enabled. (n=1 to 3)

MnWUPMD
(n=1 to 3)

Input - - -1(No meaning),

-1

-1(No meaning),

-1
Output Mechanism n warm-up

operation status output
signal

Outputs that the status is the warm-up
operation status, and thus the robot will
operate at a reduced speed. (n=1 to 3)

PSSLOT Input Slot number
specification

Slot number into which program storing the
position data the user wants to be outputted is
loaded is specified. (1 to 32)
*Change is available in the state input signal of
parameter: PSOUT is OFF.

Level -1 (input/starting value),
-1 (input/ending value)
* 6 bits in width maximum
-1 (output/starting value)
-1 (output/ending value)
* 6 bits in width maximumOutput Specified slot number

output
Slot number specified on the input side is
outputted.

PSTYPE Input Position data type
specification

Type of the position data which the user wants
to be outputted is specified.
[Conditions for specification]
0(OFF): Position-type variable

(P1, P10 or the like)
1(ON): Joint-type variable (J1, J10 or the like)
*Change is available in the state input signal of
parameter:PSOUT is OFF.

Level -1,-1

Output Specified position data
type output

Type of the position data specified on the input
side is outputted.
[Output information]
0(OFF): Position-type variable

(P1, P10 or the like)
1(ON): Joint-type variable (J1, J10 or the like)

PSNUM Input Position number
specification

Position number (number of "P" or "J"
variable) for the position data the user wants to
be outputted is specified.
0 ~ 65535 (P0 ~ P65535 or J0 ~ J65535)
Example: If you need a position data for P100,

specify the value "100," using the
signal number you specified
between an input/starting number
and an input/ending number.
The width which can be specified for
a signal number is 16 bits maximum,
which allows you to specify position
data for up to "P66535." However, it
should be taken note that the
position variable for "P001" is not
accepted.

*Change is available in the state input signal of
parameter: PSOUT is OFF.

Level -1 (input/starting value)
-1 (input/ending value)
* 16 bits in width maximum
-1 (output/starting value)
-1 (output/ending value)
* 16 bits in width maximum

Output Specified position
number output

Position number specified on the input side is
outputted.

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
-658 Dedicated input/output

 6External input/output functions
PSOUT Input Position data output
specification

Specifications are made so that specified
position number data for specified slot number
is outputted.
Position data is updated when specified signal
is turned ON. Input signal level is "level," but
position data remains un-updated whenever
the signal stays ON. Information is updated
upon the signal being turned ON.

0(OFF): Position data is not required to be
outputted or position number is being
specified.

1(ON): Position data output demanded.

Level -1,-1

Output Position data being
outputted

Output is made to indicate that specified
position data has been outputted.
[Output information]
0(OFF): Position data not yet outputted
1(ON): Position data being outputted

PSPOS Input - - - -1 (Not significant)
-1 Output Specified position data Specified position data is outputted by using

signals consisting of 32 bits for 8 axes plus 32
bits for 2 elements (structural flags) derived
from signal numbers specified under this
parameter (320 bits are used).
The range of the setting value:
(1)CR800-R/Q series
10000 ~ 17872: CPU buffer memory
(2)CR800-D series
 2000 ~ 3632: Profibus
 6000 ~ 7728: CC-Link

Unit of each component value for position data
expressed by a 32-bit signal is micrometer
(um) = 10-3 mm or 10-3 degree.
Take note that outputted data comes as a
signed integer (-231 ~ 231-1).
However, structural flags are outputted in the
form of values they carry without being
converted in terms of micrometer.
Position type variable: X, Y, Z, A, B, C, L1, L2,

FL1, FL2
Joint type variable: J1, J2, J3, J4, J5, J6, J7,
J8

If an error occurs in slot number,
"0x7FFFFFFF" is outputted. If an error occurs
in position number, "0x80000000" is outputted.
Since the time chart and precautions are
shown in Page 675, "(5) Example of external
operation timing chart (Part 5)", refer to it.

TMPOUT Input Temperature output
request

The temperature inside the robot controller is
output to the numerical output (IODATA).
After the start of inputting this signal to the
robot, wait at least
15 ms before reading the numerical output
(IODATA) signal

Edge -1,-1

Output Temperature output
signal

The "temperature output in progress" status is
output to the numerical output.

-

RSTBAT Input Battery cumulative time
reset

Reset the battery cumulative tine. - -1,

-1Output Reset is completed Output that the reset has been completed.

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series
 Dedicated input/output 6-659

6

6External input/output functions
RSTGRS Input Maintenance forecast
reset (grease)

Reset the grease information of the
maintenance forecast.
* The axis bit pattern is specified by the

parameters IODATA or DIODATA.

- -1,

-1Output Reset is completed Output that the reset has been completed.
RSTBLT Input Maintenance forecast

reset (belt)
Reset the belt information of the maintenance
forecast.
* The axis bit pattern is specified by the

parameters IODATA or DIODATA.

- -1,

-1Output Reset is completed Output that the reset has been completed.
SVDATA Input - - - -1 (Not

significant)
-1,
-1,

-1 (Start register),
-1 (End register)

Output The load factor of the
servo

The maximum load factor (%) of J1 axis to J8
axis is outputted from the register number
specified as the third element of this
parameter to the number specified as the 4th
element.
The outputted load factor is updated with
every 2 seconds.
(CC-Link register supported)

DOORSTS1 Input - - - -1,

-1

-1,

-1Output States of the door
switch 1

Output that the status of the door switch 1
system.

DOORSTS2 Input - - - -1,

-1

-1,

-1Output States of the door
switch 2

Output that the status of the door switch 2
system.

DOORSTS Input - - - -1,

-1

-1,

-1Output States of the door
switches

Output that the logical ADD of the door switch
1 and 2 systems.
Both systems are ON, this signal is also ON.

Note1) The meanings of the signal level are explained below.
Level: The designated function is validated when the signal is ON, and the function is invalidated

when the signal is OFF. Make sure the signal is turned ON for at least 15 ms.
Edge: The designated function is validated when the signal changes from the OFF to ON state, and

the function maintains the original state even when the signal returns to the OFF state.

Parameter
name Class Name Function

Signal
level

Note1)

Factory shipment signal number.
Input, output

CR800-R/Q
series CR800-D series

Set an interval of at least 300 ms

IODATA

PRGSEL

START

Set an interval of at least 300 ms

Example)
15ms

15ms
-660 Dedicated input/output

 6External input/output functions
Note2) Set in the order of input start No., input end No., output start No. and output end No.
When using as the input or output of an actual value, use from the start No. to the end No., and
express as a binary. The start No. indicates the low-order bit, and the end No. indicates the high-
order bit. Set only the numbers required to express the value.
For example, when using for program selection and only programs 1 to 6 are available, the
expression can be created by setting 3 bits. Up to 16 bits can be set.

Assignment examples are shown below.
Example) To set the start input signal in general-purpose input 10016, and the operating output signal

in general-purpose output 10026.
Parameter START ={10016, 10026}

Example) When setting 4 bits of numerical input to general-purpose inputs 10027 to 10030, and 5 bits
of numerical output to general-purpose outputs 10027 to 10031.
Parameter IODATA = {10027, 10030, 10027, 10031}

Note3) Set in the order by input start No., input end No., output start No. and output end No.
Use from the start No. to the end No, and express as a binary. The start No. indicates the low-order
bit, and the end No. indicates the high-order bit. Set only the numbers required to express the value.
For example, when using only the joint mode and XYZ mode at Jog mode input, the expression can
be created by setting 1 bits.

Note4) They are in the order of an input starting number and then an input end number. Specify the J1/X axis
for the input starting number and the J8/L2 axis for the input end number at its maximum.
For example, when using a 6-axis robot, only 6 bits need to be set.
Even if using a 4-axis robot, when using the XYZ mode, the C axis is required, so 6 bits must be set.
Up to 8 bits can be set.

Note5) Set in the order of output start No. and output end No. The start number specifies area 1, while the
end number specifies area 32 in the largest configuration.
For example, setting 2 bits will suffice if only two areas are used. A maximum of 32 bits can be set.

Note6) The values that can be set in the above parameters are from -1 to 19999.
Usable I/O signal numbers vary depending on the function.
Refer to the instruction manual for the external I/O function being used.
 Dedicated input/output 6-661

6

6External input/output functions
6.4 Enable/disable status of signals
Note that depending on the input signal type, the function may not occur even if the target signal is input
depending on the robot state at that time, such as during operation or when stop is input.
The relation of the robot status to the input signal validity is shown below.

Table 6-7:Validity state of dedicated input signals
Parameter

name Name Validity of symbol on left according to robot states.

SLOTINIT Program reset

These do not function in the operation state (when START output is ON).

SAFEPOS Safe point return input
OUTRESET General-purpose output signal

reset
MnWUPENA Mechanism n warm-up operation

mode enable input
START
SnSTART
(n=1 to 32)

Start input

These function only when the external input/output has the operation rights
(when IOENA output is ON).

SLOTINIT Program reset
SRVON
MnSRVON
(n=1 to 3)

Servo ON input

MELOCK
MnMELOCK
(n=1 to 3)

Machine lock input

SAFEPOS Safe point return input
PRGSEL Program selection input
OVRDSEL Override selection input
JOGENA Jog enable input
MnWUPENA Mechanism n warm-up operation

mode enable input
START Start input

These do not function in the stop input state (when STOPSTS is ON).SAFEPOS Safe point return input
JOGENA Jog enable input
SRVON Servo ON input This does not function in the servo OFF input state.
MELOCK Machine lock input This functions only in the program selection state (when SLOTINIT output

is ON).
PRGSEL Program selection input The signal does not function during pause status (STOP output is on).
-662 Enable/disable status of signals

 6External input/output functions
6.5 External signal timing chart

6.5.1 Individual timing chart of each signal

(1) RCREADY (Controller's power ON completion output)

(2) ATEXTMD (Remote mode output)

(3) TEACHMD (Teach mode output)

(4) ATTOPMD (Auto mode output)

(5) IOENA (Operation right input signal/operation right output signal)

(6) START (Start input/operating output)

(7) STOP (Stop input/aborting output)

(8) STOPSTS (Output during stop signal input)

<Output>

Power ON (RCREADY) (Indicates the status in which the controller can receive signals.)

Remote mode output
(ATEXTMD)

(Indicates when the key switch on the operation panel is "Auto (Ext)")

<Output>
(Indicates when the key switch on the operation panel is the "AUTOMATIC"
and the IOENA is on)

Teach mode output
(TEACHMD) (Indicates when the key switch on the operation panel is "TEACH.")

<Output>

Auto mode output
(ATTOPMD)

(Indicates when the key switch on the operation panel is "Auto (Op.)")

<Output>
(Indicates when the key switch on the operation panel is the "AUTOMATIC"
and the IOENA is off)

Operation right input (IOENA)

Operation right output (IOENA)

<Intput>

<Output>

Level

When the STOP signal, or the emergency stop or other signal was input, or after
the completion of the CYCLE signal

Start input (START)

Operating output (START)

<Intput>

<Output>

30 ms or more15ms or more

When the START, SnSTART or SLOTINIT signal was input

Stop input (STOP)

Aborting output (STOP)

<Intput>

<Output>

30 ms or more15ms or more

During stop signal input
(STOPSTS)

(Indicates that the STOP is being input.)

<Output>
 External signal timing chart 6-663

6

6External input/output functions
(9) SLOTINIT (Program reset input/program selectable output)

(10) ERRRESET (Error reset input/output during error occurrence)

(11) SRVON (Servo ON input/output during servo ON))

(12) SRVOFF (Servo OFF input/servo ON disable output)

(13) AUTOENA (Auto operation input/auto operation enable output)

(14) CYCLE (Cycle stop input/output during cycle stop operation)

When the START or SnSTART signal was input

Program reset (SLOTINIT)

Program selectable output
(SLOTINIT)

<Intput>

<Output>

30 ms or more15ms or more

Error reset input (ERRRESET)

Output during error occurrence
(ERRRESET)

<Intput>

<Output>

When the SRVOFF, SnSRVOFF or emergency stop signal was input

Servo ON input (SRVON)

Output during servo ON (SRVON)

<Intput>

<Output>

30 ms or more15ms or more

Servo OFF input (SRVOFF)

Servo ON disable output (SRVOFF)

<Intput>

<Output>

30 ms or more15ms or more

Auto operation enable input
(AUTOENA)

Auto operation enable output
(AUTOENA)

<Intput>

<Output>

When a cycle operation is finished

Cycle stop input (CYCLE)

Output during cycle stop operation
(CYCLE)

<Intput>

<Output>
-664 External signal timing chart

 6External input/output functions
(15) MELOCK (Machine lock input/output during machine lock)

(16) SAFEPOS (Return to safe point input/output during return to safe point)

(17) BATERR (Low battery voltage output)

(18) OUTRESET (General-purpose output signal reset request input)

(19) HLVLERR (Output during high level error occurrence)

(20) LLVLERR (Output during low level error occurrence)

(21) CLVLERR (Output during warning level error occurrence)

(22) EMGERR (Output during emergency stop)

(23) SnSTART (Slot n start input/output during slot n operation)

Machine lock input (MELOCK)

Output during machine lock
(MELOCK)

<Intput>

<Output>

When returning to retreat point is complete

Return to retreat point input
(SAFEPOS)

Output during return to retreat point
(SAFEPOS)

<Intput>

<Output>

30 ms or more15ms or more

Return to safe point input

Output during return to safe point

When returning to safe point is complete

<Output>

Low battery voltage (BATERR) (Indicates that the battery voltage is low.)

<Intput>
General-purpose output signal reset
(OUTRESET)

(Resets the general-purpose output signal.)

30 ms or more15ms or more

<Output>

High level error output (HLVLERR) (Indicates that a high level error is occurring.)

<Output>

Low level error output (LLVLERR) (Indicates that a low level error is occurring.)

<Output>

Warning level error output
(CLVLERR)

(Indicates that a warning level error is occurring.)

<Output>

Emergency stop output (EMGERR) (Indicates that an emergency stop is occurring.)

When the STOP, SnSTOP or emergency stop signal was input

Slot n start input (SnSTART)

Output during slot n operation
(SnSTART)

<Intput>

<Output>
 External signal timing chart 6-665

6

6External input/output functions
(24) SnSTOP (Slot n stop input/output during slot n aborting)

(25) MnSRVOFF (Mechanical n servo OFF input/mechanical n servo ON disable output)

(26) MnSRVON (Mechanical n servo ON input/output during mechanical n servo ON)

(27) MnMELOCK (Mechanical n machine lock input/output during mechanical n machine lock)

(28) PRGSEL (Program selection input)
* This is used together with the numeric value input (IODATA).

When the START, SnSTART or SLOTINIT signal was input

Slot n stop input (SnSTOP)

Output during slot n aborting
(SnSTOP)

<Intput>

<Output>

30 ms or more15ms or more

When the SRVON, SnSRVON or SRVON signal was input

Mechanical n servo OFF input
(MnSRVOFF)

Mechanical n servo ON disable output
(MnSRVOFF)

<Intput>

<Output>

30 ms or more15ms or more

When the SRVOFF, SnSRVOFF or emergency stop signal was input

Mechanical n servo ON input
(MnSRVON)

Output during mechanical n servo ON
(MnSRVON)

<Intput>

<Output>

30 ms or more15ms or more

Mechanical n machine lock input
(MnMELOCK)

Output during mechanical n machine
lock (MnMELOCK)

<Intput>

<Output>

(数値入力信号の設定値をﾌﾟﾛｸﾞﾗﾑ番号に指定します)

ﾌﾟﾛｸﾞﾗﾑ番号数値入力 (IODATA)

ﾌﾟﾛｸﾞﾗﾑ選択入力 (PRGSEL)

＜入力＞

30ms 以上
<Input>

Numeric value input (IODATA)

Program selection input (PRGSEL)

15ms or more

Program number

This parameter designates the setting value for the program
No. with numeric value input signals.
-666 External signal timing chart

 6External input/output functions
(29) OVRDSEL (Override selection input)
 * This is used together with the numeric value input (IODATA).

(30) IODATA (Numeric value input/numeric value output)
* This is used together with PRGSEL, OVRDSEL, PRGOUT, LINEOUT, OVRDOUT or ERROUT.

(31) PRGOUT (Program number output request input/outputting program number)
* This is used together with the numeric value output (IODATA).

(32) LINEOUT (Line number output request input/outputting line number)
* This is used together with the numeric value output (IODATA).

(33) OVRDOUT (Override value output request/outputting override value)
* This is used together with the numeric value output (IODATA).

(数値入力信号の設定値をｵｰﾊﾞｰﾗｲﾄﾞに指定します)

ｵｰﾊﾞｰﾗｲﾄﾞ値数値入力 (IODATA)

ｵｰﾊﾞｰﾗｲﾄﾞ選択入力
 (OVRDSEL)

＜入力＞

30ms 以上

<Input>
Numeric value input (IODATA)

Override selection input (OVRDSEL)

15ms or more

Override value

This parameter designates the setting value for the override
with numeric value input signals.

Program number

When the output request of a line number, override value or
error number was input

Program number output request
(PRGOUT)

Outputting program number (PRGOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more

Line number

When the output request of a program number, override
value or error number was input

Line number output request (LINEOUT)

Outputting line number (LINEOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more

Override value

When the output request of a program number, line number
or error number was input

Override value output request
(OVRDOUT)

Override value output request
(OVRDOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more
 External signal timing chart 6-667

6

6External input/output functions
(34) ERROUT (Error number output request/outputting error number)
* This is used together with the numeric value input (IODATA).

(35) JOGENA (Jog enable input/output during jog enabled)

(36) JOGM (Jog mode input/jog mode output)

(37) JOG+ (Input for 8 axes on jog feed plus side)

(38) JOG- (Input for 8 axes on jog feed minus side)

(39) HNDCNTL1 (Mechanism 1 hand output signal status)

Error number

When the output request of a program number, override
value or line number was input

Error number output request (ERROUT)

Outputting error number (ERROUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more

Jog enable input (JOGENA)

Output during jog enabled (JOGENA)

<Intput>

<Output>

Jog mode

(Replies the setting value of the jog mode input signal with jog mode output.)

Jog mode input (JOGM)

Jog mode output (JOGM)

<Intput>

<Output>

30 ms or more

Jog mode

15ms or more

Jog operation axis8 axes on jog feed plus side (JOG+)

<Intput>

(Specify the axis that will perform jog operation in the plus direction.)

8 axes on jog feed minus side (JOG-) Jog operation axis

(Specify the axis that will perform jog operation in the minus direction.)

<Intput>

<Output>

 Mechanism 1 hand output signal status
 (HNDCNTL1)

Hand output signal status

(Indicates the output signal status of the hand.)
-668 External signal timing chart

 6External input/output functions
(40) HNDSTS1 (Mechanism 1 hand input signal status)

(41) HNDERRn (Mechanical n hand error input signal/output during mechanical n hand error occurrence)

(42) AIRERRn (Mechanical n pneumatic error input signal/outputting mechanical n pneumatic error)

(43) USRAREA (User-specified area 8 points output)

(44) MnWUPENA (Mechanism n warm-up operation mode enable input signal/ Mechanism n warm-up
operation mode output signal)

(45) MnWUPMD (Mechanism n warm-up operation status output signal)

* If the mechanism n warm-up operation status output (MnWUPMD) is assigned together with the
mechanism n warm-up operation mode enable input (MnWUPENA), the timing chart is as shown below.

<Output>

 Mechanism 1 hand input signal status
 (HNDSTS1)

Hand input signal status

(Indicates the input signal status of the hand.)

Mechanical n hand error input
(HNDERRn)

Output during mechanical n hand error
occurrence (HNDERRn)

<Intput>

<Output>

Mechanical n pneumatic error input
(AIRERRn)

Outputting mechanical n pneumatic
error (AIRERRn)

<Intput>

<Output>

Within the user
specified areaUser-specified area 8 points

(USRAREA)

<Output>

(Indicates that it is within the area specified by areas 1 though 8.)

<Input>
Mechanism n warm-up operation mode enable
input signal (MnWUPENA)

<Output>
Mechanism n warm-up operation mode
output signal (MnWUPENA)

<Output>
Mechanism n warm-up operation status output
signal (MnWUPMD) (Indicates the warm-up operation status.)

<Input>
Mechanism n warm-up operation mode enable
input signal (MnWUPENA)

<Output>
Mechanism n warm-up operation status output
signal (MnWUPMD)

When the warm-up operation status is canceled while
the warm-up operation mode is enabled
 External signal timing chart 6-669

6

6External input/output functions
(46) RSTBAT (Battery cumulative time reset)

(47) RSTGRS (Maintenance forecast reset (grease))

(48) RSTBLT (Maintenance forecast reset (belt))

バッテリ積算時間のリセット入力
(RSTBAT)

バッテリ積算時間のリセット完了出力
(RSTBAT)

<出力>

<入力>
1sec

1sec以上

<Input>
Battery cumulative time reset input
(RSTBAT)

<Output>
Battery cumulative time reset completed
output (RSTBAT)

1 sec or more

1 sec

メンテ情報(グリース)のリセット入力
(RSTGRS)

メンテ情報(グリース)のリセット完了出力
(RSTGRS)

<出力>

1sec

1sec以上

軸ビットパターン
数値入力 (IODATA)

<入力>

Maintenance forecast reset (grease) input
(RSTGRS)

<Output>
Maintenance forecast reset (grease)
completed output (RSTBAT)

<Input>
Numeric value input (IODATA)

1 sec or more

1 sec

Axis bit pattern

メンテ情報(ベルト)のリセット入力
(RSTBLT)

メンテ情報(ベルト)のリセット完了出力
(RSTBLT)

<出力>

1sec

1sec以上

軸ビットパターン
数値入力 (IODATA)

<入力>

Maintenance forecast reset (belt) input
(RSTGRS)

<Output>
Maintenance forecast reset (belt) completed
output (RSTBAT)

<Input>
Numeric value input (IODATA)

1 sec or more

1 sec

Axis bit pattern
-670 External signal timing chart

 6External input/output functions
6.5.2 Timing chart example

(1) External signal operation timing chart (Part 1)

Fig.6-5:Example of external operation timing chart (Part 1)

Program reset

Program selection input signal

Cycle stop input signal

<Input>

Numeric value input

Start input

Stop input

Operation rights input signal

Error reset input signal

Program number output request

<Output>

Numeric value output

Operating status output

Waiting status output

Program selection enabled output

Cycle stop operating status output signal

Error occurring status output signal

IODATA

PRGSEL

START

STOP

IOENA

SLOTINIT

CYCLE

ERRRESET

IOENA

IODATA

START

STOP

SLOTINIT

ERRRESET

PRGOUT

CYCLE

1 2 3

1 2 3

Error occurring status

Program
 selection

Program
 start

Stop

R
estart

Stop

Program
 reset

Error reset

C
ycle stop

Program
 EN

D

Operation rights output signal

Program No. 2 Program No. 3

Program
 selection

Program
 start

Error occurring

R
estart

Program
 reset

Stop

Program
 selection

Program
 start

Program No. 1
 External signal timing chart 6-671

6

6External input/output functions
(2) External signal operation timing chart (Part 2)
An example of timing chart the servo ON/OFF, selecting the program, selecting the override, starting and
outputting the line No., etc., with external signals is shown in Fig. 6-6.

Fig.6-6:Example of external operation timing chart (Part 2)

SRVON

Override selection input signal

Override value output request

Line number output request

Servo ON input signal

<Output>

IODATA

PRGSEL

PRGOUT

OVRDSEL

OVRDOUT

LINEOUT

START

SRVON

IODATA

IOENA

START

SLOTINIT

SRVOFF

IOENA

1 80 50 5

80 50 0 1 5 5

Program No. 1 Program No. 5

O
peration rights request

Servo O
N

Servo O
FF

O
verride output

O
verride selection

Program
 start

Program
 selection

Program
 N

o. output

O
verride selection

Program
 EN

D

Line N
o. output

Program
 start

Line N
o. output

Program
 N

o. output

Program selection input signal

<Input>

Numeric value input

Program number output request

Operating status output

Program selection enabled output

Start input

Servo OFF input signal

Operation rights input signal

Numeric value output

Operation rights output signal

Servo O
N

Program
 N

o. output

Program
 selection

In servo ON
In servo OFF
-672 External signal timing chart

 6External input/output functions
(3) Example of external operation timing chart (Part 3)
An example of the timing chart for error reset, general-purpose output reset and program reset, etc., with
external signals is shown output in Fig. 6-7.

Fig.6-7:Example of external operation timing chart (Part 3)

START

SRVON

SRVOFF

ERRRESET

OUTRESET

SLOTINIT

IOENA

IOENA

START

SLOTINIT

STOP

SRVON

ERRRESET

EMGERR

Start input

Servo ON input signal

Servo OFF input signal

Error reset input signal

General-purpose
output signal reset
Program reset

Operation rights input signal

General-purpose output

<Input>

Operation rights output signal

Emergency stop output signal

O
peration rights request

Program
 start

Program
 start

Servo O
N

Servo O
FF

Servo O
N

Servo O
N

Servo O
N

R
estart

R
estart

Em
ergency stop O

N

Error reset

Error reset

Error occurrence

G
eneral-purpose output reset

Program
 reset

<Output>

Operating status output

Waiting status output

Program selection enabled output

In servo ON
In servo OFF

Error occurring
status output signal

Output signal reset
following parameter
ORST
 External signal timing chart 6-673

6

6External input/output functions
(4) Example of external operation timing chart (Part 4)
An example of the timing chart for jog operation, safe point return and program reset, etc., with external
signals is shown in Fig. 6-8.

Fig.6-8:Example of external operation timing chart (Part 4)

<Input>
START

SLOTINIT

SRVON

IOENA

ERRRESET

JOGENA

JOGM

JOG+

JOG-

SAFEPOS

IOENA

START

SLOTINIT

STOP

SRVON

ERRRESET

EMGERR

JOGM

JOGENA

1
3

0 0
00 2

4

1 3

1

J1+ J2- Z+

Program reset

Jog enable output signal
<Output>

Recovery work

In servo ON

Jog enable input signal
Jog mode input

Jog mode output

In servo OFF

O
peration rights request

Servo O
N

Program
 start

H
 Error occurrence

Servo O
N

Jog com
m

and J1 +

Jog com
m

and J2 -

Jog com
m

and end

Jog com
m

and Z +

Jog com
m

and end

Safe point return start

Safe point return end

Program
 reset

Program
 start

Start input

Servo ON input signal

Error reset input signal

Operation rights input signal

Operation rights output signal

Emergency stop output signal

Operating status output

Waiting status output

Program selection enabled output

Error occurring
status output signal

For 8 axes on the jog feed plus side

For 8 axes on the jog feed plus side

Safe point restore
input signal

Error reset
-674 External signal timing chart

 6External input/output functions
(5) Example of external operation timing chart (Part 5)
Given below is a timing chart for the dedicated input/output signals.

Fig.6-9:Example of external operation timing chart (Part 5)

[Notes]
(*1) If 320 points' worth of signals, from the signal number specified under the Parameter "PSPOS", do not

exist, Error 7081 (unwritable as the parameter value falls outside the prescribed range) occurs.
(*2) If the range of signal number specified under the Parameter "PSSLOT" is greater than 6 bits, Error 7081

(unwritable as the parameter value falls outside the prescribed range) occurs.
(*3) If the range of position number specified under the Parameter "PSNUM" is greater than 16 bits, Error

7081 (unwritable as the parameter value falls outside the prescribed range) occurs.
(*4) If slot number, position data type or position number is changed in the processing of inputting position

data output specification (PSOUT), relevant command is not accepted. Turn the position data output
specification (PSOUT) input off and then back on. To determine which position is subject to data output,
check slot number output (PSSLOT), position data type output (PSTYPE), and position number output
(PSNUM).

(*5) If required program has not been loaded into the specified slot, "0x7FFFFFFF" is outputted for each of
axes associated with specified position data output (PSPOS).

(*6) If a specified position does not exist, "0x80000000" is outputted for each of axes associated with
specified position data output (PSPOS).

(*7) If, in the process of outputting position data, switching takes place in regard to the program being
executed in the specified slot (CallP command, XRun command, or Parameter "PRGSEL"),
"0x80000000" is outputted for each of axes associated with specified position data output (PSPOS).

Slot number

<Input>
Slot number specificat ion (PSSLOT)

<Output>

Specified slot number output (PSSLOT)
Slot number

<Input>
Position data type specification

(PSTYPE)

<Output>

Specified position data type output
(PSTYPE)

Position number

<Input>
Position number type specification

(PSNUM)

<Output>

Specified position number
output(PSNUM） Position number

<Input>

Position data output specification
(PSOUT)

<Output>
Position data being outputted (PSOUT)

<Input>

<Output>

Specified position data (PSPOS)
Position data

 External signal timing chart 6-675

6

6External input/output functions
6.6 How to select and run a program using external signals
6.6.1 Methods

The following two methods are available for selecting and running a program using external signals.
(a) Running a designated program after checking that the program has been loaded
(b) Running a designated program upon input of the start signal

6.6.2 Selecting a method to run a program
To run a program using external signals, select either of the above methods (a) or (b) by setting the param-
eter described in Table 6-8.
Table 6-8:Parameter for selecting a method to run a program

6.6.3 Related I/O parameters
Table 6-9:Parameters of I/O signals

Parameter name Outline of functions

PST This parameter switches program selection method.
0: Run a designated program after checking that the program has been loaded
1: Run a designated program upon input of the start signal

Parameter name Class Outline of functions

IOENA Input This parameter enables/disables operation via the control of external signals.

PRGOUT Input This parameter outputs the program number for task slot 1 to the numerical out-
put (IODATA).

IODATA Input/Output This parameter sets numerical inputs and outputs. This parameter configures
settings so that the bit status in the set range can be read as a binary value.

PRGSEL Input This parameter designates the setting value for the program No. with numeric
value input signals.

START Input This parameter runs the program.

External signal

Set a pro-
gram number

Start

Check the pro-
gram number

Load the pro-
gram

Output the
program No.

Execute Start

Controller Controller

Program runs
after it has
loaded

(a): Checking that the designated program has
been loaded

(b): Designating a program upon input of the
start signal

External signal
Set a pro-
gram number
-676 How to select and run a program using external signals

 6External input/output functions
6.6.4 Operation procedure
This section provides an example of how I/O signals are assigned based on the information in Table 6-10.
Table 6-10:I/O signal assignment

(1) Running a designated program after checking that the program has been loaded
1) Set "0" in parameter PST. (Initial setting)
2) Assign I/O bits (values in Table 6-10) to parameters.

The following images are the setting windows for "Dedicated Input/Output Signals Assignment" in
"Signal Parameter" of RT ToolBox3. Enter values in the fields marked with circles.

3) Program selection and run

Parameter name Input bit Output bit

IOENA 5 3

PRGOUT 7 -

IODATA 8 to 11 8 to 11

PRGSEL 6 -

START 3 -

Dedicated Input/Output Signals Assignment:
General 1 window

Dedicated Input/Output Signals Assignment:
Data window

 IOENA

 IODATA

 PRGSEL

 PRGOUT

 START

 IOENA

 IODATA

１

１

Check the pro-
gram number

Program start

<Input>

Operation right input
Numeric value input

Program selection

Program number request

Start

<Output>

Operation right output

Numeric value output

1. Turns on input signal "IOENA" (bit 5) to obtain
the operation right.

2. Checks that output signal "IOENA" (bit 3). If
the signal is on, this means that the operation
right has been acquired.

3. Sets the program number in binary values for
IODATA of the input signal (bits 8 to 11).

4. Turns on PRGSEL (bit 6).
The programs with the numbers set in
IODATA of the input signal (bits 8 to 11) will
be read.

5. Turns on PRGOUT (bit 7).
The read program numbers will be output to
IODATA of the output signal (bits 8 to 11). You
can check whether the program number is
correct.

6. Inputs START (bit 3) to run the program.
 How to select and run a program using external signals 6-677

6

6External input/output functions
(2) Running a designated program upon input of the start signal
1) Set "1" in parameter PST. (Initial value: 0)
2) Assign I/O bits (values in Table 6-10) to parameters.

The following images are the setting windows for "Dedicated Input/Output Signals Assignment" in
"Signal Parameter" of RT ToolBox3. Enter values in the fields marked with circles.

3) Program selection and run

Note 1) Cycle the power of the controller after parameters have been changed.
Note 2) Operations such as program execution, servo on, and program initialization have been omitted.

Refer to Page 649, "6.3 Dedicated input/output" to Page 662, "6.4 Enable/disable status of signals".

When a program is selected and run using external signals, data is written to the
non-volatile memory of the controller each time the program is switched.
For this reason, the number of writes to the non-volatile memory increases and
it may cause the controller to fail. Set the parameter AUTOSAVE to 0 (Not
saved). For details, refer to AUTOSAVE in "5.4Command parameter".

Dedicated Input/Output Signals Assignment:
General 1 window

Dedicated Input/Output Signals Assignment:
Data window

 IOENA

 IODATA

 START

 IOENA

１

Program start

<Input>

Operation right input
Numeric value input

Start

<Output>

Operation right output

1. Turns on input signal "IOENA" (bit 5) to obtain
the operation right.

2. Checks that output signal "IOENA" (bit 3). If
the signal is on, this means that the operation
right has been acquired.

3. Sets the program number in binary values for
IODATA of the input signal (bits 8 to 11).

4. Inputs START (bit 3) to run the program.

 CAUTION
-678 How to select and run a program using external signals

 6External input/output functions
6.7 Emergency stop input
For wiring and other aspects of the emergency stop input, refer to the separate document entitled
"Controller setup, basic operation, and maintenance."

6.7.1 Robot Behavior upon Emergency Stop Input
When an emergency stop signal is input while the robot is operating, the servo power supply is cut off by
means of hardware control. The robot's tip path and stopping position after the input of an emergency stop
signal cannot be specified. An overrun may occur depending on the robot speed or load condition of the
tool.
 Emergency stop input 6-679

6

6External input/output functions
6.8 Devices
6.8.1 Device list

The following tables list the robot devices accessible from GOTs and SLMP-compatible equipment. Device
ranges are fixed and it cannot be changed.

(1) CR800-R series
Table 6-11:Compatible device list

(2) CR800-D series
Table 6-12:Compatible device list

Classification Type Device name Symbol
Device range

RemarksNumber of
points Setting range Notation

User device Bit
device

Input X 4096 points
(4k)

X0 to XFFF Hexadecimal

Output Y 4096 points
(4k)

Y0 to YFFF Hexadecimal

Internal relay M 18432 points
(18k)

M0 to M18431 Decimal

Word
device

Data register D 5120 points
(5k)

D0 to D5119 Decimal

System device Bit
device

Special relay SM 4096 points SM0 to SM4095 Decimal

Word
device

Special register SD 4096 points SD0 to SD4095 Decimal

CPU buffer
memory access
device

Word
device

CPU buffer
memory access
device

U3En\G 524288
points

U3En\G0 to
U3En\G524287

Decimal

CPU buffer
memory access
device
(Periodical
communication
area)

U3En\HG Maximum
12288 points
(12k)

U3En\HG0 to
U3En\HG12287

Decimal

Classification Type Device name Symbol
Device range

RemarksNumber of
points Setting range Notation

User device Bit
device

Input X 8192 points
(8k)

X0 to X1FFF Hexadecimal

Output Y 8192 points
(8k)

Y0 to Y1FFF Hexadecimal

Word
device

Data register D 5120 points
(5k)

D0 to D5119 Decimal

System device Bit
device

Special relay SM 4096 points SM0 to SM4095 Decimal

Word
device

Special register SD 4096 points SD0 to SD4095 Decimal

CPU buffer
memory access
device

Word
device

CPU buffer
memory access
device
(Periodical
communication
area)

U3En\HG
(n=0, 1)
Note1)

Note1) U3E0/U3E1 can perform reads and writes. Only the compatible U3E1 device ranges have an R
attribute when functions represented in "Table 6-15Device assignment" are enabled. Performing
writes in such cases result in the written content being ignored.

2048 points
(2k)

U3En\HG0 to
U3En\HG2047
(n=0, 1)

Decimal
-680 Devices

 6External input/output functions
(3) CR800-Q series
Table 6-13:Compatible device list

Classification Type Device name Symbol
Device range

RemarksNumber of
points Setting range Notation

User device Bit
device

Input X 4096 points
(4k)

X0 to XFFF Hexadecimal

Output Y 4096 points
(4k)

Y0 to YFFF Hexadecimal

Internal relay M 18432 points
(18k)

M0 to M18431 Decimal

Word
device

Data register D 5120 points
(5k)

D0 to D5119 Decimal

System device Bit
device

Special relay SM 2048 points SM0 to SM2047 Decimal

Word
device

Special register SD 2048 points SD0 to SD2047 Decimal

CPU shared
memory device

Word
device

Multiple CPU
high-speed
communication
area

U3En\G Maximum
14336 points
(14k)

U3En\G10000 to
U3En\G24335

Decimal
 Devices 6-681

6

6External input/output functions
6.8.2 Device assignment
The following table shows the robot functions and corresponding assignment to I/O signal devices. Device
ranges not assigned to functions can be read and written freely.

(1) CR800-R series
Table 6-14:Device assignment

Function
Devices seen from
external equipment

Note1)

Note1) These ranges of devices can be used freely in that write and read operations can be performed even
on ranges of devices not assigned specific functions or when the extension function is disabled.

R/W
attribute

Note2)

Note2) Indicates whether attributes are readable/writable when functions are enabled. Attributes are
readable/writable when functions are disabled.

Robot I/O signals Number of
points Remarks

Direct control of the PLC
input/output unit

X0 to XFFF R Input of 0 to 255 Maximum
256 points

Functions are enabled
when an input/output
unit is mounted and
corresponding functions
are enabled with the
QXYREAD parameter.

Y0 to YFFF R Output of
0 to 255

Maximum
256 points

Hand X384 to X38B R Input of
900 to 907

8 points Always enabled. (For
CR800)

X2FC to X307 R Input of
764 to 775

12 points For CR860

PLC link I/O function U3E0\HG0 to
U3E0\HG511

R/W Input of
10000 to 18191

8192 points Always enabled.

U3En\HG0 to
U3En\HG511
(n=1, 2, 3)

R Output of
10000 to 18191

8192 points

CPU buffer memory
extension function

U3E0\HG512 to
U3E0\HG1023

R/W - - This function is enabled
with the IQMEM
parameter.

U3En\HG512 to
U3En\HG1023
(n=1, 2, 3)

R - -

PLC device assignment
function

D4096 to D5119 R/W or R
Note3)

Note3) Depending on the assigned variable, attributes are either readable and writable or read-only. (When
program external variables are used, attributes are readable and writable. When status variables are
used, attributes are read-only.)

- - This function is enabled
with the parameter
DDEVVL*.

Special Relay SM0 to SM4095 R/W - - Always enabled.

Register SD0 to SD4095 R/W - -
-682 Devices

 6External input/output functions
(2) CR800-D series
Table 6-15:Device assignment

Function
Devices seen
from external

equipment Note1)

R/W attribute
Note2) Robot I/O signals Number of

points Remarks

Parallel input/output unit X0 to XFF R Input of
0 to 255

256 points The function is
enabled when
corresponding
equipment is
connected.

Y0 to YFF R Output of
0 to 255

256 points

Parallel input/output
interface

X0 to X3F R Input of
0 to 63

64 points

Y0 to Y3F R Output of
0 to 63

64 points

GOT link X0 to XFF R/W Note3) Input of
0 to 255

256 points

Y0 to YFF R Output of
0 to 255

256 points

STOP (SKIP0) X320 R Input of 800 1 point Always enabled.

SKIP (1-7) X321 to X327 R Input of
801 to 807

7 points
(2 points for
hardware)

Hand X384 to X38B R Input of
900 to 907

8 points Always enabled.
(For CR800)

X2FC to X307 R Input of
764 to 775

12 points For CR860

PROFIBUS X7D0 to X13CF R Input of
2000 to 5071

Maximum 3072
points

The function is
enabled when an
option card is
connected.

Y7D0 to Y13CF R Output of
2000 to 5071

Maximum 3072
points

CC-Link Y1770 to Y1F6F R Remote input of
6000 to 8047

Maximum 2048
points

X1770 to X1F6F R Remote output of
6000 to 8047

Maximum 2048
points

D0 to D255 R Remote register
input of
6000 to 6255

Maximum 128
words

D256 to D511 R Remote register
output of
6000 to 6255

Maximum 128
words

CC-Link IEF Y1770 to Y1F6F R Remote input of
6000 to 8047

Maximum 2048
points

X1770 to X1F6F R Remote output of
6000 to 8047

Maximum 2048
points

D0 to D1023 R Remote register
input of
6000 to 7023

Maximum 768
words

D1024 to D2047 R Remote register
output of
6000 to 7023

Maximum 768
words

PLC link I/O function U3E0\HG0 to
U3E0\HG511

R/W Input of
10000 to 18191

8192 points Always enabled.

U3E1\HG0 to
U3E1\HG511

R Output of
10000 to 18191

8192 points

CPU buffer memory
extension function

U3E0\HG512 to
U3E0\HG1023

R/W - - This function is
enabled with the
IQMEM
parameter.

U3E1\HG512 to
U3E1\HG1023

R - -
 Devices 6-683

6

6External input/output functions
PLC device assignment
function

D4096 to D5119 R/W or R
Note4)

- - This function is
enabled with the
parameter
DDEVVL*.

Special Relay SM0 to SM4095 R/W - - Always enabled.

Register SD0 to SD4095 R/W - -

Note1) These ranges of devices can be used freely in that write and read operations can be performed even
on ranges of devices not assigned specific functions or when the extension function is disabled.

Note2) Indicates the R/W attribute when each function is enabled. When the function is disabled, both of
reading and writing are possible.

Note3) Devices must not be in use by the parallel input/output interface and parallel input/output unit to be
writable with robot instructions by external equipment.

Note4) Depending on the assigned variable, attributes are either readable and writable or read-only. (When
program external variables are used, attributes are readable and writable. When status variables are
used, attributes are read-only.)

Function
Devices seen
from external

equipment Note1)

R/W attribute
Note2) Robot I/O signals Number of

points Remarks
-684 Devices

 6External input/output functions
(3) CR800-Q series
Table 6-16:Device assignment

Function
Devices seen from
external equipment

Note1)

Note1) These ranges of devices can be used freely in that write and read operations can be performed even
on ranges of devices not assigned specific functions or when the extension function is disabled.

R/W
attribute

Note2)

Note2) Indicates whether attributes are readable/writable when functions are enabled.

Robot I/O signals Number of
points Remarks

Direct control of the PLC
input/output unit

X0 to XFFF R Input of 0 to 255 Maximum
256 points

Functions are
enabled when an
input/output unit is
mounted and
corresponding
functions are
enabled with the
QXYREAD
parameter.

Y0 to YFFF R Output of
0 to 255

Maximum
256 points

Hand X384 to X38B R Input of
900 to 907

8 points Always enabled. (For
CR800)

X2FC to X307 R Input of
764 to 775

12 points For CR860

PLC link I/O function U3E0¥G10000 to
U3E0¥G10511 (For PLC
No. 2)

R/W Input of
10000 to 18191

8192 points Always enabled.

U3En\G10000 to
U3En\G10511
(n=1, 2, 3)

R Output of
10000 to 18191

8192 points

Shared memory
extension function

U3E0\HG10512 to
U3E0\HG11023 (For
PLC No. 2)

R/W - - This function is
enabled with the
parameter IQMEM.

U3En\HG10512 to
U3En\HG11023
(n=1, 2, 3)

R - -

PLC device assignment
function

D4096 to D5119 R/W or R
Note3)

Note3) Depending on the assigned variable, attributes are either readable and writable or read-only. (When
program external variables are used, attributes are readable and writable. When status variables are
used, attributes are read-only.)

- - This function is
enabled with the
parameter
DDEVVL*.

Special Relay SM0 to SM2047 R/W - - Always enabled.

Register SD0 to SD2047 R/W - -
 Devices 6-685

6

6External input/output functions
6.8.3 PLC device assignment function
Directly assigning program external variables and state variables to devices enables robot information to be
collected from GOTs and other FA equipment through such devices.

(1) Compatible device
Assignable devices are described as follows.
Table 6-17:Compatible device

(2) Assignment to a robot variable device
Assignable robot variables are described as follows.
Table 6-18:Assignable variable

Type Device
name Symbol

Device range
Remarks

Number of points Setting range Notation

Word device Data
register

D 1024 points (1k) D4096 to D5119 Decimal 2 bytes*1024
points = 2048
bytes

Classification Type Data type Remarks

Variable Program external variables Position type Each data type supports one-
dimensional arrays.
* For details on program external
variables, refer to Page 142, "4.3
Detailed specifications of MELFA-
BASIC VI".

Joint type

Numeric value type (double-
precision real number type
only)

Character string type

State variables Position type * For details on status variables,
refer to Page 167, "4.5 Robot sta-
tus variables" and Page 356, "4.13
Detailed explanation of Robot Sta-
tus Variable".
Assignment of status variables
with signal input/output functions
(such as M_In() and M_Out()) is
unavailable.

Joint type

Numeric value type

Character string type

D device

D4096
D4097
D4098
D4099
D4100
D4101

Variable

Robot controller

Device assignment parameters

SLMP-compatible equipment

GOT
-686 Devices

 6External input/output functions
Variables and devices are assigned with the following parameters.

Parameter Parameter
name

Number of
arrays

Character
string

Description Default setting

Assignment of robot
variables to D device

DDEVVL1 to
DDEVVL32

Integer 4,
Character
string 1,
Integer 5

Assigns robot variables to D device. Up to 32
variables can be assigned.
Element 1: Variable type

0: Not set
1: Program external variables
2: State variables

Element 2: Data type
0:Integer type
1: Long-precision integer type
2: Single-precision real number

type
3: Double-precision real

number type
4: Position data type
5: Joint data type
6: Workpiece coordinate type
7: Character string type

Element 3: (Reserved)
Element 4: Used to assign data types that

include real numbers. (Ignores
all other data types stated in
Element 2 except 2 to 6.)
0: Variables of single-precision

real number type (including
position, joint, and workpiece
coordinate types) are
multiplied by 104 and then
assigned as long-precision
integer type.
Variables of double-precision
real number type are
multiplied by 108 and then
assigned as 64-bit integers
(twice the length of long-
precision integers).

1: Variables are assigned as
they are.

Element 5: Variable name
(Ex.) M_100, J_Fbc, or similar

Element 6: Argument1
* For external variables: Array elements/For
status variables: Argument 1

Setting range: Blank (when omitted) or from
0

Element 7: Argument 2(Only for state
variables)

 Setting range: Blank (when omitted) or from
0

Element 8: (Reserved)
Element 9: Number of bytes of a character

string variable (Ignores all other
data types stated in Element 2
except 7.)
* Specify the sum of 1 (area
where a 1-byte character string
is saved) and the maximum
number of bytes of a character
string variable to be assigned.
Setting range: 1 to 240

 Element 10: Start D device number
 Setting range: 4096 to 5119

(Ex.) Specify
4096 for D4096

0,0,0,0, , , , ,1,4096
 Devices 6-687

6

6External input/output functions
*Example of assignment to numeric variable
(1)Integer
[Example]M_OPOvrd(Integers)
When assigned to D4096

[Example]M_ErCode(Long-precision integer)
When assigned to D4096

(2)Real number
[Example]M_Timer(1)(Single-precision real number)
When assigned to D4500

[Example]M_100(1)(Double-precision real number)
When assigned to D4500

Device Description Updating cycle

D4096 M_OPOvrd value [Integer (signed)] Control cycle

Device Description Updating cycle

D4096 M_ErCode value [Long-precision integer (signed)] Control cycle

D4097

Device Description Updating cycle

D4500 M_Timer(1) value [Long-precision integer (signed) multiplied by
104] or [Single-precision real number]

Control cycle

D4501

Device Description Updating cycle

D4500 M_100(1) value [64-bit integer (signed) multiplied by 108] or
[Double-precision real number]

Control cycle

D4501

D4502

D4503
-688 Devices

 6External input/output functions
*Example of assignment to position variable/workpiece coordinate
When position type/workpiece coordinate type variable is assigned to D5000

Device Description Updating cycle

D5000 X coordinate value [Long-precision integer (signed) multiplied by 104] Control cycle

D5001

D5002 Y coordinate value [Long-precision integer (signed) multiplied by 104]
D5003

D5004 Z coordinate value [Long-precision integer (signed) multiplied by 104]
D5005

D5006 A coordinate value [Long-precision integer (signed) multiplied by 104]
D5007

D5008 B coordinate value [Long-precision integer (signed) multiplied by 104]
D5009

D5010 C coordinate value [Long-precision integer (signed) multiplied by 104]
D5011

D5012 L1 coordinate value [Long-precision integer (signed) multiplied by 104]
D5013

D5014 L2 coordinate value [Long-precision integer (signed) multiplied by 104]
D5015

D5016 Structure flag Note1) [Long-precision integer (signed)]

Note1) Only the lower one word is used for the structure flag/mechanism number. The upper one
word is reserved.

D5017

D5018 Multiple rotation data [Long-precision integer (signed)]

D5019

D5020 Mechanism number(MELFA-BASIC VI only) [Long-precision integer
(signed)]D5021
 Devices 6-689

6

6External input/output functions
*Example of assignment to joint variable
When a joint type variable is assigned to D5000

*Example of assignment to character string
When a 7-byte character string type variable is assigned to D5100

Device Description Updating cycle

D5000 J1 coordinate value [Long-precision integer multiplied by 104] Control cycle

D5001

D5002 J2 coordinate value [Long-precision integer multiplied by 104]
D5003

D5004 J3 coordinate value [Long-precision integer multiplied by 104]
D5005

D5006 J4 coordinate value [Long-precision integer multiplied by 104]
D5007

D5008 J5 coordinate value [Long-precision integer multiplied by 104]
D5009

D5010 J6 coordinate value [Long-precision integer multiplied by 104]
D5011

D5012 J7 coordinate value [Long-precision integer multiplied by 104]
D5013

D5014 J8 coordinate value [Long-precision integer multiplied by 104]
D5015

D5016 Mechanism number(MELFA-BASIC VI only) [Long-precision inte-
ger (signed)] Note1)

Note1) Only the lower one word is used for the mechanism number. The upper one word is
reserved.

D5017

Device Description Updating cycle

D5100 Character string length [Lower 8 bits], 1st byte of character code
[Higher 8 bits]

Control cycle

D5101 2nd byte of character code [Lower 8 bits], 3rd byte of character
code [Higher 8 bits]

D5102 4th byte of character code [Lower 8 bits], 5th byte of character
code [Higher 8 bits]

D5103 6th byte of character code [Lower 8 bits]
-690 Devices

 7Appendix
7 Appendix
7.1 Configuration flag

The configuration flag indicates the robot posture.
For the 6-axis type robot, the robot hand end is saved with the position data configured of X, Y, Z, A, B and
C. However, even with the same position data, there are several postures that the robot can change to. The
posture is expressed by this configuration flag, and the posture is saved with FL1 in the position constant (X,
Y, Z, A, B, C) (FL1, FL2).
The types of configuration flags are shown below.

*For vertically articulated robots
(1) Right/Left

R is center of flange in comparison with the plane through the J1 axis vertical to the ground. (5-axis type
robot)
P is center of J5 axis rotation in comparison with the plane through the J1 axis vertical to the ground. (6-axis
type robot)

Fig.7-1:Configuration flag (Right/Left)

(2) ABOVE/BELOW
P is center of J5 axis rotation in comparison with the plane through both the J3 and the J2 axis.

Fig.7-2:Configuration flag (ABOVE/BELOW)

５軸タイプ ６軸タイプ

RIGHT LEFT

R

J1軸
回転中心

RIGHT LEFT

P

J1軸
回転中心

* The illustration is an example.5-axis type 6-axis type

J1 axis
rotation center

J1 axis
rotation center

FL1(Flag1)
&B 0 0 0 0 0 0 0 0

 ↑
1/0 = Right/Left
Note) "&B" is shows the binary

FL1(Flag1)
&B 0 0 0 0 0 0 0 0

 ↑
1/0 = ABOVE/BELOW
Note) "&B" is shows the binary

J2 axis
Rotation center

J3 axis
Rotation center

Ｑ

ABOVE

BELOW

* The illustration is an example.

P

5-axis type/6-axis type
 Configuration flag Appendix-691

A

7Appendix
(3) NONFLIP/FLIP (6-axis type robot only.)
This means in which side the J6 axis is in comparison with the plane through both the J4 and the J5 axis.

Fig.7-3 ： Configuration flag (NONFLIP/FLIP)

FLIP

NON FILIP

J4 axis

J6 axis flange surface

FL1(Flag1)
&B 0 0 0 0 0 0 0 0

 ↑
1/0 = NONFLIP/FLIP
Note) "&B" is shows the binary

* The illustration is an example.
ppendix-692 Configuration flag

 7Appendix
*For horizontally articulated robots
(1) Right/Left

Indicates the location of the end axis relative to the line that passes through both the rotational center of the
J1 axis and the rotational center of the J2 axis.

Fig.7-4:Configuration flag (Right/Left)

FL1(Flag1)
&B 0 0 0 0 0 0 0 0

 ↑
1/0 = Right/Left
Note) "&B" is shows the binary

RIGHT

LEFT

* The illustration is an example.
 Configuration flag Appendix-693

A

7 Appendix
7.2 Spline interpolation
Spline interpolation, one of the robot movement commands, is explained in this section.

7.2.1 Outline
(1) Outline

Spline interpolation is a function that moves the robot at the designated speed along a spline curve that
smoothly connects designated path points.
Ex-T spline interpolation is a function used to move the spline curve that smoothly links path points specified
on the workpiece grasped by the robot along an arbitrary coordinate system origin (Ex-T coordinate system
origin) at a specified speed (Ex-T coordinate system origin viewed from workpiece moves relatively at
specified speed).
The robot can be moved along a curved path that was not possible with conventional linear or circular
interpolation. This interpolation can be used for sealing, polishing and chamfering processes, etc.

Fig.7-5: Outline of spline interpolation

(2) Features
• A smooth spline curve is generated between each path point so that the robot positions and posture

designated as path points are passed. The robot moves along that curve at the speed designated with
linear speed.

Fig.7-6:Spline interpolation

Spline
interpolation

(a) Spline interpolation (b) Ex-T spline interpolation

Moves at
designated linear
speed

Spline curve Path points
ppendix-694 Spline interpolation

 7 Appendix
• A file dedicated for spline interpolation (spline file) in which the path point data is registered is used
separately from the robot program. This file is created and edited in the RT ToolBox3 dedicated edit screen
(Spline File Edit screen), and written to the controller.

Fig.7-7:Creating dedicated file for path point data

• By creating an independently dedicated file, the spline interpolation can be shared by multiple robot
programs, and the spline interpolation can be switched easily.

Fig.7-8:Features of dedicated file

• The swell of the spline curve can be partially compensated, and changed to a straight or arc path.
• In addition to the robot positions, output signals or random values can be registered as the path point data.

(3) Required devices and software version
RT ToolBox3 is required to use spline interpolation. Spline interpolation can be used with devices having the
software version shown in Table 7-1.

Table 7-1:Software versions compatible with spline interpolation

There is no designated software version for the teaching pendant (R32TB/R56TB).

(4) Terminology
The terminology used when explaining spline interpolation is shown in Table 7-2.

Table 7-2:Explanation of terminology

Device Function Controller RT ToolBox3

Compatible software
version

Spline interpolation Ver. A1 or later Ver. 1.00 or later

Ex-T spline interpolation Ver. A1 or later Ver. 1.00 or later

Terminology Explanation

Path point This is the robot position data (Cartesian coordinate value) used to generate the spline curve.

Block Refers to the curve line or segment generated between two adjacent path points.

Path Refers to the spline curve generated by the spline interpolation command and passes through path
points.

Start position Refers to the path point where spline interpolation movement starts.

Spline file

Controller

Write

Read

RT ToolBox3
Spline File Edit screen

1.PRG

Ovrd
MvSpl

1.PRG
Ovrd

MvSpl2.PRG
Ovrd
MvSpl3.PRG

Ovrd

MvSpl

ロボット
プログラム

スプライン
ファイル

01

xx-xx
--xx-

03
xx-xx

--xx-02
xx-xx
--xx-01

xx-xx

--xx-

複数のロボットプログラムで共用 スプライン補間の切り替え

ロボット
プログラム

スプライン
ファイル

Robot
program

Spline
file

Robot
program

Spline
file

Sharing by multiple robot programs Switching spline interpolation
 Spline interpolation Appendix-695

A

7 Appendix
Fig.7-9:Spline interpolation terminology

7.2.2 Specifications
(1) Basic specifications

Table 7-3:Basic specifications

End position Refers to the path point where spline interpolation movement ends.

Spline file File containing the path points and setting values required for execution, etc. One file corresponds to
one spline interpolation.

Spline File Edit screen RT ToolBox3 screen dedicated for creating, editing and saving spline file.

DXF File Import screen
Note1)

RT ToolBox3 screen dedicated for creating, editing and saving spline file from a DXF file.

Ex-T coordinate system
origin

This is the coordinate system origin that is the subject of arbitrarily defined control outside the robot.

Note1) Not supported with the RT ToolBox3 mini version.

Item Specifications

Compatible robot Vertical articulated (6-axis) robot, horizontal articulated (4-axis) robot
* Not supported with vertical articulated (5-axis) robot or user mechanism.

Compatible robot language Spline interpolation commands, functions, and status variables have been added to MELFA-
BASIC VI.
(MvSpl command, EMvSpl command, SetCalFrm command, SplPos function, SplSpd function,
SplECord function, status variables M_SplPno, M_SplVar)

Moving method The spline file is registered into the controller, and the spline interpolation command is executed.
The spline curve is generated to pass through the path points registered in the spline file. The
robot moves along this curve.

Spline file No. of registered
files

Maximum 99 files
* The number of files that can actually be registered will depend on the file size and amount of

open storage area.

No. of registered
path points

Maximum 5000 points per file
* The file size is approx. 470 KB with 5000 points.

Create/edit/save The RT ToolBox3 Spline File Edit screen is used to create, edit and save the file.
SplWrt command or SplFWrt command are used to create, edit and save the file.

Path point
registration
method

The path points are registered with the following operations on the RT ToolBox3 Spline File Edit
screen.

Teaching operation, import of MDI and CSV files, import of MXT files, import of DXF files,
robot program (SplWrt command)

Path
adjustment

Tolerance
designation

The degree of curve swelling can be designated in block units. Random blocks can be changed
from spline curves to linear paths.

Arc designation Three consecutive points are designated as the path point to create an arc path instead of a
spline curve.
* Arc designation method is different depending on the version of the spline file.

Spline cancel The spline curve is split at a path point where change in moving direction is large.

Block length ratio If the segment length is larger than the specified ratio compared to the previous and next blocks,
that block is automatically handled as a linear block.

Terminology Explanation

経路点1
（開始位置）

経路点2
経路点3

経路点4
経路点5

経路点6
（終了位置）

ブロック1

ブロック2

ブロック3
ブロック4

ブロック5

経路

Path point 1
(start position)

Path point 2

Block 1

Block 2

Path

Path point 3

Block 3
Path point 4

Block 4
Path point 5

Block 5

Path point 6
(end position)
ppendix-696 Spline interpolation

 7 Appendix
(2) Restrictions

Table 7-4:Restrictions

Operation
mode

Constant linear
speed

The interpolation command is generated so the robot moves uniformly at the designated speed.

Variable linear
speed

If the speed may be exceeded during movement because the designated speed is large or the
change in posture is large, etc., the speed is automatically lowered.

Signal output A general-purpose signal can be output when passing through the path points.

Numerical setting A random value can be set for each path point, and that value referred to with the status variable.

Item Details of restrictions

Additional axis Spline interpolation does not support additional axes. Even if coordinate values for the
additional axis are set at each path point, the robot will not start from the start position
coordinate values during spline interpolation.

Cnt command Even if the interpolation continuous movement is designated with the Cnt command, this does
not function for the spline interpolation start position and end position.

Oadl command Even if optimum acceleration/deceleration control is enabled with the Oadl command, it does
not function for spline interpolation.

MvTune command Operation mode designation with the MvTune command does not function for spline
interpolation.

FsGChg command Spline interpolation does not support the <Changeover start position> target designated with
the FsGChg command (designates control characteristics changeover for force sensor control).

Tool/base changeover The data cannot be switched between tool conversion data and base conversion data while
spline interpolation execution is halted.

Jrc command The Jrc command cannot be executed while the spline interpolation execution is halted.

Interpolation movement related
status variables

The following status variables related to interpolation movement will not return the spline
interpolation status.

Interrupt process Even if "Stop type 1" is designated as the interrupt stop type, the same stopping as "Stop type
2" will take when interrupting during spline interpolation movement.

Tracking function The tracking function and spline interpolation cannot be used simultaneously.

Item Specifications

Status variable Function

M_Acl Returns the current acceleration time ratio.
M_DAcl Returns the current deceleration time ratio.
M_Ratio Returns the attainment ratio to the target position.
M_RDst Returns the remaining distance to the target position.
M_Spd Returns the currently set speed.
 Spline interpolation Appendix-697

A

7 Appendix
(3) Robot behavior during spline interpolation
• If the robot’s current position and spline interpolation start position differ and spline interpolation is
executed, the robot will move with linear interpolation to the start position and then will start spline
interpolation. During linear interpolation, the robot moves with the speed designated with Ovrd command,
Spd command and override.
Even with the additional axis, if the current position and start position differ, the robot will move to the start
position.

Fig.7-10:When current position and start position differ (Spline interpolation)

• If the robot’s current position and Ex-T spline interpolation start position differ and Ex-T spline interpolation
is executed, the robot will move with Ex-T linear interpolation to the start position and then will start Ex-T
spline interpolation. During Ex-T linear interpolation, the robot moves with the speed designated with Ovrd
command, Spd command and override.
Even with the additional axis, if the current position and start position differ, the robot will move to the start
position.

Fig.7-11:When current position and start position differ (Ex-T spline interpolation)

• Operation during spline interpolation can be halted with a stop input, etc. When operation is resumed, the
remaining spline interpolation is continued from the halted position.
• If the robot or additional axis is moved with jog operation after the spline interpolation has been halted with
a stop input, etc., the robot will return to the position where spline interpolation was halted before continuing

Current position

Linear interpolation

Start position

Spline interpolation

Current position

Start position

Ex-T linear interpolation
ppendix-698 Spline interpolation

 7 Appendix
operation. The robot will return to the halted position with joint interpolation. The parameter RETPATH
(setting for automatic return after jog feed during halt) setting is not applied.

Fig.7-12:Behavior during halt and resume

• After operation is halted during spline interpolation with a stop input, etc., if the halted robot program is
read into the teaching pendant or RT ToolBox3 program edit screen, the spline interpolation halt position
information will be reset. Thus, if operation is resumed from the halted line, the robot will move to the spline
interpolation start position before resuming operation.

(4) Check related to path points
The check listed in Table 7-5 is preformed on each path point.

Table 7-5:Check related to path points

Type Explanation

Distance between path points and
command speed

The program is checked to confirm there is adequate distance between two adjacent path
points. The appropriate distance differs according to the designated speed, and if two path
points are too close for the speed, error L2611 (path points too close) will occur.
Refer to the following table and graph, and determine the command speed and distance
between path points.

The command speed in the table can be obtained with the following formula.
 Command speed = (<Speed> of MvSpl command) × (Ovrd command)

* The high speed spline interpolation command has been added to the software version A3a.
With this function enabled, a command speed higher than what was previously possible can
be specified for the distance between the respective path points. Refer to Page 761, "7.2.10
High speed spline interpolation command" for further information.

スプライン補間
運転を中断

ジョグ操作

運転を再開

関節補間

中断位置からスプ
ライン補間を再開

Resume
operation

Restart spline
interpolation from

halt position
Halt

operation

Jog operation
Joint interpolation

Spline interpolation

Command speed
[mm/s] Required distance between path points

10 0.6 mm or more
20 1.2 mm or more
50 3.0 mm or more

100 6.0 mm or more
200 12.0 mm or more
500 30.0 mm or more

0
3
6
9
12
15
18
21
24
27
30
33

0 50 100 150 200 250 300 350 400 450 500 550

R
eq

ui
re

m
en

t d
is

ta
nc

e
be

tw
ee

n
pa

th
 p

oi
nt

s
 [m

m
]

Command speed [mm/s]
 Spline interpolation Appendix-699

A

7 Appendix
Posture variation amount The program is checked to confirm that the posture change between two adjacent path points
is not too large. If the posture change angle is larger than 150 degrees, error L2611 (posture
change too large) will occur.
* In Ex-T spline interpolation, the program is checked to confirm that the posture change of path
points on the workpiece is not too large.

Configuration flag value The program is checked to confirm that the configuration flag values for two adjacent path
points are the same. If the configuration flag values are different, error L2611 (path point
configuration flags differ) will occur.

Type Explanation

Posture change
angle

Path points
ppendix-700 Spline interpolation

 7 Appendix
7.2.3 Explanation of functions
(1) Path adjustment

The spline curve’s shape can be compensated by using the path adjustment function. "Tolerance
designation", "arc designation", "spline cancel" and "block length ratio" are available for compensating the
path.

■Tolerance designation
Designate the tolerance*1) to adjust the degree of spline curve swelling in block units. The setting range is 0
to 100%, and the default value is 100% (No adjustment). The smaller the setting value is, the smaller the
degree of curve swelling is. When 0% is set, the target block will be linear.
The tolerance can also be designated for the posture. The smaller the setting value is, the smaller the
degree of swelling in posture change is. However, the smoothness in posture change will drop when
passing through the path points.

Fig.7-13:Tolerance

■Arc designation
Arc designation method is different depending on the version of the spline file.

1) Spline file version 02
When two consecutive blocks are designated as an arc (arc designation at start point of a block), the
curve that consist of those two blocks will be an arc instead of a spline. If this is applied at a section
requiring an arc-shaped curve, such as at a corner, an accurate arc can be drawn with fewer path points
than the spline curve.

*1) Tolerance typically refers to the tolerable error and accuracy. However, in this function it refers to
the degree of spline curve swelling in respect to the lines (segments) that connect the path points.

トレランス

100%（調整なし）
60%
30%
0%（直線）

Tolerance
100% (no adjustment)

0% (linear)

Blocks subject to tolerance
The tolerance is set as the path point data. The tolerance set for the path point on the start position side
of each block is reflected onto that block. In the following example, the tolerance set for the path point n
is applied on block n.

経路点n

経路点n+1

ブロックn

動作方向

Path point n+1
Block n

Path point n Direction of
movement
 Spline interpolation Appendix-701

A

7 Appendix
Fig.7-14:Arc designation (Spline file version 02)

With arc designation, two consecutive blocks must always be designated. If only one block is designated,
the error L2613 (not enough points designated for arc) will occur.
Furthermore, if the three points used to form an arc by specifying two blocks are aligned in a straight line
and arc generation is not possible, error L2613 (block data calculation error (Cir.Arc)) will occur.

Fig.7-15:Example of error in arc designation (Spline file version 02)

2) Spline file version 01
When three consecutive path points are designated as an arc, the curve that connects those three points
will be an arc instead of a spline. If this is applied at a section requiring an arc-shaped curve, such as at a
corner, an accurate arc can be drawn with fewer path points than the spline curve.

Fig.7-16:Arc designation (Spline file version 01)

With arc designation, three consecutive path points must always be designated. If only one point is
designated, the designation will be ignored, and a spline curve will be drawn. If only two points are
designated, the error L2613 (not enough points designated for arc) will occur.
If the three designated points are on a straight line and the arc cannot be generated, the error L2613 (block
data calculation error (Cir. Arc)) will occur.

Arc designation

These 2 blocks are
designated as arc

A B

B B

B

A

A

A

A

B

Arc curve

A: Arc designated
B: Arc not designated Arc curve

Error occurs since only one block is
designated for arc

Spline file version 02
The spline file version 02 is supported with the following software version.

Controller: Ver. A1 or later
RT ToolBox3: Ver. 1.00 or later

円弧指定

この３点の経路点を
円弧指定

Arc designation

These 3 path
points are
designated as arc
ppendix-702 Spline interpolation

 7 Appendix
Fig.7-17:Example of error in arc designation (Spline file version 01)

When a continuous arc is designated, depending on the path points the arc may
have a sharp return point as shown in the following drawing. If the spline cancel
does not function and decelerate to stop does to take place between the
connections of adjacent arcs, a sharp reversal will take place. Take special care to
the shape of the generated arc curve.

■Spline cancel
To create a corner edge at path points having a large change in movement direction instead of passing
through them with a smooth spline curve, designate the cancel angle to split the spline curve at that path
point.

Fig.7-18:Spline cancel

For example, to create a corner edge at the path point n shown in Fig. 7-18, if a smaller angle than the angle
θn created by path point n’s previous and next blocks (block n-1 and block n) is set as the cancel angle, the

A:円弧指定あり
B:円弧指定なし

A

A

A

A

A
A A

B
B

B

円弧曲線

円弧曲線

円弧指定が２点だけ
なのでエラー発生

A: Arc designated
B: Arc not designated Arc curve

Arc curve
Error occurs since
only two points are
designated for arc

経路点n

n+1

n+2

Relation of arc designation and other path point adjustment functions
Tolerance and block length ratio do not function on a block that draws an arc. Spline cancel does not
function on the arc's transit points (path point n+1). For the start point (path point n) and end point (path
point n+2), if the angle created by the previous and next block is larger than the cancel angle, the
movement will decelerate to a stop once.

Path point n

 CAUTION

経路点
n-1 n

n+1

θn

n-1 n

n+1

ブロックn-1

ブロックn

スプライン
キャンセル

スプライン曲線を分割

θn＞キャンセル角度

Path point

Block n-1

Block n

Spline
cancel

Split spline curve

Cancel angle
 Spline interpolation Appendix-703

A

7 Appendix
spline curve will be split at path point n. The robot will decelerate to a stop once at the path point n where the
spline curve is split, and then will accelerate and execute the remaining interpolation.
The cancel angle setting range is shown below. This angle can be set individually for each spline
interpolation.

Setting range: 0 to 180 degrees (1 degree increments)
* Spline cancel does not function when 0 degrees is set.
* The default value is 120 degrees.

If spline cancel is disabled or if the cancel angle is set to a large value, the spline
curve will not be split where the movement direction changes greatly, and the
robot will not decelerate. This can cause the robot to vibrate or a servo error to
occur.
If the spline curve bends and breaks (zigzag), the interpolation position may not
be calculated and error L2163 (spline interpolation command calculation error)
may occur.
Check the path point positions and set the appropriate cancel angle.

■Block length ratio
If the block length is extremely long in respect to an adjacent block, that block can automatically be moved
as a linear block instead of a spline curve.

Fig.7-19:Linearization by block length ratio

If the block n length Ln is longer than the designated length compared to the adjacent block length Ln-1 or
Ln+1, block n will be linear.
The block length ratio setting range is as follows. This can be set individually for each spline interpolation.

Setting range: 0 to 100 fold (1-fold unit)
* The block length ratio does not function when 0-fold is designated.
* The default value is 8-fold.

Even if tolerance is set for a block that is linear because of the block length ratio, the block length ratio
function will have priority.

(2) Operation mode
With spline interpolation, the robot is operated to move through control points while maintaining the
designated speed. If the designated speed is high, or if the posture variation amount in respect to the
distance between path points is large, the speed may be exceeded during the movement.
An operation mode is available so that in such cases, the designated speed is not maintained but the robot
moves while not generating an excessive speed when possible. There are two operation modes as shown
in Table 7-6.

 CAUTION

経路点
n-1

n n+1

n+2Ln

Ln-1 Ln+1

n-1

n n+1

n+2

ブロックn

直線化

Ln ＞ Ln-1×比率 または Ln ＞ Ln+1×比率

Path point

Block n

Linearization

Ln > Ln-1 × ratio or Ln > Ln+1 × ratio

Precautions for path adjustment
The curve onto which path adjustment has been applied and the connection of the previous and next
curve are not as smooth as the connections of spline curves that have not been adjusted. Thus,
depending on the state of the connection and the speed command, the speed may fluctuate at the curve
connections.
ppendix-704 Spline interpolation

 7 Appendix
Table 7-6:Operation mode

The operation mode can be set individually for each spline interpolation. The default state is constant linear
speed.
If the speed will be exceeded during spline interpolation movement, try using "variable linear speed" if the
movement does not need to be performed at a constant speed.

(3) Signal output
A random external output signal can be turned ON/OFF when passing through a path point. By using this
function, for example, a trigger signal can be output to a peripheral device when passing through a random
path point even without describing it in the robot program.

Fig.7-20:Signal output

To use signal output, set the items in Table 7-7 as the path point data.

Table 7-7:Signal output setting items

Operation mode Explanation

Constant linear speed The robot moves at the designated speed and maintains the constant speed. The speed may
be exceeded during the movement depending on the designated speed or posture variation
amount.

Variable linear speed The robot moves at the designated speed and maintains the constant speed. However, if it is
judged that the speed may be exceeded during the movement, control is applied so that the
movement speed is automatically lowered and the speed is not exceeded. The speed returns
to the originally designated speed when the possibility of over speed is eliminated.
* It may not be possible to suppress the over speed depending on the movement state.

Setting item Explanation

Head No. Designate the head No. of the output signal.
 Setting range: –1 to 32767

* When –1 is set, this function will be disabled at that path point.
The default value is –1. The setting range is shown above, but the head No. that can actually
be output will depend on the type of connected device.

Bit width Designate the bit width of the signal to be output.
 Setting range: 1, 8, 16, 32-bit
The default value is 1-bit.

Step feed
If the specified speed may be exceeded when executing spline interpolation with step feed, the
movement speed will drop even if the operation mode is "constant linear speed".

装置Aへの
信号ON

装置Bへの
信号ON

（信号出力なし）

装置Aへの
信号OFF

スプライン補間

経路点

Signal to
device A ON

Path point

Spline interpolation

Signal to
device B ON

(No signal output)

Signal to
device A OFF
 Spline interpolation Appendix-705

A

7 Appendix
An example of the signal output data set at the path point and the changes in the external output signal
status is shown in Table 7-8.

Table 7-8:Example of signal output (all signals are OFF in default state)

If a dedicated output signal is assigned to the signal output designation, an error L0091 (signal already
assigned to dedicated output) will occur when the signal output is executed. Do not output a signal to a bit
having a dedicated output assignment.
The external output signal designated with signal output is not occupied. Note that if the target external
output signal is changed with another robot program using multi-task, those changes will be applied.

(4) Numerical setting
A random value can be set as the path point data.

Setting range: –1 to 32767 (integer)
* –1 indicates not set.
* The default value is –1.

Bit mask Designate the mask pattern for enabling the signal output in bit units in respect to the
designated bit width. The setting range changes according to the bit width.

The bit with 1 bit mask applies the designated output data’s ON/OFF status onto the signal
output.
The bit with 0 bit mask maintains the ON/OFF status of the external output signal at that point.
The default value is 0, so the bit mask must be set to output the signal.

Output data Designates the data to be signal output.
The setting range differs according to the bit width.

The default value is 0.

Pulse output When pulse output is enabled, the above signal output designation is applied onto the external
output signal for approx. 14 ms after the path point is passed. The external output signal status
returns to the original status after approx. 14 ms has passed.
This is disabled as the default value.

Path
point

Head
No. Bit width Bit

mask
Output
data

Pulse
output

External output signal status [● : ON/ ○ : OFF]

107 106 105 104 103 102 101 100

1 100 1 1 1 Invalid ○ ○ ○ ○ ○ ○ ○ ●

2 102 1 1 1 Invalid ○ ○ ○ ○ ○ ● ○ ●

3 -1 1 0 0 Invalid ○ ○ ○ ○ ○ ● ○ ●

4 100 8 5C FA Invalid ○ ● ○ ● ● ○ ○ ●

5 100 8 FF AF Valid ● ● ● ● ● ● ● ●

Approx. 14 ms later ⇒ ○ ● ○ ● ● ○ ○ ●

Setting item Explanation

Bit width Bit mask setting range [hex]

1 0, 1
8 0 to FF

16 0 to FFFF
32 0 to FFFFFFFF

Bit width Bit mask setting range [hex]

1 0, 1
8 0 to FF

16 0 to FFFF
32 0 to FFFFFFFF

Judgment of path point passage
Passage of the path point is judged by the position command level. It is not judged by the actual robot
position (feedback position).
ppendix-706 Spline interpolation

 7 Appendix
When the status variable M_SplVar is referred to, the value set for the path point passed through most
recently can be confirmed. If the same value is set for multiple path points and referring to the status
variable M_SplVar with multi-task, a preset process can be executed when the specified path point is
passed through during spline interpolation.
When a non-set path point is passed, the status variable M_SplVar value will not change. The value held at
that time will be returned.

Fig.7-21:Numerical setting

(5) Frame transformation
Frame transformation is a function applied on a random path, and moves the path to another position while
maintaining the shape.
The following processes can be handled with this function:
 • Transformation from position on drawing to actual position
 • Adjustment of work target’s position deviation
 • Change of work area with spline interpolation

■Outline of process
Frame transformation is explained using Fig. 7-22 as an example.
Set a coordinate system to be used as a reference in respect to a random path. The coordinate system is
designated with three position data in the same manner as the Fram function. In this example, position data
PR1, PR2 and PR3 are designated, and reference coordinate system "Xfr-Zfr-Yfr" is set.
Next, set the transformed reference coordinate system in the same manner. In this example, position data
PC1, PC2 and PC3 is designated, and the transformed reference coordinate system "Xfc-Zfc-Yfc" is set.
When frame transformation is executed, all path points are calculated so that the relative displacement from
the reference coordinate system’s origin to the path point is the same before and after the transformation. In
the example, the path points P11 ~ P14 to P21 ~ P24 is calculated.
The same value as the corresponding pre-transformation path points are set for the transformed path point
configuration flags, multi-rotation flags and additional axis data.
In Ex-T spline interpolation, frame transformation is executed including "XE1-ZE1-YE1" of the Ex-T
coordinate system origin.

数値設定
（未設定）

M_SplVar = 100 ・・・・・・ 200 ・・・・ 200 ・・・・・・・・ 400 ・・・・・・ 400 ・・・・・

スプライン補間経路点

100
200

-1 -1

400

（未設定）
Numerical setting

Path point Spline interpolation

(Not set) (Not set)
 Spline interpolation Appendix-707

A

7 Appendix
Fig.7-22:Frame transformation (Spline interpolation)

Fig.7-23:Frame transformation (Ex-T spline interpolation)

■Set data
Define the coordinate system by setting the following three position data items in the same manner as the
Fram function.

Origin position Equivalent to PR1, PC1 in Fig. 7-22 and Fig. 7-23.
Position on X axis Equivalent to PR2, PC2 in Fig. 7-22 and Fig. 7-23.
XY plan +Y direction position Equivalent to PR3, PC3 in Fig. 7-22 and Fig. 7-23.

The X-, Y- and Z-axis coordinate values for a total of six position data items are set for the pre-
transformation and transformed.
If the three position data items contain the same point or if the three position data items are on the same
line, the coordinate system cannot be defined and error L2041 (can’t calculate frame transformation
coordinates) will occur.

■Execution method
There are three methods of executing frame transformation.

Table 7-9:Frame transformation execution method
Execution method Explanation Usage case

Execute with RT ToolBox3 Frame transformation is executed with the RT
ToolBox3 Spline File Edit screen. A spline file is
created using the transformation results as the
path points.

• When individually compensating the
transformed path point data using jog operation,
etc.

• When using the transformed path point data as
the source data for another path.

+Xfr

+X

+Y

P11

P12

P13

P14

+Yfr
PR1

PR2

PR3

Zfr

+Xfr

+X

+Y

P11

P12

P13

P14

+Yfr

フレーム変換

Zfr

+Xfc

P21

P22

P23

P24

+Yfc
PC1

PC2

PC3

Zfc

Frame transformation

Frame
transformation
ppendix-708 Spline interpolation

 7 Appendix
7.2.4 Work procedures
The work procedures for executing spline interpolation are listed below.

Table 7-10:Work procedures

Save coordinate system in
spline file

The coordinate system settings are saved in a
spline file, and the path points are sequentially
frame transformed when spline interpolation is
executed.

• To keep the coordinate values on the drawing as
the coordinate values for path points

• When coordinate system is fixed to one

Set coordinate system with
robot program

The coordinate system is set in the robot program
using the SetCalFrm command. The path points
are sequentially frame transformed using set
coordinate system when spline interpolation is
executed.

• To use multiple coordinate systems for one path
• To use sensors and compensate the path

deviation each time

No. Step Work details

1 Creating the spline file
(Chapter "7.2.5")

The spline file is created using the RT ToolBox3 Spline File Edit screen, DXF File Import
function, or SplWrt command.
(1) Register the path points using the position teaching or import function.
(2) Set the signal output and numerical settings as necessary.

2 Creating the robot program
(Chapter "7.2.6")

Create a robot program that contains the spline interpolation movement.

3 Confirming the movement
(Chapter "7.2.7")

Confirm the spline interpolation movement with the simulation functionNote1) , and correct
the path point position and robot program as needed.

Note1) Not supported with the RT ToolBox3 mini version.

4 Saving to robot controller
(Chapter "7.2.8")

Write the robot program and spline file to the robot controller.

5 Adjustment work
(Chapter "7.2.9")

Make fine adjustments to the actual system using the RT ToolBox3 Spline File Edit screen.
(1) Using debugging operations, confirm the spline interpolation movement in the actual

system.
(2) Read the spline file to the Spline File Edit screen.
(3) Correct the path point position and path adjustment setting as needed.
(4) Write the spline file to the controller.
(5) Repeat steps (1) to (4) to create the required path, and adjust the spline file data.

6 Operation Run the robot program and execute spline interpolation.
 Spline interpolation Appendix-709

A

7 Appendix
Fig.7-24:Schematic diagram of work details

Create

Teach Import

Spline File
Edit screen

Confirm

Review

Simulation
function

Generate

Write

Robot Program

Adjust

Spline File Edit screen
Actual system

Confirm

Adjust

Read

Write

Spline file

Spline file
ppendix-710 Spline interpolation

 7 Appendix
7.2.5 Creating the spline file
The spline file is created with the RT ToolBox3 Spline File Edit screen, DXF File Import function, or SplWrt
command. The methods for creating the spline file are explained below.

(1) New file
■Creating a new file in the personal computer
Select [Offline] → [Spline] for the project to be newly created, and click the right mouse button.
The Context menu will open, so click [New] and open the Spline File Edit screen.

Fig.7-25:Creating a new file in the personal computer

■Newly creating in the controller
Select [Online] → [Spline] for the project to be newly created, and click the right mouse button.
The Context menu will open, so click [New] and open the Spline File Edit screen.

Fig.7-26:Creating a new file in the controller

Robots that do not support spline interpolation
If the robot used in the target project does not support spline interpolation, [Spline] will not appear in the
[Online] project tree. [Spline] is always displayed in the [Offline] project tree.
 Spline interpolation Appendix-711

A

7 Appendix
(2) Creating a file by DXF File Import function
AutoCAD versions up to 2014 support DXF files.

1) Selecting a DXF file
Select [Tool] → [DXF File Import] from the project tree and click the right mouse button. A context
menu will appear, and a dialog to open a DXF file will appear when [Open] is clicked.

Fig.7-27:File selection screen

The contents of selected DXF file is displayed in the DXF file viewer.
* The following graphic data can import by a DXF files.

- LINE
- ARC
- CIRCLE
- SPLINE
- POLYLINE/LWPOLYLINE (Light weight polyline)

Fig.7-28:DXF file viewer
ppendix-712 Spline interpolation

 7 Appendix
2) Selecting layers
Select layers to import from [Layer list] in [Layers] page.

Fig.7-29:Layers selection screen

3) Selecting entities
Select entities to import from [Entities] page.

Fig.7-30:Entities selection screen

Hold down the Ctrl key and click entities to be imported by DXF file, they will be added to [Entity list]..

Fig.7-31:Selecting entities
 Spline interpolation Appendix-713

A

7 Appendix
Entities with consecutive start points and end points for the previous and next entities are displayed
in blue from the first entity. Non-consecutive entities are displayed in purple.

Fig.7-32:Selecting entities

By selecting an entity from the [Entity list] and clicking the [UP] and [DOWN] buttons, the position of
the selected entity can be changed.

Fig.7-33:Selecting entities (Down)

By selecting an entity from the [Entity list] and clicking the [Reverse] button, the <Start point> and
<End point> of the selected entity can be reversed.

Fig.7-34:Selecting entities (Reverse)

When the [Sort] button is clicked, a confirmation dialog will appear.

Fig.7-35:Sort confirmation dialog

By clicking [Yes] at the confirmation dialog box, entities registered in the [Entity list] are sorted with
the first entity as a reference.
* If non-adjacent entities are registered in the [Entity list], those entities are deleted.

Fig.7-36:Selecting entities (Sort)

ppendix-714 Spline interpolation

 7 Appendix
4) Ex-T control setting
Grasp positions for imported entities, and Ex-T coordinates registered in spline files are set at the
[Ex-T Control] page.
Select the [Use Ex-T control] check box here if using Ex-T spline interpolation. Clear the check box if
using normal spline interpolation.

Fig.7-37:Ex-T control setting screen

By clicking a point (red) on the viewer while holding down the Ctrl key, the selected point is registered
as the grasp position.
* The layer "GRASP_POSITION" point/circle (center point) is displayed as the default grasp position

(X, Y, Z).

The following three types of Ex-T coordinate setting methods are available.

• Selecting from existing spline files
Clicking the [Select from spline file] button displays the spline file selection screen.

Fig.7-38:Select spline file screen

Ex-T coordinate data stored in the selected spline file is read.

• Reading from work coordinate parameters
By setting the parameter to be read from the drop-down list box and clicking the [Read] button, the
work coordinate data registered in the selected parameter is read.

• Setting from three world coordinate system points
Ex-T coordinate data is set by setting the Ex-T coordinate system origin (WO), position on Ex-T
coordinate system +X-axis (WX), and +Y-axis position on Ex-T coordinate system X-Y plane (WY).
 Spline interpolation Appendix-715

A

7 Appendix
5) Calibration
Perform calibration at the [Calibration] page to change the coordinate system from the CAD
coordinate system to the robot world coordinate system.
If using Ex-T spline interpolation, there is no need to perform calibration.

Fig.7-39:Calibration screen

By clicking a point (red) on the viewer while holding down the Ctrl key, the selected point is registered
as the CAD coordinate system CO/CX/CY.
* The layer "CALIBRATION" point/circle (center point) is displayed as the CAD coordinate system

default.

The following two types of calibration setting methods are available.

• Selecting from existing spline files
By clicking the [Select from spline file] button, the Select spline file screen similar to that for Ex-T
control settings appears. Calibration data stored in the spline selected in the screen is read.

• Setting from three points of the CAD coordinate system, world coordinate system
Calibration data is set by setting the origin, position on +X-axis, and +Y-axis position on X-Y plane
on the CAD coordinate system, and the origin, position on +X-axis, and +Y-axis position on X-Y
plane on the world coordinate system.
ppendix-716 Spline interpolation

 7 Appendix
6) Selecting postures
Set the path point posture at the [Postures] page.
By selecting [Constant with respect to TCP] for the posture type, the posture is registered with the
tangent direction for each path point as the tool direction.

Fig.7-40:Posture registration screen (Constant with respect to TCP)

By selecting [Fixation] for the posture type, the same posture as that for the <Start point> is
registered for all path points.

Fig.7-41:Posture registration screen (Fixation)
 Spline interpolation Appendix-717

A

7 Appendix
7) Output to spline file
By selecting [Spline file] as the output format at the [Generated Points] page and clicking the [Finish]
button, point sequence data generated to the spline file is output. By clicking [Yes] at the import
completion dialog box, the Save spline file screen appears.
By specifying the number of the spline file to be saved and clicking the [Save] button, spline files can
be saved.
By selecting the [Tolerance of posture is 0 [%]] check box, the data is output to the spline file with a
0% tolerance for the posture at each path point. To operate the robot in the posture imported by DXF
file, select the check box. (The check box is selected in the initial state.)

Fig.7-42:Generated Points screen

ppendix-718 Spline interpolation

 7 Appendix
(3) Creating new spline files with robot language
■Creating new spline files with SplWrt command
Spline files can be created using the SplWrt (spline write) command. Refer to SplWrt (Spline Write) for
command details.
Data shown in Table 7-15 is described sequentially separated by commas as path point data in read files.
An example can be seen in Fig. 7-75.
Always indicate "Data identification tags" sequentially from <x> in the first line. If there are no "Data
identification tags", or if there is an insufficient number of data items (20) in each row, an error will occur.

■Editing existing spline files with SplFWrt command
Frame conversion coordinate data can be registered to spline files saved using the SplFWrt (spline frame
write) command. Refer to SplFWrt (Spline Frame Write) for command details.

(4) Opening an existing spline file
■Opening a spline file saved in the personal computer
Select [Offline] → [Spline] for the target project and expand it. The saved spline files will appear in the
project tree, so double-click the spline file to be edited.
(The file can also be opened by selecting the spline file and clicking [Open] in the mouse context menu.)

Fig.7-43:Opening a spline file saved in the personal computer

■Opening a spline file saved in the controller
Select [Online] → [Spline] for the target project and expand it. The spline files saved in the controller will
appear in the project tree, so double-click the spline file to be edited.
(The file can also be opened by selecting the spline file and clicking [Open] in the mouse context menu.)

Fig.7-44:Opening a spline file saved in the controller
 Spline interpolation Appendix-719

A

7 Appendix
■Selecting and opening a spline file from the list
Select [Spline] from the project tree and click the right mouse button.
The Context menu will open, so click [Open]. A list of saved spline files will appear.
(The list can also be displayed by clicking menu [File] → [Open].)

Fig.7-45:Selecting and opening a spline file from the list

The number of path point data items and comments registered in the spline file will appear in the list. Refer
to this information and select the target spline file. Click the [Open] button.

(5) Explanation of Spline File Edit screen
The Spline File Edit screen is explained below.

Fig.7-46:Spline File Edit screen

The Spline File Edit screen is configured of three areas.

Path point data
list area

Path point data
reference/edit area

Current position
display area
ppendix-720 Spline interpolation

 7 Appendix
■Path point data list area
A list of path point data registered in the spline file is displayed. The following operations are performed in
this area.
 • Add/delete point path data
 • Select path point data to edit
 • Confirm number of registered points, file size
If the Store mark near the center of the Spline File Edit screen is clicked, the path point data reference/edit
area will be stored and the path point data list area display will expand. This makes it easier to confirm the
state of changes in data between path points.

Fig.7-47:State with path point data list area display expanded

Multiple path point data items can be selected simultaneously by using the personal computer’s keyboard
and mouse.

Fig.7-48:Selecting the path point data

■Path point data reference/edit area
The path point data selected in the path point data list area is referred to and edited in this area.
When the path point data is selected in the path point data list area, the details are displayed with gray
characters in the path point data reference/edit area. When multiple points are selected, the path point data
selected last is displayed. If path point data editing is enabled after that, the characters change to black and
the path point data can be edited.
(Refer to Page 728, "■ Editing and registering the path point data" for details on enabling editing.)

Click

1-point
(click)

Random point
([Ctrl] key + click)

Consecutive points
([Shift] key + click)

All points
(Menu [Edit] → [Edit])
 Spline interpolation Appendix-721

A

7 Appendix
Fig.7-49:Switching between path point data reference/edit area reference state and edit state

If the Store ([–]) or Expand ([+]) mark at the Property filed is clicked, the path point data will be stored or
expanded.

Fig.7-50:State with path point data stored

■Current position display area
The current position data (Cartesian coordinate system) data of the robot connected in the target position is
displayed.
If the target project is not connected with a robot (offline mode), the [Get current position] button will not
appear in this area or the path point data reference/edit area.

(6) Spline file editing ribbon
The "File (F)", "Edit (E)", and "Tool (T)" tabs are added to the ribbon when editing spline files.

Fig.7-51:Spline file editing ribbon

The details of each menu are explained below.

Reference state Edit state

Edit
enabled

[Apply]
[Cancel]
ppendix-722 Spline interpolation

 7 Appendix
Table 7-11:Details of added menus

Tab options Explanation Reference
page

File

Open A dedicated screen for opening the spline file opens. 719

Close The active Spline File Edit screen closes. -

Save The spline file being edited is overwritten and saved. 734

Save as A dedicated screen for saving spline file being edited with a different name opens. 733

Import The path point data is imported from a CSV/MXVNote1) format file. 743

Export The path point data is exported to a CSV format file. 746

Spline file
manager

The Spline file manager screen opens. 736
 Spline interpolation Appendix-723

A

7 Appendix
Edit

Cut The selected path point data is saved as cut data. The original path point data is cut
out when [Paste] is executed.

746

Copy The selected path point data is saved as copy data. 746

Paste The path point data saved with [Cut] or [Copy] is pasted into the designated path
point data.

746

Undo The editing details applied on the path point data last are undone and the original
details are restored.

748

Redo The details canceled with [Undo] are applied again. 748

Append New path point data is added to the end of the path point data. 726

Add Click Point Selecting the check box adds the position at which the 3D Monitor screen was
clicked to the bottom row.

-

Insert New path point data is inserted in front of the selected path point data. 726

Insert copied
points

The path point data saved with [Copy] is inserted in front of the designated path
point data.

747

Select all All path point data is selected. -

Delete The selected path point data is deleted. 729

Edit Editing of the selected path point data is enabled. 728

Batch Edit - FLG1
structure flag

Edits the FLG1 value of selected path point at one time. 729

Batch Edit - FLG2
multiple rotation
data

Edits the FLG2 value of selected path point at one time. 730

Batch Edit -
Tolerance

Edits the tolerance of selected path point at one time. 730

Batch Edit -
Circular
interpolation

Switches the arc designation of the selected path point between enabled and
disabled.

730

Properties The spline file Property screen opens for referring to and entering comments and
changing file version.

732

Copy - Position
variable

The selected position data is saved to be copied. 747

Paste - Position
variable

The saved position data is pasted into the designated path point data. 747

Tab options Explanation Reference
page
ppendix-724 Spline interpolation

 7 Appendix
(7) Details of path point data
The details of the path point data registered in the spline file are explained below.

Table 7-12:Details of path point data

Tools

Position jump A dedicated screen for position jump function opens. 759

Interpolation
settings

The spline file Interpolation Setting screen opens. 731

Ex-T control
settings

The spline file Ex-T control setting screen opens. 732

Position
adjustment

The dedicated screen for the position adjustment function opens. 755

Frame
transformation

A dedicated screen for the frame transformation function opens. 757

Motion range
check

Checking whether the spline file being edited is within the operating range of the
robot or not.
* This function can be executed in the simulations.

749

Path point check A dedicated screen for path point check function opens. 748

Calculate
maximum speed

Calculates the maximum speed which can be specified without an error in the spline
interpolation commands using the spline file being edited.

749

Spline curve The spline curve registered in the spline file being edited is displayed. 748

Convert to
program

Converts the spline file being edited to the robot program. 750

Import position
variables

Imports the position data registered in the robot program to the spline file being
edited.

751

Note1) MXT file is a file that contains the dot sequence data and outputted by RT ToolBox3 Pro.

Data item Details Default value when
newly added

Position Designate the path point position data with the Cartesian coordinate
system (Y, Z, A, B, C, L1, L2, FLG1, FLG2).
The distance unit is mm and the angle unit is deg.

X to L2: 0.0
FLG1: Left, Below, Flip
FLG2: 0

Arc designation Designate the path points for the arc path.
Setting range: Check (designation enabled), No check (designation

invalid)

No check

Tolerance Position Designate the tolerance for the position (path).
Setting range: 0 to 100 [%]

100

Posture Designate the tolerance for the posture.
Setting range: 0 to 100 [%]

100

Status variable Designate the value referred to by status variable M_SplVar.
Setting range: –1 to 32767 (–1 means not set.)

-1

Tab options Explanation Reference
page
 Spline interpolation Appendix-725

A

7 Appendix
(8) Editing the spline file
■Adding path point data
If the [Append] button in the path point data list area is clicked, new path point data is added to the end of
the list.
The default values are the values shown in Table 7-12 "Default value when newly added".
(A line can also be added by clicking the menu [Edit] → [Append] from the ribbon.)

Fig.7-52:Adding path point data

Output signal Head No. Designate the head address of the output signal.
Setting range: –1 to 32767 (–1 means signal output invalid.)

-1

Bit width Designate the bit width of the output signal.
Setting range: 1, 8, 16, 32 [bit]

1

Bit mask Designate the mask pattern of the bit with valid signal output. 0

Setting value Designate the data to be signal output. 0

Pulse output Designate the pulse output.
Setting range: Check (designation enabled), No check (designation

invalid)

No check

Data item Details Default value when
newly added

Bit width Setting range [hex]

1 0, 1
8 0 to FF

16 0 to FFFF
32 0 to FFFFFFFF

Bit width Setting range [hex]

1 0, 1
8 0 to FF

16 0 to FFFF
32 0 to FFFFFFFF

[Append]
ppendix-726 Spline interpolation

 7 Appendix
Select random path point data and click the right mouse button. The context menu will open, so click [Insert].
New path point data will be inserted before the selected path point data.
(A line can also be added by clicking menu [Edit] → [Insert] from the ribbon.)

Fig.7-53:Inserting path point data

At this time, the default values of the path point data inserted before the selected path point data line will be
the values shown in Table 7-13.

Table 7-13:Default values of inserted path point data
Selected line Default value of path point data

Head line The same values as Table 7-12 "Default value when newly added" are applied.

Other than head line Position X to L2 The average value of the path point data on the line before the selected
path point data.

FLG1, FLG2 Same value as selected path point data.

Other than
position

The same values as Table 7-12 "Default value when newly added" are applied.

[Insert]
 Spline interpolation Appendix-727

A

7 Appendix
■Editing and registering the path point data
To edit the path point data, select the path point data to be edited in the path point data list area, and double-
click it. When double-clicked, editing of the target path point data is enabled, and path point data reference/
edit area is set to the editing state.
(Editing can also be enabled by clicking the [Edit] button at the bottom of the path point data list area, or
clicking the menu [Edit] → [Edit] from the ribbon.)
Select the item to be edited in the path point data reference/edit area, and set the values.

Fig.7-54:Editing the path point data

When connected to a robot, the [Get current position] button appears at the top of the path point data
reference/edit area. The robot’s current position is imported as the path point position data when this button
is clicked.
Click the [Apply] button to register the set details as the path point data. The set details will not be registered
as the path point data until this [Apply] button is press. Click the [Cancel] button when not registering the
details. Editing is disabled when the [Apply] and [Cancel] buttons are clicked, and the path point data
reference/edit area changes to the reference state.

Selection of path point data in editing state
When the path point data reference/edit area is in the editing state, the path point data cannot be
selected in the path point data list area. To select another path point data, click the [Apply] or [Cancel]
button, and switch the path point data reference/edit area to the reference state.
ppendix-728 Spline interpolation

 7 Appendix
■Deleting the path point data
Select a path point data in the path point data list area, and click the right mouse button. The context menu
will open, so click on [Delete]. The selected path point data will be deleted.
(The data can also be deleted by clicking menu [Edit] → [Delete] from the ribbon.)

Fig.7-55:Deleting the path point data

■Edit FLG1
Edits the FLG1 value of selected path point at one time.
To batch edit FLG1 values, select the path point data to be edited in the path point data list area, and right-
click. Click [Edit FLG1] in the context menu that appears to display an FLG1 batch editing screen.
(This screen can also be displayed by clicking [Edit] → [Batch Edit] → [FLG1 Structure Flag] from the
ribbon.)

Fig.7-56:Edit FLG1 screen

By changing the arm posture construction and clicking the [OK] button, changes are updated to the selected
path point. When the [Cancel] button is clicked, the FLG1 batch editing screen is closed without updating
changes.

[Delete]
 Spline interpolation Appendix-729

A

7 Appendix
■Edit FLG2
Edits the FLG2 value of selected path point at one time.
To batch edit FLG2 values, select the path point data to be edited in the path point data list area, and right-
click. Click [Edit FLG2] in the context menu that appears to display an FLG2 batch editing screen.
(This screen can also be displayed by clicking [Edit] → [Batch Edit] → [FLG2 multiple rotation data] from the
ribbon.)

Fig.7-57:Edit FLG2 screen

By changing multi-rotation data for each axis and clicking the [OK] button, changes are updated to the
selected path point. When the [Cancel] button is clicked, the FLG2 batch editing screen is closed without
updating changes.

■Edit tolerance
Edits the tolerance of selected path point at one time.
To batch edit the amount of tolerance, select the path point data to be edited in the path point data list area,
and right-click. Click [Edit tolerance] in the context menu that appears to display the Tolerance batch editing
screen. (This screen can also be displayed by clicking [Edit] → [Batch Edit] → [Tolerance] from the ribbon.)

Fig.7-58:Edit tolerance screen

By changing the amount of tolerance and clicking the [OK] button, changes are updated to the selected path
point. When the [Cancel] button is clicked, the Tolerance batch editing screen is closed without updating
changes.

■Circular interpolation
Edits the arc designation of the selected path point at one time.
To batch edit the arc designation, select the path point data to be edited in the path point data list area, and
right-click. By clicking [Circular interpolation] in the context menu that appears, arc designation for the
selected path point turns ON and OFF. (The arc designation can also be edited by clicking [Edit] → [Batch
Edit] → [Circular interpolation] from the ribbon.)
ppendix-730 Spline interpolation

 7 Appendix
Fig.7-59:Circular interpolation

■Interpolation settings
Set the "Operation mode", "Cancel angle" and "Straight ratio" for the spline interpolation.
When the menu [Tool] → [Interpolation settings] is clicked from the ribbon, the interpolation settings set in
the spline file on the active Spline editing screen appear in the setting screen.

Fig.7-60:Interpolation settings screen

If the [OK] button is clicked after changing the settings, the changes will be saved and the setting screen will
close. If the [Cancel] button is clicked, the setting screen will close without saving the changes. The setting
range for each item is shown in Table 7-14.

Table 7-14:Setting range for interpolation setting items
Item Setting range Default value

Operation mode Constant linear speed/variable linear speed Constant linear speed

Cancel angle 0 to 180 [deg] 120

Straight ratio 0 to 100 [fold] 8
 Spline interpolation Appendix-731

A

7 Appendix
■Ex-T control settings
Specify "Ex-T control settings" for spline interpolation.
By clicking [Tool] → [Ex-T control settings] from the ribbon, the content of Ex-T control settings set to the
spline file at the active spline file editing screen is displayed in the settings screen.

Fig.7-61:Ex-T control settings screen

■Entering a comment
A comment can be entered for the spline file. The details entered for the comment are displayed in the
Comments filed of the spline file list. Make it easier to select the spline file by entering the work details or
conditions, etc., as a comment.
When the menu [File] → [Properties] is clicked from the ribbon, the comment entered in the spline file on the
active Spline editing screen appears on the Property screen.

Fig.7-62:Property screen

Up to 192 characters can be entered for the comment. Note that a Line Return cannot be entered. The
default state is blank.
When the comment is entered and the [OK] button is clicked, the details are saved and the Property screen
will close. If the [Cancel] button is clicked, the Property screen will close without saving the entered
comment.

Ex-T control setting is valid. Ex-T control setting is invalid.
ppendix-732 Spline interpolation

 7 Appendix
■File version
The spline file version can be changed.
When the menu [File] → [Properties] is clicked from the ribbon, the comment entered in the spline file on the
active Spline editing screen appears on the Property screen.

Fig.7-63:Property screen

By changing the file version and clicking the [OK] button, the content is recorded, and the Property screen
closes. When the [Cancel] button is clicked, the Property screen is closed without recording the file version
change.
* Refer to Page 701, "■ Arc designation" for details on differences between file versions.

(9) Saving the spline file
The details edited on the Spline File Edit screen are applied onto the spline file and saved.

■Click menu [File] → [Save as]
The Save spline file screen will open.

Fig.7-64:Save spline file screen

Select the destination from "Personal computer" or "Robot". ("Robot" cannot be selected in the offline
mode.)
Next, select the number of the spline file to be saved from the Spline file list. Click the [Save] button. The
edited details will be saved in the spline file, and the Save spline file screen will close.
If the [Cancel] button is clicked, the Save spline file screen will close without saving the details.
 Spline interpolation Appendix-733

A

7 Appendix
Spline interpolation cannot be executed if the spline file name is changed with the
RT ToolBox3 File Control screen or Microsoft Windows Explorer, etc.
Do not change the name of the spline file.

■Click menu [File] → [Save]
When editing an existing spline file, the edited details are saved in the target spline file.
When creating a new spline file, the same action as when [Save As] is clicked will take place.

■Click Spline File Edit Close button
When the [×] (Close) button at the upper right of the Spline File Edit screen is clicked, a confirmation dialog
will appear.

Fig.7-65:Save confirmation dialog

When the [Yes] button on the confirmation dialog is clicked, the edited details are applied on the spline file
and saved.
When editing an existing spline file, the edited details are saved in the spline file and the Spline File Edit
screen will close.
When creating a new spline file, the Spline file save screen will open.
When the destination spline No. is selected from the spline file list and the [Save] button is clicked, the
edited details are saved in the spline file, and the Spline File Edit screen will close. When the [Cancel] button
is clicked, the Save screen will close without saving the details and the Spline File Edit screen will open.

If the [No] button on the confirmation dialog is clicked, the edited details will be discarded and the Spline File
Edit screen will close.
If the [Cancel] button on the confirmation dialog is clicked, the details will not be saved and the Spline File
Edit screen will open.

The details edited and saved on the Spline File Edit screen are not applied on the
spline file unless they are saved. Save the edited changes into the spline file often
while editing.

Spline file save destination folder
The spline files in the personal computer are managed in workspace project units. The save destination
folder is Workspace work folder\project name\Spline.

Spline file name
The spline file name is determined by the following format.
 SPLFILE**.SPL (Uppercase fixed)
The spline No. 01 to 99 is set in "**". This corresponds to the MvSpl/EMvSpl commands argument's
<Spline No.>.
On the Spline File Edit screen, the file is displayed with a spline No. from 01 to 99, and there is no need
to worry about the file name.

 CAUTION

 CAUTION
ppendix-734 Spline interpolation

 7 Appendix
Changes cannot be saved in a spline file being used for spline interpolation. If
saving is attempted, error L2610 (can’t change spline file) will occur. Do not
perform save to a spline file being used.

(10) Deleting a spline file
Select the spline file to be deleted from the project tree, and right-click the mouse.
A context menu will appear, and a confirmation dialog will appear when [Delete] is clicked.

Fig.7-66:Deleting a spline file

When the [Yes] button is clicked, the designated spline file will be deleted.
When the [No] button is clicked, the deletion process will be canceled.

(11) Changing the spline No.
Select the target spline file from the project tree, and click the right mouse button.
A context menu will appear. When [Renumber] is clicked, a dialog for designating a new spline No. will
appear.

Fig.7-67:Changing the spline No.

When a new spline No. is designated and the [OK] button is clicked, the spline No. of the designated spline
file will change.
The spline No. change process is canceled when the [Cancel] button is clicked.

 CAUTION

[Yes]

[OK]
 Spline interpolation Appendix-735

A

7 Appendix
(12) Copying the spline file
Spline files can be copied on the project tree.
By selecting the spline file to be copied on the project tree, and then dragging and dropping it to [Spline]/
[Online]/[Offline] in the copy destination project tree, a dialog box appears to confirm the selection.

Fig.7-68:Copying the spline file

By clicking the [Yes] button, the specified spline file is copied.
By clicking the [No] button, copying is canceled.
If a spline file with spline No. that already exists in the copy destination is copied, an overwrite confirmation
dialog box appears.

Fig.7-69:Overwrite confirmation dialog box

(13) Spline file manager
A Spline file manager screen has been added.
Select [Online] → [Spline] for projects for which spline file management is to be performed, and right-click.
Click [Spline file manager] in the context menu that appears to display the Spline file manager screen.
(Menu [File] → [Spline file manager] from the ribbon)

Fig.7-70:Spline file manager screen
ppendix-736 Spline interpolation

 7 Appendix
The Spline file manager screen is made up of two areas used for copying and deleting spline files, and for
changing spline numbers.

■Copy the spline file
By selecting the check box for spline file displayed at the source and then clicking the [Copy] button, the
selected spline file is copied to the destination. If a spline file with the same number exists in the destination,
the spline No. can be changed and copied.

Fig.7-71:File copy on the Spline file manager screen

Fig.7-72:Renumber & Copy

■Delete the spline file
By selecting the check box of the file to be deleted from the source or destination spline file list and then
clicking the [Delete] button, the selected spline file can be deleted.

Fig.7-73:Delete the spline file
 Spline interpolation Appendix-737

A

7 Appendix
■Change the spline No.
By selecting the check box of the file to be changed from the source or destination spline file list and then
clicking the [Renumber] button, the selected spline file No. can be changed.

Fig.7-74:Change the spline No.

(14) Import/export function
If the path point data is descried with the specified format of CSV file, that file can be imported into the
Spline File Edit screen. Using this function, position data extracted from a CAD drawing, for example, can be
written into a CSV file and then registered in a batch as the path point data. In addition to CSV files, point
sequence data (MXT files) output from RT ToolBox3 Pro can be imported.
The path point data registered from the Spline File Edit screen can be exported as a CSV file. Using this
function, the details of the path point data can be confirmed even without starting the Spline File Edit screen.

■CSV file format
The data shown in Table 7-15 is described in the CSV file as the path point data. Commas (,) are used as
delimiters. The data is written so that one path point data is shown on one line.

Table 7-15:Data described in CSV file
Data identification tag Details

<X> Designates the X-axis coordinate value of the path point.
Unit: mm

<Y> Designates the Y-axis coordinate value of the path point.
Unit: mm

<Z> Designates the Z-axis coordinate value of the path point.
Unit: mm

<A> Designates the A-axis coordinate value of the path point.
Unit: degree

 Designates the B-axis coordinate value of the path point.
Unit: degree

<C> Designates the C-axis coordinate value of the path point.
Unit: degree

<L1> Designates the L1-axis (additional axis 1) coordinate value of the path point.
Unit: mm or degree

<L2> Designates the L2-axis (additional axis 2) coordinate value of the path point.
Unit: mm or degree

<FL1> Designates the path point configuration flag value.
Setting range: 0 to 7

<FL2> Designates the path point multi-rotation flag value.
Setting range: 0 to 4294967295

<Info> Designates the validity of the arc designation
Setting range: Designated (1), Not designated (0)

<Tol1> Designates the position (path) tolerance amount with an integer.
Setting range: 0 to 100 [%]
ppendix-738 Spline interpolation

 7 Appendix
An example of the CSV file is shown below.

Fig.7-75:Example of CSV file

In the first line, always describe the Table 7-15 "Data identification tag" in order from <X>. The file cannot be
imported if the "Data identification tag" is not described, or if the data on each line is insufficient (there
should be 20 data items).

■MXT file format
MXT files contain map data output by the MELFA-Works function in RT ToolBox3 Pro.
MXT files are created using the following procedure.
* For more information on using MELFA-Works, refer to "MELFA-Works Instruction Manual (BFP-A3554)".
* The procedure differs in places between spline and Ex-T spline, and therefore caution is advised.

1) MELFA-Works startup
Start the MELFA-Works function.

2) Grasping workpieces
* This is only required for Ex-T spline. For spline, perform the procedure in "4)Creating paths".

<Tol2> Designates the posture tolerance amount with an integer.
Setting range: 0 to 100 [%]

<Tol3> Not used. Describe as 100.

<M_SplVar> Designates the value referred to by status variable M_SplVar as an integer.
Setting range: –1 to 32767 (–1 means not set.)

<OutPort> Designates the head address of the output signal with an integer.
Setting range: –1 to 32767 (–1 means signal output invalid.)

<Bit> Designates the bit width of the signal to be output.
Setting range: 1, 8, 16, 32 [bit]

<Mask> Designates the mask pattern of the bit to enable the signal to be output with a hexadecimal.

<OutVal> Designates the data to be signal output with a hexadecimal.

<Pulse> Designates the pulse output.
Setting range: Designated (1), Not designated (0)

Data identification tag Details

Bit width Setting range [hex]

1 0, 1
8 0 to FF

16 0 to FFFF
32 0 to FFFFFFFF

Bit width Setting range [hex]

1 0, 1
8 0 to FF

16 0 to FFFF
32 0 to FFFFFFFF

 <X>,<Y>,<Z>,<A>,,<C>,<L1>,<L2>,<FL1>,<FL2>,<Info>,<Tol1>,<Tol2>,<Tol3>,<M_SplVar>,<OutPort>,<Bit>,<Mask>,<OutVal>,<Pulse>
 300.00, 125.00, 325.00, 180.00, 0.00, 180.00, 0.00, 0.00, 7, 0, 0, 100, 100, 100, 0, 10100, 8, a, ff, 0
 250.00, 100.00, 325.00, 180.00, 0.00, 180.00, 0.00, 0.00, 7, 0, 0, 100, 100, 100, 1, -1, 1, 0, 0, 0
 250.00, 0.00, 325.00, 180.00, 15.00, 180.00, 0.00, 0.00, 7, 0, 1, 100, 100, 100, 10, 10100, 8, 5, ff, 1
 300.00, -50.00, 325.00, 165.00, 0.00, 180.00, 0.00, 0.00, 7, 0, 1, 100, 100, 100, 100, -1, 1, 0, 0, 0
 350.00, 0.00, 325.00, 180.00,-15.00, 180.00, 0.00, 0.00, 7, 0, 1, 100, 100, 100, -1, -1, 1, 0, 0, 0
 300.00, 50.00, 325.00,-165.00, 0.00, 180.00, 0.00, 0.00, 7, 0, 1, 100, 100, 100, -1, -1, 1, 0, 0, 0
 250.00, 0.00, 325.00, 180.00, 15.00, 180.00, 0.00, 0.00, 7, 0, 1, 100, 100, 100, 0, 10100, 8, ff, 0, 0
 250.00,-100.00, 325.00, 180.00, 0.00, 180.00, 0.00, 0.00, 7, 0, 0, 50, 100, 100, -1, -1, 1, 0, 0, 0
 300.00,-125.00, 325.00, 180.00, 0.00, 180.00, 0.00, 0.00, 7, 0, 0, 50, 100, 100, -1, -1, 1, 0, 0, 0
 Spline interpolation Appendix-739

A

7 Appendix
Attach the picking hand to the robot.
From the ribbon, select [MELFA-Works] → [Hand Setting] to display the Hand Setting screen.
Select picking hand as the connected hand and then click the Hand State button to pick up the
workpiece.

Fig.7-76:Grasping workpieces

3) Teaching the grasp position
* This is only required for Ex-T spline. For spline, perform the procedure in "4)Creating paths".
From the ribbon, select [MELFA-Works] → [Make the Work Flow] to display the Make Teaching Point
and Path screen. To edit an existing work flow, display the same screen from the MELFA-Works tree.
On the Teach tab, select [Add] → [Get Current Position] to teach the robot the position at which to
pick up workpieces.
* The data taught here is the grasp position.
* Ensure not to move the workpiece after teaching the grasp position.

Fig.7-77:Teaching the grasp position
ppendix-740 Spline interpolation

 7 Appendix
4) Creating paths
Switch to the CAD link hand to create path data.
Click [Work-flow] to display the Work-flow screen.
Select the Path tab and click the [Add] button to add a process path. Select the added process path
and then click the [Edit Path Data] button to display the Edit path data screen. Select the workpiece
work path and then click the [Add] button to register the process path.
* With Ex-T spline, reverse the Z axis according to the Ex-T coordinate.

Fig.7-78:Creating paths

5) Creating the work-flow
Create the work-flow.
* The work-flow procedure differs between spline and Ex-T spline, and therefore caution is advised.
Click [Work-flow] to display the Work-flow screen.
Click the flow [Add] button to add a flow.
Select the Work-flow screen "Path" tab.
Select a process path and then click the [Register to Work Flow] button to add the selected path to
the flow.

Fig.7-79:Creating flows (processing path registration)

With Ex-T spline, it is necessary to register the grasp position taught at "3)Teaching the grasp posi-
tion" in the work-flow.
Select the "Teaching" tab at the Work-flow screen.
 Spline interpolation Appendix-741

A

7 Appendix
Select the registered pickup position and then click the [Register to Work Flow] button to add the
selected position data to the flow.

Fig.7-80:Flow creation (grasp position registration)

6) Outputting MXT files
Output an MXT file for the created work-flow.
From the Make Teaching Point and Path screen, click the [Program Convert] button to display the
Program Convert screen. Enter a name for the output program and then the [OK] button to output a
program into the current workspace and create an MXT file in the following folder.

MXT file output location:
<Workspace>\<Project name>\<MELFA-Works>\Program name***.MXT

Fig.7-81:Outputting MXT files
ppendix-742 Spline interpolation

 7 Appendix
■Import
Importing is possible not only for CSV files, but also for MXT files.

Fig.7-82:Import

When the import function is used, all path point data registered in the Spline File
Edit screen will be overwritten by the newly imported path point data.

• CSV file
From the ribbon, select [File] → [Import] to display the file selection dialog. When the required CSV file
is selected and opened, its contents will be imported into the active Spline File Edit screen.
* With Ex-T spline, Ex-T control settings must be specified after importing data.

• MXT file
From the ribbon, select [File] → [Import] to display the file selection dialog.
When the required MXT file is selected and opened, the Import settings screen appears.

Fig.7-83:Import setting screen

By setting the tolerable error (mm) for the point sequence data and spline curve and then clicking the [OK]
button.
By selecting the [Tolerance of posture is 0 [%]] check box on the Import settings screen, the data is imported
with a 0% tolerance for the posture at each path point. To operate the robot in the posture imported by MXT
file, select the check box. (The check box is selected in the initial state.)
With spline, by clicking the [OK] button, the content of the MXT file is imported to the active spline file editing
screen. (The smaller the tolerable error, the more detailed the calculated path points.)

Import

 CAUTION
 Spline interpolation Appendix-743

A

7 Appendix
Fig.7-84:Import setting screen (in Ex-T spline)

With Ex-T spline, by selecting the [Use Ex-T control] check box and clicking the [OK] button, the Ex-T
control settings screen for setting the grasping position and Ex-T coordinates appears.
By clicking the [Read position variable] button, the Select robot program screen appears, allowing the
program created when outputting the MXT file to be selected.

Fig.7-85:Ex-T control settings screen (settings)
ppendix-744 Spline interpolation

 7 Appendix
Fig.7-86:Select robot program screen

By selecting the program and clicking the [OK] button, the Select XYZ Position Variables screen appears.

Fig.7-87:Select XYZ Position Variables screen

By selecting the position data (grasp position data taught when creating MXT file) to be read and clicking the
[OK] button, the grasp position is set.

Fig.7-88:Ex-T control settings (Setting the grasping position)

By setting the Ex-T coordinates and clicking the [OK] button, the content of the MXT file is converted to Ex-
T spline path point data and then imported.

 Spline interpolation Appendix-745

A

7 Appendix
The corresponding point sequence data type is XYZ data only.
The movement speed (acceleration/deceleration time, maximum speed) in the
MXT file header information is not imported, and therefore it must be updated to
the robot program MvSpl command argument.

By reducing the tolerance values, the accuracy of the calculated path points will
improve, however, the distance between path points will become shorter, thus
curtailing speed.

■Export
A dialog for designating the CSV file save destination opens when the menu [File] → [Export] is clicked.
When the save destination folder and CSV file name is designated and saved, the path point data details on
the active Spline File Edit screen is exported to the CSV file.

(15) Auxiliary editing functions
■Cut & Paste
The designated path point data is cut and pasted into another path point data.
Select the source path point data in the path point data list area, and click menu [Edit] → [Cut] from the
ribbon. Select the desired position in the path point data at which to paste the cut data. From the ribbon,
select [Edit] → [Paste] to paste the cut path point data in the same order as displayed when the [Cut]
operation. At the same time, the cut source path point data will be deleted from the list.

Fig.7-89:Cut & Paste

■Copy & Paste
The designated path point data is copied and pasted into another path point data.
Select the desired path point data in the path point data list and select [Edit] → [Copy] from the ribbon.
Select the path point data of the copy destination and click [Edit] → [Paste] from the menu. The path point
data recorded by the copy operation will be copied to the path point data of the copy destination.

 CAUTION

 CAUTION

[Edit] → [Cut] [Edit] → [Paste]

Designate cut source Designate paste destination Execute paste

When there are not enough path point data items at paste destination
If the number of subsequent path point data items at the paste destination is low compared to the
number of path point data items designated as the cut source, the path point data with no paste
destination will not be pasted.
ppendix-746 Spline interpolation

 7 Appendix
Fig.7-90:Copy & Paste

■Copy & Paste (Position variable)
The designated position data is copied and pasted into path point data in the spline file.
Select the desired position data from the robot program and select [Edit] → [Copy - Position variable] from
the ribbon. Select the desired position in the path point data at which to paste the copied data. From the
ribbon, select [Edit] → [Paste - Position variable] to paste the copied position data into the path point data in
the same order as displayed when copied.

Fig.7-91:Copy & Paste (Position variable)

■Insert copied path point
The details of the designated path point data are inserted into another line as new path point data.
Select the desired path point data in the path point data list and select [Edit] → [Copy] from the ribbon.
Select the desired position in the path point data at which to paste the copied data. From the ribbon, select
[Edit] → [Insert copied path point] to paste the copied path point data, in the same order as displayed when
the [Copy] operation, directly before then path point data selected as the copy location.

Fig.7-92:Insert copied path point

41
[Edit] → [Copy]

Designate copy source

[Edit] → [Paste]

Designate copy destination Execute copy

When there are not enough path point data items at copy destination
If the number of subsequent path point data items is low at the copy destination is low compared to the
number of path point data items designated as the cut source, the path point data with no copy
destination will not be copied.

[Edit]→
[Copy ? Position variable]

[Edit]→
[Paste ? Position variable]

Designate copy source Designate copy destination Execute copyDesignate copy source

[Edit]→
[Copy - Position variable]

[Edit]→
[Paste - Position variable]

Designate copy destination Execute copy

Designate copy source

[Edit] → [Copy]
[Edit] →
[Insert copied path point]

Designate insert destination Execute insertion
 Spline interpolation Appendix-747

A

7 Appendix
■Undo
From the ribbon, select [Edit] → [Undo] to undo the last edit and restore the data to the previous state before
the edit was made. The following operations can be undone.
 • Path point data add, insert, delete
 • Path point data change (applied to edited details)
 • Path point data cut & paste, copy & paste, insert copied path point
 • Import
 • Position adjustment function
 • Frame transformation (execution of transformation)

■Redo
From the ribbon, select [Edit] → [Redo] to remake the edit that was undone with the [Undo] feature.

(16) Displays the spline curve
Displays the spline curve.
From the ribbon, select [Tool] → [Spline curve] to display the spline curve, configured for the spline file being
edited on the 3D Monitor screen, on the 3D Monitor screen.

Fig.7-93:Displays the spline curve

Refer to the "RT ToolBox3/RT ToolBox3 mini Instruction Manual" for details on using the 3D Monitor screen.

(17) Checking edited data
■Path point check
Check the distance between path points, amount of change in posture, and the value of the structure flag for
each path point beforehand.
From the ribbon, select [Tool] → [Path point check] to display the Path point check screen for the active
Spline editing screen.

Fig.7-94:Path point check screen

By setting the speed and posture interpolation type specified with the MvSpl and EMvSpl commands and
then clicking the [Check] button, a check of each path point is performed. A completion dialog box appears
ppendix-748 Spline interpolation

 7 Appendix
if successful. An error dialog box appears if an error occurs. Refer to the separate "Troubleshooting" manual
for error details.
* The path point check is performed at speed with override at 100%.

Fig.7-95:Path point check complete dialog (left)/Error dialog (right)

■Motion range check
Check whether the robot is able to move to each path point beforehand.
From the ribbon, select [Tool] → [Motion range check] to execute the operation for each path data of the
active Spline editing screen. A completion dialog box appears if successful. An error dialog box appears if
an error occurs. Refer to the separate "Troubleshooting" manual for error details.
* The robot trajectory when performing the motion range check is not guaranteed.

Fig.7-96:Motion range check complete dialog (left)/Error dialog (right)

■Calculate maximum speed
Calculate the maximum speed at which the motion range check is possible from the distance between path
points without an error occurring when executing spline interpolation commands (MvSpl command, EMvSpl
command) beforehand.
From the ribbon, select [Tool] → [Calculate maximum speed] to display the maximum speed calculation
result on the active Spline editing screen.

Fig.7-97:Maximum speed calculation result
 Spline interpolation Appendix-749

A

7 Appendix
(18) Robot program
■Convert to program
Create a robot program using the path point data registered in the spline file.
From the ribbon, select [Tool] → [Robot program] → [Convert to program] to display the robot program
dialog on the active Spline editing screen.

Fig.7-98:New Robot program screen

By entering the name of the robot program to be saved and clicking the [OK] button, the Speed setting
dialog box appears.

Fig.7-99:Speed setting dialog

By setting the control point speed and clicking the [OK] button, the content of the spline file is converted to a
robot program.
ppendix-750 Spline interpolation

 7 Appendix
Fig.7-100:Program created by each interpolations

■Import position variables
Robot program position data can be imported as spline file path point data.
From the ribbon, select [Tool] → [Robot program] → [Import position variables] to display the Select robot
program screen used to load a program onto the active Spline editing screen.

Fig.7-101:Select robot program

By selecting the robot program for which position data is to be imported and clicking the [OK] button,
position data is imported to the active Spline editing screen.
* Position data that can be imported is PP (n) (n: path point number) or P* (*: path point number).
* If no path point corresponding to the active spline file exists, create new path points. (Default values are

used for other than position data.)

Spline interpolation Ex-T spline interpolation
 Spline interpolation Appendix-751

A

7 Appendix
Fig.7-102:Import position variable

7.2.6 Creating the robot program
The robot program is created in the program edit screen of RT ToolBox3 or the teaching pendant.
To execute spline interpolation, use the commands and robot status variables listed in Table 7-16 and Table
7-18. Refer to sections Page 180, "4.12 Detailed explanation of command words" and Page 356, "4.13
Detailed explanation of Robot Status Variable".

Table 7-16:Commands used with spline interpolation

Table 7-17:Functions used with spline interpolation

Table 7-18:Robot status variables related to spline interpolation

Command word Explanation Reference
page

MvSpl (Move Spline) Executes spline interpolation. 292

EMvSpl (E Move Spline) Executes Ex-T spline interpolation. 248

SetCalFrm (Set Calibration Frame) Sets the coordinate system used with frame transformation. 331

Function name Explanation Reference
page

SplPos Substitute the path point data registered in the specified spline file for the position variable. 483

SplSpd Substitute the speed at which an L2611 (path point is too close) error does not occur when
executing the MvSpl/EMvSpl commands for the speed variable based on the specified spline
file path point data.

484

SplECord Substitute the Ex-T coordinate system origin data registered in the specified spline file for the
position variable.

482

Variable
name

No. of array
elements Details

Attribute
Note1)

Note1) R ... Read-only.
RW Read and write possible.

Data type Reference
page

M_SplPno Mechanism No.
(1 to 3)

The number of the path point passed through most
recently is returned.

R Integer 412

M_SplVar Mechanism No.
(1 to 3)

The setting value of the most recent path point data is
returned.
The value can be rewritten.

RW Integer 413

Import
position
variable
ppendix-752 Spline interpolation

 7 Appendix
■Sample program
The path 1 path point data is registered in spline file 05. Spline interpolation is executed on path 1 and path
2 by using frame transformation. At this time, the path point data numerical settings are used by the slot 2
program to turn the output signal No. 100 and No. 101 signals ON and OFF during the movement.

Fig.7-103:Movement of sample program

Slot 1

+X

+Y

開始位置-1

数値設定値

経路点3

PR1

PR2

PR3

PC1

PC3

PC2

終了位置

1
-1

0
0

2

経路1

経路2

出力100
ON

-1

出力100
OFF

出力101
ON

出力101
OFF

出力100 ON

出力100 OFF

出力101 ON

出力101 OFF

1
0

-1

Output 101 OFF

Output 101 ON

Output 100 OFF

Output 100 ON

Path 2

Output 101

Output 101 Output 100

Output 100
Numerical

setting value

Path 1

End position
Path point 3

Start position

Ovrd 100
Mov P1 ‘ Move to wait position (P1) with joint interpolation
‘
Fine 200 ‘ Change positioning pulse to 200
Spd 100 ‘ Set linear interpolation speed to start position to 100mm/s
M_00=1 ‘ Turn slot 2 synchronization flag ON
MvSpl 5, 50, 10 ‘ Spline interpolate path 1 with acceleration/decelerate distance

50mm/s
M_00=0 ‘ Turn synchronization flag OFF
Fine 0 ‘ Disable positioning pulse designation
Mvs P1 ‘ Move to wait position with linear interpolation
‘
PR1=(0, 0, 0, 0, 0, 0)(0, 0) ‘ Set the reference coordinate system for frame transformation

(PR1 to PR3)
PR2=(20, 0, 0, 0, 0, 0)(0, 0)
PR3=(0, 20, 0, 0, 0, 0)(0, 0)
PC1=(0, 40, 0, 0, 0, 0)(0, 0) ‘ Set the position of the transformed reference coordinate system

(PC1 to PC3)
PC2=(0, 60, 0, 0, 0, 0)(0, 0) ‘ (90-degree turn around Z axis in respect to pre-transformation,
PC3=(-20, 40, 0, 0, 0, 0)(0, 0) ‘ coordinate system moved 40mm in Y axis direction)
SetCalFrm PR1, PR2, PR3, PC1, PC2, PC3 ‘ Calculate and set coordinate system for frame transformation
‘
Fine 200
M_00=1
MvSpl 5, 50, 10, 2 ‘ Execute frame transformation on spline No. 5 path point

‘ and spline interpolation path 2
M_00=0
Fine 0
Mvs P1
End
 Spline interpolation Appendix-753

A

7 Appendix
Slot 2

7.2.7 Confirming the movement
Using the RT ToolBox3 simulation function, confirm the spline interpolation movement of the created robot
program. If the movement differs from the required movement, review and correct the path point data
settings and robot program.
Refer to the "RT ToolBox3/RT ToolBox3 mini Instruction Manual" for details on using the simulation function.
Note that the simulation function cannot be used with RT ToolBox3 mini.

Fig.7-104:Simulation function

Def IO PORT1=Byte, 100, &H03 ‘ Assign output signal 100 and 101 to variable PORT1
M_SplVar=0 ‘ Reset M_SplVar value to 0
Wait M_00=1 ‘ Wait for spline interpolation to start
*L1:If M_SplPno<3 Then GoTo *L1 ‘ Wait for path point 3 to be passed
*L2
Select M_SplVar
Case 1 ‘ Pass through path point for which numerical setting value is set

to 1
PORT1=1 ‘ Turn output signal 100 ON
Break
Case 2 ‘ Pass through path point for which numerical setting value is set

to 2
PORT1=2 ‘ Turn output signal 101 ON
Break
Default ‘ Numerical setting value is not 1 or 2
PORT1=0 ‘ Turn output signal 100 and 101 OFF
Break
End Select
If M_00=1 Then Goto *L2 ‘ Repeat until spline interpolation is finished
End

Robot program and spline file used for simulation
When spline interpolation is simulated, the robot program and spline file must be registered into the
virtual controller in the RT ToolBox3. If the robot program and spline file are not registered into the
[Online] section of the project starting the simulation, copy them into the virtual controller with the
following method.
 • Robot program: Use the RT ToolBox3 program control.
 • Spline file: Open the target file in the Spline File Edit screen, and save with the procedure give

on Page 733, "(9) Saving the spline file" or copy with the procedure gibe on Page
736, "(12) Copying the spline file".
ppendix-754 Spline interpolation

 7 Appendix
7.2.8 Saving in the robot controller
Save the robot program and spline file into the robot controller.
Refer to Page 733, "(9) Saving the spline file" for details on saving the spline file.

7.2.9 Adjustment work
Using the actual system, confirm the spline interpolation movement with debugging (step feed).
If the movement differs from the required movement, review and revise the path point data and robot
program. To revise the path point data, import the spline file into the RT ToolBox3 Spline File Edit screen and
change the path point data setting values. Then, export the file to the controller.
The "position adjustment function", "frame transformation function", and "position jump function" provided in
the RT ToolBox3 for adjusting the position data, and the parameter SPLOPTGC (active gain control gain
compensation rate) are explained in this section.

(1) Position adjustment function
The same type of adjustment as the MELFA-BASIC VI position data's relative calculation can be applied on
the path point data's robot position. The two compensation methods shown in Table 7-19 can be used.

Table 7-19:Position adjustment method

Adjustment method Explanation

Vector sum operation
(P+P)

The adjustment data value is added (addition of each coordinate element) in respect to the path point
data's robot position data. The adjustment goes along the world coordinate system.
The configuration flag, multi-rotation flag and additional axis data are not changed from the original
value.

Xw

Yw

PA

PB

PC.X

PC.Y

ベクトル和演算（P+P）

PA：補正対象の経路点

PB：補正結果

PC：補正データ

 Vector sum calculation (P+P)

PA: Path point for adjustment target
PB: Adjustment results
PC: Adjustment data
 Spline interpolation Appendix-755

A

7 Appendix
To use the position adjustment function, select [Tool] → [Position adjustment] from the ribbon. The Position
adjustment screen opens when [Position adjustment] is clicked.

Fig.7-105:Position adjustment screen

The position is adjusted with the following steps.
(A) The path point data for the Spline File Edit screen currently active is displayed in the "Adjustment

target list". Select and check the path point data for which the position is to be adjusted. Multiple path
point data items can be selected.

Vector product operation
(P×P)

The adjustment data values are multiplied in respect to the path point data's robot position data.
(Position after adjustment = Path point position × adjustment data)
The adjustment follows the tool coordinate system.
The configuration flag, multi-rotation flag and additional axis data are not changed from the original
value.

Adjustment method Explanation

Xw

Yw

PA

PB

PC.Y

PC.XXt

Yt

PA：補正対象の経路点
PB：補正結果

PC：補正データ
Xt-Yt：PAにおけるツール座標の向き

ベクトル積演算（PｘP）

PA: Path point for adjustment target
PB: Adjustment results
PC: Adjustment data
Xt-Yt: Orientation of tool coordinates at PA

Vector product calculation (P×P)

(A)

(B)

(C)

(D)

(E)
ppendix-756 Spline interpolation

 7 Appendix
(B) Set the adjustment data.
If a controller is connected, the [Get current position] button will appear. When this button is clicked,
the robot's current position is imported as the adjustment data.

(C) Select the adjustment method and click the button.
(D) The adjusted path point data is displayed in the "Adjustment result list". The path point data, not

selected as an adjustment target, remains the unchanged.
(E) When the [OK] button is clicked, the adjustment results will be applied onto the path point data on the

Spline File Edit screen, and the Position adjustment screen will close.
When the [Cancel] button is clicked, the adjustment results will be discarded and the Position
adjustment screen will close.

(2) Frame transformation function
From the ribbon, select [Tool] → [Frame transformation] to display the screen used to perform frame
conversion on the path point data on the active Spline editing screen.
(Refer to Page 707, "(5) Frame transformation" for details on frame transformation.)

Fig.7-106:Frame transformation screen

■Setting the coordinate system
In the (A) section of Fig. 7-106, set the X, Y and Z axis coordinate values for the three positions (origin,
position on X axis, position in +Y direction on X-Y plane) that define the reference coordinate system and
transformed reference coordinate system.
For the reference coordinate system, the coordinate values can be selected from registered path point data
that appears when the [Select from point list...] button is clicked.

(A)

(B)

(C)

(D)

(E)
 Spline interpolation Appendix-757

A

7 Appendix
Fig.7-107:Selecting from Path points list

If a controller is connected, the [Get current position] button will appear. When this button is clicked, the
robot's current position will be set to the selected transformed reference coordinate system.

■Executing frame transformation with RT ToolBox3
When the [Transform] button in Fig. 7-106 (B) is clicked after setting the coordinate system, frame
transformation is applied on all path point data. The results are shown in Fig. 7-106 (C) "Transformation
results list".
When frame transformation is executed, the [Exit to apply the transformation results] button in Fig. 7-106 (D)
is enabled.

Fig.7-108:[Exit to apply the transformation results] button

When this button is clicked, the transformation results will be applied on the path point data in the Spline File
Edit screen, and the Frame transformation will close.
When the [Cancel] button is clicked, the transformation results will be aborted and the Frame transformation
screen will close.
If the coordinate system settings are not correct (on same point or 3 points on the same line), the message
"Invalid the frame settings." will appear, and the frame transformation cannot be executed.

Fig.7-109:Dialog when coordinate system settings are not correct (when executing transformation)

■Saving coordinate system in spline file
When the Fig. 7-106 (D) [Exit to apply the settings] button is clicked after setting the coordinate system, the
position data that defines the coordinate system will be saved in the Spline File Edit screen, and the Frame
transformation screen will close.
If "1" is set for the MvSpl/EMvSpl command's argument <Frame transformation>, the coordinate system set
here will be used for frame transformation during spline interpolation.
When the [Cancel] button is clicked, the transformation results will be aborted and the Frame transformation
screen will close. (If the coordinate system has already been saved in the Spline File Edit screen, the details
will not be changed.)
ppendix-758 Spline interpolation

 7 Appendix
If the coordinate system settings are not correct (on same point or 3 points on the same line), a dialog
indicating that the coordinate system settings are incorrect will appear.

Fig.7-110:Dialog when coordinate system settings are not correct (when saving coordinate system)

When the [Yes] button is clicked, the settings will be saved in the Spline File Edit screen and the Frame
transformation screen will close.
When the [No] button is clicked, the settings will not be saved in the Spline File Edit screen and the Frame
transformation screen will reappear.

■Clearing the coordinate system settings
Click the Fig. 7-106 (E) [Clear] button to clear the coordinate system settings saved in the Spline File Edit
screen. A confirmation dialog will appear when this button is clicked.

Fig.7-111:Coordinate system clear confirmation dialog

When the [Yes] button is clicked, the coordinate system settings saved in the Spline File Edit screen are
cleared.
When the [No] button is clicked, the settings are not changed, and the Frame transformation screen
reappears.

(3) Position jump
Jump to the selected path point position.
By opening the program in the debug state and then clicking the [Position] button at the bottom of the path
point data list area, the Position jump screen appears. (This screen can also be displayed by clicking
[Tool] → [Position Jump] from the ribbon.)

Fig.7-112:Position jump screen
 Spline interpolation Appendix-759

A

7 Appendix
By clicking the [Next] ([Previous]) button, the target path point changes to the next (previous) point.
By clicking the [Move] button, the robot moves to the selected path point position (including offset amount)
with the specified interpolation movement.

The robot moves at the same speed as that for the actual system, and therefore a
safety check should be conducted around the robot
Always use the robot in such a way that the EMERGENCY STOP button can be
pushed at any time.

If the applicable project is in offline mode, the [Position jump] button does not appear. (Similarly, [Position
Jump] will not be available under [Tool] from the ribbon.)

(4) Parameter SPLOPTGC
The robot's control characteristics applied when moving with spline interpolation can be adjusted with
parameter SPLOPTGC.
Usually it is not necessary to change the value from the default setting value.
For the movement path at the curve section, to further improve the inner turn in respect to the command,
increase the setting value. When the setting value is increased the path accuracy may be improved.
Conversely, to suppress robot sway or vibration, reduce the setting value. The state may be improved.

Table 7-20:Parameter SPLOPTGC

Parameter Parameter
name

No. of arrays
No. of characters Detailed explanation Factory

setting

Gain
compensation rate
for active gain
control

SPLOPTGC Integer 1 The robot's control characteristics (servo responsiveness) during
spline interpolation can be adjusted. The path accuracy may be
improved if the setting value is increased, and the vibration may
be suppressed if the setting value is decreased.
The setting range is 1 to 200[%].

* If the value is too large, the motor may oscillate or the robot
may vibrate. Conversely, if the value is too small, the robot may
not move and a servo error may occur. Change the value
gradually while confirming the behavior, and set the value within
a range that does not cause a problem.

* This does not function unless the force sensor control is valid.
* The power does not need to be reset after setting this

parameter.

100

 CAUTION
ppendix-760 Spline interpolation

 7 Appendix
7.2.10 High speed spline interpolation command
(1) Outline

A higher spline interpolation operation speed can be specified using the SPLHSPMD parameter.

Table 7-21:Parameter SPLHSPMD

(2) Required software versions
The high speed spline interpolation command function can be used with the following robot controller and
RT ToolBox3 software versions.

Table 7-22:Software versions that support the high speed spline interpolation command function

(3) Specifications
The relationship between the commanded speed and the required distance between path points (on the
table on Page 699, "(4) Check related to path points", changes depending on the setting value of parameter
SPLHSPMD as shown below.
When high speed mode is enabled, a higher operation speed can be specified with the SPLHSPMD param-
eter for the same distance between path points.

Table 7-23:Command speed and required distance between path points

Parameter Parameter
name

No. of arrays
No. of characters Detailed explanation Factory

setting

High speed spline
interpolation

SPLHSPMD Integer 1 The spline interpolation high speed mode can be enabled and
disabled.
(Disabled = 0 / Enabled = 1)

* The power does not need to be reset after setting this
parameter.

0

Device Controller RT ToolBox3

Compatible software version Ver. A3a or later Ver. 1.31H or later

Command speed
[mm/s]

Required distance between path points

SPLHSPMD=0 SPLHSPMD=1

10 0.6 mm or more 0.08 mm or more

20 1.2 mm or more 0.16 mm or more

50 3.0 mm or more 0.4 mm or more

100 6.0 mm or more 0.8 mm or more

200 12.0 mm or more 1.6 mm or more

500 30.0 mm or more 4.0 mm or more
 Spline interpolation Appendix-761

A

7 Appendix
Fig.7-113:Command speed and required distance between path points

(4) RT ToolBox3 settings
High speed spline interpolation command can also be set by right clicking [Spline] in the project tree.
The high speed spline interpolation command can be enable/disabled by clicking the check mark next to
"High speed mode" as shown below.

When the high speed spline interpolation command is enabled, high speed spline interpolation is applied to
"path point check" and "calculate maximum speed" (shown in Table 7-11). The path point check window will
be displayed as shown below.

ppendix-762 Spline interpolation

 7 Appendix
Fig.7-114:RT ToolBox3 path point check (High speed mode)

(5) Precautions and limitations
Take note of the following precautions and restrictions regarding the high speed spline interpolation com-
mand function.

1) Enabling the high speed mode makes it possible to specify a higher speed than previously possible.
However, overspeed can occur depending on the robot's position or posture, and it may not be possi-
ble to move at the desired speed.

2) Furthermore, the position command may change slightly if high speed mode is enabled during spline
interpolation. In such cases, disable the high speed mode.

3) The maximum speed calculated by the SplSpd function changes. If the SplSpd function is already
being used, be aware of changes in the calculated value. Furthermore, the speed which is calculated
by the maximum speed calculation function of RT ToolBox3 shown on Page 748, "(17) Checking
edited data" also changes.

4) When pulse output is enabled, the specified signal is usually output at roughly 14 ms after the path
points are passed. However, if the specified speed is high, the pulse width may become shorter than
14 ms (3.5 ms minimum).

5) If the specified speed is high and the operation mode is set to "variable linear speed", overspeed con-
trol will become less effective. If overspeed occurs, take steps such as reducing posture change,
increasing the distance between the path points, and reducing the specified speed.

6) When checking the spline interpolation operation using a simulation in RT ToolBox3, ensure that the
high speed mode is enabled/disabled for both the simulation and robot controller. Even if movements
are possible in the simulator, errors may occur during operation if the high speed mode is not enable/
disable for both the simulation and robot controller.

 Spline interpolation Appendix-763

A

7Appendix
7.3 Ex-T control
Spline interpolation, one of the robot movement commands, is explained in this section.

7.3.1 Outline
(1) Features

The Ex-T control is the function to operate the robot using the origin of the externally fixed coordinates
system as the robot control point. The examples of applications include the following.

• Polishing
The robot holds the target workpiece, and pushes it against the fixed grinder or abrasive belt for deburring
or surface finishing.
• Coating
The robot holds the target workpiece, and applies solvent or adhesive supplied from the fixed dispenser to
the workpiece.

Fig.7-115:Example of polishing

Fig.7-116:Example of coating

When the fixed tool (grinder, dispenser, etc.) is used and processing (deburring, polishing, sealing, etc.) of
workpieces held and moved by the robot is performed as shown in the figure above, it is quite difficult to
create a program for movement along the specified processing route while maintaining the relative position
between the tool and the workpiece.
The Ex-T control is the function to facilitate operations in such applications and programming. The grinder or
dispenser position can be registered in the robot, which enables linear/circular arc operations using the
position as a reference.

Fix the tool and move
the workpiece.

Grinder
(fixed)

Workpiece
(moving)
ppendix-764 Ex-T control

 7Appendix
(2) Specifications

(3) Equipment and software version requirements
The Ex-T control can be used when the robot controller software version is the one shown in the table below
or later.
Table 7-24:Software version compatible with Ex-T control

7.3.2 Ex-T coordinates setting
When using the Ex-T control, setting is required for the externally fixed reference coordinates (Ex-T
coordinates).

• For polishing using the fixed grinder, the position where polishing is performed is the origin of the Ex-T
coordinates.

• For coating using the fixed dispenser, the nozzle tip position is the origin of the Ex-T coordinates.

(1) Setting
The Ex-T coordinates is specified using the same parameters/status variables as those of the work
coordinates. As is the case with the work coordinates, perform the following:
• Parameter setting using TB or RT ToolBox3
• System status variable setting in the robot program (MELFA-BASIC VI)

Item Specifications

Compatible robot Vertical multiple-joint 6-axis robots, horizontal multiple-joint 4-axis robots
* The function is not available for the vertical multiple-joint 5-axis robots and the user

mechanisms.

Compatible robot language • Commands

• Status variables

Number of Ex-T coordinates that can
be specified

Up to 8 (The coordinates system is specified with the parameters/status variables.)

Device Controller T/B

Compatible software version Ver. A1 or later R32TB: Ver. 1.3 or later
R56TB: Ver. 2.3 or later

Commands Explanation Page

EMvs (E Move S) Ex-T control linear interpolation 246

EMvc (E Move C) Ex-T control circular interpolation 238

EMvr (E Move R) Ex-T control circular arc interpolation 240

EMvr2 (E Move R 2) Ex-T control circular arc interpolation 2 242

EMvr3 (E Move R 3) Ex-T control circular arc interpolation 3 244

Variable name Array designation Page

P_WkCord Work coordinates number (1 to 8) 448

Externally fixed coordinates system
(Ex-T coordinates system)

Grinder
 Ex-T control Appendix-765

A

7Appendix
The parameters related to the Ex-T coordinates (work coordinates) are listed in the table below.

When specifying the work coordinates (Ex-T coordinates) by three-point teaching using WKnWO, WKnWX,
and WKnWY, it is useful to set the tool conversion data so that the reference position for teaching is used as
control point.
For how to perform three-point teaching using R32TB, refer to "Work jog operation" in "Confirming the
operation" of the separate manual "ROBOT ARM SETUP & MAINTENANCE".

Parameter name Details explanation

WKnCORD
"n" is 1 to 8

The work coordinates for work jog operation
(X,Y,Z,A,B,C) Unit: mm or degree

It is used as standard coordinates and work coordinate data in the work jog. It is also used as the control point
in the Ex-T control (Ex-T coordinates).
When using it as work coordinate data, the valid axial element differ depending on the robot type.
Refer to Page 530, "5.7 About Standard Base Coordinates".
The work coordinates defined by operation of T/B are set.
However, inputting the coordinate value into this parameter can also define work coordinates. In this case, each
coordinate value of the three teaching points for defining the work coordinates is cleared by 0. (Parameter:
WKnWO, WKnWX, WKnWY ("n" is 1-8))

Note) To manage easily, you should teach work coordinates (Ex-T coordinates) in the condition that not convert
the base coordinates. (Base coordinates and the world coordinate are in agreement.) Especially, it is
necessary when defining two or more work coordinates.

WKnWO
"n" is 1 to 8

Set the position of the work coordinates (Ex-T coordinates) origin as a teaching position of work coordinates
(Ex-T coordinates). (Correspond to "WO" of the teaching operation by T/B. Refer to above figure)
(X, Y, Z) Unit: mm
Notes) The work coordinates (Ex-T coordinates) are not defined by merely inputting this coordinate value.

Calculate the work coordinates (Ex-T coordinates) by performing [DEFINE] on the TB work coordinate
setting screen or by performing [Write] on the RT ToolBox3 work coordinate parameter screen.

WKnWX
"n" is 1 to 8

Set the position of "+X" axis of work coordinates (Ex-T coordinates) as a teaching position of work coordinates
(Ex-T coordinates). (Correspond to "WX" of the teaching operation by T/B. Refer to above figure)
(X, Y, Z) Unit: mm
Notes) The work coordinates (Ex-T coordinates) are not defined by merely inputting this coordinate value.

Calculate the work coordinates (Ex-T coordinates) by performing [DEFINE] on the TB work coordinate
setting screen or by performing [Write] on the RT ToolBox3 work coordinate parameter screen.

WKnWY
"n" is 1 to 8

Set the position at the side of "+Y" axis on the X-Y plane of work coordinates (Ex-T coordinates). (Correspond
to "WY" of the teaching operation by T/B. Refer to above figure)
(X, Y, Z) Unit: mm
Notes) The work coordinates (Ex-T coordinates) are not defined by merely inputting this coordinate value.

Calculate the work coordinates (Ex-T coordinates) by performing [DEFINE] on the TB work coordinate
setting screen or by performing [Write] on the RT ToolBox3 work coordinate parameter screen.

+X

-X
-Y

+Y

+Z

-Z

+Zw

+Xw
+Yw

Work coordinates
(Ex-T coordinates)

WKnCORD

Teaching point: WO
WKnWO

Teaching point: WX
WKnWX

Teaching point: WY
WKnWY

Base coordinates
ppendix-766 Ex-T control

 7Appendix
7.3.3 Ex-T jog
The Ex-T jog is the function to perform jog operation along the work coordinates system (Ex-T coordinates
system) by specifying the work coordinates (Ex-T coordinates) as the control point. The operation is similar
to the conventional WORK jog operation because the operation is performed along the work coordinates
system, but operations related to the posture elements are different between the Ex-T jog and the
conventional WORK jog.
The Ex-T jog operation is performed by the WORK jog operation of TB. The conventional WORK jog
operation and the Ex-T jog operation modes can be switched by setting the parameters WK1JOGMD to
WK8JOGMD of each work coordinates system (Ex-T coordinates system).

Differences of operations according to the parameter WK1JOGMD to WK8JOGMD setting are shown below
for each robot model.

WORK jog operation of the RV 6-axis type

RH 4-axis type and RH 4-axis hanging type

The movement of posture elements of the robot differs between the conventional WORK jog and the Ex-T
jog operations. For example, the difference of the movement of C element is described below.

Parameter name Details explanation

WKnJOGMD
"n" is 1 to 8

The operation mode in WORK jog operations is specified for each work coordinate.
 0: WORK jog (The operation of A, B, and C elements is rotation around the axis parallel to the X, Y, and Z axes

of the work coordinates. The control point position does not change.)
 1: Ex-T jog (The operation of A, B, and C elements is rotation around the X, Y, and Z axes of the work

coordinates with the control point moving.

WORK jog operation mode WORK jog Ex-T jog

Parameters WKnJOGMD (n is 1 to8)
setting

0 (initial value) 1

XYZ key operation Moves along each axis of the work
coordinates system

Same as the conventional WORK jog

ABC key operation With the control point position maintained,
the direction changes along the work
coordinates system.

While the control point position is
changed, the direction changes on each
axis of the work coordinates system.

WORK jog operation mode WORK jog Ex-T jog

Parameters WKnJOGMD (n is 1 to8)
setting

0 (initial value) 1

XYZ key operation Moves along each axis of the work
coordinates system

Same as the conventional WORK jog

C key operation With the control point position maintained,
the direction changes along the work
coordinates system.

While the control point position is
changed, the direction changes on the Z
axis of the work coordinates system (Zw).

AB key operation The robot does not move. The robot does not move.
 Ex-T control Appendix-767

A

7Appendix
(1) Movement of the posture element in the WORK jog
The jog operation of the posture element in the WORK jog is rotation around the axes parallel to the X, Y,
and Z axes of the work coordinates at the control point. The position remains fixed.
Fig. 7-117 shows the example of C element movement in the WORK jog.
W0-Wx-Wy shows the work coordinates system (when viewed from +Wz). ● represents the robot control
point (TCP), and the square with rounded corners represents the workpiece held by the robot. The dotted
line shows the workpiece position (posture) after the movement.

Fig.7-117:Example of C element movement in the WORK jog

(2) Movement of the posture element in the Ex-T jog
The jog operation of the posture element in the Ex-T jog is rotation around the X, Y, and Z axes of the Ex-T
coordinates system (work coordinates system). The robot position also changes.
<Movement example 1> and <Movement example 2> in Fig. 7-118 show the example of C element
movement in the Ex-T jog.
W0-Wx-Wy shows the Ex-T coordinates system (work coordinates system) (when viewed from +Wz). ●
represents the robot control point (TCP), and the square with rounded corners represents the workpiece
held by the robot. The dotted line shows the workpiece position (posture) after the movement.
In <Movement example 1>, the Ex-T coordinates system (work coordinates system) is located away from
the workpiece. In <Movement example 2>, the origin of the Ex-T coordinates system (work coordinates
system) is located on the workpiece. Rotating operation is performed around W0 in both cases.

Fig.7-118:Example of C element movement in the Ex-T jog

W0 Wｘ

Wｙ

TCP

W0 Wｘ

Wｙ

TCP

図 E Tジ グのC成分動作

<Movement example 1>

Wｘ
図xxxx：Ex-TジョグのC成分動作例2

W0

Wｙ TCP

<Movement example 2>
ppendix-768 Ex-T control

 7Appendix
(3) Ex-T jog operation
The Ex-T jog operation is the same as the WORK jog operation.
Advance setting of the Ex-T coordinates (work coordinates) and the operation mode (parameters WK1-
JOGMD to WK8JOGMD) is required.

[JOG] Press the key and display the jog
screen. ("JOG" is displayed on the screen
bottom)
Check that the "WORK" in jog mode is
displayed on the screen.
If other jog modes are displayed, please press
the function key corresponding to the "WORK."
(If the jog mode which he wishes under the
screen is not displayed, it is displayed that the
[FUNCTION] key is pressed)
If it finishes jog operation, press the [JOG] key
again, or function key which correspond to
"close."

Confirm the target work coordinates system
(Ex-T coordinates system). The current target
number is displayed on the screen upper right.
(W1 - W8)
The number of work coordinates (Ex-T
coordinates) can be changed by the arrow key
[Upper arrow], [Lower arrow]
Push the key [Upper arrow], the number will
increase. (W1, W2,..... W8) Conversely, push
the key [Lower arrow], the number will
decrease

Always confirm that the number of the target work coordinates system (Ex-T
coordinates system) is displayed correctly (Display of W1-W8 at the upper right
of the screen)
If mistaken, the robot will move in the direction which is not meant and will cause
the damage and the personal injuries.

Select WORK jog mode

WORK jog mode

<CURRENT> WORK 100% M1 T0 W1

 J1: +0.00 J5: +0.00
 J2: +0.00 J6: +0.00
 J3: +90.00 :
 J4: +0.00 :

CYLNDRJOGTOOLXYZ 3-XYZ ⇒

Confirmation and selection of the work coordinates
system (Ex-T coordinates system)

Select the work coordinates system
(Ex-T coordinates system)

<CURRENT> WORK 100% M1 T0 W1

 J1: +0.00 J5: +0.00
 J2: +0.00 J6: +0.00
 J3: +90.00 :
 J4: +0.00 :

CYLNDRJOGTOOLXYZ 3-XYZ ⇒

Target work
coordinates system
(Ex-T coordinates
system)

～

* Displayed coordinate values are based on XYZ coordinates
system.

 CAUTION
 Ex-T control Appendix-769

A

7Appendix
(4) WORK jog operation of the RV 6-axis type
When the X, Y, or Z keys are used, the operation is the same in the WORK jog and the Ex-T jog modes.

• When the[+X (J1)] keys are pressed, the robot will move along the X axis (Xw) plus direction on the work
coordinates system.
When the[-X (J1)] keys are pressed, Move along the minus direction.

• When the[+Y (J2)] keys are pressed, the robot will move along the Y axis (Yw) plus direction on the work
coordinates system.
When the[-Y (J2)] keys are pressed, Move along the minus direction.

• When the[+Z (J3)] keys are pressed, the robot will move along the Z axis (Zw) plus direction on the work
coordinates system.
When the[-Z (J3)] keys are pressed, Move along the minus direction.

＋X
＋Y

＋Z

－Z

－Ｙ

－Ｘ

ツ
ー

ル
長

+Xw

+Yw

+Zw

The jog movement based on work coordinates system

* The direction of the flange will not
change.
Move the control point with a
straight line in accordance with
the work coordinates system.

Work coordinates system

To
ol

len
gt

h

Controll point

6-axis type
ppendix-770 Ex-T control

 7Appendix
When the A, B, and C keys are used, the operation is different in the WORK jog and the Ex-T jog modes.

• When the[+A (J4)] keys are pressed, the X axis will rotate in the plus direction of the work coordinate
system.
When the[-A (J4)] keys are pressed, rotate in the minus direction.

• When the[+B (J5)] keys are pressed, the Y axis will rotate in the plus direction of the work coordinate
system.
When the[-B (J5)] keys are pressed, rotate in the minus direction.

• When the[+C (J6)] keys are pressed, the Z axis will rotate in the plus direction of the work coordinate
system.
When the[-C (J6)] keys are pressed, rotate in the minus direction.

＋X
＋Y

＋Z

－Z

－Ｙ

－Ｘ

ツール長

+Xw

+Yw

+Zw

-Zw

-Xw

-Yw
+Yw'

＋

－

＋

－

+Xw'

+Zw'
－

＋

-Yw'

-Zw'

-Xw'

Changing the flange surface posture
 <1> Work jog mode

* The position of the control point does not change.
Change the direction of the flange in accordance with the work coordinates system.

Work coordinates system

Tool length

Control point

6-axis type
 Ex-T control Appendix-771

A

7Appendix
• When the [+A (J4)] keys are pressed, the control point will rotate in the plus direction around the X axis
(Xw) of work coordinates system (Ex-T coordinates system).
When the[-A (J4)] keys are pressed, the control point will rotate in the minus direction.

• When the [+B (J5)] keys are pressed, the control point will rotate in the plus direction around the Y axis
(Yw) of work coordinates system. (Ex-T coordinates system).
When the[-B (J5)] keys are pressed, the control point will rotate in the minus direction.

• When the [+C (J6)] keys are pressed, the control point will rotate in the plus direction around the Z axis
(Zw) of work coordinates system. (Ex-T coordinates system).
When the[-C (J6)] keys are pressed, the control point will rotate in the minus direction.

＋X
＋Y

＋Z

－Z

－Ｙ

－Ｘ

+Xw

+Yw

+Zw

-Zw

-Xw

-Yw

＋

－

＋

－

－

＋

＋X
＋Y

＋Z

－Z

－Ｙ

－Ｘ

+Xw

+Yw

+Zw

-Zw

-Xw

-Yw

＋

－

＋

－

－

＋

SPACE

,

＋X
＋Y

＋Z

－Z

－Ｙ

－Ｘ

+Xw

+Yw

+Zw

-Zw

-Xw

-Yw

＋

－

＋

－

－

＋

 <2> Ex-T jog mode

* The control point rotates around each axes of work coordinates system (Ex-T coordinates system).
When the [+A (J4)] or the [-A (J4)] key is pressed, the control point rotates around the Xw axis. When the
[+B (J5)] or the [-B (J5)] key is pressed, the control point rotates around the Yw axis. When the [+C (J6)]
or the [-C (J6)] key is pressed, the control point rotates around the Zw axis.

Work coordinates system
(Ex-T coordinates system)

Control point

Work coordinates system
(Ex-T coordinates system)

Control point

6-axis type

6-axis type

Work coordinates system
(Ex-T coordinates system)

Control point

6-axis type
ppendix-772 Ex-T control

 7Appendix
(5) WORK jog operation of the RH 4-axis type
When the XYZ keys are used, the operation is the same in the WORK jog and the Ex-T jog modes.

• When the[+X (J1)] keys are pressed, the robot will move along the X axis (Xw) plus direction on the work
coordinates system.
When the[-X (J1)] keys are pressed, Move along the minus direction.

• When the[+Y (J2)] keys are pressed, the robot will move along the Y axis (Yw) plus direction on the work
coordinates system.
When the[-Y (J2)] keys are pressed, Move along the minus direction.

• When the[+Z (J3)] keys are pressed, the robot will move along the Z axis (Zw) plus direction on the work
coordinates system.
When the[-Z (J3)] keys are pressed, Move along the minus direction.

＋X

－X

＋Y

－Y

－Z

＋Z

+Xw

+Yw

+Zw

-Zw

-Xw

-Yw
ツール長

The jog movement based on work coordinates system

Work coordinates system

Control point

Tool length

* The direction of the end axis will not change. Move the
control point with a straight line in accordance with the
work coordinates system
 Ex-T control Appendix-773

A

7Appendix
When the C key is used, the operation is different in the WORK jog and the Ex-T jog modes.
The robot does not move when the A or B key is used.

• When the[+C (J6)] keys are pressed, the Z axis will rotate in the plus direction of the XYZ coordinate
system.
When the[-C (J6)] keys are pressed, rotate in the minus direction.

• When the [+C (J6)] keys are pressed, the control point will rotate in the plus direction around the Z axis
(Zw) of work coordinates system (Ex-T coordinates system).
When the[-C (J6)] keys are pressed, the control point will rotate in the minus direction.

＋X

－X

＋Y

－Y

－Z

＋Z

＋－

+Z

-Z

+Xw

+Yw

+Zw

-Zw

-Xw

-Yw
ツール長

Changing the end axis posture
 <1> Work jog mode

* The position of the control point does not change.
The end axis is rotated.

Tool length

Control point

Work coordinates system

＋X

－X

＋Y

－Y

－Z

＋Z

+Xw

+Yw

+Zw

-Zw

-Xw

-Yw

ツール長

SPACE
,

 <2> Ex-T jog mode

Work coordinates system
(Ex-T coordinates system)

Tool length

Control point
ppendix-774 Ex-T control

 7Appendix
(6) WORK jog operation of the RH 4-axis hanging type
When the XYZ keys are used, the operation is the same in the WORK jog and the Ex-T jog modes.

• When the[+X (J1)] keys are pressed, the robot will move along the X axis (Xw) plus direction on the work
coordinates system.
When the[-X (J1)] keys are pressed, Move along the minus direction.

• When the[+Y (J2)] keys are pressed, the robot will move along the Y axis (Yw) plus direction on the work
coordinates system.
When the[-Y (J2)] keys are pressed, Move along the minus direction.

• When the[+Z (J3)] keys are pressed, the robot will move along the Z axis (Zw) plus direction on the work
coordinates system.
When the[-Z (J3)] keys are pressed, Move along the minus direction.

＋X

－X

＋Z

＋Y

－Z

－Y

ツール長

＋Z

－Z

＋Zw

－Zw

－Xw

＋Xw

＋Yw

－Yw

Control point

Work coordinates system

* The direction of the end axis will not
change. Move the control point with
a straight line in accordance with
the work coordinates system

The jog movement based on work coordinates system

Tool length
 Ex-T control Appendix-775

A

7Appendix
When the C key is used, the operation is different in the WORK jog and the Ex-T jog modes.
The robot does not move when the A or B key is used.

• When the[+C (J6)] keys are pressed, the Z axis will rotate in the plus direction of the XYZ coordinate
system.
When the[-C (J6)] keys are pressed, rotate in the minus direction.

• When the[+C (J6)] keys are pressed, the Z axis will rotate in the plus direction of the XYZ coordinate
system.
When the[-C (J6)] keys are pressed, rotate in the minus direction.

＋X

－X

＋Z

＋Y

－Z

－Y

ツール長

＋Z

－Z

＋Zw

－Zw

－Xw

＋Xw

＋Yw

－Yw

＋－

Work coordinates system

Changing the end axis posture
 <1> Work jog mode

Control point

 Tool length

* The position of the control point does
not change. The end axis is rotated.

＋X

－X

＋Z

＋Y

－Z

－Y

ツール長

＋Z

＋Zw

－Zw

－Xw

＋Xw

＋Yw

－Yw

SPACE
,

 <2> Ex-T jog mode

Control point

Tool length

Work coordinates system
(Ex-T coordinates system)
ppendix-776 Ex-T control

 7Appendix
7.3.4 Creation of robot program
(1) List of commands/variables related to the Ex-T control

The commands and variables related to the Ex-T control are listed below.
For the command details, refer to the reference page shown in the table.

Table 7-25:List of commands related to the Ex-T control

Table 7-26:List of variables related to the Ex-T control

(2) Programming example

The example shows a program to perform the operation as shown in the figure.
The robot holds the workpiece, and moves the workpiece along the fixed processing tool. (Figures <1> to
<5>)

Fig.7-119:Operation example 1

By overlaying the figures, the actual operation is shown as follows.

No. Type of
commands Added commands Functions Reference

page

1 Linear interpolation EMvs (E Move S) Linear interpolation along the work coordinates (Ex-
T coordinates)

246

2 Circular
interpolation

EMvc (E Move C) Circular interpolation along the work coordinates
(Ex-T coordinates)

238

3 Circular arc
interpolation

EMvr (E Move R) Circular arc interpolation along the work
coordinates (Ex-T coordinates)

240

4 EMvr2 (E Move R 2) 242

5 EMvr3 (E Move R 3) 244

No. Variable name Outline of the function Supplementary explanation Reference
page

1 P_WkCord Reading and setting of the work coordinates Also used for the Ex-T coordinates 448

Fix the tool and move
the workpiece.

Grinder
(fixed)

Workpiece
(moving)

<1> <2> <3> <4> <5>

Workpiece

Machining jig
 Ex-T control Appendix-777

A

7Appendix
Fig.7-120:Operation example 2

■Step 1: Setting of the work coordinates (Ex-T coordinates)
Specify the work coordinates (Ex-T coordinates) so that the contact point between the processing tool and
the workpiece shown in the figure is used as the origin of the work coordinates (Ex-T coordinates). (On the
work coordinate 1 in this example)

In order to enable jog operation along this work coordinates system, set "1 (Ex-T jog mode)" in the
parameter WK1JOGMD.

■Step 2: Teaching of the positions
Let the robot actually hold the workpiece for teaching of the positions.
The positions <1> to <5> are taught in this example.
For teaching of the positions, performing jog feed of the robot in WORK jog (Ex-T jog) enables jog feed
along the processing tool.

■Step 3: Creation of the program
Create the program.
(Some of the actual necessary operations such as workpiece holding movement and input/output of signals
are omitted in this example.)

[Example program]
 Mov P001 ’ Moves to the position <1>.
 Dly 0.5
 Spd 50 ’ Sets the processing speed (workpiece moving speed) to 50 mm/sec.
 EMvs 1, P002 ’ Moves to the target position <2> along the work coordinate 1 by Ex-T

linear interpolation.
 EMvr 1, P002,P003,P004 ’ Moves to the target position <4> from position <2> via position <3>

along the work coordinate 1 by Ex-T circular arc interpolation.
 EMvs 1, P005 ’ Moves to the target position <5> along the work coordinate 1 by Ex-T

linear interpolation.
 :

In this example, the teaching positions are five. More teaching positions are required depending on the
actual workpiece shape or processing operations. Change the program accordingly.

<1>

<2>

<3>

<5>

<4>

加工治具

Ｗｘ

Ｗｙ ＷＯ

Machining jig
ppendix-778 Ex-T control

 7 Appendix
7.4 Get-position-quick function
7.4.1 Outline

The get-position-quick function (GPS function) allows monitoring and responding quickly to the input signal
from an external sensor, which enables the accurate robot position data acquisition according to the signal
input timing.
This function is used for the alignment correction (correcting a position deviation of a workpiece by the
accurate robot position data acquisition according to the timing when an external sensor passes) and the
mapping (the workpiece presence recognition).

The GPS function has the following two functions. For details on how to use each function, refer to Page
782, "(1) Position data acquisition at the sensor input timing" or Page 783, "(2) Workpiece presence recogni-
tion in a cassette".

Table 7-27:GPS function list

7.4.2 Specifications of the GPS Function
The specifications of the GPS function are as shown in the table below.

Table 7-28:Specifications of the GPS function

No. Function Usage

1 Position data acquisition at the sensor input timing Alignment correction

2 Workpiece presence recognition in a cassette Mapping

Item Specifications

Position data
acquisition at the
sensor input timing

Condition for the position
data acquisition

Define a condition for the position data acquisition in the Def Gps command.

Controlling to start/stop
monitoring

Control to start/stop monitoring the input signal with the GpsChk command.

Position data latch Store the position data in the P_GpsX() at the point in time when a condition for
the position data acquisition is met ("X" indicates the same number as the
target monitoring number from 1 to 8).
(Up to 400 data)

Workpiece presence
recognition in a
cassette

Condition for the
workpiece presence
recognition

Define a condition for the workpiece presence recognition in the Def Map
command.

Controlling to start/stop
monitoring

Control to start/stop monitoring the input signal with the GpsChk command.

Position data latch Store the position data in the P_GpsX() at the point in time when a condition for
the position data acquisition is met ("X" indicates the same number as the
target monitoring number from 1 to 8).
(Up to 400 data)
 Get-position-quick function Appendix-779

A

7 Appendix
7.4.3 Specifications of Digital Input Signal
The specifications of the digital input signal are as shown in the table below.

Table 7-29:Specifications of digital input signal

Fig.7-121: Location of connector

Item Specifications Remarks

Digital input Number of channels SKIP input: 3CH

Connector Note1)

Note1) Location of connector is shown in Fig. 7-121. And refer to the separate manual: "Controller setup, basic
operation, and maintenance." for details on the pin assignment.

CNUSR12 connector Pin name (Pin number): Input signal
number
SKIP21(3), SKIP22(12): input signal 801
SKIP31(2), SKIP32(11): input signal 802
SKIP41(1), SKIP42(10): input signal 803

Monitoring period SKIP input: 444 μs

Signal input

condition

ON DC 18 V to DC 25.2 V, 9 mA or more 444 μs-wide signals are required.

OFF DC 4 V or less, 2 mA or less
ppendix-780 Get-position-quick function

 7 Appendix
7.4.4 Electric Specification of Digital Input
The electric specification of SKIP input is shown in Table 7-30.

Table 7-30:Electric specification of the SKIP input

Item Specifications Internal circuit

Type DC input

No. of input point 2

Insulation method Photo-coupler insulation

Rated input coltage DV 24 V ±10%

Rated input current Approx. 9 mA

Input resistance Approx. 2.5kΩ

Common method 1 point per common

SKIP21/SKIP31

SKIP22/SKIP32

330

2.2k
 Get-position-quick function Appendix-781

A

7 Appendix
7.4.5 How to use the GPS function
(1) Position data acquisition at the sensor input timing

This section shows the basic method to create programs using the MELFA BASIC VI programming
language for position data acquisition according to the signal input timing.

Table 7-31: Command list of MELFA BASIC VI

Table 7-32: Status variables list

1) Definition of the monitoring condition
First, define a condition (an input signal number, a signal condition, and a mechanism number) for the
position data acquisition according to an external signal input timing in the Def Gps command. Up to
eight different conditions can be set. Each setting of condition is controlled by the monitoring number.

2) Starting the monitoring
When the GpsChk On command ("GpsChk On,n" statement) is executed, start monitoring for the
target monitoring number which is defined in the Def Gps command, and store the robot position data
at the point of time when the condition holds. Up to 400 position data can be obtained for one
monitoring number.
("n" in "GpsChk On,n" statement indicates the target monitoring number from 1 to 8.)

3) Stopping the monitoring
When the GpsChk Off command ("GpsChk Off,n" statement) is executed, stop monitoring for the
target monitoring number, and store the robot position data in the status variable P_GpsX(). ("X"
indicates the same number as the target monitoring number from 1 to 8.) Up to 400 position data can
be stored for one monitoring number. (A numerical value in the array elements is numbered in turn
every time the position data is obtained.)
The number of position data stored in the P_GpsX() is retained in the status variable M_Gps(n). The
position data stored in the M_Gps(n) and P_GpsX() is cleared to zero when the GpsChk On command
("GpsChk On,n" statement) is executed next time.
("n" in "GpsChk Off,n" statement and the status variable M_Gps(n) indicates the target monitoring
number from 1 to 8.)

Command Explanation

Def Gps This command defines a condition for the position data acquisition using the GPS function.

GpsChk This command starts/stops monitoring the set condition.

Variable name No. of array elements Details

M_Gps(n)
(n:target monitoring
number from 1 to 8)

1 to 8 (target monitoring
number)

The number of the position data recorded in the status variable
P_GpsX() is stored. ("X" indicates the same number as the target
monitoring number from 1 to 8.)

P_Gps1(x) to
P_Gps8(x)

400 (data) Up to 400 of the robot position data at the point in time when the
condition defined in the Def Gps command holds is stored.

[Targetonit moring numbern (n: 1 to 8)]
・ Input signal number

Set the target external input signal number.
・ Signal condition

Set a condition of timing (the rising/falling edge of the input
signal) for the position data acquisition.

・ Mechanism number
Set the target mechanism number for the position data
acquisition.
ppendix-782 Get-position-quick function

 7 Appendix
<Sample program>

(2) Workpiece presence recognition in a cassette
This section shows the basic method to create programs using the MELFA BASIC VI programming
language for the mapping (detecting the presence of a workpiece.) in the cassette.

Table 7-33: Command list of MELFA BASIC VI

Table 7-34: Status variables list

1) Definition of the monitoring condition
First, define a condition (an input signal number, a signal condition, and a mechanism number) for the
position data acquisition according to an external signal input timing and a cassette condition (the
coordinates data and the number of segments for a cassette) in the Def Map command. Up to eight
different conditions can be set. Each setting of condition is controlled by the monitoring number.

2) Starting the monitoring
When the GpsChk On command ("GpsChk On,n" statement) is executed, start monitoring for the
target monitoring number which is defined in the Def map command, and store the robot position data
at the point of time when the condition holds. Up to 400 position data can be obtained for one
monitoring number.
("n" in "GpsChk On,n" statement indicates the target monitoring number from 1 to 8.)

3) Stopping the monitoring
The segment number in which the workpiece is present is calculated from the position data obtained
at the time when the GpsChk Off command ("GpsChk Off,n" statement) is executed and from the data
of cassette shape and robot position. A result of the calculation is stored in the status variable
M_MapX(). ("X" indicates the same number as the target monitoring number from 1 to 8.)
The number of stored position data is retained in the status variable M_Gps(n).
The data stored in the M_Gps(n) and M_MapX() is cleared to zero when the GpsChk On command
("GpsChk On,n" statement) is executed next time.
("n" in "GpsChk Off,n" statement and the status variable M_Gps(n) indicates the target monitoring
number from 1 to 8.)

1 Def Gps 1,801,On,1 ‘ The position data of the mechanism No. 1 is recorded for the monitoring No. 1 when the signal
No. 801 is turned on.

2 GpsChk On,1 ‘ Monitoring a condition for the monitoring No. 1 is started.
3 Mvs P1 ‘ Moves to P1
4 GpsChk Off,1 ‘ Monitoring a condition for the monitoring No. 1 is stopped (the position data obtained is stored).
5 M1=M_Gps(1) ‘ The number of the position data recorded in the P_Gps1 is stored.
6 If M1=0 Then Error 9000 ‘ The error 9000 is generated if no position data is recorded.
7 P1=P_Gps1(1) ‘ The position data at the first time when the signal No. 801 is turned on is substituted for "P1".
8 Hlt ‘ Halt program

Command Explanation

Def Map This command defines a condition for the workpiece presence recognition in the cassette, using the
GPS function.

GpsChk This command starts/stops monitoring the set condition.

Variable name No. of array elements Details

M_Gps(n)
(n:target monitoring
number from 1 to 8)

1 to 8 (target monitoring
number)

The number of the position data recorded in the status variable
P_GpsX() is stored. ("X" indicates the same number as the target
monitoring number from 1 to 8.)

P_Gps1(x) to
P_Gps8(x)

400 (data) Up to 400 robot position data at the time when the condition for the target
input number defined in the Def Map command is met is stored.

M_Map1(x) to
M_Map8(x)

130 (segments) "1" is stored for the segment number in which the workpiece is present,
calculated from the condition defined in the Def Map command.
 Get-position-quick function Appendix-783

A

7 Appendix
<Sample program>
1 Def Map 3,851,On,1,PC1,PC2,20,10

‘ The position data of the mechanism No. 1 is recorded for the monitoring No. 3 when the signal
No. 851 is turned on, and the mapping is executed according to the defined condition.
PC1: Lowest point (first segment) in a cassette, PC2: Highest point (last segment) in a cassette,
20: the number of segments in a cassette (20 segments), 10: a sensitive area of a sensor (10
mm)

2 Mov PM1 ‘ The robot moves its arm to the mapping start position.
3 GpsChk On,3 ‘ Monitoring a condition for the monitoring No. 3 is started.

The position data of the mechanism No. 1 is recorded when the signal No. 851 is turned on.
4 Mvs PM2 ‘ The robot moves its arm to the mapping stop position.
5 GpsChk Off,3 ‘ Monitoring a condition for the monitoring No. 3 is stopped.

‘ Using the recorded position data, the segment number in which the workpiece is present is
stored in the M_Map3().

6 M1=M_Gps(3) ‘ The number of the position data recorded in the P_Gps3 is stored.
7 If M1=0 Then Error 9000 ‘ The error 9000 is generated if no position data is recorded.
8 For M2=1 To 20 ‘
9 M_Out(6100+M2)=M_Map3(M2) ‘ The results of the mapping are output with a signal (the signal number "6101" is assigned for the

first result).
10 Next M2 ‘ The process performed for the first segment is repeated for the remaining segments.
ppendix-784 Get-position-quick function

 7 Appendix
7.5 Upgrade of the servo software
When error H0099 occurs, the upgrade of the servo software is required.
You can upgrade the servo software using the teaching pendant or RT ToolBox3.
The procedure for upgrading the servo software using the teaching pendant is shown below.

1) Display the parameter screen to input "ROMCOPY" into the name field and press the [EXE] key.

2) Press the function key ([F1]) corresponding to "DATA" to display the parameter input screen. Press the
[EXE] key on the parameter input screen.

3) When you check that error H0009 is displayed, reset the power supply of the controller.

4) When a buzzer goes off from the controller, turn off the controller's power supply.

The upgrade of the servo software is completed.

For the use of RT ToolBox3, you can upgrade the servo software on the parameter list screen.

Enter the parameter name [R], [O], [M], [C], [O], [P], [Y]
Input [EXE]

Setting the data [F1] Input [EXE]

Check the display
 Upgrade of the servo software Appendix-785

A

7 Appendix
7.6 Log function
This section explains the log function which saves robot information at error occurrence.

7.6.1 Outline

Robot information at error occurrence can be saved in the FTP server or SD memory card (CR800-D series
only). The following four types of robot information can be saved.

• Error history
• Event history
• Program execution history
• Internal information of the robot operation

To use the log function, parameters must be set beforehand.

Do not remove the SD memory card or turn off the robot controller while the SD card
access LED is on. Doing so may damage the SD memory card or files.
When removing the SD memory card, support it with your hands since it may pop out
from the card slot.

The lock state set by the LOCK switch of the SD memory card is ignored in the
CR800 series controller. Even if the lock state is set, information is written to the SD
memory card.

FTP server

Robot controller

SD memory card
(CR800-D series only)

 CAUTION

 CAUTION
ppendix-786 Log function

 7 Appendix
7.6.2 Specifications
(1) Basic specifications

Table 7-35:Basic specifications

(2) Log file specifications

Example)
170701_113502_B12345678M_Err.log
170701_113502_B12345678M_Evt.log
170701_113502_B12345678M_Trp.log
170701_113502_B12345678M_Srv.log

For SD memory cards, the log files are saved in the folder with the date.

Table 7-36:Log details

Item Specifications

Logs to be saved The following four types of logs are saved.
• Error history
• Event history
• Program execution history
• Internal information of the robot operation

Save destination FTP server or SD memory card (CR800-D series only)

Target SD memory card 2F-2GBSD (capacity: 2GB)

File name Details Check method

xxxx_Err.log Error history The error history can be checked in the simulation of RT
ToolBox3 Ver. 1.10L or later.

xxxx_Evt.log Event history The error history can be checked in the simulation of RT
ToolBox3 Ver. 1.00A or later.

xxxx_Trp.log Program execution history The program execution history can be checked with a
text editor such as Notepad.

xxxx_Srv.log Internal information of the robot operation -

Manufacturing number of
the target controller

File name: YYNNDD_HHMMSS_PPPPPPPP_KKK.log
Last two digits
of the year
 Log function Appendix-787

A

7 Appendix
7.6.3 Error numbers to be saved
The errors shown in Table 7-37 have been registered in advance. To add errors, set the parameter
LOGTRGE.

Table 7-37:Target error number

7.6.4 Parameter setting
Use T/B or RT ToolBox3 to set parameters. Refer to the instruction manuals enclosed with each product for
the details of the operation method.
• R32TB/R33TB: This instruction manual “Page 94, "3.15 Operation of parameter screen"”
• R56TB/R57TB: R56TB/R57TB Instruction Manual (BFP-A8684)
• RT ToolBox3: RT ToolBox3/RT ToolBox3 mini User's Manual (BFP-A3495)

Table 7-38:Log function parameter

Error number Error details

H0740 Power supply main circuit error

H0810 Power supply undervoltage

H091n Servo amplifier overspeed

H092n Power module overcurrent

H093n Motor overcurrent

H096n Excessive error 1

H101n Collision detection

H1680 Cannot servo ON (timeout)

Parameter Parameter
name

No. of arrays
No. of characters Details explanation Factory setting

Error log automatic
transfer

LOG-
MODE1

Integer 1 Set the log function at error occurrence.
1: Valid (FTP)
2: Valid (SD memory card)
* CR800-D series only
0: Invalid

0

Target error number LOGTRGE Integer 16 Set an error number to be saved.
Eight types of error numbers can be registered in the order
of error number and type.
Type

0: The error number is used as it is.
1: The axis number is entered in the last digit of the

error number.
Setting example)

2000, 0, 1010, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
“2000, 0,” indicates error 2000 only. “1010, 1,” indicates
error 1011 to 1018.

0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0,

FTP transfer Note1)

Note1) To use the FTP, the following parameters must be set beforehand.

FTPID Character string
1

Set a user ID to be used in the FTP communication.
 Setting range: Alphanumeric characters (uppercase/

lowercase) within 8 characters

ftpuser

FTPPASS Character string
1

Set a password to be used in the FTP communication.
 Setting range: Alphanumeric characters (uppercase/

lowercase),
Symbol (! # $ % & = - @ . ? _) within 16
characters

ftppassword

FTPSVRIP Character string
1

Set the IP address of an FTP server to be used in the FTP
communication.

192.168.0.99

FTPPATH Character string
1

Set the path of an FTP transfer destination.
 Setting range: Alphanumeric characters (uppercase/

lowercase), Symbol (:/)

Blank
ppendix-788 Log function

 7 Appendix
7.6.5 Checking the log file details
This section explains the check method of each log file.

(1) Error history
This can be checked with RT ToolBox3 Ver. 1.10L or later.

* Operation procedure
1) Rename xxxx_Err.log to AError.log.
2) Create a workspace with RT ToolBox3.

3) Copy AError.log to the simulation folder “RoboSim”.

4) Start the simulation.
 Log function Appendix-789

A

7 Appendix
5) Check the details in the Error History window.

(2) Event history
This can be checked with RT ToolBox3 Ver. 1.00A or later.

* Operation procedure
1) Rename xxxx_Evt.log to Event.log.
2) Create a workspace with RT ToolBox3.
ppendix-790 Log function

 7 Appendix
3) Copy Event.log to the simulation folder “RoboSim”.

4) Start the simulation.
5) Check the details in the Event History window.

 Log function Appendix-791

A

7 Appendix
(3) Program execution history
This can be checked with a text editor such as Notepad.

* Operation procedure

1) Open xxxx_Trp.log with a text editor such as Notepad.
The program execution order can be checked as shown below.
NARC Trap system PROG log V1.0
17-10-18 11:34:42;sec/it=0.000889 ←Date and time when data collection is started
17-10-18 11:37:18;0; ← Date and time when the data in the last row is recorded
0;659;PROG;5 ← <Spare>;<Serial number>;<Program name>;<Step number>
0;660;PROG;2
0;661;PROG;3
0;662;PROG;4
0;663;PROG;5
0;664;PROG;2
????
ppendix-792 Log function

 7 Appendix
7.7 Special devices
The compatible special devices are as follows.

7.7.1 CR800-R series
(1) Special relay

The compatible special relays are as follows.
Table 7-39:R16RTCPU robot CPU-compatible special relays

(2) Special register
The compatible special registers are as follows.
Table 7-40:R16RTCPU robot CPU-compatible special registers

No. Name Remarks

SM0 Latest self-diagnostics error (Including
annunciator ON)

SM1 Latest self-diagnostics error (Not including
annunciator ON)

SM50 Clear error
SM51 Low battery latch
SM52 Low battery
SM203 STOP contact
SM204 PAUSE contact

No. Name Remarks

SD0 Latest self-diagnostics error code The 0x1800, 0x3000, and 0x3001
codes are stored when robot-specific
errors occur.

SD1 Time of occurrence of latest self-diagnostics
error code

SD2 ↑
SD3 ↑
SD4 ↑
SD5 ↑
SD6 ↑
SD7 ↑
 Special devices Appendix-793

A

7 Appendix
7.7.2 CR800-D series
(1) Special relay

The compatible special relays are as follows.
Table 7-41:CR800-D-compatible special relays

SD10 Self-diagnostics error code 1 The 0x1800, 0x3000, and 0x3001
codes are stored when robot-specific
errors occur.

SD11 Self-diagnostics error code 2
SD12 Self-diagnostics error code 3
SD13 Self-diagnostics error code 4
SD14 Self-diagnostics error code 5
SD15 Self-diagnostics error code 6
SD16 Self-diagnostics error code 7
SD17 Self-diagnostics error code 8
SD18 Self-diagnostics error code 9
SD19 Self-diagnostics error code 10
SD20 Self-diagnostics error code 11
SD21 Self-diagnostics error code 12
SD22 Self-diagnostics error code 13
SD23 Self-diagnostics error code 14
SD24 Self-diagnostics error code 15
SD25 Self-diagnostics error code 16
SD201 LED status
SD203 CPU operating status
SD228 Multi-CPU system information
SD229 ↑
SD230 ↑
SD231 ↑
SD232 ↑
SD233 ↑
SD260 Number of assigned bit devices
SD261 ↑
SD262 ↑
SD263 ↑
SD264 ↑
SD265 ↑
SD280 Number of assigned word devices
SD281 ↑

No. Name Remarks

SM0 Latest self-diagnostics error (Including
annunciator ON)

SM1 Latest self-diagnostics error (Not including
annunciator ON)

SM51 Low battery latch
SM52 Low battery

No. Name Remarks
ppendix-794 Special devices

 7 Appendix
(2) Special register
The compatible special registers are as follows.
Table 7-42:CR800-D-compatible special registers

SM203 STOP contact
SM204 PAUSE contact

No. Name Remarks

SD0 Self-diagnostics error code The 0x1800, 0x3000, and 0x3001
codes are stored when robot-specific
errors occur.

SD1 Time of occurrence of latest self-diagnostics
error code

SD2 ↑
SD3 ↑
SD4 ↑
SD5 ↑
SD6 ↑
SD7 ↑
SD10 Self-diagnostics error code 1 The 0x1800, 0x3000, and 0x3001

codes are stored when robot-specific
errors occur.

SD11 Self-diagnostics error code 2
SD12 Self-diagnostics error code 3
SD13 Self-diagnostics error code 4
SD14 Self-diagnostics error code 5
SD15 Self-diagnostics error code 6
SD16 Self-diagnostics error code 7
SD17 Self-diagnostics error code 8
SD18 Self-diagnostics error code 9
SD19 Self-diagnostics error code 10
SD20 Self-diagnostics error code 11
SD21 Self-diagnostics error code 12
SD22 Self-diagnostics error code 13
SD23 Self-diagnostics error code 14
SD24 Self-diagnostics error code 15
SD25 Self-diagnostics error code 16
SD201 LED status
SD203 CPU operating status
SD260 Number of assigned bit devices
SD261 ↑
SD262 ↑
SD263 ↑
SD264 ↑
SD265 ↑
SD280 Number of assigned word devices
SD281 ↑

No. Name Remarks
 Special devices Appendix-795

A

7 Appendix
7.7.3 CR800-Q series
(1) Special relay

The compatible special relays are as follows.
Table 7-43:Q172DSRCPU robot CPU-compatible special relays

(2) Special register
The compatible special registers are as follows.
Table 7-44:Q172DSRCPU robot CPU-compatible special registers

No. Name Remarks

SM0 Latest self-diagnostics error (Including
annunciator ON)

SM1 Latest self-diagnostics error (Not including
annunciator ON)

SM50 Clear error
SM51 Low battery latch
SM52 Low battery
SM53 Momentary interruption detection
SM203 STOP contact
SM204 PAUSE contact

No. Name Remarks

SD0 Latest self-diagnostics error code The 12000 (H, reset disabled),
12001(H), 12002(L), and 12003(C)
codes are stored when robot-specific
errors occur.

SD1 Time of occurrence of latest self-diagnostics
error code

SD2 ↑
SD3 ↑
SD4 Error information class code (CPU No.)
SD5 Common error information code (CPU No.)
SD6 Common error information code (I/O No.)
SD51 Low battery latch
SD52 Low battery
SD53 Number of momentary interruption detections
SD200 I/O operation rights
SD201 LED status
SD203 CPU operating status
SD290 Device assignment
SD291 ↑
SD292 ↑
SD293 ↑
SD294 ↑
SD295 ↑
SD296 ↑
SD297 ↑
SD298 ↑
ppendix-796 Special devices

 7 Appendix
SD299 ↑
SD300 ↑
SD301 ↑
SD302 ↑
SD303 ↑
SD304 ↑
SD305 ↑
SD393 Multi-CPU system information
SD395 ↑
SD396 ↑
SD397 ↑
SD398 ↑
SD399 ↑

No. Name Remarks
 Special devices Appendix-797

A

7 Appendix
ppendix-798 Special devices

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS: 1-14, YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA 461-8670, JAPAN

Mar. 2024 MEE Printed in Japan on recycled paper. Specifications are subject to change without notice.

	1 Before starting use
	1.1 Using the instruction manuals
	1.1.1 The details of each instruction manual
	1.1.2 Symbols used in instruction manual

	1.2 Safety Precautions
	1.2.1 Precautions given in the separate Safety Manual

	2 Explanation of functions
	2.1 Teaching pendant (T/B) functions
	2.1.1 Operation rights
	2.1.2 Handling the T/B
	(1) Installing the T/B
	(2) Removing the T/B

	2.2 Functions Related to Movement and Control
	2.3 Robot type resetting
	2.4 Robot CPU status indicator LEDs
	2.4.1 R-type CPU unit (R16RTCPU) status indicators
	2.4.2 Q-type CPU unit (Q172DSRCPU) status indicators

	2.5 Operation panel (O/P) functions (CR860-D/R/Q only)
	2.5.1 Explanation of the operation panel
	2.5.2 Explanation of the STATUS NUMBER (display panel)
	(1) Changing the display on the STATUS NUMBER (display panel)
	(2) Display status
	(3) Robot reset operation

	3 Explanation of operation methods
	3.1 Operation of the teaching pendant menu screens
	(1) Screen tree
	(2) Input of the number/character
	(3) Selecting a menu

	3.2 Jog Feed (Overview)
	3.2.1 Types of jog feed
	3.2.2 Speed of jog feed
	3.2.3 JOINT jog
	3.2.4 XYZ jog
	3.2.5 TOOL jog
	3.2.6 3-axis XYZ jog
	3.2.7 CYLNDER jog
	3.2.8 WORK jog
	3.2.9 Switching Tool Conversion Data
	3.2.10 Changing the world coordinate (specifies the base coordinate number)
	3.2.11 Impact Detection during Jog Operation
	(1) Impact Detection Level Adjustment during Jog Operation

	3.3 Opening/Closing the Hands
	3.4 Returning to the Safe Point
	3.5 Aligning the Hand
	3.6 Programming
	3.6.1 Creating a program
	(1) Opening the program edit screen
	(2) Creating a program
	(3) Completion of program creation and saving programs
	(4) Correcting a program
	(5) Registering the current position data
	(6) Deletion of the position variable
	(7) Confirming the position data (Position jump)
	(8) Correcting the MDI (Manual Data Input)
	(9) Executing a Command Directly

	3.7 Debugging
	(1) Step feed
	(2) Step return
	(3) Step feed in another slot
	(4) Step jump

	3.8 Automatic operation
	3.8.1 Setting the operation speed
	(1) Operation with the T/B
	(2) Operation with the O/P (CR860-D/R/Q only)

	3.8.2 Starting automatic operation
	(1) Operation with the T/B
	(2) Operation with the O/P (CR860-D/R/Q only)

	3.8.3 Stopping
	(1) Operation with the T/B
	(2) Operation with the O/P (CR860-D/R/Q only)

	3.8.4 Resuming automatic operation from stopped state
	(1) Operation with the T/B
	(2) Operation with the O/P (CR860-D/R/Q only)

	3.8.5 Resetting the program
	(1) Operation with the T/B
	(2) Operation with the O/P (CR860-D/R/Q only)

	3.9 Turning the servo ON/OFF
	(1) Operation with the T/B
	(2) Operation with the O/P (CR860-D/R/Q only)

	3.10 Error reset operation
	(1) Operation with the T/B
	(2) Operation with the O/P (CR860-D/R/Q only)

	3.11 Operation to Temporarily Reset an Error that Cannot Be Canceled
	3.12 Operating the program control screen
	(1) Program list display
	(2) Copying programs
	(3) Name change of the program (Rename)
	(4) Deleting a program (Delete)
	(5) Protection of the program (Protect)
	(6) Select the program

	3.13 Operation of operating screen
	3.13.1 Display of the execution line
	(1) Select the confirmation menu
	(2) Step feed
	(3) Step jump
	(4) Step feed in another slot
	(5) Finishing of the confirmation screen.

	3.13.2 Test operation
	(1) Select the test operation

	3.13.3 Operating the OPERATION screen

	3.14 Operating the monitor screen
	(1) Input signal monitor
	(2) Output signal monitor
	(3) Input register monitor
	(4) Output register monitor
	(5) Variable monitor
	(6) Error history

	3.15 Operation of parameter screen
	3.16 Operation of the origin and the brake screen
	(1) Origin
	(2) Brake

	3.17 Operation of setup / initialization screen
	(1) Initialize the program
	(2) Initialize the parameter
	(3) Initialize the battery
	(4) Operation
	(5) Time setup
	(6) Version

	3.18 ENHANCED
	(1) SQ DIRECT
	(2) WORK COORD

	3.19 Operation of the initial-setting screen
	(1) Set the display language
	(2) Adjustment of contrast

	4 MELFA-BASIC VI
	4.1 MELFA-BASIC VI functions
	4.1.1 Robot operation control
	(1) Joint interpolation movement
	(2) Linear interpolation movement
	(3) Circular interpolation movement
	(4) Continuous movement
	(5) Acceleration/deceleration time and speed control
	(6) Confirming that the target position is reached
	(7) High path accuracy control
	(8) Hand and tool control

	4.1.2 Pallet operation
	4.1.3 Program control
	(1) Unconditional branching, conditional branching, waiting
	(2) Repetition
	(3) Interrupt
	(4) Subroutine
	(5) Timer
	(6) Stopping

	4.1.4 Inputting and outputting external signals
	(1) Input signals
	(2) Output signals

	4.1.5 Communication
	4.1.6 Expressions and operations
	(1) List of operator
	(2) Relative calculation of position data (multiplication)
	(3) Relative calculation of position data (Addition)

	4.1.7 Appended statement

	4.2 Multitask function
	4.2.1 What is multitasking?
	4.2.2 Executing a multitask
	4.2.3 Operation state of each slot
	4.2.4 Precautions for creating multitask program
	(1) Relationship between number of tasks and processing time
	(2) Specification of the maximum number of programs executed concurrently
	(3) How to pass data between programs via external variables
	(4) Confirmation of operating status of programs via robot status variables
	(5) The program that operates the robot is basically executed in slot 1.
	(6) How to perform the initialization processing via constantly executed programs

	4.2.5 Precautions for using a multitask program
	(1) Starting the multitask
	(2) Display of operation status

	4.2.6 Example of using multitask
	(1) Robot work details.
	(2) Procedures to multitask execution

	4.2.7 Program capacity
	(1) Program save area
	(2) Program edit area
	(3) Program execution area

	4.3 Detailed specifications of MELFA-BASIC VI
	(1) Program name
	(2) Command statement
	(3) Variable
	4.3.1 Statement
	4.3.2 Appended statement
	4.3.3 Step
	4.3.4 Step No.
	4.3.5 Label
	4.3.6 Types of characters that can be used in program
	4.3.7 Characters having special meanings
	(1) Uppercase and lowercase identification
	(2) Underscore (_)
	(3) Apostrophe (')
	(4) Asterisk (*)
	(5) Comma (,)
	(6) Period (.)
	(7) Space

	4.3.8 Data type
	4.3.9 Constants
	4.3.10 Numeric value constants
	(1) Decimal number
	(2) Hexadecimal number
	(3) Binary number
	(4) Types of constant

	4.3.11 Character string constants
	4.3.12 Position constants (XYZ/work coordinate constants)
	(1) Coordinate, posture and additional axis data types and meanings
	(2) Meaning of structure flag data type and meanings

	4.3.13 Joint constants
	(1) Axis data format and meanings

	4.3.14 Angle value
	4.3.15 Variables
	4.3.16 Numeric value variables
	4.3.17 Character string variables
	4.3.18 Position variables (XYZ/work coordinate variables)
	4.3.19 Joint variables
	4.3.20 Input/output variables
	4.3.21 Array variables
	4.3.22 External variables
	4.3.23 Program external variables
	4.3.24 User-defined external variables
	4.3.25 Creating User Base Programs
	4.3.26 Scope
	4.3.27 Function procedure
	4.3.28 #Include statement

	4.4 Coordinate system description of the robot
	4.4.1 About the robot's coordinate system
	4.4.2 About base conversion
	4.4.3 About position data
	4.4.4 About tool coordinate system (mechanical interface coordinate system)
	(1) Mechanical interface coordinate system
	(2) Tool coordinate system
	(3) Effects of use of tool coordinate system

	4.5 Robot status variables
	4.5.1 Logic numbers

	4.6 Functions
	(1) User-defined functions
	(2) Built-in functions

	4.7 List of Command
	(1) Command related to movement control
	(2) Command related to program control
	(3) Definition commands
	(4) Multi-task related
	(5) Communications
	(6) Others

	4.8 Operators
	4.9 Priority level of operations
	4.10 Depth of program's control structure
	4.11 Reserved words
	4.12 Detailed explanation of command words
	4.12.1 How to read the described items
	4.12.2 Explanation of each command word
	Accel (Accelerate)
	Act (Act)
	Base (Base)
	CallP (Call P)
	ChrSrch (Character search)
	CavChk On (CavChk On)
	Close (Close)
	Clr (Clear)
	Cmp Jnt (Compliance Joint)
	Cmp Pos (Compliance Posture)
	Cmp Tool (Compliance Tool)
	Cmp Off (Compliance OFF)
	CmpG (Compliance Gain)
	Cnt (Continuous)
	ColChk (Col Check)
	ColLvl (Col Level)
	Com On/Com Off/Com Stop (Communication ON/OFF/Stop)
	Const
	Def Act (Define act)
	Def Arch (Define arch)
	Def Char (Define Character)
	Def FN (Define function)
	Def Gps (Define get position)
	Def Inte/Def Long/Def Float/Def Double (Define Integer/Long/Float/Double)
	Def IO (Define IO)
	Def Jnt (Define Joint)
	Def Map (Define mapping)
	Def Plt (Define pallet)
	Def Pos (Define Position)
	Def Work
	Dim (Dim)
	Dly (Delay)
	EBRead (EasyBuilder read)
	EBWrite (EasyBuilder write)
	EMvc (E Move C)
	EMvr (E Move R)
	EMvr2 (E Move R 2)
	EMvr3 (E Move R 3)
	EMvs (E Move S)
	EMvSpl (E Move Spline)
	End (End)
	Error (error)
	Exit
	Fine (Fine)
	Fine J (Fine Joint)
	Fine P (Fine Pause)
	For - Next (For-next)
	FPrm (FPRM)
	Function... FEnd
	GetM (Get Mechanism)
	GoSub (Return)(Go Subroutine)
	GoTo (Go To)
	GpsChk (Get position check)
	Hlt (Halt)
	HOpen / HClose (Hand Open/Hand Close)
	If...Then...ElseIf...Else...EndIf (If Then Else)
	Include
	Input (Input)
	JOvrd (J Override)
	JRC (Joint Roll Change)
	Loadset (Load Set)
	Mov (Move)
	Mva (Move Arch)
	Mva2 (Move Arch 2)
	Mvc (Move C)
	Mvr (Move R)
	Mvr2 (Move R 2)
	Mvr3 (Move R 3)
	Mvs (Move S)
	MvSpl (Move Spline)
	Mv Tune (Move Tune)
	Mxt (Move External)
	NVClose (network vision sensor line close)
	NVLoad (network vision sensor load)
	NVOpen (network vision sensor line open)
	NVRun (network vision sensor run)
	NVTrg (network vision sensor trigger)
	Oadl (Optimal Acceleration)
	On Com GoSub (ON Communication Go Subroutine)
	On ... GoSub (ON Go Subroutine)
	On ... GoTo (On Go To)
	Open (Open)
	Ovrd (Override)
	Plt (Pallet)
	Prec (Precision)
	Print (Print)
	Priority (Priority)
	PrmRead (Parameter Read)
	PrmWrite (Parameter Write)
	PVSCal (PVS calibration)
	RelM (Release Mechanism)
	Rem (Remarks)
	Remove (Remove)
	Reset Err (Reset Error)
	Return (Return)
	Save
	Select Case (Select Case)
	Servo (Servo)
	SetCalFrm (Set Calibration Frame)
	Skip (Skip)
	Spd (Speed)
	SpdOpt (Speed Optimize)
	SplFWrt (Spline Frame Write)
	SplWrt (Spline Write)
	Static
	Title (Title)
	Tool(Tool)
	Torq (Torque)
	Wait (Wait)
	While-WEnd (While End)
	Wth (With)
	WthIf (With If)
	XClr (X Clear)
	XLoad (X Load)
	XRst (X Reset)
	XRun (X Run)
	XStp (X Stop)
	Substitute
	(Label)

	4.13 Detailed explanation of Robot Status Variable
	4.13.1 How to Read Described items
	4.13.2 Explanation of Each Robot Status Variable
	C_Com
	C_Date
	C_Maker
	C_Mecha
	C_Prg
	C_Time
	C_User
	J_Curr
	J_ColMxl
	J_ECurr
	J_Fbc/J_AmpFbc
	J_Origin
	M_Acl/M_DAcl/M_NAcl/M_NDAcl/M_AclSts
	M_AmpInfoA
	M_BsNo
	M_BrkCq
	M_BTime
	M_CavSts
	M_CmpDst
	M_CmpLmt
	M_ColSts
	M_Cstp
	M_Cys
	M_DIn/M_DOut
	M_DIn32
	M_DOut32
	M_ErCode
	M_Err/M_ErrLvl/M_Errno
	M_ESpd
	M_Exp
	M_Fbd
	M_G
	M_GDev/M_GDevW/M_GDevD
	M_Gps
	M_HGDev/M_HGDevW/M_HGDevD
	M_HndCq
	M_In/M_Inb/M_In8/M_Inw/M_In16/M_In32
	M_JOvrd/M_NJOvrd/M_OPOvrd/M_Ovrd/M_NOvrd
	M_LdFact
	M_LdFMax
	M_Line
	M_Map1 to M_Map8
	M_Mode
	M_Mxt
	M_NvOpen
	M_On/M_Off
	M_Open
	M_Out/M_Outb/M_Out8/M_Outw/M_Out16/M_Out32
	M_PI
	M_Psa
	M_Ratio
	M_RCInfo
	M_RDst
	M_Run
	M_SetAdl
	M_SkipCq
	M_Spd/M_NSpd/M_RSpd
	M_SplPno
	M_SplVar
	M_Svo
	M_Timer
	M_Tool
	M_Uar
	M_Uar32
	M_UDevW/ M_UDevD
	M_Wai
	M_Wupov
	M_Wuprt
	M_Wupst
	M_XDev/ M_XDevB/ M_XDevW/ M_XDevD
	M_YDev/ M_YDevB/ M_YDevW/ M_YDevD
	P_Base/P_NBase
	P_CavDir
	P_ColDir
	P_CordR
	P_Curr
	P_CurrR
	P_ECord
	P_Fbc
	P_GCurr
	P_GDev
	P_Gps1 to P_Gps8
	P_HGDev
	P_Safe
	P_Tool/P_NTool
	P_UDev
	P_WkCord
	P_Zero

	4.14 Detailed Explanation of Functions
	4.14.1 How to Read Described items
	4.14.2 Explanation of Each Function
	Abs
	ACos
	Align
	Asc
	ASin
	Atn/Atn2
	Bin$
	CalArc
	Chr$
	Cint
	CkSum
	Cos
	Cvi
	Cvs
	Cvd
	Deg
	Dist
	Exp
	Fix
	Fram
	Hex$
	Int
	Inv
	JtoP
	Left$
	Len
	Ln
	Log
	Max
	Mid$
	Min
	Mirror$
	Mki$
	Mks$
	Mkd$
	PosCq
	PosMid
	PtoJ
	Rad
	Rdfl 1
	Rdfl 2
	Rnd
	Right$
	Setfl 1
	Setfl 2
	SetJnt
	SetPos
	Sgn
	Sin
	SplECord
	SplPos
	SplSpd
	Sqr
	StrLwr
	StrUpr
	Strpos
	Str$
	Tan
	Val
	Zone
	Zone 2
	Zone3

	5 Functions set with parameters
	5.1 Movement parameter
	5.2 Signal parameter
	5.2.1 About multiple CPU input offsets (CR800-R/Q series only)
	(1) Case (A)
	(2) Case (B)

	5.3 Operation parameter
	5.4 Command parameter
	5.5 Communication parameter
	5.6 Standard Tool Coordinates
	5.7 About Standard Base Coordinates
	5.8 About user-defined area
	5.8.1 Selecting a coordinate system
	5.8.2 Setting Areas
	(1) Position Area
	(2) Posture Area
	(3) Additional Axis Area

	5.8.3 Selecting mechanism to be checked
	5.8.4 Specifying behavior within user-defined area
	5.8.5 Example of settings

	5.9 Free plane limit
	5.9.1 The definition of a free plane limit
	5.9.2 Selection of a coordinates system for a free plane limit

	5.10 Automatic return setting after jog feed at pause
	5.11 Automatic execution of program at power up
	(1) First, create an ALWAYS program and an operating program.
	(2) Set the parameter.
	(3) Turn the power ON.

	5.12 About the hand type
	(1) Solenoid valve types and signal numbers

	5.13 About default hand status
	5.14 About the output signal reset pattern
	5.15 About the communication setting (Ethernet)
	5.15.1 Details of parameters
	(1) NETIP (IP address of robot controller)
	(2) NETMSK (sub-net-mask)
	(3) NETPORT (port No.)
	(4) CRRCE11 to 19 (protocol)
	(5) COMDEV (Definition of devices corresponding to COM1: to 8)
	(6) NETMODE (server specification).
	(7) NETHSTIP (The IP address of the server of the data communication point).
	(8) MXTTOUT (Timeout setting for executing real-time external control command)

	5.15.2 Example of setting of parameter 1 (When the Support Software is used)
	5.15.3 Example of setting of parameter 2-1
	5.15.4 Example of setting parameters 2-2
	5.15.5 Example of setting parameters 3
	5.15.6 Connection confirmation
	5.15.7 Checking the connection with the Windows ping command

	5.16 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)
	5.17 About the singular point adjacent alarm
	(1) Operations that generate an alarm
	(2) Operations that do not generate an alarm

	5.18 High-speed RAM operation function
	(1) Overview
	(2) Precautions on saving variables at power off

	5.19 Warm-Up Operation Mode
	(1) Functional Overview
	(2) Function Details
	(3) If alarms are generated

	5.20 About singular point passage function
	(1) Overview of the function
	(2) Singular point passage function in jog operation
	(3) Singular point passage function in position data confirmation (position jump)
	(4) Singular point passage function in automatic operation
	TYPE (Type)

	5.21 About the collision detection function
	(1) Overview of the function
	(2) Related parameters
	(3) How to use the collision detection function

	5.22 Optimizing the overload level
	5.23 Multi-rotational restrictions for the pallet definition instruction
	5.24 Interference avoidance function
	5.24.1 Operation procedures
	(1) Checking for interference between robots (CR800-R/Q series only)
	(2) Checking for interference between robot and free plane limit

	5.24.2 Preparing and connecting the devices
	(1) Checking for interference between robots (CR800-R/Q series only)
	(2) Checking for interference between robot and free plane limit

	5.24.3 Registering the simulated components for interference check
	(1) Simulated component registration parameter

	5.24.4 Registering a free plane limit
	5.24.5 Support of additional axes
	5.24.6 Setting the CPU buffer memory expanded function (Checking for interference between robots)
	(1) Parameter setting
	(2) CPU buffer memory map

	5.24.7 Calibration between robots (Checking for interference between robots)
	(1) Setting the calibration
	(2) Checking the calibration setting results

	5.24.8 Enabling and disabling the interference avoidance function
	5.24.9 Using the interference avoidance function
	(1) Interference avoidance during jog operation
	(2) Interference avoidance during program execution

	5.24.10 Sample programs
	(1) Starting and ending the interference avoidance function (all robots)
	(2) Starting and ending interference avoidance function (designated robot)
	(3) Changing the simulated hand and workpiece types
	(4) Executing avoidance operation after detecting interference (interrupt process)

	5.25 Direct control of the PLC input/output module
	5.25.1 CR800-R series
	(1) Operation procedure
	(2) Configuration example of the hardware
	(3) Setting the parameters for the system configuration example 1
	(4) Setting the parameters for the system configuration example 2
	(5) Controlling with status variables

	5.25.2 CR800-Q series
	(1) Operation procedure
	(2) Configuration example of the hardware
	(3) Setting the parameters for the system configuration example 1
	(4) Setting the parameters for the system configuration example 2
	(5) Details of robot parameters
	(6) Controlling with status variables

	5.26 Direct communication with robot CPUs
	(1) Specification
	(2) Description of the status variable

	5.27 Parameter for behavior selection at the error occurrence on dual system
	5.28 Security function
	(1) IP address filtering function

	6 External input/output functions
	6.1 Types
	6.2 PLC link I/O function
	6.2.1 Parameter setting
	(1) PLC CPU parameter setting
	(2) Robot CPU parameter setting

	6.2.2 CPU buffer memory and robot I/O signal compatibility
	6.2.3 Sequence ladder example
	6.2.4 Assignment of the dedicated I/O signal. (at factory shipping)

	6.3 Dedicated input/output
	6.4 Enable/disable status of signals
	6.5 External signal timing chart
	6.5.1 Individual timing chart of each signal
	(1) RCREADY (Controller's power ON completion output)
	(2) ATEXTMD (Remote mode output)
	(3) TEACHMD (Teach mode output)
	(4) ATTOPMD (Auto mode output)
	(5) IOENA (Operation right input signal/operation right output signal)
	(6) START (Start input/operating output)
	(7) STOP (Stop input/aborting output)
	(8) STOPSTS (Output during stop signal input)
	(9) SLOTINIT (Program reset input/program selectable output)
	(10) ERRRESET (Error reset input/output during error occurrence)
	(11) SRVON (Servo ON input/output during servo ON))
	(12) SRVOFF (Servo OFF input/servo ON disable output)
	(13) AUTOENA (Auto operation input/auto operation enable output)
	(14) CYCLE (Cycle stop input/output during cycle stop operation)
	(15) MELOCK (Machine lock input/output during machine lock)
	(16) SAFEPOS (Return to safe point input/output during return to safe point)
	(17) BATERR (Low battery voltage output)
	(18) OUTRESET (General-purpose output signal reset request input)
	(19) HLVLERR (Output during high level error occurrence)
	(20) LLVLERR (Output during low level error occurrence)
	(21) CLVLERR (Output during warning level error occurrence)
	(22) EMGERR (Output during emergency stop)
	(23) SnSTART (Slot n start input/output during slot n operation)
	(24) SnSTOP (Slot n stop input/output during slot n aborting)
	(25) MnSRVOFF (Mechanical n servo OFF input/mechanical n servo ON disable output)
	(26) MnSRVON (Mechanical n servo ON input/output during mechanical n servo ON)
	(27) MnMELOCK (Mechanical n machine lock input/output during mechanical n machine lock)
	(28) PRGSEL (Program selection input) * This is used together with the numeric value input (IODATA).
	(29) OVRDSEL (Override selection input) * This is used together with the numeric value input (IODATA).
	(30) IODATA (Numeric value input/numeric value output) * This is used together with PRGSEL, OVRDSEL, PRGOUT, LINEOUT, OVRDOUT or ERROUT.
	(31) PRGOUT (Program number output request input/outputting program number) * This is used together with the numeric value output (IODATA).
	(32) LINEOUT (Line number output request input/outputting line number) * This is used together with the numeric value output (IODATA).
	(33) OVRDOUT (Override value output request/outputting override value) * This is used together with the numeric value output (IODATA).
	(34) ERROUT (Error number output request/outputting error number) * This is used together with the numeric value input (IODATA).
	(35) JOGENA (Jog enable input/output during jog enabled)
	(36) JOGM (Jog mode input/jog mode output)
	(37) JOG+ (Input for 8 axes on jog feed plus side)
	(38) JOG- (Input for 8 axes on jog feed minus side)
	(39) HNDCNTL1 (Mechanism 1 hand output signal status)
	(40) HNDSTS1 (Mechanism 1 hand input signal status)
	(41) HNDERRn (Mechanical n hand error input signal/output during mechanical n hand error occurrence)
	(42) AIRERRn (Mechanical n pneumatic error input signal/outputting mechanical n pneumatic error)
	(43) USRAREA (User-specified area 8 points output)
	(44) MnWUPENA (Mechanism n warm-up operation mode enable input signal/ Mechanism n warm-up operation mode output signal)
	(45) MnWUPMD (Mechanism n warm-up operation status output signal)
	(46) RSTBAT (Battery cumulative time reset)
	(47) RSTGRS (Maintenance forecast reset (grease))
	(48) RSTBLT (Maintenance forecast reset (belt))

	6.5.2 Timing chart example
	(1) External signal operation timing chart (Part 1)
	(2) External signal operation timing chart (Part 2)
	(3) Example of external operation timing chart (Part 3)
	(4) Example of external operation timing chart (Part 4)
	(5) Example of external operation timing chart (Part 5)

	6.6 How to select and run a program using external signals
	6.6.1 Methods
	6.6.2 Selecting a method to run a program
	6.6.3 Related I/O parameters
	6.6.4 Operation procedure
	(1) Running a designated program after checking that the program has been loaded
	(2) Running a designated program upon input of the start signal

	6.7 Emergency stop input
	6.7.1 Robot Behavior upon Emergency Stop Input

	6.8 Devices
	6.8.1 Device list
	(1) CR800-R series
	(2) CR800-D series
	(3) CR800-Q series

	6.8.2 Device assignment
	(1) CR800-R series
	(2) CR800-D series
	(3) CR800-Q series

	6.8.3 PLC device assignment function
	(1) Compatible device
	(2) Assignment to a robot variable device

	7 Appendix
	7.1 Configuration flag
	(1) Right/Left
	(2) ABOVE/BELOW
	(3) NONFLIP/FLIP (6-axis type robot only.)
	(1) Right/Left

	7.2 Spline interpolation
	7.2.1 Outline
	(1) Outline
	(2) Features
	(3) Required devices and software version
	(4) Terminology

	7.2.2 Specifications
	(1) Basic specifications
	(2) Restrictions
	(3) Robot behavior during spline interpolation
	(4) Check related to path points

	7.2.3 Explanation of functions
	(1) Path adjustment
	(2) Operation mode
	(3) Signal output
	(4) Numerical setting
	(5) Frame transformation

	7.2.4 Work procedures
	7.2.5 Creating the spline file
	(1) New file
	(2) Creating a file by DXF File Import function
	(3) Creating new spline files with robot language
	(4) Opening an existing spline file
	(5) Explanation of Spline File Edit screen
	(6) Spline file editing ribbon
	(7) Details of path point data
	(8) Editing the spline file
	(9) Saving the spline file
	(10) Deleting a spline file
	(11) Changing the spline No.
	(12) Copying the spline file
	(13) Spline file manager
	(14) Import/export function
	(15) Auxiliary editing functions
	(16) Displays the spline curve
	(17) Checking edited data
	(18) Robot program

	7.2.6 Creating the robot program
	7.2.7 Confirming the movement
	7.2.8 Saving in the robot controller
	7.2.9 Adjustment work
	(1) Position adjustment function
	(2) Frame transformation function
	(3) Position jump
	(4) Parameter SPLOPTGC

	7.2.10 High speed spline interpolation command
	(1) Outline
	(2) Required software versions
	(3) Specifications
	(4) RT ToolBox3 settings
	(5) Precautions and limitations

	7.3 Ex-T control
	7.3.1 Outline
	(1) Features
	(2) Specifications
	(3) Equipment and software version requirements

	7.3.2 Ex-T coordinates setting
	(1) Setting

	7.3.3 Ex-T jog
	(1) Movement of the posture element in the WORK jog
	(2) Movement of the posture element in the Ex-T jog
	(3) Ex-T jog operation
	(4) WORK jog operation of the RV 6-axis type
	(5) WORK jog operation of the RH 4-axis type
	(6) WORK jog operation of the RH 4-axis hanging type

	7.3.4 Creation of robot program
	(1) List of commands/variables related to the Ex-T control
	(2) Programming example

	7.4 Get-position-quick function
	7.4.1 Outline
	7.4.2 Specifications of the GPS Function
	7.4.3 Specifications of Digital Input Signal
	7.4.4 Electric Specification of Digital Input
	7.4.5 How to use the GPS function
	(1) Position data acquisition at the sensor input timing
	(2) Workpiece presence recognition in a cassette

	7.5 Upgrade of the servo software
	7.6 Log function
	7.6.1 Outline
	7.6.2 Specifications
	(1) Basic specifications
	(2) Log file specifications

	7.6.3 Error numbers to be saved
	7.6.4 Parameter setting
	7.6.5 Checking the log file details
	(1) Error history
	(2) Event history
	(3) Program execution history

	7.7 Special devices
	7.7.1 CR800-R series
	(1) Special relay
	(2) Special register

	7.7.2 CR800-D series
	(1) Special relay
	(2) Special register

	7.7.3 CR800-Q series
	(1) Special relay
	(2) Special register

