ZEF005671003

For Iron and Steel Industry

ABSOCODER Converter For PROFIBUS-DP

NCW-3DHPRV2

Specifications & Instruction Manual

Applicable sensor VRE-16TS100

CE

GENERAL SAFETY RULES

(Please read this safety guide carefully before operation)

Thank you very much for purchasing our product. Before operating this product, be sure to carefully read this manual so that you may fully understand the product, safety instructions and precautions.

- Please submit this manual to the operators actually involved in operation. - Please keep this manual in a handy place.

Signal Words

Safety precautions in this guide are classified into DANGER and CAUTION.

Symbol	Meaning	
DANGER Incorrect handling may cause a hazardous situation that will result in death or serious injury.		
CAUTION	Incorrect handling may cause a hazardous situation that will result in moderate injury or physical damage.	

Instructions accompanied by a symbol ACAUTION may also result in serious damage or injury. Be sure to follow the all instructions accompanied by the symbol.

Graphic Symbols

Symbol	Meaning	
\bigcirc	Indicates prohibited items.	
Indicates items that must be performed to.		

Application Limitation

This product is not designed to be used under any situation affecting human life. When you are considering to use this product for special purposes such as medical equipment, aerospace equipment, nuclear power control systems, traffic systems, and etc., please consult with NSD.

This product is designed to be used under the industrial environments categorized in Class A device.

The supplier and user may be required to take appropriate measures.

1. Handling Precautions

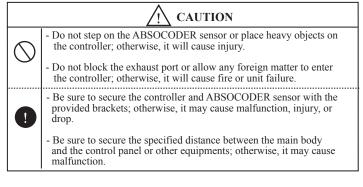
0					
	DANGER				
$\langle \!\!\!\!\!\!\!\!\!\!\rangle$	- Do not touch components inside of the controller; otherwise, it will cause electric shock.				
\bigcirc	 Do not damage the cable by applying excessive load, placing heavy objects on it, or clamping; otherwise, it will cause electric shock or fire. 				
0	 Turn the power supply OFF before wiring, transporting, and inspecting the controller; otherwise, it may cause electric shock. Provide an external safety circuit so that the entire system functions safely even when the controller is faulty. 				
Ð	 Connect the grounding terminal of the controller; otherwise, it may case electric shock or malfunction. 				
	CAUTION				
\bigcirc	 Do not use the controller in the following places; water splashes, the atmosphere of the corrosion, the atmosphere of the flammable vapor, and the side of the combustibility. Doing so may result in fire or the controller may become faulty. 				
0	- Be sure to use the controller and the ABSOCODER sensor in the environment designated by the general specifications in the manual. Failure to do so may result in electric shock, fire, malfunction or unit				

2. Storage

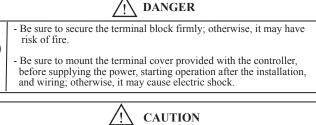
failure.

controller malfunction

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	CAUTION		
$\bigcirc$	- Do not store the controller in a place exposed to water, or toxic gas and liquid.		
!	<ul> <li>Be sure to store the controller in designed temperature and humidity range, and do not exposed to direct sunlight.</li> <li>Be sure to consult with NSD when the controller is stored for long periods.</li> </ul>		


Be sure to use the specified combination of the ABSOCODER

sensor, controller and sensor cable; otherwise, it may cause fire or


#### 3. Transport

	1
	<b>CAUTION</b>
$\mathbf{O}$	- Do not hold the cable or shaft of ABSOCODER sensor during transport; otherwise, it will cause injury or controller malfunction.

#### 4. Installation



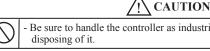
#### 5. Wiring



Be sure to keep the sensor cable, control cable, and communication cable at least 300 mm away from the main circuit and power line; otherwise it may cause injury or malfunction.


- Be sure to connect all cables correctly; otherwise, it may cause injury or controller malfunction.
- Be sure to firmly connect the external I/O connectors and sensor connectors; otherwise, it may cause incorrect inputs and outputs or injury

#### 6. Operation


1

	<u>/</u> CAUTION				
$\bigcirc$	<ul> <li>Do not change the controller's function switch settings during the operation; otherwise, it will cause injury.</li> <li>Do not approach the machine after instantaneous power failure has been recovered.</li> <li>Doing so may result in injury if the machine starts abruptly, it will cause injury.</li> </ul>				
	<ul> <li>Be sure to check that the power supply specifications are correct; otherwise, it may caused controller failure.</li> <li>Be sure to provide an external emergency stop circuit so that operation can be stopped with power supply terminated immediately.</li> <li>Be sure to conduct independent trial runs for the controller before mounting the controller to the machine; otherwise, it may cause injury.</li> <li>When an error occur, be sure to eliminate the cause, ensure safety, and reset the error before restarting operation; otherwise, it may cause injury.</li> </ul>				

#### 7. Maintenance And Inspection



#### 8. Disposal



Be sure to handle the controller as industrial waste while

# **REVISION HISTORY**

The Document No	. appears at the	e upper right of th	is manual's cover page.
-----------------	------------------	---------------------	-------------------------

The Document No. appears at the upper right of this manual's cover page.				
Document No.	Date	Revision Description		
ZEF005671000	20, Oct., 2015	1st Edition		
		Japanese document: ZEF005670900		
ZEF005671001	13, Nov., 2015	2nd Edition		
		Japanese document: ZEF005670901		
ZEF005671002	8, Mar., 2016	3rd Edition		
		Japanese document: ZEF005670902		
ZEF005671003	26, Dec., 2016	4th Edition		
		Japanese document: ZEF005670903		

- MEMO -

# CONTENTS

1. OVERVIEW 1-1. Features	
2. MODEL SELECTION WHEN ORDERING	
3. SPECIFICATIONS	4
3-1. Converter Specifications	4
3-2. ABSOCODER Sensor Specifications	
3-3. Extension Sensor Cable Specification	7
4. DIMENSIONS	8
4-1. Converter Dimension	8
4-2. ABSOCODER Sensor Dimensions	
4-3. Extension Sensor Cable Dimensions	
5. CHECKING THE CONTENTS OF THE SHIPPING CASE	12
6. INSTALLATION	13
6-1. Converter Installation Conditions and Precautions	
6-2. ABSOCODER Sensor Installation Conditions and Precautions	14
7. WIRING	17
7-1. Connection between Converter and ABSOCODER Sensor	
7-1-1. Connection configure example of the sensor cable	
7-2. Power Supply Connection	
8. NOMENCLATURE	
8-1. Part Identification	
8-2. Function and Name of Display and Setting Area	
8-2-1. Display contents of the monitor LEDs	
8-2-2. Error clear button (CLR) 8-2-3. Zero setting button (ZPS1, ZPS2)	
8-2-4. Node address setting switch (NODE)	
9. PROFIBUS-DP Communication	
9-1. Position Data (Input Data: Slave → Master)	
9-2. Preset Data (Output Data: Master → Slave)	
9-3. Alarm Data (Extended Diagnostic Data)	
9-4. Parameter Data	
10. INSPECTION	38
11. Troubleshooting	30
11-1. Troubleshooting Flowchart	
11-1-1. Flowchart when Position Data doesn't Change	
11-1-2. Flowchart when Position Data is not Read.	
11-2. ABSOCODER Sensor Check List	
12. CE MARKING	44
12-1. EMC Directives	
12-2. EMC Directive and Standards	44
12-3. Low Voltage Directive	
12-4. Measures for EMC Compliance	
12-5. Restrictions	

# 1. OVERVIEW

NCW-3DHPRV2 converter (hereafter called NCW-3DHPR) can be combined with a single-turn type of ABSOCODER sensor (VRE) to detected the machine position. This converter communicates with programmable logic controllers by PROFIBUS-DP.

#### GSD file

This product requires a definition file (GSD file) which is installed to the configuration tool. Download GSD file from the following URL. URL: www.nsdcorp.com

#### 1-1. Features

#### (1) High reliability

An absolute position detection format ensures accurate position detection even if a power interruption or unexpected noise condition occurs. An origin returning operation is not required.

#### (2) Superior durability

ABSOCODER sensor is not used electronic parts except coils and resistance, and it features a no-contact construction excepting bearing. This sensor offers problem-free operation, even in environment where it is exposed to vibration, impact shocks, extreme temperatures, oil, and dust.

#### (3) Compact design

The unit's outside dimensions  $(39(W) \times 155(H) \times 93(D))$  were miniaturized. DIN rail can be used, so mounting is much easier.

#### (4) PROFIBUS-DP communication

PROFIBUS-DP communication enables easy transmission of Position data, Preset data, Alarm data, and Parameter data.

• 8-byte output data and 8-byte input data communication.

- Baud rate of 9.6kbs ~ 12Mbps.
- · Node address can be set by the node address setting switch on the converter's front panel.
- (5) Two axes ABSOCODER sensor can connect

The machine positions for two axes can be detected by one converter. The space-saving in the control panel can be conducted.

(6) Diagnosis function

The error information can be expressed both by PROFIBUS-DP alarm data and by monitor LEDs on the converter's front panel.

#### (7) Preset function

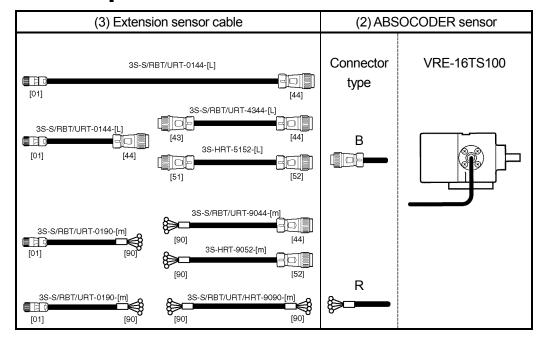
The position data can be preset to the desired value from the PROFIBUS-DP master. Moreover the position data can also be changed to "0" by pressing the [ZPS] switch on the converter's front panel.

(8) Configuration tool

Parameter data settings can be changed by using the PROFIBUS-DP configuration tool (PROFIBUS configuration software).

#### (9) Compliance with CE standards

The converter complies with CE (EMC Directive) standards.


# 2. MODEL SELECTION WHEN ORDERING

Connection configuration

The following figure indicates the connection configuration of NCW-3DHPR.

Before ordering, refer to the connection configuration and model list. Please prepare by customer except (1) to (3) in the connection configuration.

PLC Master **PROFIBUS-DP** (1) Converter Slave NCW-3DHPR Slave Slave Power Supply +24V 0V Ground 嶽 雜 0 00000



#### Model List

#### ♦Converter

No.	Model	Description	
	For single-turn type ABSOCODER sensor		
(1) NCW-3DHPRV2		Position data 16bit binary code output	

#### ♦ABSOCODER sensor

No.	Model	Description
(2)	VRE-16TS100[1] K [2][L]-G	Heavy duty type, SUS, High-resolution         [1]: Mounting format         F: Flange-mount type         L: Base-mount type         L: Base-mount type         K: Input shaft (sunk key)         L:         Image: Standard connector for the NSD special cable         (NJW-2012-PM8, manufacturer: Nanaboshi Electric Mfg.Co,Ltd.)         R: Crimping terminals for JKPEV-S cable and the NSD special cable (R1.25-4)
		[L]: Interconnecting sensor cable length (m): 2, 5,10, 20
		G: Silicon oil injected, no code: no oil injected

#### ♦Extension sensor cable

No.	Model	De	Description	
	3S-S-0144-[L]	Standard cable		
	3S-RBT-0144-[L]	Robotic cable		
	3S-URT-0144-[L]	Semi-heat-resistant robotic cable		
	3S-S-4344-[L]	Standard cable	Standard connector	
	3S-RBT-4344-[L]	Robotic cable		
	3S-URT-4344-[L]	Semi-heat-resistant robotic cable		
	3S-HRT-5152-[L]	Heat-resistant robotic cable		
	3S-S-0190-[L]	Standard cable		
	3S-RBT-0190-[L]	Robotic cable		
(3)	3S-URT-0190-[L]	Semi-heat-resistant robotic cable		
	3S-S-9044-[L]	Standard cable		
	3S-RBT-9044-[L]	Robotic cable		
	3S-URT-9044-[L]	Semi-heat-resistant robotic cable	Crimping terminal	
	3S-HRT-9052-[L]	Heat-resistant robotic cable		
	3S-S-9090-[L]	Standard cable		
	3S-RBT-9090-[L]	Robotic cable		
	3S-URT-9090-[L]	Semi-heat-resistant robotic cable		
	3S-HRT-9090-[L]	Heat-resistant robotic cable		

[L]: Specify the cable length (m) that you need.

# **3. SPECIFICATIONS**

# **3-1. Converter Specifications**

#### (1) General specification

Items	Specifications
Power supply voltage	24VDC±10% (including ripple)
Power consumption	10W or less
Insulation resistance	20 M-Ohms or more between external DC power terminals and ground (by 500 VDC insulation resistance tester)
Withstand voltage	500 VAC, 60Hz for 1 minute between external DC power terminals and ground
Vibration resistance	20m/s ² 10 to 500Hz, 10cycles of 5 minutes in 3 directions, conforms to JIS C 0040 standard
Ambient operating temperature	0 to +55°C (No freezing)
Ambient operating humidity	20 to 90 %RH (No condensation)
Ambient operating environment	Free from corrosive gases and excessive dust
Ambient storage temperature	-25 to +70°C
Grounding	Must be securely grounded (ground resistance of 100 ohm or less)
Construction	Book-shelf type within enclosure, DIN rail mountable
Outside dimension (mm)	39(W) x 155(H) x 93(D) Refer to dimensions for details.
Mass	Approx. 0.4kg

#### (2) Performance specification

Items	Specifications	Notes
Applicable sensor	VRE-16TS100	
Total number of divisions	65536(2 ¹⁶ )	
Number of effective bits	16 (D0 to D15)	
Position detection format	Absolute format	
Output code	Binary code	
Number of detection axes	2	
Position data sampling time	0.2ms	
	- PROFIBUS-DP power supply error	
Error detection	- Sensor error	
	- Memory error	
	- Watchdog timer error	
Auxiliary functions	Preset function	
	PON: Power ON	
	DTEX: PROFIBUS-DP data refresh in progress	
	RDY: Converter normal (ready for operation)	
	PRE1/PRE2: Preset operation (zero set)	
Monitor LED	ME: Memory error	
	SE1/SE2: Sensor error	
	Position data: D0-D23	LED display changes
	Preset data: D0-D23	by selecting the
	Converter's diagnosis data	– DISP. SEL switch.
	Parameter data	DIOL: OFF SWIGH.
	Error clear: CLR	
Front panel operation	Zero set: ZPS1/ZPS2	
	LED display selecting: DISP SEL	
	PROFIBUS-DP node address setting: NODE x16, x1	
Applicable standard	CE Marking (EMC directive)	

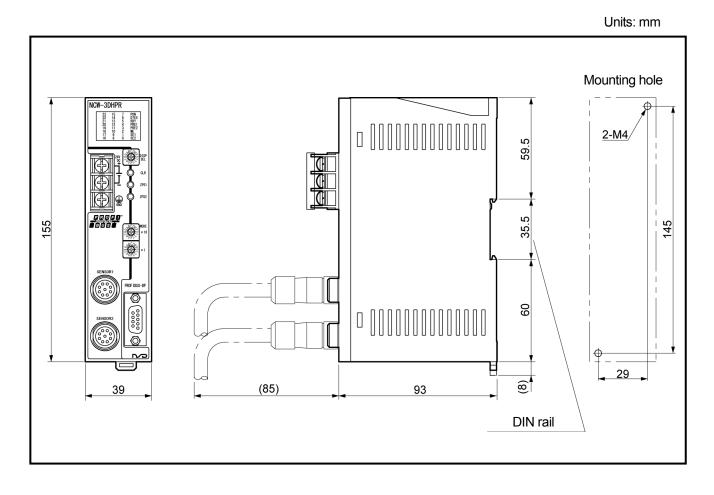
#### (3) PROFIBUS-DP specification

Items	Specifications
Interface	PROFIBUS-DP (V0)
Baud rates	9.6k,19.2k,45.45k,93.75k,187.5k,500k,1.5M,3M,6M,12M [Baud] (Automatic Baud Rate Identification)
Supported Global Control	Freeze,Sync
Set_Slave_Address	not supported
Station type	modular device
Max_Module	1
Max_Input_length	8 [bytes]
Max_output_length	8 [bytes]
Extended diagnostic information	8 [bytes]
Ext_Module_Prm_Data_Length	7 [bytes]
Others	Refer to the GSD file for details

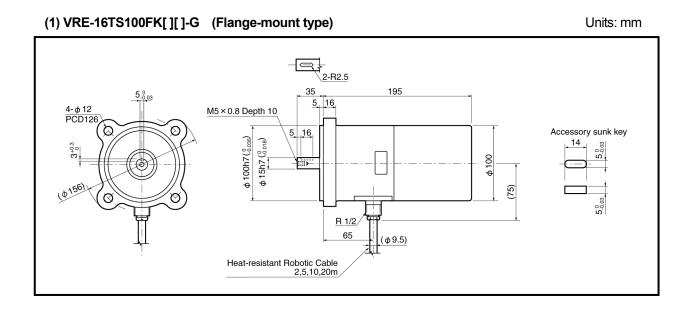
# 3-2. ABSOCODER Sensor Specifications

1	tems	Specifications	
Sensor model		VRE-16TS100	
Total number	of turns	1	
Number of div	isions	65536 (2 ¹⁶ )	
Mass		8.5+0.15 x cable length (m) kg	
Linearity error		0.084° Max.	
Moment of ine	ertia GD ² /4(J)	$4.1 \times 10^{-5} \text{ kg} \cdot \text{m}^2 (4.2 \times 10^{-4} \text{kgf} \cdot \text{cm} \cdot \text{s}^2)$	
Starting torque	e	9.8 x $10^{-2}$ N·m or less (1 kgf·cm or less)	
Permissible	Radial	1.5 x 10 ² N (15 kgf)	
shaft load	Thrust	78N (8 kgf)	
Permissible m	echanical speed	4000 r/min	
Bearing life		8 x 10 ⁴ h (at 4000 r/min)	
Ambient	Operating	-20 to +120°C	
temperature	Storage	-30 to +120°C	
Vibration resistance		$2.0 \times 10^2 \text{ m/s}^2$ (20G) 200Hz, up/down 4 h, forward/back 2 h,	
		conforms to JIS D 1601 standard	
Shock resistar	000	4.9 x 10 ³ m/s ² (500G) 0.5 ms, up/down/forward/back x 3 times each,	
SHOCK TESISLA	ICE	conforms to JIS C 5026 standard	
Protection rati	ng	IP67, conforms to JEM 1030 standard	
Interconnectin	g cable	2 · 5 · 10 · 20m	
Max. sensor	3S-S	200m	
cable length	3S-RBT/URT	100m	
cable length	/HRT	100111	
Surface treatn	nent	Not treated	
Material		Stainless	

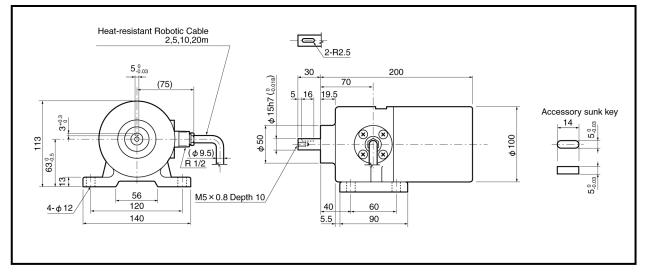
# 3-3. Extension Sensor Cable Specification


Items	Specifications				
Model code	3S-S	3S-RBT 3S-URT		3S-HRT	
Cable type	Standard cable	Robotic cable	Semi-heat-resistant	Heat-resistant robotic	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			robotic cable	cable	
Diameter		φ8		φ9.5	
Operating	-5~	+60°C	-5 <b>~</b> +105°C	0 <b>~</b> +150°C	
temperature range					
la su la fa a	Irradiated cross				
Insulator	linked formed	ETFE plastic (resin)			
	polyethylene			1	
			Heat-resistant		
Sheath	Polyvinyl chloride mixture		polyvinyl chloride	Fluonlex	
			mixture		
Construction		7-core, 1 triple with sh			
Color of sheath	Dark brown	Blue		Black	
	Extonsible for long			Heat treatment and	
Advantage	•	Extensible for long Superior flexibility; id		flexible; ideal for	
	distances			moving place	

#### [Remark]


Contact your NSD representative when the extension cable combines different types of cables.

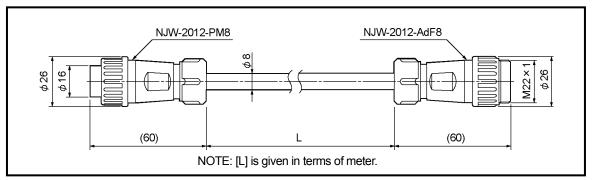
# 4. DIMENSIONS


# 4-1. Converter Dimension

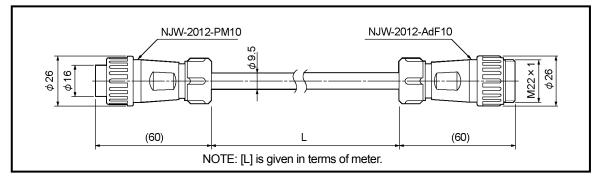


#### 4-2. ABSOCODER Sensor Dimensions

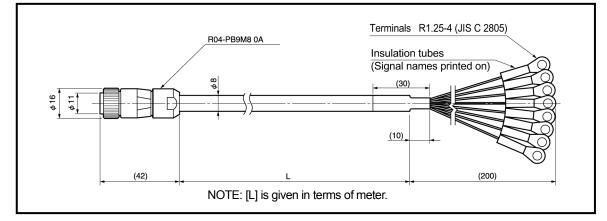



#### (2) VRE-16TS100LK[ ][ ]-G (Base-mount type)

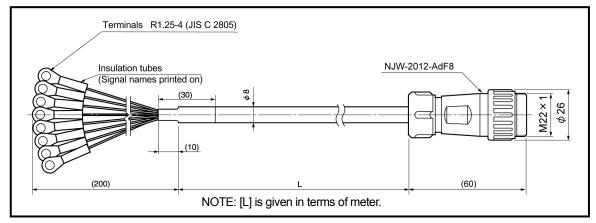



#### 4-3. Extension Sensor Cable Dimensions

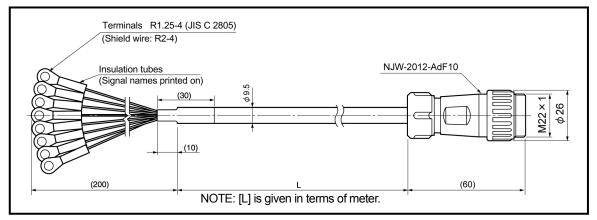
# (1) 3S-S-0144-[L] / 3S-RBT-0144-[L] / 3S-URT-0144-[L] Units: mm


#### (2) 3S-S-4344-[L] / 3S-RBT-4344-[L] / 3S-URT-4344-[L]

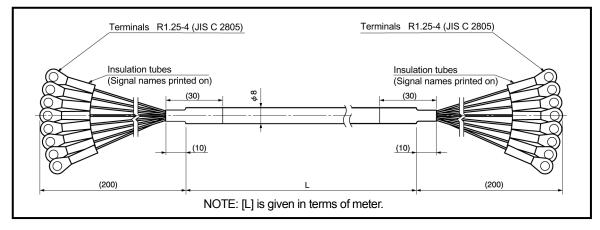



(3) 3S-HRT-5152-[L]

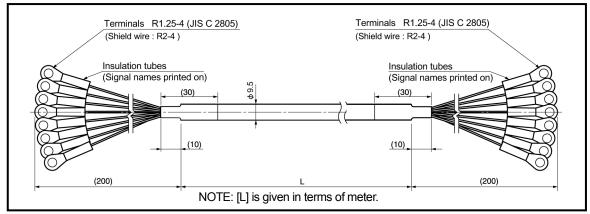



#### (4) 3S-S-0190-[L] / 3S-RBT-0190-[L] / 3S-URT-0190-[L]



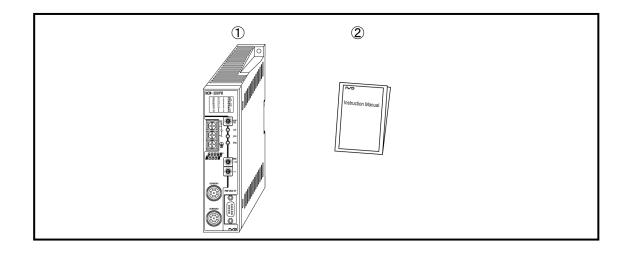

#### (5) 3S-S-9044-[L] / 3S-RBT-9044-[L] / 3S-URT-9044-[L]




#### (6) 3S-HRT-9052-[L]



#### (7) 3S-S-9090-[L] / 3S-RBT-9090-[L] / 3S-URT-9090-[L]




#### (8) 3S-HRT-9090-[L]



# **5. CHECKING THE CONTENTS OF THE SHIPPING CASE**

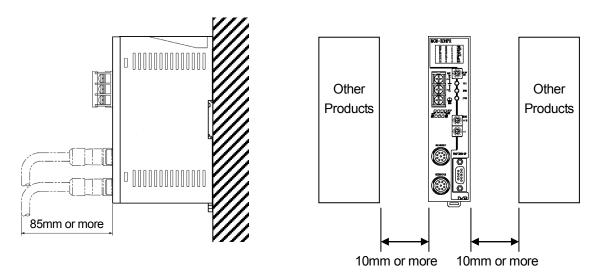
Open the packing case, and verify that all items are present. When extension sensor cables are ordered, they are packed separately.



2 Manual (Simple edition) ..... 1 piece

# 6. INSTALLATION

#### 6-1. Converter Installation Conditions and Precautions


When installing the converter, the following conditions and precautions should be observed.

#### -Installation Site

- (1) Avoid sites where the unit is exposed to direct sunlight.
- (2) The ambient temperature should never exceed a 0 to 55°C range.
- (3) The ambient humidity should never exceed a 20 to 90% RH range.
- (4) Do not install the unit in areas where condensation is likely to occur (high humidity with extreme temperature changes).
- (5) Avoid sites where dust is excessive.
- (6) Do not install in areas with an excessive amount of salt and/or metal chips.
- (7) Do not install in areas where flammable and / or corrosive gases are present.
- (8) Avoid areas where splashing water, oil or chemicals are likely to occur.
- (9) Avoid areas where vibration and shocks are excessive.

#### -Installation cautions

- (1) Install inside the control cabinet.
- (2) Install in a vertical direction so that the characters are visible.
- (3) If a DIN rail mounting format is used, insert until the latch mechanism catches with an audible click. Secure between end plates at both sides.
- (4) In high vibration areas, secure tightly with 2 M4 screws.
- (5) Install as far from high voltage lines and power lines as possible in order to minimize noise influences.
- (6) Allow 85mm or more space at the converter's front side for plugging in and unplugging the connector.
- (7) Peripheral components should be arranged so as not to obstruct converter installation, removal, and connector plugging/unplugging.
- (8) Space out 10mm or more between the converter and peripheral components in order not to obstruct the converter's heat dissipation.



# 6-2. ABSOCODER Sensor Installation Conditions and Precautions

The ABSOCODER installation procedures and precautions are described in this section.

Item	Explanation
(1) Main unit	Never drop the Sensor, or subject it to excessive forces or shocks.
(2) Cable	Avoid stepping on, or applying excessive stress to the cable.

#### Handling of Turn-type ABSOCODER Sensor

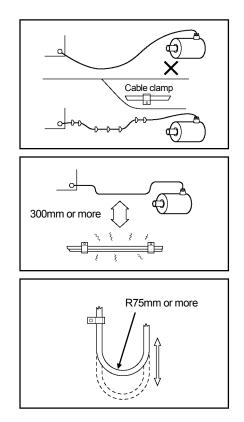
#### Mounting of Turn-type ABSOCODER Sensor

Item	Explanation	Precaution
(1) Mounting	For details regarding mounting dimensions, refer to each ABSOCODER dimensions.	
(2) Cable port	Cable port should face downward.	
(3) Cable	The bend radius for movable parts should never be less than 75 mm( $\phi$ 150) (robotic cable).	Do not use the standard cable for movable parts. (Use robotic cable.)
(4) Wiring	The sensor cable should be located at least 300mm away from power lines and other lines which generate a high level of electrical noise.	

#### Mounting of Turn-type ABSOCODER Sensor Item Explanation Precaution (1) Coupling of machine A "direct-link" format will Be sure to use a coupling device to link the 2 shafts. shaft and sensor result in shaft fatigue Direct link Direct link X Coupling device 🔘 Х shaft and / or breakage after ' חחיכ u C P long periods. M Therefore, be sure to use a coupling device to link the shafts. (2) For gear-type linkage Incorrect gear mounting If a gear linkage is used, be sure that some backlash exists. can result in shaft bending Be sure that the distance between shafts will not be altered by vibrations shocks, etc. or breakage. Be sure that backlash exists at all gear positions. The sensor shaft pinion should be as light (small) as possible. This is especially true for environments where vibration / shock are likely. (3) For rack and pinion Be sure that backlash exists at all rack positions. Incorrect rack and pinion Be sure that backlash exists at all type linkage mounting can result in shaft rack positions. bending or breakage. Ą Ø Be sure that the distance between the rack and pinion will not be altered by B vibrations, shocks, etc Be sure that the distance between the rack and pinion is not altered when horizontal motion of the rack occurs The sensor shaft pinion should be as light (small) as possible. This is especially true for environments where vibration / shocks are likely (4) Chain or timing belt When a chain or timing belt linkage format is used, there is an inherent risk of the shaft's load being increased by the resulting tension. Therefore, a linkage bearing should be used, with the shafts being linked by a coupling device immediately behind the bearing. Bad format Recommended format Bearing Coupling device Chain Chain sprocket ╤╉╫╫ 벍 Ø This linkage format is also applicable to the "rack-and-pinion" and "gear" methods shown above. Even a small amount of tension can produce a considerable load on the shaft. (5) Shaft mounting The shaft should be attached to the coupling device or gear at a position point which is as near to the sensor body as possible. Recommended format Bad format Coupling device or × O 뻥 A Never use an extended This distance should be as short as possible. When this distance is short, the load shaft format. placed on the beaning by vibrations / shocks is slight

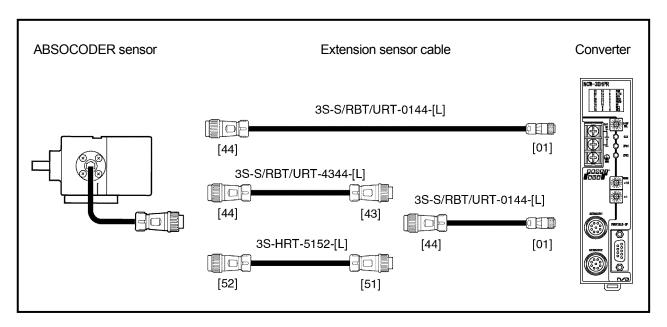
#### Coupling of Turn-type ABSOCODER Sensor

Item	Explanation	Precaution
(1) Coupling device selection precaution	<ul> <li>1. When selecting a coupling, consider factors such as the design mounting error, the coupling tolerance error, and the sensor's permissible shaft load.</li> <li>Mounting error Coupling tolerance error Coupling shaft germissible load Sensor shaft load</li> <li>Prescribed dimension</li> <li>Eccentric Deflection Load produced by deflection.</li> <li>Load produced by deflection.</li> <li>Force produced by shaft direction displacement.</li> <li>Thrust load</li> </ul> 2. If the selected coupling device is larger than necessary (When used in high vibration/shock environments), the load which is applied to the shaft by the vibrations/shocks will be increased by the weight of the coupling device. 3. Be sure to select a coupling device with an adequate transmission torque surplus relative to the sensor shaft's torque.	The selection of a larger coupling than necessary will increase the shaft load which is caused by the mounting error amount. Excessive force applied to the shaft can deform the coupling and reduce durability.
(2) Coupling device installation precaution	Avoid bending or damaging the coupling.	


# 7. WIRING

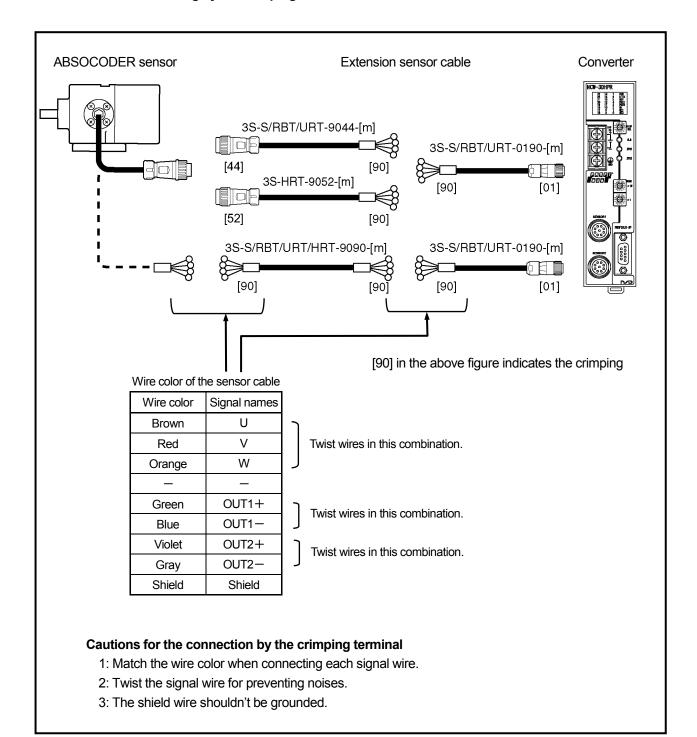
#### 7-1. Connection between Converter and ABSOCODER Sensor

The maximum extension sensor cable length varies according to the ABSOCODER sensor and cable model being used. For more details refer to "3-2. ABSOCODER Sensor Specifications".


#### -Wiring Precautions

- The sensor cable should be clamped as shown in the right figure to prevent excessive tension from being applied to the cable connectors.
- (2) The sensor cable should be located at least 300mm away from power lines and other lines which generate a high level of electrical noise.
- (3) If the cable is moved under the state of bending like a horseshoe, a robotic cable should be used. The bend radius should never be less than 75 mm.




#### 7-1-1. Connection configure example of the sensor cable

Indicates the ABSOCODER sensor cable connection example when connecting by the standard connector or the crimping terminal.

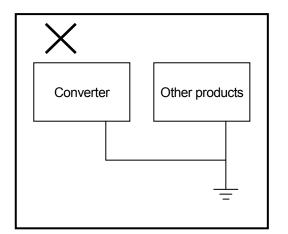


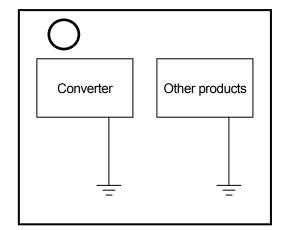
#### In the case of connecting by using the standard connector

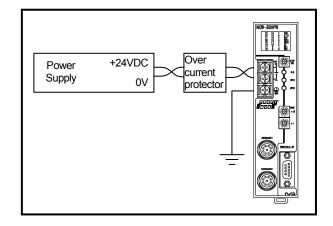
#### In the case of connecting by the crimping terminal



#### 7-2. Power Supply Connection

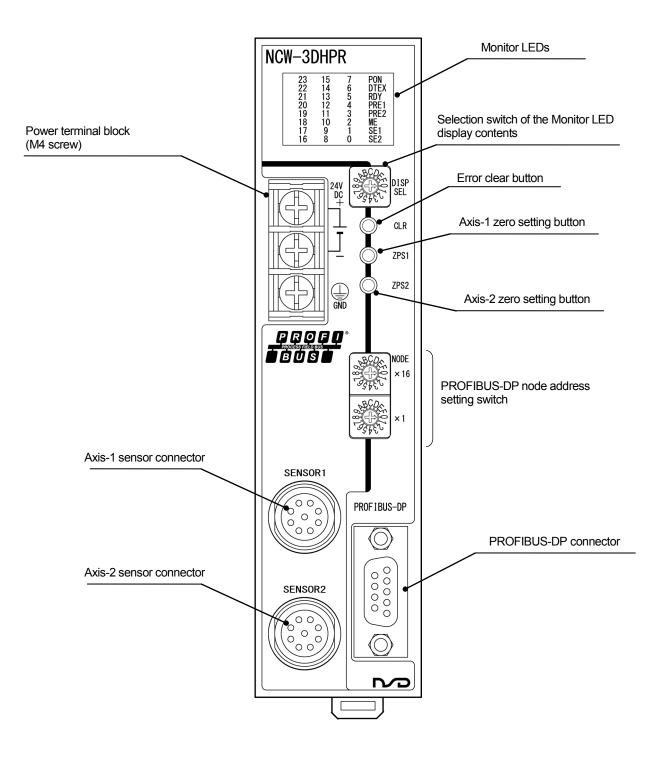

The power supply should be connected as described below:


#### Power Supply


- Choose the power supply capacity which is more than twice the power consumption of the converter. The power consumption of the converter is 10W or less.
- -The input power supply should be isolated from the commercial power supply.
- The power cable should be as thick as possible to minimize voltage drops.
- -Twist the power cable for preventing noises.
- -Use the M4 size crimp lug terminals with insulating sleeves in order to prevent short circuit caused by loose screws.
- -The terminal block tightening torque is 1.8 N·m (16 lb·in).

#### Ground

- -The unit should be securely grounded (ground resistance of 100ohm or less) to prevent electrical shocks.
- -The ground wire should be connected to the ground terminal directly.
- -The terminal block tightening torque is 1.8 N·m (16 lb·in).





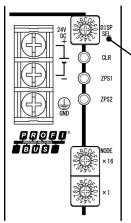



# 8. NOMENCLATURE

#### 8-1. Part Identification



# 8-2. Function and Name of Display and Setting Area


#### 8-2-1. Display contents of the monitor LEDs

Display contents on the monitor LEDs is described in this section.

NCV	V-3D	HPI	२		
	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 65 4 3 2 1 0	PON DTEX RDY PRE1 PRE2 ME SE1 SE2	

Display	Description
PON	ON when the power supply is functioning normally.
	ON when PROFIBUS-DP communication is functioning normally.
DTEX	OFF when the converter fails to establish communication with the master by the PROFIBUS-DP
	configuration tool (PROFIBUS configuration software).
RDY	LED turns ON when Converter status is normal.
PRE1	ON for approximately 1 second when the preset function (zero set) operation occurs with axis-1.
PRE2	ON for approximately 1 second when the preset function (zero set) operation occurs with axis-2.
ME	ON when the memory error is occurred.
SE1	ON when the axis-1 sensor error is occurred.
SE2	ON when the axis-2 sensor error is occurred.
0-23	Monitor LED displays the content which was selected by the selecting switch (DISP SEL).
0-23	For details of the display contents, refer to the next page.

Selection switch of the Monitor LED display contents (DISP SEL)



Selection switch of the Monitor LED display contents	
·	

JLL)		
DISP.SEL	Display content	
0	Axis-1 position data D0-D23	
1	Axis-2 position data D0-D23	
2	Axis-1 preset data D0-D23	*1
3	Axis-2 preset data D0-D23	*1
4	Previous axis-1 preset data	*2
5	Previous axis-2 preset data	*2
6	Sensor type	*3
7	Converter diagnosis data	*4
8	Parameter data	*5
9-F	Unused	

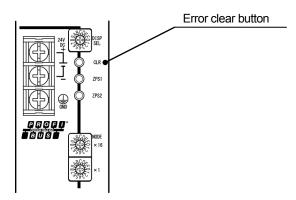
*1: The preset data which displays is the data transmitted from the master.

*2: Previous presetting data is displayed.

*3. The sensor	type is a	value of the	sensor code	which is	set in GSD file.
0. THE SCHOOL	type is a		3011301 0000		301 III 00D IIIC.

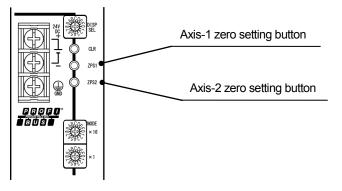
	7	6	5	4	3	2	1	0
Axis-1 Sensor type	Sensor code							
	15	14	13	12	11	10	9	8
Axis-2 sensor type				Senso	or code			
	23	22	21	20	19	18	17	16
Unused	0							

#### *4: Converter's diagnosis data is displayed below. (See sections 9-3 for details).


				-			-	
	7	6	5	4	3	2	1	0
Axis-1 diagnosis data	0	SPF1	SSE1	0	0	0	0	SE1
	15	14	13	12	11	10	9	8
Axis-2 diagnosis data	0	SPF2	SSE2	0	0	0	0	SE2
	23	22	21	20	19	18	17	16
Converter diagnosis data	0	0	0	0	PRFPF	ME	WDTE	NRDY

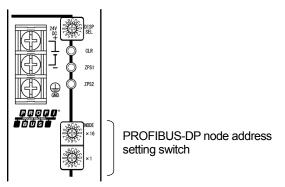
*5: Parameter data is displayed below.

	7	6	5	4	3	2	1	0
Axis-1 parameter data	0	0	0	0	0	Code sequence 1	Preset function 1	Axis unavailable 1
	15	14	13	12	11	10	9	8
Axis-2 parameter data	0	0	0	0	0	Code sequence 2	Preset function 2	Axis unavailable 2
	23	22	21	20	19	18	17	16
Unused		0						


#### 8-2-2. Error clear button (CLR)

Press the error clear button (CLR) on the front panel to clear the errors.




### 8-2-3. Zero setting button (ZPS1, ZPS2)

The position data can be changed to "0" by pressing the zero setting button (ZPS1/ZPS2) on the front panel. Move the machine to the zero-point position with no error, and press the zero setting button. ZPS1 is for axis-1, and ZPS2 is for axis-2.



#### 8-2-4. Node address setting switch (NODE)

Set the PROFIBUS-DP node address by the node address setting switches on the front panel. Set the address to 7DH(125) or less by 2-dgit hexadecimal number.



# 9. PROFIBUS-DP Communication

Master: PLC etc. Slave: NCW-3DHPR

# 9-1. Position Data (Input Data: Slave → Master)

The position data detected by the ABSOCODER sensor can be read as Input Data by the master.

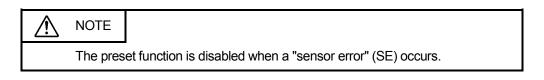
byte offset	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	Axis-1
2	D15 (MSB)	D14	D13	D12	D11	D10	D9	D8	position data
3	D7	D6	D5	D4	D3	D2	D1	D0 (LSB)	uala
4	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	Avia 2
6	D15 (MSB)	D14	D13	D12	12 D11 E		D9	D8	Axis-2 position data
7	D7	D6	D5	D4	D3	D2	D1	D0 (LSB)	uala

Signal name	Name	Description
D0-15	Position data	The position data detected by the ABSOCODER sensor is read. Position data range: 0 ~ FFFFH (0 ~ 65535) Number of effective bits: D0 - D15

#### 9-2. Preset Data (Output Data: Master $\rightarrow$ Slave)

The master can change the position data to any desired value by performing the preset function using Output Data.

byte offset	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
0	PRESET 1	CLR	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	Axis-1
2	PRD15 (MSB)	PRD14	PRD13	PRD12	PRD11	PRD10	PRD9	PRD8	preset data
3	PRD7	PRD6	PRD5	PRD4	PRD3	PRD2	PRD1	PRD0 (LSB)	
4	PRESET 2	CLR	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	Axis-2
6	PRD15 (MSB)	PRD14	PRD13	PRD12	PRD11	PRD10	PRD9	PRD8	preset data
7	PRD7	PRD6	PRD5	PRD4	PRD3	PRD2	PRD1	PRD0 (LSB)	

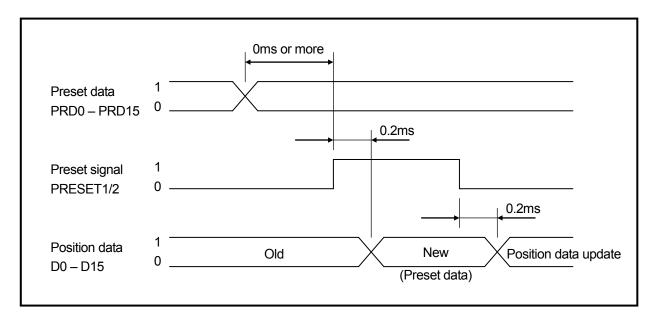

The changed position data is stored in the converter's non-volatile memory. Therefore, there is no need to do the preset function each time the power is turned on.

Signal name	Name	Description				
PRD0-15	Preset data	The position data can be changed to any desired value (Preset				
PRESET1	Axis-1 preset signal	data: PRD0-15) by setting PRESET1/PRESET2 to "1". *1, *2				
		Preset data range: 0 ~ FFFFH (0 ~ 65535)				
PRESET2	Axis-2 preset signal	Number of effective bits: PRD0 - PRD15				
CLR		The following error can be cleared by setting this bit to "1".				
CLR	Error clear signal	·Converter diagnosis data error (PRFPF, ME)				

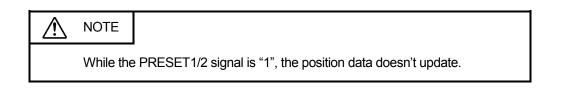
*1: The PRESET1/2 signal should be set to "0" if the position data is the same as the preset data. Although the position data is changed when the PRESET1/2 signal changes from "0" to "1", the position data received by the master remains the same as the preset data while the PRESET1/2 signal is "1". When the PRESET1/2 signal changes to "0", the position data at that point can be read.

(When PRESET1/2 signal is changed to 1 by the PLC pulse instruction, "1" of the PRESET1/2 signal might not be sent because of the relation between PLC scan time and Output Data update time of the PROFIBUS-DP communication.)

*2: When the PRESET1/2 signal changes from "1" to "0", the converter cannot receive another PRESET1/2 signal for a period of 100 ms.




#### (1) Preset timing

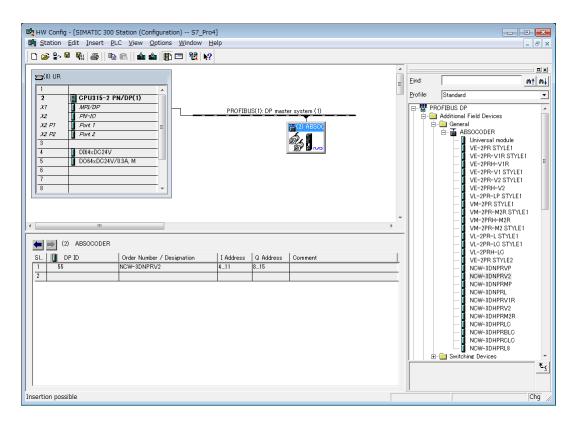

The position data is changed by the preset data (PRD0-PRD15) and PRESET signal (1 bit) which are written from the master.

The response time from the point when the PRESET signal changes from "0" to "1", until the preset setting occurs, is shown below.

Actual timing depends on scanning time of PLC and updating time of PROFIBUS-DP.



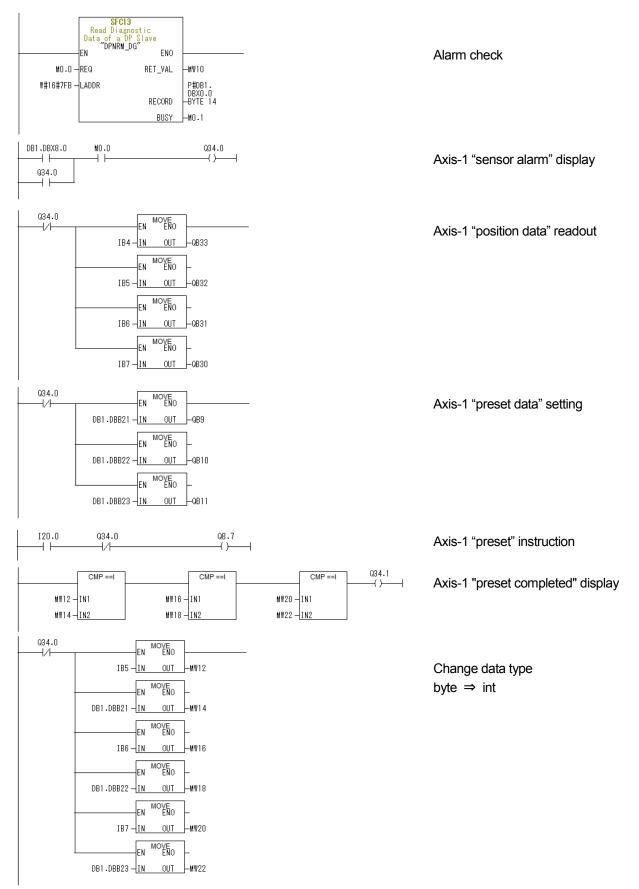
The PRESET signal should change from "0" to "1", after the Preset data are written. (0 ms or more)



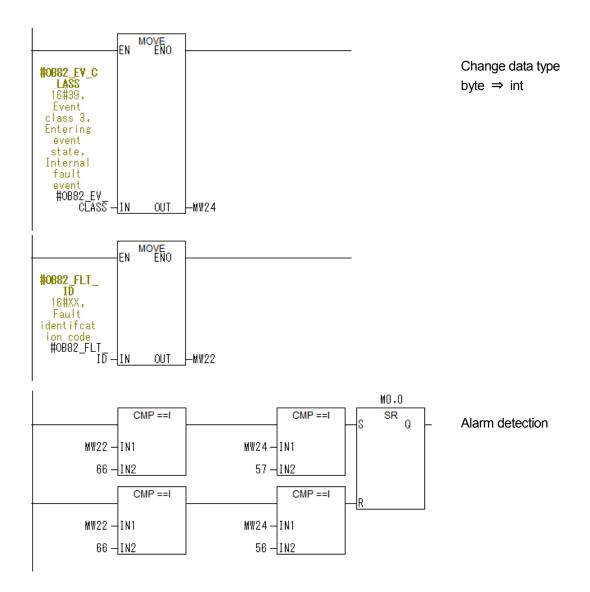

#### (2) Program for preset function

A program example which executes a preset function is shown below.

#### Conditions


The following signal assignments are used to control the NCW-3DHPR.




Axis-1 preset instruction to NCW-3DHPR	·· I20.0
NCW-3DHPR's axis-1 position data display	··Q30.0 ~Q33.7
NCW-3DHPR's axis-1 sensor alarm detection	··Q34.0
NCW-3DHPR's axis-1 "preset completed" display	·· Q34.1
Input data from NCW-3DHPR ······	
Output data to NCW-3DHPR ·····	·· Q8.0 ~ Q15.7
Error readout input	·· M0.0
During readout an error	
Error code output ·····	·· MW10
NCW-3DHPR unit address	·· 2043 (#7FB)

# Program example

#### Block: OB1



Alarm detection program Block: OB82



Data block area Block: DB1 Secures the data block area for preset setting.

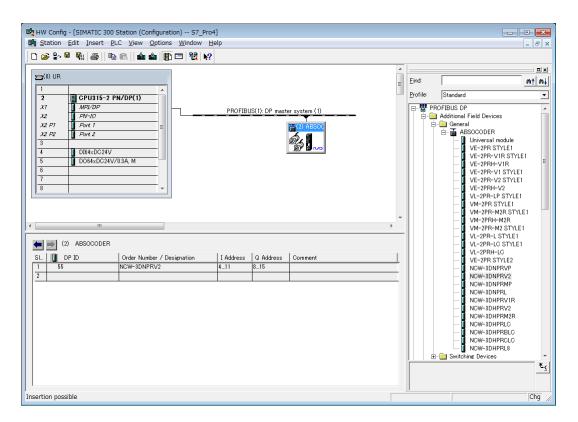
Address	N	ame	Туре	Initial	value	Comment
0.0			STRUCT			
+0.0		DB_VAR	ARRAY[1250]			Temporary placeholder variable
*1.0			BYTE			
=250.0			END_STRUCT			

# 9-3. Alarm Data (Extended Diagnostic Data)

The alarm data is shown below.

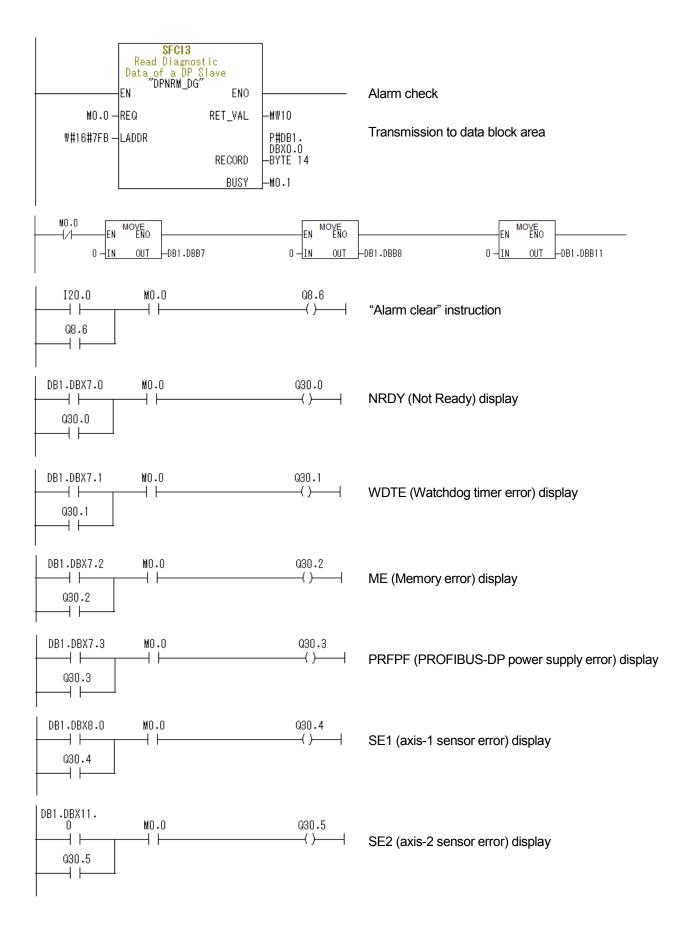
byte offset	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
0	Master_Lock	Prm_Fault	Invalid _Slave _Response	Not _Supported	Ext_Diag	Cfg_Fault	Station _Not_Ready	Station _Non _Existent	
1	Deactivated	0	Sync_Mode	Freeze_Mode	Wd_On	set to 1 by slave	Stat_Diag	Prm_Req	Standard
2	Ext_Diag _Overflow	0	0	0	0	0	0	0	Diagnosis Information
3				Master A	Address				
4				Ident_Numb	er High Byte				
5	Ident_Number Low Byte								
6	0	0	0	0	1	0	0	0	Extended Diagnostic Header
7	0	0	0	0	PRFPF	ME	WDTE	NRDY	Converter diagnosis data
8	0	SPF1	SSE1	0	0	0	0	SE1	Axis-1 diagnosis data
9	0	0	0	0	0	1	0	0	Axis-1 sensor type
10	0	0	0	0	0	0	0	0	
11	0	SPF2	SSE2	0	0	0	0	SE2	Axis-2 diagnosis data
12	0	0	0	0	0	1	0	0	Axis-2 sensor type
13	0	0	0	0	0	0	0	0	

* The byte offset 0~5 data (Standard Diagnosis Information) is the standard diagnosis data for the PROFIBUS-DP slave.

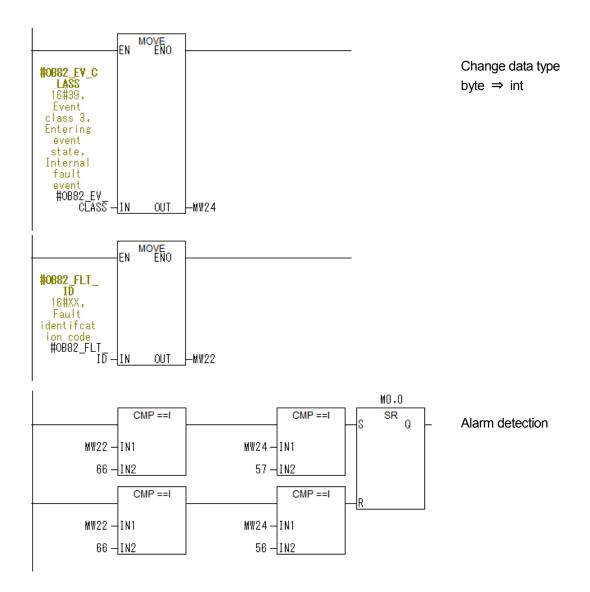

Error Name	Description	When Detected	Status	CLEAR Method	Countermeasure
PRFPF	PROFIBUS-DP power supply error (Error is "1") Problem exists at converter's internal power supply. As communication is disabled, check the PRFPF lamp at the LED display.	Always	This converter is not recognized by PROFIBUS-DP.	CLR	If there are no problems with the PROFIBUS-DP cable or communication, the converter has failed.
ME	Memory error (Error is "1") A data memory error has occurred.	At power ON	An undetermined position data status exists at both axes.	CLR	Converter failure.
WDTE	Watchdog timer error (Error is "1") Runaway condition at the internal CPU.	Always	An undetermined position data status exists at both axes.	Restart	Converter failure.
NRDY	Not Ready (Error is "1" or operation not yet started; Normal is "0") One of PRFPF, ME, or WDTE error has occurred.	Always	An undetermined position data status exists at both axes.	Comply with each error clear method.	
SPF1 SPF2	The internal power supply error for sensors (Error is "1") The power supply inside of the converter is broken down.	Always	An undetermined position data status exists at both axes.	CLR	Converter failure.
SSE1 SSE2	Disconnected sensor error (Error is "1") The sensor of a correspondence axis is not connected normally.	Always	The position data of the axis which has an error is "undetermined data".	Automatic recovery	<ul> <li>Sensor connector is loose.</li> <li>Sensor cable is severed.</li> <li>ABSOCODER sensor failure</li> <li>Converter failure.</li> </ul>
SE1 SE2	Sensor error (Error is "1") Either SPF or SSE has occurred.	Always		Comply with each error clear method.	

#### (1) Program for alarm detection

A program example for alarm readouts and alarm clear operation is shown below.


#### Conditions

The following signal assignment is used to control the NCW-3DHPR.




"Alarm clear" instruction to NCW-3DHPR	··· I20.0
NCW-3DHPR's NRDY (Not Ready) display	·· Q30.0
NCW-3DHPR's WDTE (Watchdog timer error) display	·· Q30.1
NCW-3DHPR's ME (Memory error) display	·· Q30.2
NCW-3DHPR's PRFPF (PROFIBUS-DP power supply error) display	·· Q30.3
NCW-3DHPR's SE1 (axis-1 sensor error) display	·· Q30.4
NCW-3DHPR's SE2 (axis-2 sensor error) display	
Input data from NCW-3DHPR	·· I4.0 ~ I11.7
Output data to NCW-3DHPR ·····	·· Q8.0 ~ Q15.7
Error readout input	·· M0.0
During readout an error ·····	
Error code output ·····	
NCW-3DHPR unit address ·····	·· 2043 (#7FB)

Program example Main program Block: OB1



Alarm detection program Block: OB82



Data block area Block: DB1 Secures the data block area for Alarm detection.

Address	N	iame	Туре	Initial	value	Comment
0.0			STRUCT			
+0.0		DB_VAR	ARRAY[1250]			Temporary placeholder variable
*1.0			BYTE			
=250.0			END_STRUCT			

# 9-4. Parameter Data

Parameter data is set at the PROFIBUS-DP configuration tool (PROFIBUS configuration software) when the system is started up.

byte offset	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
0	0	0	0	0	0	*	*	*	For system
1	0	0	0	0	0	Code sequence 1	Preset function 1	Axis unavailable 1	Axis-1 parameter
2	0	0	0	0	0	0	0	0	data
3	0	0	0	0	0	1	0	0	
4	0	0	0	0	0	Code sequence 2	Preset function 2	Axis unavailable 2	Axis-2 parameter
5	0	0	0	0	0	0	0	0	data
6	0	0	0	0	0	1	0	0	

NOTE

* These are system parameters. Do not change the GSD file values.

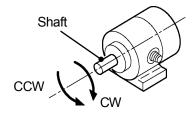
### (1) "Axis unavailable" (sensor disabled) settings

#### This setting determines the ABSOCODER sensor's enabled/disabled status. (Default=0)

bit0	Selection Content	Description					
0	Available	Enables the connected ABSOCODER sensor for position detection.					
1	Unavailable	Disables the sensor for this axis. When this setting is specified, the "sensor error" does not display. The position data is always "0".					

(2) "Preset function" settings

#### This setting enables/disables the zero setting and preset function. (Default=0)


bit1	Selection Content	Description					
0	Enable	Enables the zero setting and preset function.					
1	Disable Disables the zero setting and preset function.						

(3) "Code sequence" (position data increase direction) settings

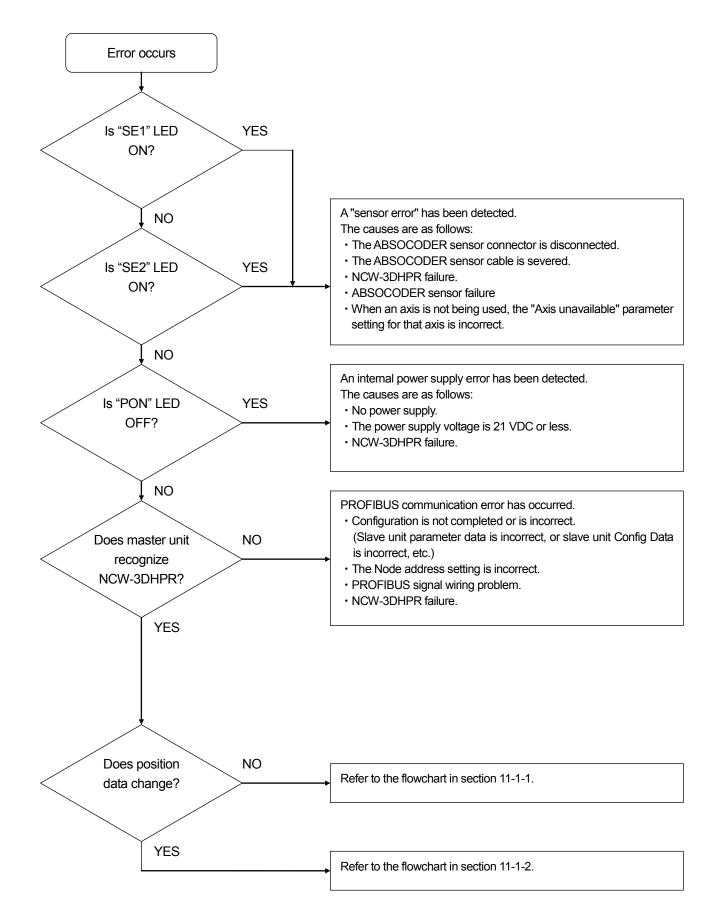
This setting determines the ABSOCODER sensor rotation direction in which the position data value increases. (Default=0)

bit2	Selection Content	Description					
0	CW	CW The position data value will increase when the shaft turns in the clockwise direction as viewed from the shaft end.					
1	CCWThe position data value will increase when the shaft turns in the counterclockwise direction as viewed from the shaft end.						

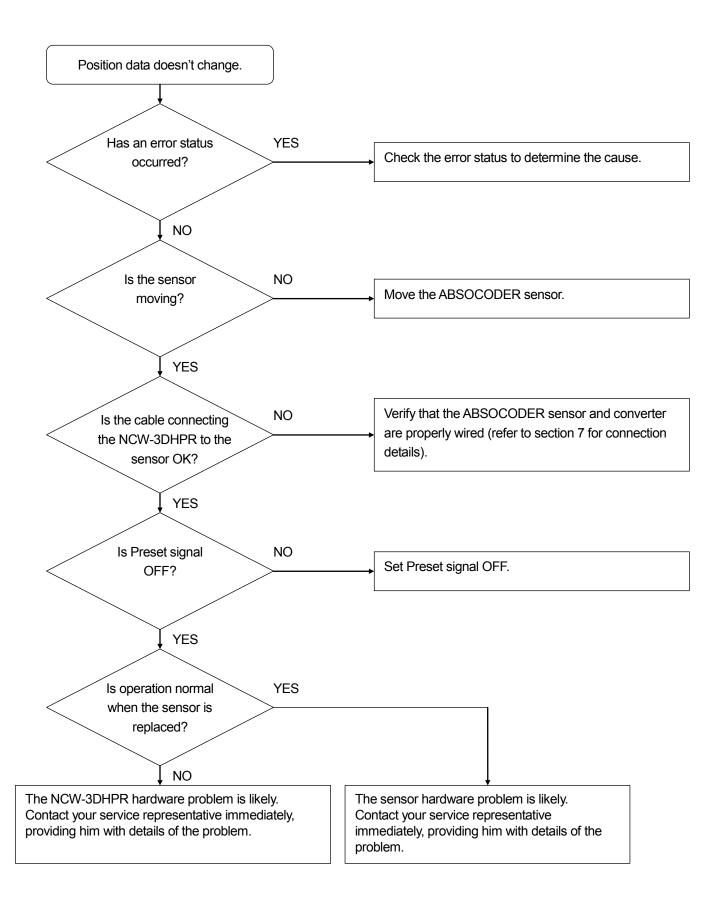
Shaft rotation direction



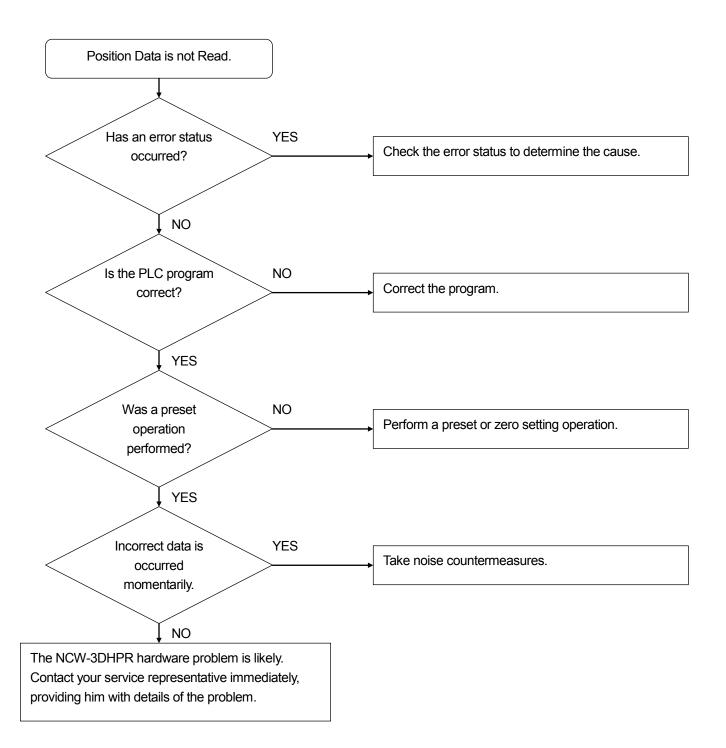
# **10. INSPECTION**


The inspection should be conducted once every 6 months to a year.

Any inspected items which do not satisfy the criteria shown below should be repaired


Inspection item	Inspection Description	Criteria	Remark	
Power supply	Measure the voltage fluctuation at the power supply terminal block of the converter to determine if it is within the prescribed range.	Within 21.6V to 26.4VDC range	Tester	
Ambient Conditions	Check the ambient temperature.	ABSOCODER sensor: -20 to +120°C Converter: 0 to +55°C	Thermometer	
Conditions	There should be no accumulation of dust.	None		
	Verify that the sensor is securely mounted.	There should be no looseness.		
	Verify that the sensor shaft is securely coupled to the machine shaft.	There should be no looseness.	Visual	
Mount	Check for severed cables.	Cable should appear normal.		
Conditions	Verify that the sensor cable connector is plugged in all the way.	There should be no looseness.	Inspection	
	Verify that the PROFIBUS-DP connector is plugged in all the way.	There should be no looseness.		

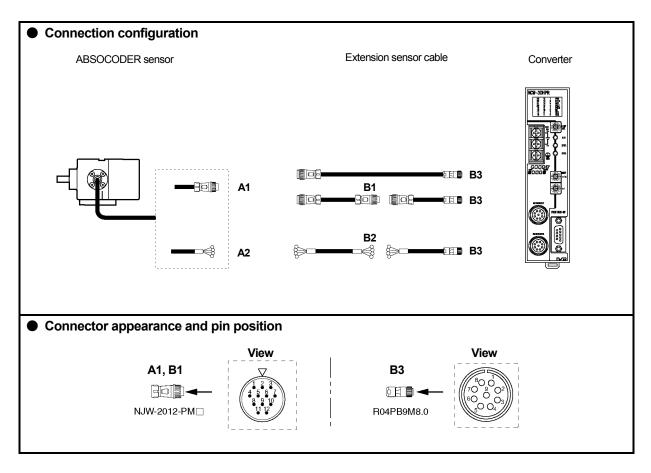
# 11. Troubleshooting


# 11-1. Troubleshooting Flowchart



# 11-1-1. Flowchart when Position Data doesn't Change




# 11-1-2. Flowchart when Position Data is not Read.



# 11-2. ABSOCODER Sensor Check List

## • Applicable ABSOCODER sensor models

VRE-16TS100



#### Connector pin position and standard coil resistance ranges (at 25°C)

	Check position				Standard coil resistance [Ω]	
A1, A2,	A1, A2, B1, B2 B3		3	Signal		
Pin No.	Wiring	Pin No.	Wiring	names	VRE-16TS100	
1 11110.	color	1 11110.	color			
1	Brown	1	Brown	U		
2	Red	2	Red	V	115 to 135	
3	Orange	3	Orange	W		
4	Ι	4		-		
5	Green	5	Green	OUT1+	18 to 28	
6	Blue	6	Blue	OUT1-	16 10 26	
7	Violet	7	Violet	OUT2+	25 to 25	
8	Gray	8	Gray	OUT2-	25 to 35	
9	_	_	_	_		
10	_	_	_	_		
11	Shield	9	Shield	Shield		
12	-	_	_	_		

The above standard coil resistance ranges are referential data to assist wiring disconnection diagnosis and are not product specification values. There may be no wiring disconnection even when the resistance measurement is out of the standard resistance range.

### Circuit resistance check

[Measurement method]

Measure resistance at Point A or B using a circuit tester or other appropriate device.

Have Point A connected to measure at Point B.

If the connector is off, identify the line by the wiring color.

[Check details]

Refer to the previous page for the connector pin number.

Check position	Criterion	Check position	Criterion	
Between brown and red	The measured value	Between brown and, green, violet, shield		
Between brown and orange	The measured value should be in the range of	Between green and, violet, shield	1	
Between red and orange	the standard coil resistance.	Between violet and shield	∞	
Between green and blue		Between frame and each wire or shield		
Between violet and gray	1			

*1: If checks are done at Point B, the measurement value is [Standard coil resistance + extension sensor cable resistance.

Extension sensor cable resistance value

The resistance value of the NSD special cable is  $0.2\Omega/m$  (loop resistance).

Consider resistance variations due to temperature, which, relative to the standard temperature ( $25^{\circ}$ C), increases 0.4% when the temperature rises 1°C and decreases 0.4% when the temperature falls 1°C.

#### Insulation check

[Measurement method]

Measure using a 500 VDC insulation tester.

#### [Check details]

Refer to the previous page for the connector pin number.

Check position	Criterion
Between brown and, green, violet, shield	
Between green and, violet, shield	
Between violet and shield	$10M\Omega$ or more
Between frame and each wire or shield	

## Note

- 1. Make sure to disconnect the ABSOCODER sensor from the converter before carrying out insulation checks.
- 2. If there is a risk that energization may cause damages to the electronic circuits in and around the machine, remove the ABSOCODER sensor from the machine.
- 3. After completing the checks, short-circuit between the pins to discharge remaining voltage before connecting the ABSOCODER sensor to the converter.

# **12. CE MARKING**

This product conforms to the EMC Directive.

## 12-1. EMC Directives

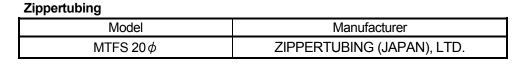
It is necessary to do CE marking in the customer's responsibility in the state of a final product. Confirm EMC compliance of the machine and the entire device by customer because EMC changes configuration of the control panel, wiring, and layout.

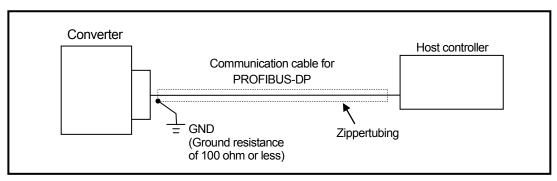
## 12-2. EMC Directive and Standards

EMC consists of emission and immunity items. It conforms to Table (see below) of EMC standards and Testing.

Class	Standard No.	Standard Name
Emission (EMI)	EN61000-6-4	Generic standards. Emission standard for industrial environments
Immunity (EMS)	EN61000-6-2	Generic standards. Immunity standard for industrial environments
	EN61000-4-2	Electrostatic Discharge
	EN61000-4-3	Radiated, Radio frequency, Electromagnetic Field
	EN61000-4-4	Electrical Fast Transient / Burst
	EN61000-4-5	Surge Immunity
	EN61000-4-6	Conducted Disturbances, Induced by Radio-Frequency Fields
	EN61000-4-8	Power Frequency Magnetic Field

## 12-3. Low Voltage Directive


This product doesn't apply to low-voltage directive for the equipment of 24VDC power supply.

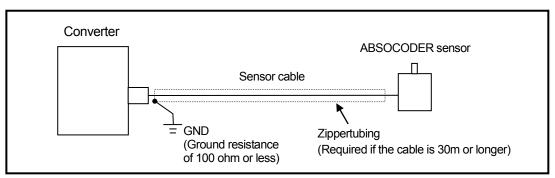

# 12-4. Measures for EMC Compliance

Describes measures for EMC compliance when testing the compatibility verification.

### Communication cable for PROFIBUS-DP

The communication cable for PROFIBUS-DP was covered with the shielded zippertubing, and the shield was grounded.






## 12-5. Restrictions

### Sensor cable

If a 30m or longer sensor cable is to be used, pass the sensor cable through a metal duct or cover the sensor cable with the shielded zippertubing and ground the tube shield.





### [Reference]

It might be improved when the clamp filter is installed to the power supply or sensor cable when it operates faultily by the influence from the peripheral devices.

**Clamp Filter** 

Mounting location	Clamp filter model	Manufacturer
<ul><li>Power supply cable</li><li>Sensor cable</li></ul>	ZCAT2032-0930 (inner dimensions: $\phi$ 9)	TDK



Manufacturer NSD Corporation 3-31-28, OSU, NAKA-KU, NAGOYA, JAPAN 460-8302

 Distributor

 NSD Trading Corporation
 3-31-23, OSU, NAKA-KU, NAGOYA, JAPAN 460-8302

 Phone: +81-52-261-2352
 Facsimile: +81-52-252-0522

 URL: www.nsdcorp.com
 E-mail: foreign@nsdcorp.com

 Copyright©2020 NSD Corporation All rights reserved.