

Approduct

ABSOCODER CONVERTER COMPATIBLE WITH DeviceNet NCV-20NDNMP NCV-20NDNLW NCV-20NDNLY

Specifications & Instruction Manual

Applicable sensor:

MRE-32SP062 MRE-G[]SP062 VLS-256PWB VLS-512PWB VLS-1024PW VLS-512PYB VLS-1024PYB VLS-2048PY

GENERAL SAFETY RULES

(Please read this safety guide carefully before operation)

Thank you very much for purchasing our product.

Before operating this product, be sure to carefully read this manual so that you may fully understand the product, safety instructions and precautions.

- Please submit this manual to the operators actually involved in operation.
- Please keep this manual in a handy place.

Signal Words

Safety precautions in this guide are classified into DANGER and CAUTION.

Symbol	Meaning
DANGER	Incorrect handling may cause a hazardous situation that will result in death or serious injury.
CAUTION	Incorrect handling may cause a hazardous situation that will result in moderate injury or physical damage.

Instructions accompanied by a symbol ACAUTION may also result in serious damage or injury. Be sure to follow the all instructions accompanied by the symbol.

Graphic Symbols

Symbol	Meaning
\bigcirc	Indicates prohibited items.
0	Indicates items that must be performed to.

Application Limitation

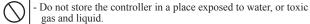
This product is not designed to be used under any situation affecting human life. When you are considering to use this product for special purposes such as medical equipment, aerospace equipment, nuclear power control systems, traffic systems, and etc., please consult with NSD.

This product is designed to be used under the industrial environments categorized

The supplier and user may be required to take appropriate measures.

1. Handling Precautions

DANGER Do not touch components inside of the controller; 8 otherwise, it will cause electric shock.


- Do not damage the cable by applying excessive load, placing
- heavy objects on it, or clamping; otherwise, it will cause electric shock or fire.
- Turn the power supply OFF before wiring, transporting, and inspecting the controller; otherwise, it may cause electric shock.
- Provide an external safety circuit so that the entire system functions safely even when the controller is faulty.
- Connect the grounding terminal of the controller; otherwise, it may case electric shock or malfunction

CAUTION

- Do not use the controller in the following places; water splashes. the atmosphere of the corrosion, the atmosphere of the flammable vapor, and the side of the combustibility. Doing so may result in fire or the controller may become faulty.
 - Be sure to use the controller and the ABSOCODER sensor in the environment designated by the general specifications in the manual. Failure to do so may result in electric shock, fire, malfunction or unit failure.
 - Be sure to use the specified combination of the ABSOCODER sensor, controller and sensor cable; otherwise, it may cause fire or controller malfunction.

2. Storage

CAUTION

- Be sure to store the controller in designed temperature and humidity range, and do not exposed to direct sunlight.
- Be sure to consult with NSD when the controller is stored for long periods.

3. Transport

CAUTION

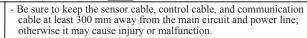
Do not hold the cable or shaft of ABSOCODER sensor during transport; otherwise, it will cause injury or controller malfunction.

4. Installation

CAUTION

- Do not step on the ABSOCODER sensor or place heavy objects on the controller; otherwise, it will cause injury.
- Do not block the exhaust port or allow any foreign matter to enter the controller; otherwise, it will cause fire or unit failure.

- Be sure to secure the controller and ABSOCODER sensor with the provided brackets; otherwise, it may cause malfunction, injury, or
- Be sure to secure the specified distance between the main body and the control panel or other equipments; otherwise, it may cause malfunction.


5. Wiring

DANGER

- Be sure to secure the terminal block firmly; otherwise, it may have risk of fire.
- Be sure to mount the terminal cover provided with the controller, before supplying the power, starting operation after the installation, and wiring; otherwise, it may cause electric shock.

CAUTION

- Be sure to connect all cables correctly; otherwise, it may cause injury or controller malfunction.
- Be sure to firmly connect the external I/O connectors and sensor connectors; otherwise, it may cause incorrect inputs and outputs or

6. Operation

CAUTION

- Do not change the controller's function switch settings during the

operation; otherwise, it will cause injury.

Do not approach the machine after instantaneous power failure has been recovered.

Doing so may result in injury if the machine starts abruptly, it will cause injury.

- Be sure to check that the power supply specifications are correct; otherwise, it may caused controller failure.
- Be sure to provide an external emergency stop circuit so that operation can be stopped with power supply terminated immediately.
- Be sure to conduct independent trial runs for the controller before mounting the controller to the machine;
- otherwise, it may cause injury. When an error occur, be sure to eliminate the cause, ensure safety, and reset the error before restarting operation; otherwise, it may cause injury.

7. Maintenance And Inspection

CAUTION

Do not disassemble, remodel, or repair the unit; otherwise, it will cause electric shock, fire, and unit malfunction

The capacitor of the power line deteriorates through prolonged use. We recommended that the capacitor be replaced every five years to prevent secondary damage.

8. Disposal

Be sure to handle the controller as industrial waste while disposing of it.

Revision History

* The Document No. appears at the upper right of this manual's cover page.

* The Document No. appears at the upper right of this manual's cover page.				
Document No.	Date	Revision Description		
ZEF004630200	10, May, 2011	1st Edition Japanese document: ZEF004630001		
ZEF004630201	12, Sep, 2012	2nd Edition Japanese document: ZEF004630002		
ZEF004630202	16, Apr, 2014	3rd Edition Japanese document: ZEF004630003		
ZEF004630203	14, Oct, 2015	4th Edition Japanese document: ZEF004630004		
ZEF004630204	29, Feb, 2016	5th Edition Japanese document: ZEF004630005		

CONTENTS

1. UVERVIEW	
1-1. Features	
1-2. Parts Name and Functions of the Converter	3
2. CONNECTION CONFIGURATION AND MODEL LIST	4
3. SPECIFICATIONS	6
3-1. Converter Specifications	6
3-2. ABSOCODER Sensor Specifications	8
3-3. Extension Sensor Cable Specification	10
4. DIMENSIONS	11
4-1. Converter	11
4-2. ABSOCODER Sensor	12
4-2-1. Multi-turn type ABSOCODER sensor (MRE)	12
4-2-2. Linear type ABSOCODER (VLS)	14
4-3. Extension Sensor Cable	16
4-4. Interconnecting Sensor Cable	16
5. PROCEDURE (FROM MOUNTING TO OPERATING)	17
6. SWICH SETTING OF THE CONVERTER	18
6-1. DeviceNet Setting	
6-1-1. Node address and baud rate setting	18
6-1-2. Setting the PLC selector switch	19
6-2. Zero Point Setting (ZPS Button)	19
6-3. Error Clear (CLR Button)	19
7. INSTALLATION	20
7-1. Converter Installation Conditions and Precautions	20
7-2. ABSOCODER Sensor Installation Conditions and Precautions	21
7-2-1. Turn-type ABSOCODER sensor	21
7-2-2. Linear-type ABSOCODER sensor	24
8. WIRING	26
8-1. Connection between Converter and ABSOCODER Sensor	26
8-2. Power Supply Connection	27
8-3. DeviceNet Network Connection	28
9. DeviceNet	29
9-1. IN/OUT Data	
9-1-1. IN data format	
9-1-2. OUT data format	
9-2. Application Object	
9-2-1. Position data increasing direction setting	
9-2-2. Bit configuration of the setting status	
9-2-3. Bit configuration of the error information	

10. MAINTENANCE AND INSPECTIONS	35
10-1. Inspection	35
10-2. Troubleshooting	36
11. CE Marking	38
11-1. EMC Directives	
44.0. EMO Directive and Otendands	38
11-2. EMC Directive and Standards	

1. OVERVIEW

NCV-20NDN Series is a converter which operates as the slave unit (group 2 only server) of the open field network "DeviceNet".

NCV-20NDN Series can be combined with a multi-type (MRE) or linear-type (VLS) of ABSOCODER to convert the detected absolute position data to binary code for output. The master unit can read the data by accessing IN data.

This manual explains how to use the NCV-20NDN.

For more details of the master unit, refer to your master unit manual.

For more details of "DeviceNet", refer to the DeviceNet Specification.

If the configuration tool is needed the NCV-20NDN definition file (EDS file), contact your NSD representative.

Converter model code

NCV-20N DN [][]

Converter series name

Compatible with "DeviceNet"

Applicable sensor

Multi-turn type ABSOCODER

MP: MRE-32SP062, MRE-G[]SP062

Linear type ABSOCODER sensor

LW: VLS-[]PW LY: VLS-[]PY

1-1. Features

(1) High reliability

An absolute position detection format ensures accurate position detection even if a power interruption or unexpected noise condition occurs. An origin returning operation is not required.

(2) Superior durability

NSD's original ABSOCODER is used as the position sensor which features a no-contact construction for excellent durability. This sensor offers problem-free operation, even in environments where it is exposed to vibration, impact shocks, extreme temperatures, oil, and dust.

(3) Compact design

The unit's outside dimensions (39(W) x 155(H) x 93(D)) were miniaturized, and DIN rail mounting is also possible.

(4) Current position setting function

The converter has the current position setting function that the position data can match the machine position.

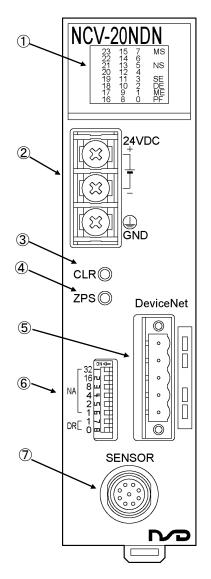
The current position setting is also quick and easy at installation.

(5) Error detection function

The converter has the error detection function.

The monitor LED of the converter or the master side of "DeviceNet" can indicate the error contents.

(6) Less wiring


"DeviceNet" is not needed most I/O wirings, so the system can reduce the wire.

(7) Compliance with CE standards

The converter complies with CE (EMC Directive) standards.

1-2. Parts Name and Functions of the Converter

Names and functions of the NCV-20NDN Series are indicated in the below.

1 Monitor LED

DeviceNet monitor	MS: NS:	Indicate the device status. Indicate the network status. For more details, refer to "10-2".		
Error monitor	SE: DE: ME: PF:	Light ON when the sensor disconnected error has occurred. Light ON when the sensor data error has occurred. Light ON when the memory error has occurred. Light ON when the low power error has occurred.		
Position data monitor	0~23:	Indicate the position data by the binary code.		

② Terminal block for the power supply connection It is the input terminal of the external power supply. (M4 screw) Connect the 24VDC and grounding wires.

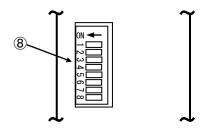
③ CLR button

Cancel the error by pressing the button. For more details, refer to "6-3".

4 ZPS button

The position data (D0-D23) can be set to 0 by pressing the ZPS button. For more details, refer to "6-2".

- ⑤ "DeviceNet" communication connector Connector for connecting the network
- 6 DeviceNet setting switch


Set the baud rate and node address.

For more details, refer to the "6-1-1".

Sensor connector

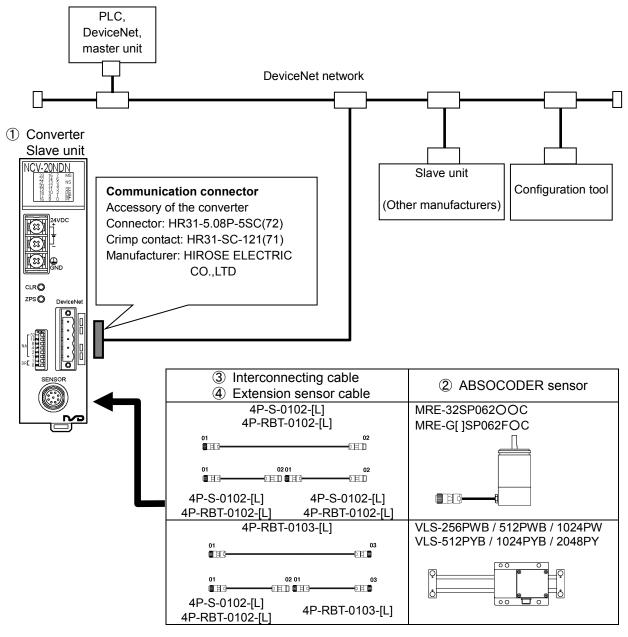
Connect with the ABSOCODER sensor.

Rear side of the converter

(8) PLC selection switch

Set when using the master unit which is manufactured by the Rockwell Automation, Inc.

For more details, refer to the "6-1-2".

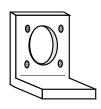

2. CONNECTION CONFIGURATION AND MODEL LIST

Following figure is indicated connection configuration of "NCV-20NDN Series".

Before ordering, please refer to the connection configuration and model list.

Please prepare equipments by the customer except from ① to ⑦ in the connection configuration.

Connection configuration


⑤Servo-mount fixture Accessory of the MRE ABSOCODER sensor

⑥Reinforced servo-mount fixture Option of the MRE ABSOCODER sensor

①L type flange-mount fixture Option of the MRE ABSOCODER sensor

Model list

(1) Using the multi-turn type ABSOCODER (MRE)

No.	Items	Models	Descriptions
1	Converter	NCV-20NDNMP	Applicable sensor: MRE-32SP062, MRE-G[]SP062
		MRE-32SP062SAC	Total number of turns: 32, Servo-mount type, Flat shaft shape
		MRE-32SP062SBC	Total number of turns: 32, Servo-mount type, Key way shaft sharp
	ABSOCODER	MRE-32SP062FAC	Total number of turns: 32, Flange-mount type, Flat shaft shape
2	sensor	MRE-32SP062FBC	Total number of turns: 32, Flange-mount type, Key way shaft shape
		MRE-G[]SP062FAC	[]:Total number of turns: 64, 128, 160, 256, 320 Flange-mount type, Flat shaft shape
		MRE-G[]SP062FBC	[]:Total number of turns: 64, 128, 160, 256, 320 Flange-mount type, Key way shaft shape
4	Extension	4P-S-0102-[L]	Standard cable []: Cable length(m) 2, 3, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50 (If a cable length is 50m or more, it can be selected by each 10m.)
	sensor cable	4P-RBT-0102-[L]	Robotic cable []: Cable length(m) 2, 3, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50 (If a cable length is 50m or more, it can be selected by each 10m.)
	Servo-mount fixture	SB-01	Included with MRE-32SP062SAC, MRE-32SP062SBC
(5)	Reinforced servo-mount fixture	SH-01	Option for MRE-32SP062SAC, MRE-32SP062SBC
	L type flange	RB-01	Option for flange-mount and reinforced servo-mount fixture

(2) Using the linear-type ABSOCODER (VLS)

No.	Items	Models	Descriptions
1 Convertor	NCV-20NDNLW	Applicable: VLS-256PWB, VLS-512PWB, VLS-1024PW	
	1 Converter	NCV-20NDNLY	Applicable: VLS-512PYB, VLS-1024PYB, VLS-2048PY
		VLS-256PW[]B	[]: Detection stroke (Max. 256mm)
		VLS-512PW[]B	[]: Detection stroke (Max. 512mm)
2	ABSOCODER	VLS-1024PW[]	[]: Detection stroke (Max. 1024mm)
(2)	sensor	VLS-512PY[]B	[]: Detection stroke (Max. 512mm)
		VLS-1024PY[]B	[]: Detection stroke (Max. 1024mm)
		VLS-2048PY[]	[]: Detection stroke (Max. 2048mm)
			Robotic cable for linear type ABSOCODER,
3	Interconnecting	4P-RBT-0103-[L]	[]: Cable length(m)
(S)	sensor cable		4, 6, 8, 10, 15, 20, 25, 30, 35, 40
			(If a cable length is 40m or more, it can be selected by each 10m.)
			Standard cable
		4P-S-0102-[L]	[]: Cable length(m)
Extension sensor cable		41 -3-0 102-[L]	2, 3, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50
	Extension		(If a cable length is 50m or more, it can be selected by each 10m.)
	sensor cable		Robotic cable []:
		4P-RBT-0102-[L]	[]: Cable length(m)
			2, 3, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50
			(If a cable length is 50m or more, it can be selected by each 10m.)

3. SPECIFICATIONS

3-1. Converter Specifications

(1) General Specification

Items	Specifications
Power supply voltage	24VDCV±10% (including ripple)
Power consumption	10W or less
Insulation resistance	20 M-Ohms or more between external DC power terminals and ground (by 500 VDC insulation resistance tester)
Withstand voltage	500 VAC, 60Hz for 1 minute between external DC power terminal and ground
Vibration resistance 20m/s² 10 to 500Hz, 10cycles of 5 minutes in 3 directions, conforms to JIS C 0040 standard	
Ambient operating temperature	0 to +55°C (No freezing)
Ambient operating humidity	20 to 90 %RH (No condensation)
Ambient operating environment	Free from corrosive gases and excessive dust
Ambient storage temperature	-10 to +70°C
Grounding	Must be securely grounded (ground resistance of 100 ohm or less)
Construction	Book-shelf type within enclosure, DIN rail mountable
Outside dimension (mm)	39(W) x 155(H) x 93(D) Refer to dimensions for details.
Mass	Approx. 0.4kg

(2) Performance Specification

Items	Specifications			
Converter model	NCV-20NDNMP	NCV-20NDNLW	NCV-20NDNLY	
Applicable sensor	MRE-32SP062 MRE-G[]SP062 ([]: 64/128/160/256/320)	VLS-256PWB VLS-512PWB VLS-1024PW	VLS-512PYB VLS-1024PYB VLS-2048PY	
Total number of divisions	131072(2 ¹⁷)	65536(216)	131072(2 ¹⁷)	
Position detection format		Absolute		
Number of detection axes		1		
Position data sampling time		1ms		
	Position data output status	: D0-D23	: D0-D23	
	Converter status	: MS (Module St	: MS (Module Status)	
	Network status	: NS (Network S	tatus)	
Monitor LED	Sensor disconnected error	: SE		
	Sensor data error	: DE		
	Memory error : ME			
	Low power error	: PF		
	Zero point setting press butt	on : ZPS		
Operation function on the	Error clear press button : CLR			
panel	Node address setting switch : NA			
	Baud rate setting switch	witch : DR		
Applicable standard	CE Marking (EMC directive)			

(3) DeviceNet specification

Items	Specifications
DeviceNet specification	Volume1-Release2, Volume2-Release2
Vendor name	NSD Corporation (230)
Device profile name	Generic Device (0)
Product name	NCV-20NDN (3000)
Network current consumption	100mA or less
Connector type	Open-plug
Isolated physical layer	Yes
LEDs supported	MS (module), NS (network)
MAC ID setting	Dip switch
Communication baud rates setting	Dip switch
Communication baud rates supported	125kbps, 250kbps, 500kbps
Predefined master/ slave connection setting	Group 2 only server
UCMM supported	No
Fragmented explicit messaging supported	Yes
I/O message supported	POLD I/O

3-2. ABSOCODER Sensor Specifications

(1) MRE-32SP062, MRE-G[]SP062

Ite	ems	Specifications						
Sonsor model		MRE-32SP062		MRE-G[]SP062				
Sensor model		WRE-323F002	[64]	[128]	[160]	[256]	[320]	
Total number of	of turns	32	64	128	160	256	320	
Divisions/Turn		4096	2048	1024	819.2	512	409.6	
Total number of	of divisions	1310	072(217)					
Mass		1.5 kg			1.0kg			
Linearity error		1° Max.	2°	4°	5°	8°	10°	
Linearity error		i iviax.	Max.	Max.	Max.	Max.	Max.	
Moment of ine	rtia GD2 /4 (I)	6.7 x 10 ⁻⁶ kg·m ²		3.9	x 10 ⁻⁶ kg	j∙m²		
Woment of me	Tila OD 74(0)	(6.8 x 10 ⁻⁵ kgf·cm·s ²)		(4.0 x	10⁻⁵ kgf•	cm·s²)		
Starting torque		4.9 x 10 ⁻² N·m or less (0.5 kgf·cm or less)						
Permissible	Radial	98N	(10 kgf)					
shaft load	Thrust	49N	l (5 kgf)					
Permissible me speed	echanical	3600 r/min						
Bearing life		3.0 x 10 ⁴ h (at 3600 r/min) 1.5 x 10 ⁴ h (at 3600 r/min)					1)	
Ambient	Operating	-20 to +60°C						
temperature	Storage	-30 t	o +90°C	,				
Vibration resist	tanaa	2.0 x 10 ² m/s ² (20G) 200Hz,	, up/dow	n 4 h, fo	rward/ba	ack 2 h,		
Vibration resis	lance	conforms to JIS D 1601 standard						
Chapter register		4.9 x 10 ³ m/s ² (500G) 0.5 ms, up/down/forward/back x 3 times each,						
Shock resistance		conforms to JIS C 5026 standard						
Protection rating		IP52f, conforms to JEM 1030 standard						
Max. sensor	Standard cable	100 m (4P-S)						
cable length	Robotic cable	40m (4P-RBT) 70m (4P-RBT)						
Interconnecting	g sensor cable	2 m						

(2) VLS-[]PW

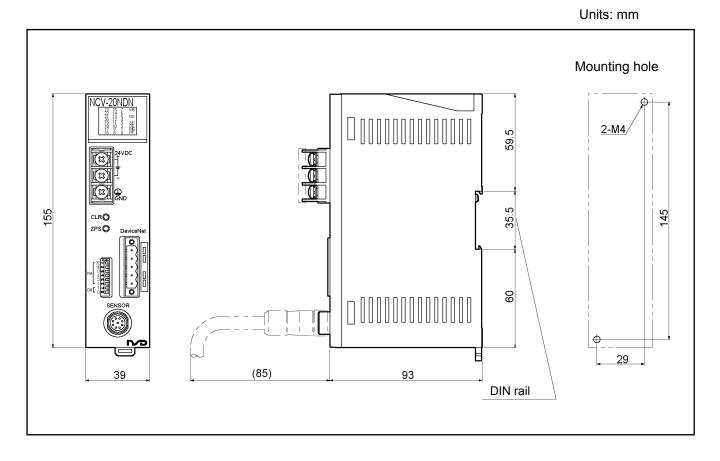
Items -			Specifications			
			VLS-256PWB	VLS-512PWB	VLS-1024PW	
Absolute detecti	ion range	(mm)	256	512	1024	
Resolution		(µm)	3.90625	7.8125	15.625	
Total number of	divisions			65536(2 ¹⁶)		
Linearity error		(mm)	0.05 Max.	0.1 Max.	0.4 Max.	
Mass		(kg)	0.9	1.7	8.0	
Sliding resistance	е	(N)	4.9 or less	7.8 or less	19.6 or less	
Permissible mechanical speed (mm/s)		(mm/s)	1000	1000	2000	
Permissible med	hanical parallelisr	n (mm)	±0.1			
Ambient	Operating	(°C)		-20 to +60		
temperature	Storage	(°C)		-30 to +90		
Vibration resista	nce		110 m/s ² (11.3G) 6	6.7Hz, up/down 4h, forw	/ard/back/left/right 2h	
VIDIALION TESISLA	ince		each, conforms to JIS D1601 standard			
Shock resistance			2000 m/s ² (100G), up/down x 3 times each,			
SHOCK resistance			conforms to JIS C5026 standard			
Protection rating			IP40 conforms to JEM 1030 standard			
Max. sensor	Standard cable	(m)	100 (4P-S)			
cable length	Robotic cable	(m)		50 (4P-RBT)		

(3) VLS-[]PY

(3) VLO []1 1						
	lto ma o		Specifications			
Items			VLS-512PYB	VLS-1024PYB	VLS-2048PY	
Absolute detect	ion range	(mm)	512	1024	2048	
Resolution		(µm)	3.90625	7.8125	15.625	
Total number of	divisions			131072(2 ¹⁷)		
Linearity error		(mm)	0.1 Max.	0.2 Max.	0.5 Max.	
Mass		(kg)	1.0	2.1	10.2	
Sliding resistance (N)		4.9 or less	7.8 or less	19.6 or less		
Permissible mechanical speed (mm/s)		250	500	1000		
Permissible med	chanical parallelisr	n (mm)	±0.1			
Ambient	Operating	(°C)		-20 to +60		
temperature	Storage	(°C)		-30 to +90		
Vibration resista	ance		110 m/s² (11.3G) 66.7Hz, up/down 4h, forward/back/left/right 2h			
VIDIALION TESISLE	arice		each, conforms to JIS D1601 standard			
Shock resistance			1000 m/s ² (100G), up/down x 3 times each,			
SHOCK resistance		conforms to JIS C5026 standard				
Protection rating			IP40 conforms to JEM 1030 standard			
Max. sensor	Standard cable	(m)	60 (4P-S)			
cable length	Robotic cable	(m)		30 (4P-RBT)		

3-3. Extension Sensor Cable Specification

4P-S, 4P-RBT

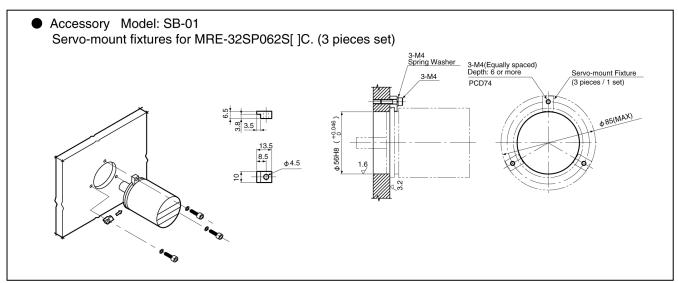

Item	าร	Specifications		
Model code		4P-S	4P-RBT	
Cable type		Standard cable	Robotic cable	
Diameter		Q	68	
Ambient	Operating	-5 to +60°C	-5 to +60°C	
temperature	Storage	-5 to +60°C	-10 to +60°C	
Insulator		Irradiated cross linked formed polyethylene	ETFE plastic	
Sheath		Vinyl chlor	ride mixture	
Color of sheath		Gray	Black	
Advantage		Extensible for long distances	Superior flexibility; ideal for moving place	

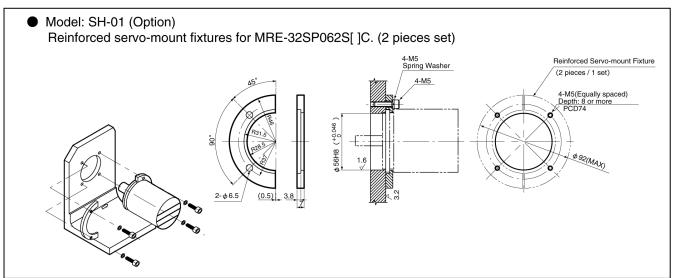
[Remark]

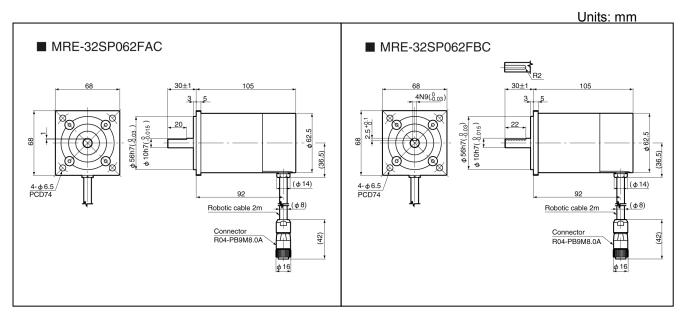
Contact your NSD representative when the extension cable combines the standard cable (4P-S) and the robotic cable (4P-RBT).

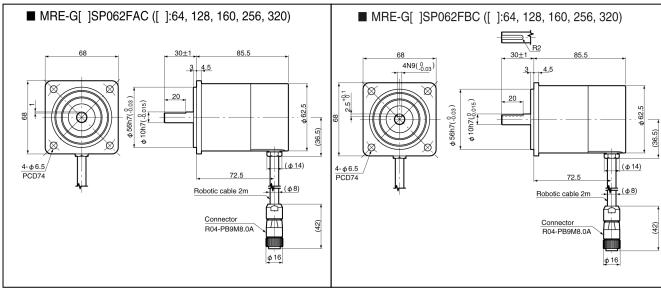
4. DIMENSIONS

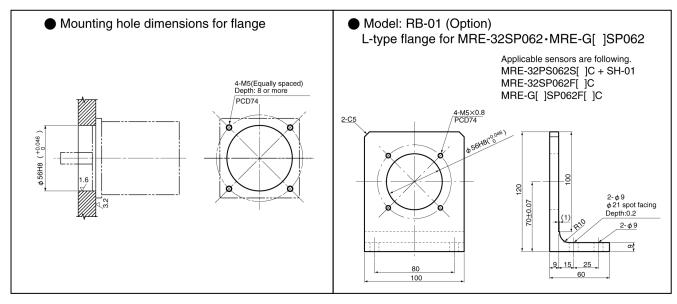
4-1. Converter

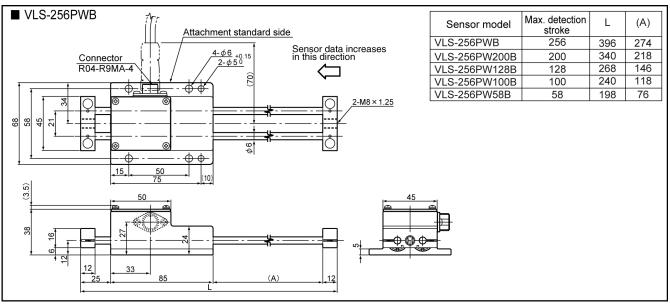


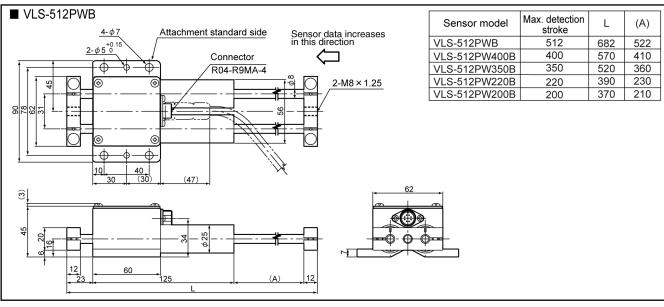

4-2. ABSOCODER Sensor

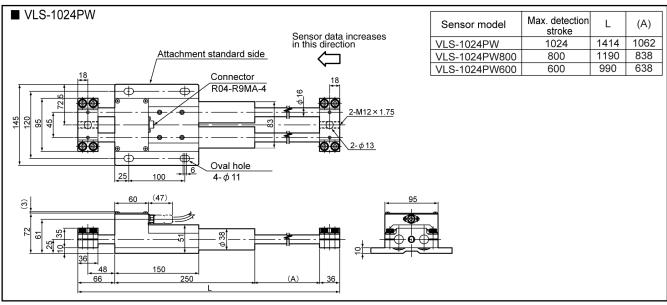

4-2-1. Multi-turn type ABSOCODER sensor (MRE)


■ MRE-32SP062SAC

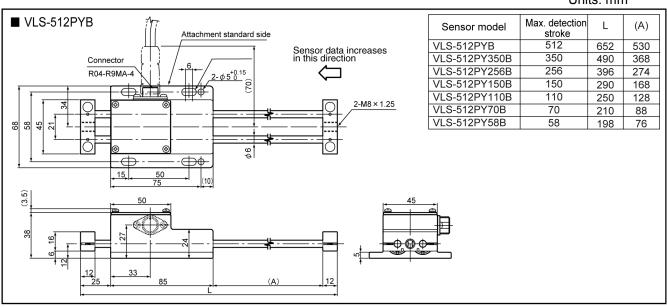

■ MRE-32SP062SBC

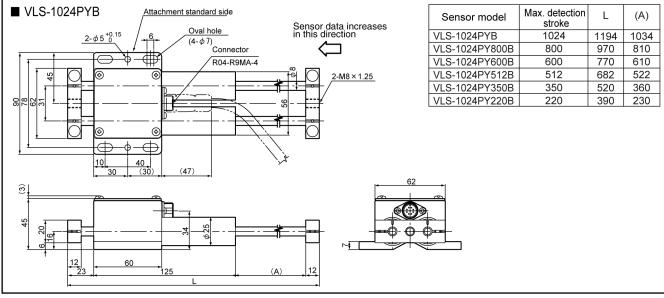


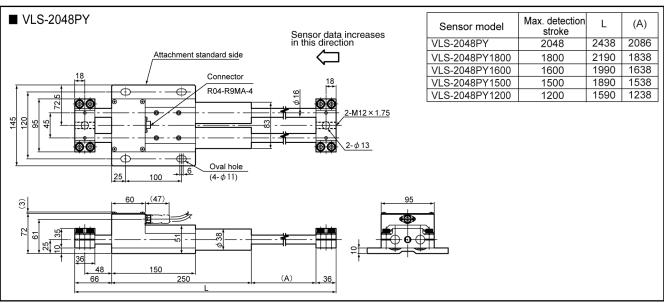




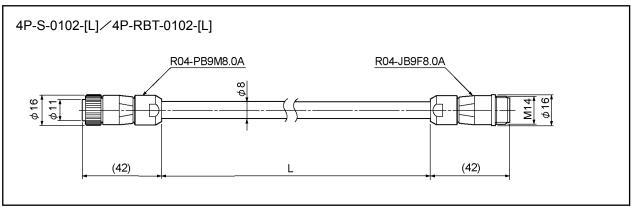
4-2-2. Linear type ABSOCODER (VLS)

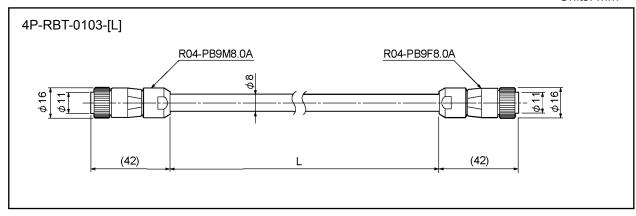

Units: mm



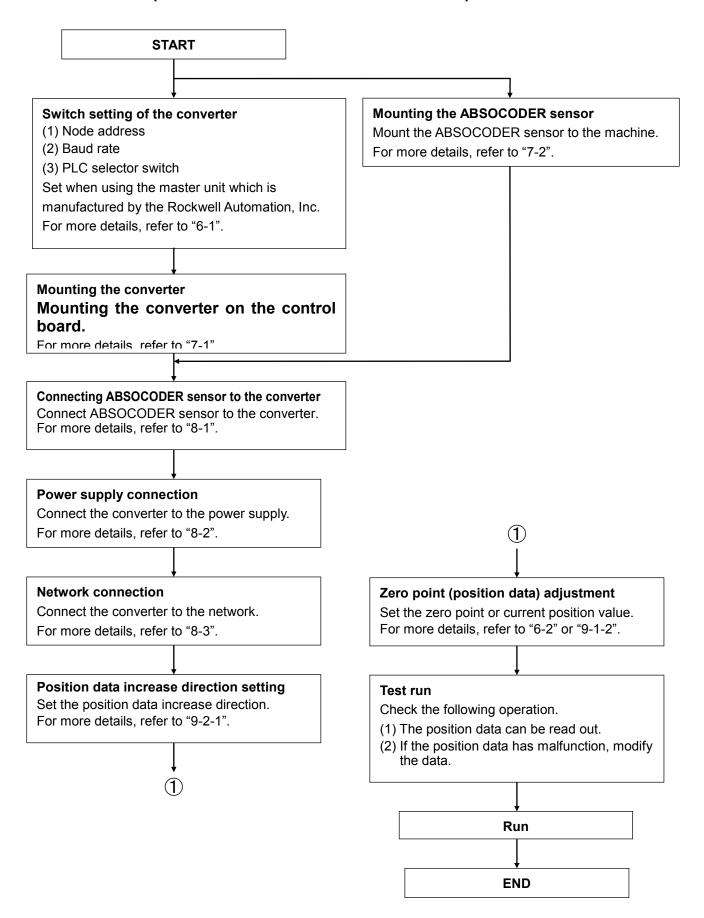


Units: mm




4-3. Extension Sensor Cable

Units: mm

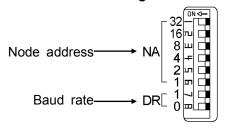


4-4. Interconnecting Sensor Cable

Units: mm

5. PROCEDURE (FROM MOUNTING TO OPERATING)

6. SWICH SETTING OF THE CONVERTER


Explains each switch of the NCV-20NDN.

6-1. DeviceNet Setting

6-1-1. Node address and baud rate setting

Set the node address and baud rate by the DeviceNet setting switch on the panel.

DeviceNet setting switch

All setting is OFF when shipping from the factory.

Node address (NA)

Setting range: 0-63

Setting method: $1-32 (2^{\circ}-2^{\circ})$ is set by the binary.

Setting example: Turn ON "1 (SW6)" "4 (SW4)" when setting the node address 5.

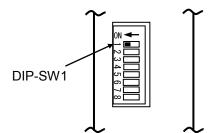
Danal diaplay	NA					
Panel display	32	16	8	4	2	1
Numeric value significance	2 ⁵	24	2 ³	2 ²	21	20

Note

The node address should not duplicate with the master or slave unit.

Baud rate (DR)

The setting range is the following three.

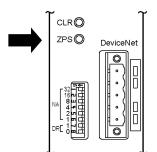

Panel display	DR		
Baud rate	1	0	
125 kbps	OFF	OFF	
250 kbps	OFF	ON	
500 kbps	ON	OFF	
Setting is prohibited	ON	ON	

6-1-2. Setting the PLC selector switch

PLC selector switch is set when using the master unit which is manufactured by the Rockwell Automation. Inc.

DIP-SW1 on the rear side of the converter should be ON.

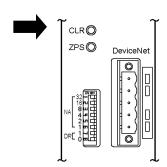
Rear side of the converter


All setting is OFF when shipping from the factory.

DIP-SW2 to 8 is must be OFF. Do not change the switch.

6-2. Zero Point Setting (ZPS Button)

Designating the position data (D0-D23) at "0" is "zero point setting". The zero point setting is that pressing the zero point setting button "ZPS" on the panel after the moving the sensor to the zero point position.



Zero point setting procedure

- (1) Move the machine to the zero point position.
- (2) Check the converter is normal status.
 In the normal status, light OFF the each SE, DE, ME, and PF on the front panel.
- (3) Press the zero point setting button "ZPS" on the panel.
- (4) Position data is set to the "0".

6-3. Error Clear (CLR Button)

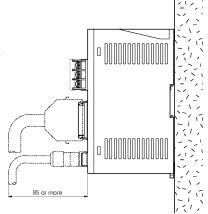
If an error has occurred, clear the error by pressing "CLR" button on the panel after remove an error cause. For more error details, refer to "10-2. Troubleshooting".

Point

The error clear can be done by "error reset" on the out data. Fore more details, refer to "9-1-2. OUT data format".

7. INSTALLATION

The installation conditions and precautions for each of the system components are described in this section.


7-1. Converter Installation Conditions and Precautions

Installation Site

- (1) Avoid sites where the unit is exposed to direct sunlight.
- (2) The ambient temperature should never exceed a 0 to 55°C range.
- (3) The ambient humidity should never exceed a 20 to 90% RH range.
- (4) Do not install the unit in areas where condensation is likely to occur (high humidity with extreme temperature changes).
- (5) Avoid sites where dust is excessive.
- (6) Do not install in areas with an excessive amount of salt and/or metal chips.
- (7) Do not install in areas where flammable and/or corrosive gases are present.
- (8) Avoid areas where splashing water, oil or chemicals are likely to occur.
- (9) Avoid areas where vibration and shocks are excessive.

Installation cautions

- (1)Install inside the control cabinet.
- (2)Install in a vertical direction so that the characters are visible.
- (3)If a DIN rail mounting format is used, insert until the latch mechanism catches with an audible click. Secure between end plates at both sides.
- (4)In high vibration areas, secure tightly with 2 M4 screws.
- (5)Install as far from high voltage lines and power lines as possible in order to minimize noise influences.
- (6)Allow 85mm or more space at the converter's front side for plugging in and unplugging the connector.
- (7)Peripheral components should be arranged so as not to obstruct converter installation, removal, and connector plugging/unplugging.
- (8)Peripheral components should be arranged so as not to obstruct the converter's heat dissipation.

7-2. ABSOCODER Sensor Installation Conditions and Precautions

The installation conditions and precautions for ABSOCODER sensor are described in this section.

7-2-1. Turn-type ABSOCODER sensor

● Handling of Turn-type ABSOCODER sensor

Item	Explanation
(1) Main unit	Never drop the Sensor, or subject it to excessive forces or shocks.
(2) Cable	Avoid stepping on, or applying excessive stress to the cable.

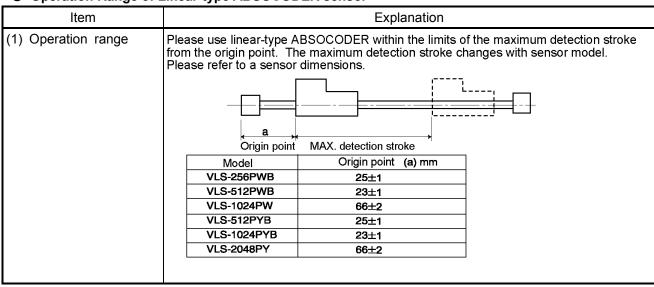
● Mounting of Turn-type ABSOCODER sensor

Item	Explanation	Precaution
(1) Mounting	For details regarding mounting dimensions, refer to each	
	sensor dimensions.	
(2) Cable port	Cable port should face downward. Cable port should face downward. Or more R40 mm or more Use a cable clamp, etc., to secure the cable.	

● Mounting of Turn-type ABSOCODER sensor

Item	Explanation	Precaution
(1) Coupling of machine	Be sure to use a coupling device to link the 2 shafts.	A "direct-link" format will
shaft and sensor shaft		result in shaft fatigue and / or breakage after long periods. Therefore, be sure to use a coupling device to link the shafts.
(2) For gear-type linkage	If a gear linkage is used, be sure that some backlash exists. Be sure that the distance between shafts will not be altered by vibrations shocks, etc Be sure that backlash exists at all gear positions. The sensor shaft pinion should be as light (small) as possible. This is especially true for environments where vibration / shock are likely.	Incorrect gear mounting can result in shaft bending or breakage.
(3) For rack and pinion type linkage	Be sure that backlash exists at all rack positions. Be sure that backlash exists at all rack positions. Be sure that backlash exists at all rack positions. Be sure that the distance between the rack and pinion will not be altered by vibrations, shocks, etc. Be sure that the distance between the rack and pinion is not altered when horizontal motion of the rack occurs. The sensor shaft pinion should be as light (small) as possible. This is especially true for environments where vibration / shocks are likely.	Incorrect rack and pinion mounting can result in shaft bending or breakage.
(4) Chain or timing belt linkage	When a chain or timing belt linkage format is used, there is an inherent risk of the shaft's load being increased by the resulting tension. Therefore, a bearing should be used, with the shafts being linked by a coupling device immediately behind the bearing. Recommended format Chain Bearing Coupling device Chain This linkage format is also applicable to the "rack-and-pinion" and "gear" methods shown above. Even a small amount of tension can produce a considerable load on the shaft.	
(5) Shaft mounting position	The shaft should be attached to the coupling device or gear at a point which is as near to the sensor body as possible. Recommended format Bad format Coupling device or This distance should be as short as possible. When this distance is short, the load placed on the beaning by vibrations / shocks is slight.	

Coupling of Turn-type ABSOCODER sensor


Item	Explanation	Precaution
(1) Coupling device selection precaution	1. When selecting a coupling, consider factors such as the design mounting error, the coupling tolerance error, and the sensor's permissible shaft load. Mounting error Coupling tolerance error Coupling shaft permissible load Sensor shaft load	The selection of a larger coupling than necessary will increase the shaft load which is caused by the mounting error amount. Excessive force applied to the shaft can deform the coupling and reduce durability.
(2) Coupling device installation precaution	Avoid bending or damaging the coupling.	

7-2-2. Linear-type ABSOCODER sensor

● Handling of linear-type ABSOCODER sensor

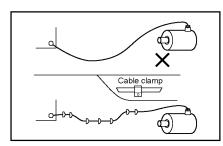
Item	Explanation
(1) ABSOCODER unit	Avoid a situation where the rod anchor blocks impact against head. Head Rod anchor block Rod anchor block Rod anchor block
(2) Sensor rod	Avoid bending or twisting the sensor rod.
(3) Anchor method	Never remove or loosen the bolts and spring pins at the rod anchor block. Spring pin Rod anchor block

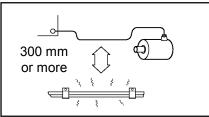
Operation Range of Linear-type ABSOCODER sensor

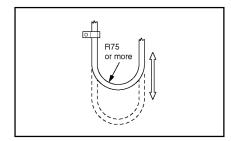
Mounting of Linear-type ABSOCODER sensor

Item Explanation (1) Mounting conditions 1. The rod anchor blocks must be supported at both ends. (If only one side is supported, rod vibration and bending may occur, affecting the durability of the unit.) Shaft directional Bolt adjustment is possible 2. Secure the rod anchor block when tightening the mounting bolt, in order to prevent the rod anchor block from twisting. The bolt should be fitted with a flat washer. Use flat washers when tightening bolts. Flat washers 3. The mounting parallelism and squareness should be as shown in the following figures. Parallelism ±0.1mm When mounting the sensor, the parallelism of the sensor rod and the rod anchor block must be as shown in the figure at right. Squareness Model a, b (mm) "a" or less VLS-256PWB 0.03 within this range VLS-512PWB 0.05 VLS-1024PW 0.1 "b" or less 0.03 VLS-512PYB within this rai VLS-1024PYB 0.05 VLS-2048PY 0.1 * In cases where the parallelism and squareness conditions shown above are not possible, use one of the mounting methods shown below. Floating joint Use a floating joint at the mounting area of the rod anchor block. [Method 2] Use the gauging method as shown in the figure at right. Use a shim at the rod anchor block, and adjust Adjust with shim, then mount until the rod and head sliding action is smooth. The rod's flexibility will enable a smooth sliding action at the rod center. The sliding action resistance should be as shown in Adjust with shim, then mount the table below Max. sliding resistance N (Kgf) Model VLS-256PWB 4.9 N (0.5) VLS-512PWB 7.8 N (0.8) 19.6 N (2.0) VLS-1024PW VLS-512PYB 4.9 N (0.5) VLS-1024PYB 7.8 N (0.8) VLS-2048PY 19.6 N (2.0) Slide the head

8. WIRING


8-1. Connection between Converter and ABSOCODER Sensor


The maximum extension sensor cable length varies according to the ABSOCODER sensor and cable model being used. For more details refer to "3-2. ABSOCODER Sensor Specifications".

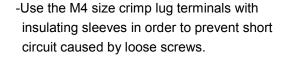

Wiring Precautions

- (1) The sensor cable should be clamped as shown in the right figure to prevent excessive tension from being applied to the cable connectors.
- (2) The sensor cable should be located at least 300mm away from power lines and other lines which generate a high level of electrical noise.
- (3) If the cable is moved under the state of bending like a horseshoe, a robotic cable should be used.

 The bend radius should never be less than 75 mm.

8-2. Power Supply Connection

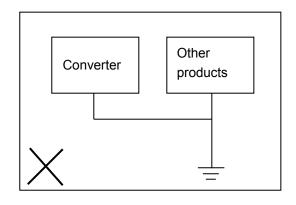
The power supply should be connected as described below:

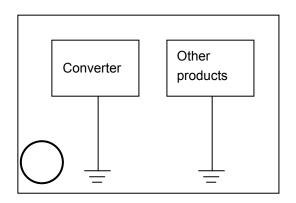

(1) Power Supply

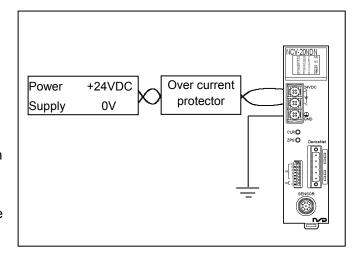
 Choose the power supply capacity which is more than twice the power consumption of the converter.

The power consumption of the converter is 10W or less.

- -The input power supply should be isolated from the commercial power supply.
- -The power cable should be as thick as possible to minimize voltage drops.

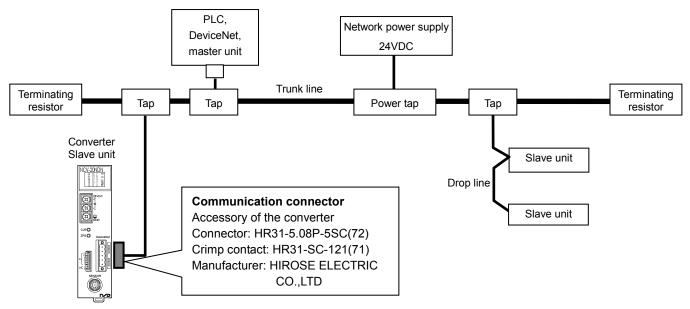





-The terminal block tightening torque is 1.8 N·m (16 lb·in)

(2) Ground

- -The unit should be securely grounded (ground resistance of 100ohm or less) to prevent electrical shocks.
- -The ground wire should be connected to the ground terminal directly.
- -The terminal block tightening torque is 1.8 N·m (16 lb·in).



8-3. DeviceNet Network Connection

Explains the DeviceNet network connection in this section.

Example of the network connection

Attention

- (1) Connect the terminating resistor at both ends of the trunk line.
- (2) The length of the communication cable is different depending on the baud rate and cable kinds. Lay the cables by referring to the following table.

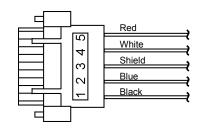
	Maximum distance		Drop line	Cumulative
Baud rate	Thick cable	Thin cable	length	drop line length
500 kbps	100m or less			39m or less
250 kbps	250mor less	100m or less	6mor less	78mor less
125 kbps	500mor less			156mor less

(3) Network ground

- Connect a shield wire of the power tap and an earth terminal of the network power supply, and ground (ground resistance of 100ohm or less) the wires.
- Ground at one place in order to prevent the ground loops.

Communication connector wiring

- (1) The connector and crimping terminal should be use the accessory of the converter.
- (2) The connector wiring should be matched the pin number and wire color by referring to the following table.


Crimping terminal size: 1.25 mm²

Crimp tool: Conforming to JIS C 9711 standard

Applicable wire size: 0.25-1.65 mm²

Connector pin No.	Wire Color	Wire identity
5	Red	V+
4	White	CAN_H
3	1	Shield
2	Blue	CAN_L
1	Black	V-

For more details, refer to the manufacture reference.

9. DeviceNet

9-1. IN/OUT Data

The master unit should be read or written by using the IN/OUT data.

The notation of IN/OUT is based on the master unit side in this manual.

IN data: The master unit reads out from NCV-20NDN.

OUT data: The master unit writes to the NCV-20NDN.

9-1-1. IN data format

IN data format is used 5-byte.

IN data can read out the position data and error contents.

Bit Byte	7	6	5	4	3	2	1	0		
0	D7	D6	D5	D4	D3	D2	D1	D0 (LSB)		
				Position	data 0					
1	D15	D14	D13	D12	D11	D10	D9	D8		
	Position data 1									
2	D23 (MSB)	D22	D21	D20	D19	D18	D17	D16		
		Р	osition data	a 2 (D17-D2	3 should b	e fixed at 0	.)			
3		Fixed at 0								
4		Fixed at 0		N5PF	PF	ME	DE	SE		

(1) Position data (byte 0-2)

The position data which is detected by the ABSOCODER sensor can read out as the binary code. This position data value will be changed, if the OUT data format is done the current position setting.

The position data range which can be read out is determined depending on the total number of divisions.

MRE-32SP062 : 0-131071 (0-0x1FFF)
MRE-G[]SP062 : 0-131071 (0-0x1FFFF)
VLS-[]PW : 0-65535 (0-0x0FFFF)
VLS-[]PY : 0-131071 (0-0x1FFFF)

(2) Error detection (byte 4)

The bit which is corresponding to the error is changed "0 to 1" when an error has occurred.

Bit	Name	Error contents		
0	SE	Sensor disconnected error		
1	DE	Sensor data error		
2	ME	Low power error		
3	PF	Memory error		
4	N5PF	-5V power supply error		
5-7	Reserve	Fixed at 0		

For more details, refer to "10-2. Troubleshooting".

9-1-2. OUT data format

OUT data format is used 5-byte.

OUT data can do the current position setting and the error clear.

Bit Byte	7	6	5	4	3	2	1	0		
0	PRD7	PRD6	PRD5	PRD4	PRD3	PRD2	PRD1	PRD0 (LSB)		
			Cur	rent positio	n setting da	ita 0				
1	PRD15	PRD14	PRD13	PRD12	PRD11	PRD10	PRD9	PRD8		
	Current position setting data 1									
2	PRD23 (MSB)	PRD22 PRD21 PRD20 PRD19 PRD18						PRD16		
	Current position setting data 2 (PRD17-PRD23 should be fixed at 0.)									
3		Fixed at 0								
4	Fixed at 0 Current position setting command							Error clear		

(1) Current position setting

The current position setting is a function which change the position data of the IN data format to the value which is matched the current position of the machine. If the extension sensor cable is used, set it with connecting the cable.

Procedures

1. Current position setting data (byte 0-2)

Write the matched value as the current position of the machine.

The setting range is determined by the total number of the division.

MRE-32SP062 : 0-131071 (0-0x1FFFF)
MRE-G[]SP062 : 0-131071 (0-0x1FFFF)
VLS-[]PW : 0- 65535 (0-0x0FFFF)
VLS-[]PY : 0-131071 (0-0x1FFFF)

2. Current position setting command (bit 1 of the byte-4)

The position data is changed when this bit is switched "0 to 1".

Note

If a value which is out of the setting range is written to the current position setting data, the only data which is in the setting range will be written.

(2) Error clear (bit 0 of the byte-4)

The position is changed when this bit switch "0 to 1", and the error is cleared. For more details, refer to "10-2. Troubleshooting".

Point

The error also can be cleared by "CLR button" on the panel.

For more details, refer to "6-3. Error Clear (CLR Button)".

9-2. Application Object

The application object can be accessed by using Explicit Messaging.

• Type and class ID of the application object

Type: Position Sensor object

Class ID: 135 (0x87)

Service list of the Position Sensor object

Service code	Service name	Descriptions				
14 (0x0E)	Get Attribute Single	Read out the contents of the specified attribute.				
16 (0x10)	Set Attribute Single	Change the contents of the specified attribute.				
5 (0x05)	Reset	Initialize contents of the objects. Option 0: Error clear 1: Factory setting				

● Attribute list of the Position Sensor object

Instance ID	Attribute ID	Name	Descriptions	Access rule	Data type
0 (0x00)	1 (0x01)	Revision	Revision	Get	UINT
	10 (0x0A)	Position data	Position data which is detected by the ABSOCODER sensor. This is the same function as the position data of IN data format.	Get	DINT
	12 Position data increase direction Control of the	Set the position data increase direction. 0: CW, 1: CCW For more details, refer to "9-2-1".	Get/Set	BOOL	
4		Change the position data value to the value which is set in this ID. This is the same function as the current position setting of OUT data format.	Get/Set	DINT	
(0x01)	41 (0x29)	Setting status	The setting status of the converter can be read out. For more details, refer to "9-2-2".	Get	BYTE
	44 (0x2C)	Error information	Read out error information. For more details, refer to "9-2-3".	Get	WORD
	45 (0x2D)	Error detection item	Support information of the error detection item can be read out. For more details, refer to "9-2-3".	Get	WORD
	46 (0x2E)	Error detection	0: None 1: Error is detected	Get	BOOL
	51 (0x33)	Offset value	Difference between an absolute position value which is detected by the ABSOCODER sensor and a current position setting value.	Get	DINT

Basic format of the Explicit message

Request message

Bit Byte	7	6	5	4	3	2	1	0		
0	Flag	XID	XID MAC ID							
1	R/R		Service code							
2				Class	ID					
3			Ir	stanc	e ID					
4	Service data									
:	*: The o	contents	will be o	change	d by the	e servic	e code	-		

Response message

	•		•								
	Bit Byte	7	6	5	4	3	2	1	0		
ĺ	0	Flag	XID			MAC ID					
	1	R/R	Service code (If an error has occurred, 0x14 will be read out.)								
	2			C		4-4-					
Ī	3	*· Tho	ontonto	_	ervice		. contio	o oodo			
	4		*: The contents will be changed by the service code.								
Ī	:	(If an error has occurred, an error code will be read out.)									

^{*}Flag: divide of the message, XID: transaction, R/R: request / response

Request and response message formats for each service

①Get Attribute Single service

Request message

Bit Byte	7	6	5	4	3	2	1	0	
0	Flag	XID	XID MAC ID						
1	0		Service code = 0x0E						
2			Clas	ss ID	= 0x8	7			
3	Instance ID								
4	Attribute ID								

Response message

	•		•								
	Bit Byte	7	6	5	4	3	2	1	0		
	0	Flag	XID	XID MAC ID							
	1	1	Service code = 0x0E								
,	2										
	3		Attribute data								
	:			Attribute data							

^{*:} Refer to "Attribute list of the Position Sensor object" for the instance ID and attribute ID.

2 Set Attribute Single service

Request message

Bit Byte	7	6	5	4	3	2	1	0	
0	Flag	XID			MAG	CID			
1	0		Service code = 0x10						
2		Class ID = 0x87							
3			Ir	stanc	e ID				
4			A	ttribut	te ID				
5	Attribute data								
:			Au	inbute	uala				

Response message

	Bit Byte	7	6	5	4	3	2	1	0
	0	Flag	XID	MAC ID					
,	1	1	Service code = 0x10						

③Reset service

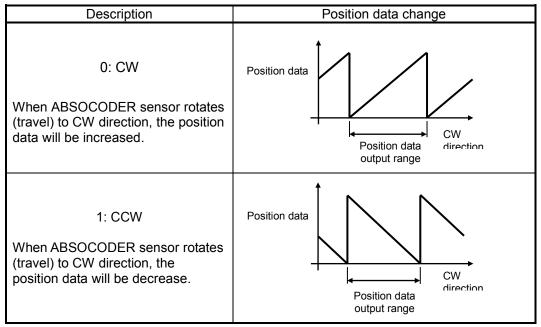
Request message

request message								
Bit Byte	7	6	5	4	3	2	1	0
0	Flag	XID			MA	CID		
1	0	Service code = 0x05						
2		Class ID = 0x87						
3		Instance ID = 0x00						
4	Option							

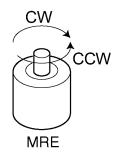
Response message

	Bit Byte	7	6	5	4	3	2	1	0
Ī	0	Flag	XID MAC ID						
,	1	1	Service code = 0x05						

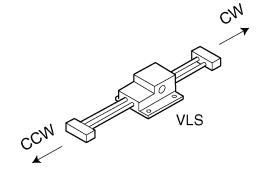
^{*:} Refer to "Attribute list of the Position Sensor object" for the instance ID and attribute ID.


^{*:} Refer to "Service list of the Position Sensor object" for the option.


9-2-1. Position data increasing direction setting


The position data increases or decreases depending on the ABSOCODER sensor's rotation direction (or on the rod travel direction when a linear-type ABSOCODER sensor is used).

This position data increase direction is specified by the attribute ID 12 (0x0C) of the Position Sensor object.


Contents of the attribute ID 12

Rod travel direction

9-2-2. Bit configuration of the setting status

The bit configuration of the Attribute ID41 (0x29) setting status for the Position Sensor object is indicated in this section.

Bit	Name	Description	Note
0	Position data increase	0: CW	
U	direction	1: CCW	
1-7	_	Fixed at 0	

9-2-3. Bit configuration of the error information

The bit configurations of the attribute ID44 (0x2C) error information and the attribute ID45 (0x2D) error detection item for the Position Sensor object are indicated in this section.

Bit	Name	Description of attribute ID44	Description of attribute ID45	
0	Sensor data error (DE)	0: No error	Fixed at 1 (support)	
U	Sensor data entri (DE)	1: Error is detected	Fixed at 1 (support)	
1	Sensor disconnected	0: No error	Fixed at 1 (support)	
ı	error (SE)	1: Error is detected	Fixed at 1 (support)	
2-11	_	Fixed at 0	Fixed at 0	
12	Low voltage error (PF)	0: No error	Fixed at 1 (support)	
12	Low voitage error (FF)	1: Error is detected	Fixed at 1 (support)	
13	-5V power supply	0: No error	Fixed et 1 (aupport)	
13	error (N5PF)	1: Error is detected	Fixed at 1 (support)	
14	Memory error (ME)	0: No error	Fixed at 1 (support)	
14	WEITIOLY EITOI (IVIE)	1: Error is detected	Fixed at 1 (support)	
15	_	Fixed at 0	Fixed at 0	

10. MAINTENANCE AND INSPECTIONS

The inspection should be conducted once every 6 months to a year.

Any inspected items which do not satisfy the criteria shown below should be repaired.

10-1. Inspection

Inspection item	Inspection Description	Criteria	Remark	
Power supply	Measure the voltage fluctuation at the power supply terminal block to determine if it is within the prescribed range.	Power supply voltage fluctuation must be within 21.6V to 26.4VDC range	Tester	
Ambient Conditions	Check the ambient temperature.	Sensor: -20 to +60°C Converter: 0 to +55°C	Thermometer	
Conditions	There should be no accumulation of dust.	None		
	Verify that the sensor is securely mounted.	There should be no looseness.		
	Verify that the sensor shaft is securely coupled to the machine shaft.	There should be no looseness.	Viennel	
Mount Conditions	Check for severed cables.	Cable should appear normal.	- Visual Inspection	
	Verify that the sensor cable connector is plugged in all the way.	There should be no looseness.		
	Verify that the DeviceNet communication connector is plugged in all the way.	There should be no looseness.		

10-2. Troubleshooting

The causes and corrective actions for errors that may occur during NCV-20NDN operation are described below.

NCV-20NDN has LEDs for the DeviceNet monitor (MS and NS) and monitoring error. The operation status and error contents can be checked by LED light status. The error contents should be checked when an error has occurred. Clear the error by the recovering methods which corresponding to each error. If the condition isn't improved, the ABSOCODER sensor or converter might have the malfunction.

Contents of the DeviceNet monitor LED

Mor	itor LED					
Name	Light status	Error name	Probable cause	Error clear procedures	Recovering method	
	Green	Normal	Operating in a normal condition			
-	Flickering red	Minor error	 Recovery is possible. Either error SE, DE, or PF has occurred. Baud rate setting error. 	 Refer to the section "SE, DE, and PE" on the next page. Correct the baud rate. 		
MS	Dod	Non-recovery	Recovery is not possible. Either ME or PF has occurred.	Refer to the section "ME and PE" on the next page.	Donlers the converter	
	Red	error	The internal circuit or part might be broken down or degradation.	Restart the power supply for the converter.	Replace the converter if an error has occurred again.	
	OFF	No power supply	The power is not supplied to the converter.	Check the wiring of the power supply.	Turn ON the power supply for the converter.	
	Green	Online/ connected	DeviceNet communication is normal.			
	Flickering green	Online/ disconnected	 The Communication connection is not established. NCV-20NDN is not allocated to the master unit. 			
	Flickering	Connection	Communication timeout of the	Connect the terminating		
	red	time out	I/O connection has occurred.	resistor.		
NS	Red	Critical error	A DeviceNet communications error was detected caused by node address duplication or Bus OFF. These errors make communications impossible.	 Correct the node address duplication. Correct the baud rate. Correct communications cable connection problem. Connect the terminating resistor. 	After removing an error cause, restart the power supply for the converter.	
	OFF	Offline/ no power supply	Online status is not established.The network power is not supplied.	Check whether the communication connector is unplugged.Check whether the network power is supplied.		

Contents of the error monitor LED

Mor	nitor LED					
Name	Light status	Error name	Probable cause	Error clear procedures	Recovering method	
SE	ON	Sensor disconnected error	Sensor connector is disconnected. Sensor connector is loose. Sensor cable is severed.	Secure the connector Replace the cable.	After removing an error cause, clear the error by	
DE	ON	Sensor data error	Wiring has a noise source	 Check the GND terminal is grounded. Check whether there is no power line around the sensor cable. 	either way: - Press CLR button. - Clear the error of the OUT data.	
			Sensor cable is severed.	Replace the cable.		
ME	ON	Memory error	The internal circuit or part is broken down or deteriorated.	Restart the power supply for the converter.	Replace the converter if an error has occurred again.	
	ON	Low power	Voltage drop of 24VDC power supply		After removing an error cause, clear the error by either way:	
	ON	error	Instantaneous power failure of 24VDC power supply	(including a ripple)	- Press CLR button Clear the error of the OUT data.	
PF	Flickering	-5V power supply error	Wiring has a noise source	 Check the GND terminal is grounded. Check whether there is no power line around the sensor cable. 	After removing an error cause, restart the power supply for the converter.	
			The internal circuit or part is broken down or deteriorated.	Restart the power supply for the converter.	Replace the converter if an error has occurred again.	

Other error contents

Error contents	Probable cause	Error clear procedures	Recovering method
Zero point deviation	The coupling between the axis of the ABSOCOER sensor and the axis of the machine is loose. ABSOCODER sensor mounting is loose.	Secure the coupling / mounting.	Set the zero point.

11. CE Marking

NCV-20NDN series conforms to CE Marking (EMC directive), but stands outside scope of the low voltage directive because it is 24 VDC power apparatus.

11-1. EMC Directives

It is necessary to do CE marking in the customer's responsibility in the state of a final product. Confirm EMC compliance of the machine and the entire device by customer because EMC changes configuration of the control panel, wiring, and layout.

11-2. EMC Directive and Standards

EMC consists of emission and immunity items.

It conforms to Table (see below) of EMC standards and Testing.

Class	Standard No.	Name
Emission (EMI)	EN61000-6-4	Generic standards. Emission standard for industrial environments
Immunity (EMS)	EN61000-6-2	Generic standards. Immunity standard for industrial environments
	EN61000-4-2	Electrostatic discharge
	EN61000-4-3	Radiated, radio frequency, electromagnetic field
	EN61000-4-4	Electrical fast transient / burst
	EN61000-4-5	Surge immunity
	EN61000-4-6	Conducted disturbances, induced by radio-frequency fields
	EN61000-4-8	Power frequency magnetic field

11-3. Measures for EMC Compliance

Sensor cable

If a 30m or longer sensor cable is to be used, pass the sensor cable through a metal duct or cover the sensor cable with the shielded zippertubing and ground the tube shield.

Zippertubing

11 0	
Model	Manufacturer
MTFS 20 ϕ	ZIPPERTUBING(JAPAN),LTD.

[Reference]

It may be improved when clamp ferrite core is added to the power supply or sensor cable when it operates faultily by the influence from the peripheral device.

Recommendation Clamp Ferrite Core (Product name: Clamp filters for cable)

Mounting location	Clamp ferrite core model	Manufacturer
- Power supply cable - Sensor cable	ZCAT2032-0930 (Inner dimensions: ϕ 9)	TDK

Manufacturer

NSD Corporation 3-31-28, OSU, NAKA-KU, NAGOYA, JAPAN 460-8302

Distributor

NSD Trading Corporation 3-31-23, OSU, NAKA-KU, NAGOYA, JAPAN 460-8302

Phone: +81-52-261-2352 Facsimile: +81-52-252-0522 URL: www.nsdcorp.com E-mail: foreign@nsdcorp.com

Copyright©2020 NSD Corporation All rights reserved.