ZEF004780908

# 

**Toshiba Corporation** 

**Unified Controller** 

**nv** Series

ABSOCODER CONVERTER for TC-net I/O

# AB934N Specifications and Instruction Manual

Applicable sensor

CYLNUC cylinder VLS-12.8PRA28 VLS-12.8MHP28 IRS-51.2P

(6 🕅

## CONTENTS

| INTRODUCTION                                                  | i  |
|---------------------------------------------------------------|----|
| RELATED MANUALS                                               | i  |
| COPYRIGHT                                                     | i  |
| GENERAL SAFETY RULES                                          | ii |
| REVISION HISTORY                                              | v  |
|                                                               |    |
| 1. OVERVIEW                                                   |    |
| 1-1. Overview                                                 |    |
| 1-2. Features                                                 | 1  |
| 1-3. Terminology                                              | 2  |
| 2. SYSTEM CONFIGURATION                                       | 4  |
| 2-1. System Configuration                                     | 4  |
| 2-2. Connection Configuration                                 | 5  |
| 2-3. Internal Block Diagram                                   | 7  |
| 3. INSTALLATION CONDITIONS and PRECAUTIONS                    |    |
| 3-1. AB934N Module Installation Conditions and Precautions    | 9  |
| 3-2. Installing the AB934N Module                             | 10 |
| 3-3. ABSOCODER Sensor Installation Conditions and Precautions | 11 |
| 3-4. Replacing the AB934N Module                              |    |
| 4 EXTERNAL WIRING                                             | 13 |
| 4-1 ABSOCODER Sensor Connection                               | 14 |
| 4-1-1. Sensor Cable Wiring Precautions                        | 14 |
| 4-1-2. Connection Configure Example of the Sensor Cable       |    |
| 4-2. Input Signal Wiring                                      |    |
| 4-3. Power Supply Connection                                  |    |
| 5. FUNCTION                                                   |    |
| 5-1. Function List                                            |    |
| 5-2. Operation Sequence                                       |    |
| 5-3. NOMENCLATURE                                             |    |
| 5-3-1. Component Names                                        |    |
| 5-3-2. Module State Display LED                               |    |
| 5-3-3. Function Switch                                        |    |
| 5-3-4. Maintenance Switch (MAINT)                             |    |
| 5-3-5. Slot Address Setting Switch (SLT ADR)                  |    |
| 5-3-6. Parameter Switch (back of the panel)                   |    |
| 5-4. Input and Output Data                                    |    |
| 5-4-1. I/O Word List                                          |    |
| 5-4-2. Input Data                                             |    |
| 5-4-3. Output Data                                            |    |
| 5-5. Origin Setting Operation                                 |    |
| 5-6. Error Cancelling Operation                               |    |

## CONTENTS

| 6. INSPECTIONS                                            |    |
|-----------------------------------------------------------|----|
| 7. TROUBLESHOOTING                                        |    |
| 7-1. Error List                                           |    |
| 7-2. ABSOCODER Sensor Check List                          |    |
| 7-2-1. VLS-12.8                                           |    |
| 7-2-2. IRS-51.2P(CYLNUC Mark II)                          |    |
| 7-2-3. CYLNUC                                             |    |
| 8. SPECIFICATIONS                                         | 41 |
| 8-1. AB934N Module Specifications                         | 41 |
| 8-1-1. General Specification                              | 41 |
| 8-1-2. Performance Specification                          |    |
| 8-1-3. External Input Specification                       |    |
| 8-2. ABSOCODER Sensor Specifications                      |    |
| 8-3. Sensor Cable Specification                           |    |
| 9. OUTER DIMENSIONS                                       |    |
| 9-1. AB934N Module                                        |    |
| 9-2. ABSOCODER Sensor                                     |    |
| 9-3. Extension Sensor Cable                               |    |
| APPENDIX 1. CE MARKING                                    |    |
| APPENDIX 1-1. EMC Directives                              |    |
| APPENDIX 1-2. EMC Directive and Standards                 |    |
| APPENDIX 1-3. Low Voltage Directive                       |    |
| APPENDIX 1-4. Measures for EMC Compliance and Restriction |    |

## INTRODUCTION

Thank you very much for purchasing our product.

Before operating this product, be sure to carefully read this manual so that you may fully understand the product, safety instructions and precautions.

- Please submit this manual to the operators actually involved in operation.
- Please keep this manual in a handy place.

## **RELATED MANUALS**

AB934N is a module intended to be used with TC-net I/O.

You should read the following manuals related to the Toshiba Corporation Unified Controller nv Series together with this manual.

- Controller Unit Instruction Manual (6F8C1220)
- Functional Manual (6F8C1221)
- High-speed Serial I/O System TC-net I/O Instruction Manual (6F8C1240)

## COPYRIGHT

The Unified Controller nv Series is a registered trademark of Toshiba Corporation. Other companies' and products' names are the trademark or registered trademark of each company.

## **GENERAL SAFETY RULES**

#### Application Limitation

This product is not designed to be used under any situation affecting human life. When you are considering using this product for special purposes such as medical equipment, aerospace equipment, nuclear power control systems, traffic systems, and etc., please consult with NSD.

This product is designed to be used under the industrial environments categorized in Class A device. The supplier and user may be required to take appropriate measures.

### Signal Words

Safety precautions in this guide are classified into DANGER and CAUTION.

|              | Symbol  | Meaning                                                                                                    |
|--------------|---------|------------------------------------------------------------------------------------------------------------|
| $\mathbf{N}$ | DANGER  | Incorrect handling may cause a hazardous situation that will result in death or serious injury.            |
| $\bigwedge$  | CAUTION | Incorrect handling may cause a hazardous situation that will result in moderate injury or physical damage. |

Instructions accompanied by a symbol CAUTION follow the all instructions accompanied by the symbol.

may also result in serious damage or injury. Be sure to

#### • Graphic Symbols

| Symbol     | Meaning                                    |
|------------|--------------------------------------------|
| $\bigcirc$ | Indicates prohibited items.                |
| <b>0</b>   | Indicates items that must be performed to. |

### 1. Handling Precautions

| $\bigcirc$ | <ul> <li>Do not touch components inside of the module; otherwise, it will cause electric shock.</li> <li>Do not damage the cable by applying excessive load, placing heavy objects on it, or clamping; otherwise, it will cause electric shock or fire.</li> </ul>                                                                                                                  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | <ul> <li>Turn the power supply OFF before wiring, transporting, and inspecting the modules; otherwise, it may cause electric shock.</li> <li>Provide an external safety circuit so that the entire system functions safely even when the module is faulty.</li> <li>Connect the grounding terminal of the module; otherwise, it may cause electric shock or malfunction.</li> </ul> |

| $\bigcirc$ | <ul> <li>Do not use the module in the following places; water splashes, the atmosphere of the corrosion, the<br/>atmosphere of the flammable vapor, and the side of the combustibility.</li> <li>Doing so may result in fire or the module may become faulty.</li> </ul>                                                                                                                    |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | <ul> <li>Be sure to use the module and the ABSOCODER sensor in the environment designated by the general specifications in the manual. Failure to do so may result in electric shock, fire, malfunction or unit failure.</li> <li>Be sure to use the specified combination of the ABSOCODER sensor, module and sensor cable; otherwise, it may cause fire or module malfunction.</li> </ul> |

### 2. Storage

| $\bigcirc$ | - Do not store the module in a place exposed to water, or toxic gas and liquid.                                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | <ul> <li>Be sure to store the module in designed temperature and humidity range, and do not exposed to direct sunlight.</li> <li>Be sure to consult with NSD when any module is stored for long periods.</li> </ul> |

### 3. Transport



#### 4. Installation

|            | <b>CAUTION</b>                                                                                                                       |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| (          | - Do not step on the ABSOCODER sensor or place heavy objects on the module; otherwise, it will cause injury                          |  |
| $\bigcirc$ | or mailuncion.<br>- Do not block the exhaust port or allow any foreign matter to enter the module : otherwise, it will cause fire or |  |
|            | module failure.                                                                                                                      |  |
|            | - Be sure to secure the module and the ABSOCODER sensor with the provided brackets; otherwise, it may                                |  |
|            | cause malfunction, injury, or drop.                                                                                                  |  |
|            | - Be sure to secure the specified distance between the module and the control cabinet or other equipments;                           |  |
|            | otherwise, it may cause malfunction.                                                                                                 |  |

### 5. Wiring

|      | <u>Z!</u> DANGER                                                                                    |
|------|-----------------------------------------------------------------------------------------------------|
| - Be | e sure to secure the terminal block firmly; otherwise, it will cause fire.                          |
| - Be | The sure to mount the terminal cover provided with the module, before supplying the power, starting |
| op   | operation after the installation, and wiring; otherwise, it may cause electric shock.               |

| CAUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Be sure to keep the sensor cable, control cable, and communication cable at least 300 mm away from the main circuit and power line; otherwise it may cause injury or malfunction.</li> <li>Be sure to connect all cables correctly; otherwise, it may cause injury or malfunction.</li> <li>Be sure to firmly connect the external I/O connectors and sensor connectors; otherwise, it may cause incorrect inputs and outputs or injury.</li> </ul> |

### 6. Operation

| $\bigcirc$ | <ul> <li>Do not change the module's function switch settings during the operation; otherwise, it will cause injury.</li> <li>Do not approach the machine after instantaneous power failure has been recovered.</li> <li>Doing so may result in injury if the machine starts abruptly</li> </ul>                                                                                                                                                                                                                                                                                               |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | <ul> <li>Be sure to check that the power supply specifications are correct; otherwise, it may cause module failure.</li> <li>Be sure to provide an external emergency stop circuit so that operation can be stopped with power supply terminated immediately.</li> <li>Be sure to conduct independent trial runs for the module before mounting an ABSOCODER sensor to the machine; otherwise, it may cause injury.</li> <li>When an error occurs, be sure to eliminate the cause, ensure safety, and reset the error before restarting operation; otherwise, it may cause injury.</li> </ul> |

### 7. Maintenance and Inspection

| $\bigcirc$ | - Do not disassemble, remodel, or repair the unit; otherwise, it will cause electric shock, fire, and unit malfunction.                                              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9          | - The capacitor of the power line deteriorates through prolonged use.<br>We recommended that the capacitor be replaced every five years to prevent secondary damage. |

### 8. Disposal





- Be sure to handle the module or the ABSOCODER sensor as industrial waste while disposing of it.

## **REVISION HISTORY**

The Document No. appears at the upper right of this manual's cover page.

| Document No. | Date           | Revision Description            |
|--------------|----------------|---------------------------------|
| ZEF004780900 | 3, Nov., 2009  | 1st Edition                     |
|              |                | Japanese document: ZEF004780500 |
| ZEF004780901 | 8, Jan., 2010  | 2nd Edition                     |
|              |                | Japanese document: ZEF004780501 |
| ZEF004780902 | 29, Jan., 2010 | 3rd Edition                     |
|              |                | Japanese document: ZEF004780501 |
| ZEF004780903 | 27, Jul., 2010 | 4th Edition                     |
|              |                | Japanese document: ZEF004780502 |
| ZEF004780904 | 12, May., 2011 | 5th Edition                     |
|              |                | Japanese document: ZEF004780503 |
| ZEF004780905 | 5, Oct., 2011  | 6th Edition                     |
|              |                | Japanese document: ZEF004780504 |
| ZEF004780906 | 5, Jun., 2013  | 7th Edition                     |
|              |                | Japanese document: ZEF004780505 |
| ZEF004780907 | 2, Feb., 2015  | 8th Edition                     |
|              |                | Japanese document: ZEF004780506 |
| ZEF004780908 | 16, Feb., 2016 | 9th Edition                     |
|              |                | Japanese document: ZEF004780507 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |
|              |                |                                 |

### 1. OVERVIEW

### 1-1. Overview

The AB934N module is an ABSOCODER converter for the TC-net I/O System of the Toshiba Corporation Unified Controller nv Series. Combine the module with a linear type ABSOCODER sensor (CYLNUC cylinder, VLS-12.8, IRS-51.2P) to have the detected position data converted into binary codes.

### 1-2. Features

The AB934N module has the following features:

#### (1) ABSOCODER sensors can be connected to two axes

One module can perform position detection for two axes. This contributes to space saving inside the control cabinet.

#### (2) 200 $\mu$ s high-speed response

Position detection will be run every 200 µ s regardless of the PLC scan time and the TC-net I/O updating timing.

#### (3) Origin setting function

Any required machine position can be registered as the origin, by using the "Origin setting" switch on the panel or with an external-input origin setting signal.

#### (4) Error detection function

When an error occurs, the monitor LED on the module panel will indicate error information. In addition, status data input is provided so that error information can be retrieved into the host controller.

#### (5) Applicable with JKPEV-S cable

A commercially available cable (JKPEV-S 1.25mm<sup>2</sup> x 5P) can be used between the module and ABSOCODER sensor.

#### (6) Compliance with CE standards

The AB934N module complies with CE (EMC Directive) standards.

#### (7) Compliance with KC mark (Korea Certification Mark)

The AB934N module complies with KC mark. (It is only certified under the Radio Waves Act of South Korea.) KC mark is the same directives as CE marking. For more details, refer to "APPENDIX 1. CE MARKING".

### 1-3. Terminology

#### (1) ABSOCODER

"ABSOCODER" is a generic name referring to the type of sensing device that detects rotational and linear displacement as well as speed and acceleration in an absolute format and outputs them digitally (or analogously). "ABSOCODER" comprises a detection unit that converts displacement into a variation in magnetic resistance and a conversion unit that inputs an alternating-current energization signal into the detection unit and then issues an absolute-format data according to the output signal returned from the detection unit. ABSOCODER sensors can be divided into two types, the rotary type that detects rotational position and the linear type that detects linear position. The module has a built-in conversion unit so as to be able to use an ABSOCODER sensor.

#### (2) Position Data "Increase Direction

The position data increases or decreases according to the ABSOCODER sensor's rod travel direction. Use the "Position Data Increase Direction" parameter switch on the back of the module to change the direction in which the position data value increases.

- CW: The position data value will increase when a rod (or a scale in the case of IRS-51.2P) travels in the CW direction.
- CCW: The position data value will increase when a rod (or a scale in the case of IRS-51.2P) travels in the CCW direction.



#### (3) Semi-absolute format

The AB934N module detects the machine position in a semi-absolute format.

In the semi-absolute format, "standard pitch" of the sensor rod is detected in absolute value.

(Absolute detection range)

Furthermore, the pitch is counted by the software.



The absolute detection range of each sensor is following:

- CYLNUC Cylinder, rod sensor (VLS-12.8) Standard pitch: 12.8mm
- CYLNUC Mark II Cylinder, in-rod sensor (IRS-51.2P) Standard pitch: 51.2mm

#### (4) Position data

**"Position data"** refers to a value which indicates where within the detection range the machine is currently located. The position data is expressed as a 24-bit binary code.



## 2. SYSTEM CONFIGURATION

### 2-1. System Configuration

The following chart shows the system configuration of the Toshiba Corporation Unified Controller nv Series with a AB934N module installed.

To use any other type of system configuration, contact NSD Corporation.

For details about TC-net I/O, refer to the High-speed Serial I/O System TC-net I/O Instruction Manual (Toshiba Corporation).





\*1: SA911 can be replaced with SA912. For more details, contact your NSD representative.

### 

Use the general I/O base unit BU902 for the AB934N module. Do not use any other types of base units.

### 2-2. Connection Configuration

The following figure indicates connecttion configuration of the AB934N module.

#### Connection configuration



\*1: The 24VDC power supply on the input terminal block is intended for both extremal inputs and sensors. Be sure to provide 24VDC even if no external input is used.

## 2. SYSTEM CONFIGURATION

#### Model List

| No. | Items                     | Models                    | Descriptions                                            |
|-----|---------------------------|---------------------------|---------------------------------------------------------|
|     |                           |                           | Position data 24bit binary code output                  |
|     |                           |                           |                                                         |
| Ū   | ABSOCODER Converter       |                           | A Toshiba base unit BU902 is required.                  |
|     |                           |                           | It should be separately provided by the user.           |
|     |                           | SCM                       |                                                         |
|     |                           | SCJ                       |                                                         |
|     | ABSOCODER sensor          | SCMJ                      |                                                         |
|     | (CYLNUC Cylinder)         | SCJJ                      | Resolution: 1.5625 $\mu$ m                              |
|     |                           | SCHH                      |                                                         |
|     |                           | SCAH                      |                                                         |
| 2   |                           | CSAH                      |                                                         |
| Ŀ   |                           | MIM                       |                                                         |
|     | ABSOCODER sensor          | MIJ                       | Built-in in-rad sensor Resolution: 6.25 um              |
|     | (CYLNUC Mark II Cylinder) | MIMJ                      | Building the four sensor, the solution. 0.25 $\mu$ m    |
|     |                           | MIJJ                      |                                                         |
|     |                           | VLS-12.8PRA28             | Pod sensor, resolution: 1 5625 um                       |
|     | (Linear type)             | VLS-12.8MHP28             | $1.003 \text{ sensor, resolution. } 1.0023 \mu\text{m}$ |
|     |                           | IRS-51.2P                 | In-rod sensor, resolution: $6.25 \mu$ m                 |
|     |                           | 4P-S-9044-[L]             | Standard cable, standard connector                      |
|     |                           | 4P-RBT-9044-[L]           | Robotic cable, standard connector                       |
|     |                           | 4P-URT-9044-[L]           | Semi-heat-resistant robotic cable, standard connector   |
|     |                           | 4P-S-4344-[L]             | Standard cable, standard connector                      |
|     |                           | 4P-RBT-4344-[L]           | Robotic cable, standard connector                       |
|     |                           | 4P-URT-4344-[L]           | Semi-heat-resistant robotic cable, standard connector   |
|     |                           | 4P-HRT-4344-[L]           | Heat-resistant robotic cable, standard connector        |
|     |                           | 4P-S-9040-[L]             | Standard cable, standard connector                      |
|     |                           | 4P-RBT-9040-[L]           | Robotic cable, standard connector                       |
|     |                           | 4P-URT-9040-[L]           | Semi-heat-resistant robotic cable, standard connector   |
|     |                           | 4P-S-4340-[L]             | Standard cable, standard connector                      |
|     |                           | 4P-RBT-4340-[L]           | Robotic cable, standard connector                       |
|     |                           | 4P-URT-4340-[L]           | Semi-heat-resistant robotic cable, standard connector   |
| 3   | Extension sensor cable    | 4P-HRT-4340-[L]           | Heat-resistant robotic cable, standard connector        |
| 9   |                           |                           | For JKPEV-S cable                                       |
|     |                           | 4P-S-9055-[L]             | Standard cable, large connector                         |
|     |                           |                           | For JKPEV-S cable                                       |
|     |                           | 4P-RB1-9000-[L]           | Robotic cable, large connector                          |
|     |                           |                           | For JKPEV-S cable                                       |
|     |                           | 4F-UR1-9000-[L]           | Semi-heat-resistant robotic cable, large connector      |
|     |                           |                           | For JKPEV-S cable                                       |
|     |                           | 4F-3-9090-[L]             | Standard cable, crimping terminal                       |
|     |                           |                           | For JKPEV-S cable                                       |
|     |                           | 4P-1\D1-9090-[L]          | Robotic cable, crimping terminal                        |
|     |                           |                           | For JKPEV-S cable                                       |
|     |                           |                           | Semi-heat-resistant robotic cable, crimping terminal    |
|     |                           | JKPEV-S                   | Commercially available cable                            |
|     |                           | (1.25mm <sup>2</sup> ×5P) |                                                         |

### 2-3. Internal Block Diagram

Shown below is the internal block diagram of an AB934N module.



Figure 2.2 Internal block diagram

## - MEMO -

## **3. INSTALLATION CONDITIONS and PRECAUTIONS**

Installation procedures and precautions for AB934N modules and ABSOCODER sensors are described.

For details about base unit installation, TC-net I/O bus cable connection and the startup and shutdown procedures, refer to the High-speed Serial I/O System TC-net I/O Instruction Manual (Toshiba Corporation).

### 3-1. AB934N Module Installation Conditions and Precautions

When installing AB934N modules, the following conditions and precautions should be observed.

#### Installation site

- (1) Avoid sites where the unit is exposed to direct sunlight.
- (2) The ambient temperature should never exceed a 0 to 55°C range.
- (3) The ambient humidity should never exceed a 10 to 95% RH range.
- (4) Do not install the unit in areas where condensation is likely to occur (high humidity with extreme temperature changes).
- (5) Avoid sites where dust is excessive.
- (6) Do not install in areas with an excessive amount of salt and/or metal chips.
- (7) Do not install in areas where flammable and/or corrosive gases are present.
- (8) Avoid areas where splashing water, oil or chemicals are likely to occur.
- (9) Avoid areas where vibration and shocks are excessive.

#### Installation cautions

- (1) Avoid dropping or making a major impact on the AB934N module.
- (2) Do not remove the AB934N module's printed circuit board from the case.
- (3) During cable connection, be careful not to allow cable debris or any other foreign objects to get inside the AB934N module.
- (4) Install inside the control cabinet.
- (5) In order to improve noise resistance, install as far away as possible from high-voltage and power cables.

### 3-2. Installing the AB934N Module

This section explains about the installation of an AB934N module to the base unit (BU902).

#### Installation

- (1) Hook the module to the slot on the bottom of the AB934N module in the lower part of the base unit, and rotate it to fit the connector.
- (2) Secure it to the base unit with the fixing screw on the top of the AB934N module.



### **3. INSTALLATION CONDITIONS and PRECAUTIONS**

### 3-3. ABSOCODER Sensor Installation Conditions and Precautions

The installation conditions and precautions for ABSOCODER sensor are described in this section.

- (1) Do not apply excessive forces to the cable terminal area, and avoid damaging the cable.
- (2) The part of a machine mounted the sensor rod must travel in the same direction as the sensor rod extends and contracts.

(3) When the cable port is exposed, a shielding plate should be

installed as shown in the right figure.

Image: Second secon



٥

Contact your NSD representative for details of the installation conditions and precautions for ABSOCODER sensor.

### 3-4. Replacing the AB934N Module

This section provides precautions when replacing an AB934N module.

(1) AB934N modules can be replaced while the system is energized or not energized.

When replacing them while the system is energized, set the maintenance switch to the up (MAINT) position for the AB934N module.

When the maintenance switch is set to MAINT, the AB934N module stops communication. It is just like removing the AB934N module in terms of the signal. Therefore, major failure occurs in the AB934N module.

- (2) If the module parameter is set for "I/O node fallback is not operated", the controller will shut down as soon as the AB934N module's maintenance switch is set to the upper position ("MAINT"). To avoid this, set the parameter for "I/O node fallback is operated".
- (3) Loosen the fixing screw on the top of the AB934N module, and rotate the module downward to pull it off.
- (4) Upon replacement, note the following.
  - Make sure that the replaced AB934N module is the same model.
  - Make sure to use the same setting for the hexadecimal rotary switch (SLT ADR) and parameter switches on the back of the module as before replacement.
  - After installing the AB934N module, set the maintenance switch to the down (RUN) position.
- (5) Make sure to carry out origin setting after replacing the AB934N module. Refer to 5-5 about the origin setting.

### 

Do not install a non-AB934N module to a base unit set up for AB934N. Do not install an AB934N module to a base unit set up for a non-AB934N module. The module and/or the sensors may become damaged or fail.

### 

Before touching the AB934N module or inserting or removing the transmission cable, wear a wrist strap and white cotton gloves. Ground the wrist strap to remove static electricity. Otherwise, it may cause damage or failure of the module.

### 

When placing the AB934N module during replacement, use a conductive mat.

Ground the conductive mat.

Otherwise, it may cause damage or failure of the AB934N module.

### 

When setting the maintenance switch to MAINT, specify "Fallback is operated" to prevent the controller from going down.

When the maintenance switch is set to MAINT, the AB934N module communication stops and major failure occurs.

The controller goes down if no fallback is specified.

## **4. EXTERNAL WIRING**

The power supply, ABSOCODER sensors and the external input signals should be connected to the base unit (BU902). Shown below is the BU902 terminal block configuration.

| Terminal<br>No. | Signal<br>Names | Wire Color<br>*1 |               | Descriptions                                                                                                            |  |  |  |  |  |  |  |
|-----------------|-----------------|------------------|---------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1               | SIN+            | Brown            |               |                                                                                                                         |  |  |  |  |  |  |  |
| 2               | SIN-            | Red              |               |                                                                                                                         |  |  |  |  |  |  |  |
| 3               | -COS+           | Orange           |               |                                                                                                                         |  |  |  |  |  |  |  |
| 4               | -COS-           | Yellow           |               |                                                                                                                         |  |  |  |  |  |  |  |
| 5               | OUT1+           | Green            | AXIS 1        | Connect the Axis 1 ABSOCODER sensor.                                                                                    |  |  |  |  |  |  |  |
| 6               | OUT1-           | Blue             | sensorsignal  |                                                                                                                         |  |  |  |  |  |  |  |
| 7               | —               | Violet           |               |                                                                                                                         |  |  |  |  |  |  |  |
| 8               | _               | Gray             |               |                                                                                                                         |  |  |  |  |  |  |  |
| 9               | Shield          | Shield           |               |                                                                                                                         |  |  |  |  |  |  |  |
| 10              |                 |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 11              |                 |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 12              |                 |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 13              |                 |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 14              | N               | С                |               | Do not connect anything.                                                                                                |  |  |  |  |  |  |  |
| 15              |                 |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 16              |                 |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 17              |                 |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 18              | <u></u>         |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 19              | SIN+            | Brown            |               |                                                                                                                         |  |  |  |  |  |  |  |
| 20              | SIN-            | Red              |               |                                                                                                                         |  |  |  |  |  |  |  |
| 21              | -cos+           | Orange           |               |                                                                                                                         |  |  |  |  |  |  |  |
| 22              |                 | rellow           | Axis 2        | Connect the Avia 2 ADSOCODED concer                                                                                     |  |  |  |  |  |  |  |
| 23              |                 | Blue             | sensor signal | CONNECTINE AXIS 2 ABSOCODER SENSOL                                                                                      |  |  |  |  |  |  |  |
| 24              | 0011-           | Violet           |               |                                                                                                                         |  |  |  |  |  |  |  |
| 25              |                 | Grav             |               |                                                                                                                         |  |  |  |  |  |  |  |
| 20              | Shield          | Shield           |               |                                                                                                                         |  |  |  |  |  |  |  |
| 28              | Onicid          | Onicid           |               |                                                                                                                         |  |  |  |  |  |  |  |
| 29              |                 |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 30              | N               | С                |               | Do not connect anything.                                                                                                |  |  |  |  |  |  |  |
| 31              |                 |                  |               |                                                                                                                         |  |  |  |  |  |  |  |
| 00              | E               |                  |               | This signal is used for error cancelling.                                                                               |  |  |  |  |  |  |  |
| 32              | Error           | cancel           |               | Error status will be cancelled when the signal input comes on.                                                          |  |  |  |  |  |  |  |
| 22              |                 | nin ootting      | Innut signal  | This signal is used for origin setting.                                                                                 |  |  |  |  |  |  |  |
|                 | AXIS I OII      | Jinseuing        | input signal  | Axis 1 position data value will be set to "0" when the signal input comes on.                                           |  |  |  |  |  |  |  |
| 34              | Axis 2 ori      | gin setting      |               | This signal is used for origin setting.<br>Axis 2 position data value will be set to "0" when the signal input comes on |  |  |  |  |  |  |  |
| 35              | P               | 24               | Power         |                                                                                                                         |  |  |  |  |  |  |  |
| 36              | Z               | 24               | supply        | Connect the power for external inputs and the sensors.                                                                  |  |  |  |  |  |  |  |

\*1: A wire color indicates the color of the NSD extension sensor cable.

### ▲ NOTES

The power supply (P24, Z24) is intended for both external inputs and the sensors. Be sure to provide 24VDC even if no input signal is used.

**NOTES** Observe the tightening torque.

If it is too loose, it may come off. If the tightening torque is out of specified range, it may be broken off. M3.5 screw : 0.8 to 1.2 N·m

### 4. EXTERNAL WIRING

### 4-1. ABSOCODER Sensor Connection

This section explains about ABSOCODER sensor connection.

### 4-1-1. Sensor Cable Wiring Precautions

#### Sensor cable length

The length of the extendable cable has a limitation depending on the models of ABSOCODER sensor and sensor cable. For more details, refer to "8-2. ABSOCODER Sensor Specifications ".

#### •Wiring precautions

(1) The sensor cable should be clamped as shown in the right figure to prevent excessive tension from being applied to the cable connectors.



(2) The sensor cable should be located at least 300mm away from power lines and other lines which generate a high level of electrical noise.



 If the cable is moved under the state of bending like a horseshoe, a robotic cable should be used.
 The bend radius should never be less than 75 mm.



### 4-1-2. Connection Configure Example of the Sensor Cable

Indicates the connection configure example when using the NSD special cable and commercially available cable.





### 4. EXTERNAL WIRING

In the case of using the commercially available cable (JKPEV-S 1.25mm<sup>2</sup> × 5P) and connecting with crimping terminals



Shown in [] are Axis 2 terminal numbers.

#### Cautions for the connection by the crimping terminal

- 1: The wire No. of JKPEV-S cable is printed on the surface of the white wire.
- 2: Unused wires of JKPEV-S cable should be severed at both ends.
- 3: Twist the signal wire for preventing noises.
  - Combinations of the twist is following:

SIN+ and SIN-, -COS+ and -COS-, OUT1+ and OUT1-

4: The shield wire shouldn't be grounded.

\*Note 1: It is also possible to connect a JKPEV-S cable directly to the base unit BU902 in place of this cable.

In the case of using the commercially available cable (JKPEV-S 1.25mm<sup>2</sup> × 5P) and connecting with a connector



Shown in [] are Axis 2 terminal numbers.

#### Cautions for the connection by the connector

- 1: The wire No. of JKPEV-S cable is printed on the surface of the white wire.
- 2: Unused wires of JKPEV-S cable should be severed at both ends.
- 3: The shield wire shouldn't be grounded.

### 4-2. Input Signal Wiring

For input signal wiring, make sure to use a cable sized in the range of 0.75 to 2 mm<sup>2</sup>.

### 4-3. Power Supply Connection

Describes about the power supply connection.

- (1) The power supply should be isolated from the commercial power supply.
- (2) Choose the power supply capacity which is more than twice the power consumption.
- (3) Avoid sharing the power supply with a magnet, solenoid or any other type of device that can potentially cause electrical noise.
- (4) Twist the power cable for preventing noises.
- (5) The power cable should be as thick as possible to minimize voltage drops.

## **5. FUNCTION**

### 5-1. Function List

As shown in table 5.1, the AB934N module functions.

| Items                            | Descriptions                                                                                                                                                                                                                                                                                           |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Position data detection function | The machine position will be detected using the ABSOCODER sensor.                                                                                                                                                                                                                                      |
| Origin setting<br>function       | The position data value will be corrected to "0" upon any of the following actions:<br>- Turning the external-input "origin setting" signal ON.<br>- Pressing the "Origin setting" switch on the panel.<br>- Operating the control program to set the "origin setting command" output bit (OS) to "1". |

Table 5.1 Function List

### 5-2. Operation Sequence



### 5-3. NOMENCLATURE

This section explains about the AB934N module component names and functions.

### 5-3-1. Component Names



### 5-3-2. Module State Display LED

Shown below is the list of LEDs provided on the AB934N module panel and the description of what each LED indicates. Refer to 7-1 for the details of the errors indicated.

|      | LED name              |               | Description                                                                         |
|------|-----------------------|---------------|-------------------------------------------------------------------------------------|
|      | Normal                | ON            | : Module is normal or in maintenance (maintenance switch in the upper position)     |
| RUN  | noimai                | Blinking      | : Waiting for setting                                                               |
| ALM  | Alarm                 | ON            | :Transmission error or in maintenance (maintenance switch in the upper position)    |
|      |                       | ON            | : Axis 1 sensor disiconnected error                                                 |
|      | Avia 1 arror          | Slow blinking | : Sensor power supply error                                                         |
| ERI  | AXIS T EITOI          | Fast blinking | : Axis 1 position data error or origin unset                                        |
|      |                       | OFF           | : Axis 1 normal                                                                     |
|      |                       | ON            | : Axis 2 sensor disiconnected error                                                 |
| ED2  | Axis 2 error          | Slow blinking | : Sensor power supply error                                                         |
| ERZ  |                       | Fast blinking | :Axis 2 position data error or origin unset                                         |
|      |                       | OFF           | : Axis 2 normal                                                                     |
|      | Avia 1 origin potting |               | : During Axis 1 origin setting                                                      |
| OSA1 | Axis Tongin Setting   | ON            | (The LED will remain on while the external input signal, the switch on the panel or |
|      | answendack            |               | the output bit is ON.)                                                              |
|      | Avia 2 origin potting |               | : During Axis 2 origin setting                                                      |
| OSA2 | Axis 2 Origin Setting | ON            | (The LED will remain on while the external input signal, the switch on the panel or |
|      | answerback            |               | the output bit is ON.)                                                              |

#### REMARKS

If ER1, ER2, OSA1 and OSA2 come ON all at the same time, it indicates that a CPU watch dog timer error has occurred.

### 5-3-3. Function Switch

This section explains about the function switches on the AB934N module panel.

| :   | Switch Name           | Description                                                          |
|-----|-----------------------|----------------------------------------------------------------------|
| CLR | Error cancel          | Pressing this switch will cancel the current AB934N module error.    |
| OS1 | Axis 1 origin setting | Pressing this switch will set the Axis 1 position data value to "0". |
| OS2 | Axis 2 origin setting | Pressing this switch will set the Axis 2 position data value to "0". |

Refer to 5-5 for origin setting timing.

### 5-3-4. Maintenance Switch (MAINT)

This switch is used only when the module is inserted or removed online.

Insertion or removal is performed when the switch is set to the up (MAINT) position to separate the module from the system.

When insertion is complete, the switch is returned to the down (RUN) position for normal operation.

Attempting to insert or remove the module in the online status with the maintenance switch in the RUN position may result in erroneous data detection.

To avoid wrong operation, use a precision screwdriver to operate the maintenance switch that is behind the front panel.

### 5-3-5. Slot Address Setting Switch (SLT ADR)

A slot address for each I/O module is set to a different value. Up to 16 units of I/O module can be connected to the same TC-net I/O bus using setting values from 0 to F.

The values of the slot address setting switches of the I/O module connected to the same TC-net I/O bus must be set to different values. If the same setting value is used, it will not function normally.

### 5-3-6. Parameter Switch (back of the panel)

This section explains about AB934N module parameter switches

| SW<br>No. | Parameter Name                             | Switch setting                           | Description                                                                                                               |  |  |  |  |  |  |  |
|-----------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1         | Axis 1 disabled                            | ON : Disabled<br>OFF : Enabled           | When this switch is set to the ON position, error will not occur even i<br>Axis 1 sensor is not connected. *1             |  |  |  |  |  |  |  |
| 2         | Axis 1 position data increase direction    | ON : CCW direction<br>OFF : CW direction | Specify the direction in which the Axis 1 position data should increase.                                                  |  |  |  |  |  |  |  |
| 3         | Reserved                                   | Fixed at OFF                             | Keep this switch in the OFF position. Correct operation cannot be<br>quaranteed if this switch is set to the ON position. |  |  |  |  |  |  |  |
| 4         | Reserved                                   | Fixed at OFF                             | Keep this switch in the OFF position. Correct operation cannot be guaranteed if this switch is set to the ON position.    |  |  |  |  |  |  |  |
| 5         | Axis 2 disabled                            | ON : Disabled<br>OFF : Enabled           | When this switch is set to the ON position, error will not occur even if Axis 2 sensor is not connected. *1               |  |  |  |  |  |  |  |
| 6         | Axis 2 position data<br>increase direction | ON : CCW direction<br>OFF : CW direction | Specify the direction in which the Axis 2 position data should increase.                                                  |  |  |  |  |  |  |  |
| 7         | Reserved                                   | Fixed at OFF                             | Keep this switch in the OFF position. Correct operation cannot be guaranteed if this switch is set to the ON position.    |  |  |  |  |  |  |  |
| 8         | Reserved                                   | Fixed at OFF                             | Keep this switch in the OFF position. Correct operation cannot be guaranteed if this switch is set to the ON position.    |  |  |  |  |  |  |  |

\*1: When "Axis Disabled" (SW1, 5) is "ON: Disabled", both the position and the status inputs of the correspondent axis will be "0".

#### Factory setting

In the factory setting, all the switches are prepared in the OFF position.

#### Position data increase direction setting (Switches No. 2 and No. 6)

The position data increases or decreases according to the ABSOCODER sensor's rod travel direction.



### 5-4. Input and Output Data

### 5-4-1. I/O Word List

Each of the input data and output data into the AB934N module are separately assigned to one of the I/O word numbers listed below.

| I/O word No. | Input data<br>(AB934N to PLC)       | I/O word No. | Output data<br>(PLC to AB934N) |
|--------------|-------------------------------------|--------------|--------------------------------|
| 0            | Axis 1 position data lower          | 0            | Reserved                       |
| 1            | Axis 1 position data higher, status | 1            | Axis 1 command                 |
| 2            | Axis 2 position data lower          | 2            | Reserved                       |
| 3            | Axis 2 position data higher, status | 3            | Axis 2 command                 |

#### REMARKS

When "Axis Disabled" (SW1, 5) of the parameter switch is "ON: Disabled", both the position and the status inputs of the correspondent axis will be "0".

### 5-4-2. Input Data

The absolute position data (0 to 8191: 8192 divisions) and the number of pitches detected by the ABSOCODER sensor will be stored in the 24-bit binary code format. Error data will be stored in "Status".

#### Axis 1 data

| I/O word No. | 15   | 14                                         | 13  | 12  | 11  | 10  | 9  | 8       | 7      | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|--------------|------|--------------------------------------------|-----|-----|-----|-----|----|---------|--------|----|----|----|----|----|----|----|
| 0            | D15  | D14                                        | D13 | D12 | D11 | D10 | D9 | D8      | D7     | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|              | ( No | No. of pitches // Absolute detection pitch |     |     |     |     |    |         |        |    |    |    |    |    | J  |    |
|              |      |                                            |     |     |     |     |    | Positic | n data |    |    |    |    |    |    |    |

| I/O word No. | 15  | 14 | 13 | 12  | 11   | 10  | 9              | 8   | 7   | 6   | 5   | 4       | 3       | 2   | 1   | 0   |
|--------------|-----|----|----|-----|------|-----|----------------|-----|-----|-----|-----|---------|---------|-----|-----|-----|
| 1            | /ER | PF | SE | DE  | RDY  | OSR | 0              | BOS | D23 | D22 | D21 | D20     | D19     | D18 | D17 | D16 |
|              |     |    |    | Sta | atus |     | No. of pitches |     |     |     |     |         |         |     | J   |     |
|              |     |    |    |     |      |     |                |     |     |     |     | Positio | on data |     |     |     |

Axis 2 data

| I/O word No. | 15            | 14                                      | 13  | 12  | 11  | 10  | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|--------------|---------------|-----------------------------------------|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| 2            | D15           | D14                                     | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|              | ( No          | No. of pitches Absolute detection pitch |     |     |     |     |    |    |    |    |    |    |    |    | J  |    |
|              | Position data |                                         |     |     |     |     |    |    |    |    |    |    |    |    |    |    |

| I/O word No. | 15  | 14 | 13 | 12  | 11   | 10  | 9 | 8   | 7   | 6   | 5   | 4       | 3       | 2   | 1   | 0   |
|--------------|-----|----|----|-----|------|-----|---|-----|-----|-----|-----|---------|---------|-----|-----|-----|
| 3            | /ER | PF | SE | DE  | RDY  | OSR | 0 | BOS | D23 | D22 | D21 | D20     | D19     | D18 | D17 | D16 |
|              | ر   |    |    | Sta | atus |     |   | J   |     |     |     | No. of  | pitches |     |     | J   |
|              |     |    |    |     |      |     |   |     |     |     |     | Positic | on data |     |     |     |

### 

When an error is present, the position data will become unstable. Before retrieving a position data, check that the RDY signal input is "1: Normal".

#### Status

The "Status" bits store error information, Refer to 7-1 for the details of the errors indicated.

| Bit | Signal Name<br>(Status Name) | Indication                   | Description                                   |  |  |  |
|-----|------------------------------|------------------------------|-----------------------------------------------|--|--|--|
| 0   | BOS                          | 1: Unset                     | The origin is unset.                          |  |  |  |
| 0   | Origin unset                 | 0: Set                       | *1                                            |  |  |  |
| 9   | Reserved                     | 0: Fixed                     |                                               |  |  |  |
| 10  | OSR                          | 1: Origin setting possible   | Origin potting can be performed               |  |  |  |
| 10  | Origin setting possible      | 0: Origin setting impossible | Origin setting can be penormed.               |  |  |  |
| 11  | RDY                          | 1: Normal                    | The position data is normal.                  |  |  |  |
| 11  | Position data normal         | 0: Error                     | *2                                            |  |  |  |
| 12  | DE                           | 1: Error                     | Position data error has been caused by noise, |  |  |  |
| 12  | Position data error          | 0: Normal                    | impact etc.                                   |  |  |  |
| 12  | SE                           | 1: Error                     | Sensor cable is not connected                 |  |  |  |
| 15  | Sensor disconnected error    | 0: Normal                    | Serisor cable is not connected.               |  |  |  |
| 14  | PF                           | 1 : Error                    | Sonsor power has orrer                        |  |  |  |
| 14  | Sensor power supply error    | 0 : Normal                   | Sensor power nas error.                       |  |  |  |
| 15  | /ER                          | 1: Normal                    | Error "DE" "SE" or "DE" has appured           |  |  |  |
| 10  | Error                        | 0: Error                     |                                               |  |  |  |

\*1: The origin will be unset in any of the following situations:

- Immediately after power-on
- When the maintenance switch has been switched from "MAINT" to "RUN"
- When an error is present
- \*2: When the origin is unset, the RDY bit will store "0" (Error).

Errors other than "Origin Unset" can be cancelled by one of the following actions:

- Pressing the function switch "CLR" on the module panel.
- Turning the external-input error cancelling signal ON.
- Setting the RES command output to "1".

To resolve an "Origin Unset" error, move the machine to the desired origin position (0 position) and set the origin by one of the following methods.

- Pressing the function switch "OS1" or "OS2" on the module panel.
- Turning the external-input origin setting signal ON.
- Setting the OS command output to "1".

### 5-4-3. Output Data

#### Axis 1 data

| I/O word No. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 0            | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|              |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|              |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

| I/O word No. | 15             | 14  | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------------|----------------|-----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 1            | OS1            | RES | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|              | Axis 1 command |     |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

#### Axis 2 data

| I/O word No. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 2            | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|              |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|              |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

| I/O word No. | 15  | 14  | 13     | 12    | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------------|-----|-----|--------|-------|----|----|---|---|---|---|---|---|---|---|---|---|
| 3            | OS2 | RES | 0      | 0     | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|              |     |     | Axis2α | omman | b  |    | J |   |   |   |   |   |   |   |   |   |
|              |     |     |        |       |    |    |   |   |   |   |   |   |   |   |   |   |

#### Command

Commands can be used for origin setting or error cancelling.

| Bit     | Signal Name<br>(Command Name) | Indication  | Description                                                             |
|---------|-------------------------------|-------------|-------------------------------------------------------------------------|
| 8 to 13 | Reserved                      | 0: Fixed    |                                                                         |
|         |                               |             | Resolve the error cause and set this bit to "1" to change the "Status"  |
| 1/      | RES                           | 1: Enabled  | error indicator (DE, SE or PF) to "Normal" (level detection).           |
| 14      | Error cancel                  | 0: Disabled | The error for both axes will be cancelled when Bit 14 (RES              |
|         |                               |             | command) of either a Axis 1 or Axis 2 is set to "1:Enabled".            |
|         | OS (OS1, OS2)                 | 1. Enabled  | The position data value will change to "0" when this bit is set to "1"  |
| 15      | Origin setting                |             | (level detection).                                                      |
|         | command                       | U. DISADIEU | The position data value will not change from "0" while this bit is "1". |

#### 

- Origin setting attempts will not be accepted when error remains unresolved (/ER=0).

- To have RDY return to Normal, origin setting needs to be performed after resolving the error cause.

### 5-5. Origin Setting Operation

Completing the origin setting operation will change the position data value to "0".

In the following situations, the origin will be unset and therefore origin setting needs to be performed.

- Immediately after power-on
- When the maintenance switch has been switched from "MAINT" to "RUN"
- When an error is present

The Origin Unset (BOS) bit will change to "0" upon origin setting completion.

To set the origin, move the machine to the desired origin position ("0" position) and perform any of the following:

- Press the function switch "OS1" or "OS2" on the module panel.
- Turn the external-input origin setting signal ON.
- Set the OS command output to "1".

Turning the origin setting signal ON (or setting the OS command to "1") will cause the position data to change to "0". The position data will not change from "0" while the signal is ON.

Refer to the following steps when generating a control program:

- (1) Move the machine to the desired origin position.
- (2) Check that the OSR input is "1" and then set the OS command output to "1".
- (3) Check that the position data value is "0" and then set the OS command back to "0".

### 

Origin setting can also be carried out by performing any of the following actions with the origin setting signal ON.

- Turning the power-on.

- Switching the maintenance switch from "MAINT" to "RUN".

However, origin setting attempts will not be accepted when error remains unresolved (/ER=0).

#### Timing chart

The chart below indicates the origin setting timing:



### 5-6. Error Cancelling Operation

Errors other than "Origin Unset" can be cancelled by performing one of the following actions after resolving the error cause:

- Pressing the function switch "CLR" on the module panel.
- Turning the external-input error cancelling signal ON.
- Setting the RES command output to "1".

The response time is approximately 1ms when cancelling the error.

To cancel an "Origin Unset" error, refer to 5-5.

## **6. INSPECTIONS**

The inspection should be conducted once every 6 months to a year. Any inspected items which do not satisfy the criteria shown below should be repaired.

| Inspection<br>item    | Inspection description                                                                                 | Criteria                                                                             | Remark               |
|-----------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------|
| Power<br>supply       | Measure the voltage fluctuation of the power supply to determine if it is within the prescribed range. | Within 20.4 to 26.4VDC                                                               | Tester               |
| Ambient<br>Conditions | Check the ambient temperature.                                                                         | ABSOCODER sensor<br>Refer to "ABSOCODER<br>specification".<br>Converter: 0 to +55°C  | Thermometer          |
|                       | There should be no accumulation of dust.                                                               | None                                                                                 |                      |
|                       | Verify that the sensor is securely mounted.                                                            | There should be no<br>looseness.                                                     |                      |
|                       | Verify that the sensor rod is securely coupled to the machine shaft.                                   | There should be no<br>looseness.                                                     |                      |
|                       | Check for severed cables.                                                                              | Cable should appear normal.                                                          |                      |
| Mount                 | Is sensor cable connector securely connected?                                                          | There should be no<br>looseness.                                                     | Visual<br>Inspection |
| Conduidons            | Are sensor cable connection terminal screws tightly fastened?                                          | There should be no<br>looseness.                                                     |                      |
|                       | Are BU902 terminal screws tightly fastened?                                                            | There should be no<br>looseness.<br>Tightening torque<br>M3.5 screw : 0.8 to 1.2 N·m |                      |

## 7. TROUBLESHOOTING

Error causes and countermeasures are described below.

### 7-1. Error List

When an error has occurred related to the AB934N module or the ABSOCODER sensor, the module state display LED "ER1" or "ER2" will come on (or blink) and the input data states will change. Refer to the following list to resolve the error.

|     | Status (input c                       | lata)                 | Module state                     |                                                                                                                                                                              | Detection                                  |                                                                                                             |
|-----|---------------------------------------|-----------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Bit | Signal Name                           | Indication            | display LED                      | Probable cause                                                                                                                                                               | timing                                     | Error cancel procedure                                                                                      |
| 8   | BOS<br>Origin unset                   | 1: Unset<br>0: Set    | Fast blinking                    | The Origin Unset error occurs every time<br>after power is turned on.<br>Maintenance switch has been switched<br>from "MAINT" to "RUN"                                       | After power-on<br>Upon error<br>occurrence | Complete origin setting                                                                                     |
| 9   | Reserved                              | 0: Fixed              |                                  |                                                                                                                                                                              |                                            |                                                                                                             |
| 12  | DE<br>Position data<br>error          | 1: Error<br>0: Normal | Fast blinking                    | Sensor connector is loose.<br>Sensor cable crimp terminal is loose.<br>ABSOCODER sensor was shocked<br>excessively.<br>Wiring has a noise source<br>Sensor cable is severed. | Any time                                   | Perform error canceling after resolving the error cause.                                                    |
| 13  | SE<br>Sensor<br>disconnected<br>error | 1: Error<br>0: Normal | ON                               | Sensor connector is loose.<br>Sensor cable crimp terminal is loose.<br>ABSOCODER sensor failure<br>AB934N module failure                                                     | Any time                                   | Perform error canceling after<br>resolving the error cause.<br>Replace the sensor.<br>Replace AB934N.       |
| 14  | PF<br>Sensor power<br>supply error    | 1: Error<br>0: Normal | Slow blinking                    | Sensor power is not on.<br>Sensor power supply has been delayed.<br>Sensor power has been instantaneously<br>off.<br>Sensor power has failed<br>AB934N module failure        | Any time                                   | Perform error canceling after<br>resolving the error cause.<br>Replace the power supply.<br>Replace AB934N. |
| 15  | /ER<br>Error                          | 1:Normal<br>0: Error  | _                                | Error "DE", "SE" or "PF" has occurred.                                                                                                                                       | Any time                                   | Perform error canceling after resolving the error cause.                                                    |
| _   | Watchdog<br>timer error               | _                     | ER1, ER2,<br>OSA1 and<br>OSA2 on | AB934N module failure                                                                                                                                                        | Any time                                   | Replace AB934N.                                                                                             |

### 7. TROUBLESHOOTING

### 

The origin will become unset after an error is cancelled (BOS = 1). Be sure to perform origin setting after cancelling an error.

About error cancelling and origin setting methods, refer to 5-6, "Error Cancelling Operation", and 5-5, "Origin Setting Operation".

### 

- 1. The error status will be automatically cancelled as soon as the error cause is resolved with the error cancel signal ON.
- 2. If "DE" is detected with the error cancel signal ON, the DE status will not change but "BOS" will change to "1: Unset".
- 3. When error "SE" or "PF" is present, the SE or PF status will be "1: Error" even if the error cancel signal is ON.

### 7-2. ABSOCODER Sensor Check List

### 7-2-1. VLS-12.8

#### Applicable ABSOCODER sensor models

VLS-12.8MHP28

VLS-12.8PRA28 (Consult our sales representative.)



#### Connector pin position and standard coil resistance ranges (at 25°C)

|         |                 | Check                 | position        |                    |                 |        | Standard coil resistance [ $\Omega$ ] |
|---------|-----------------|-----------------------|-----------------|--------------------|-----------------|--------|---------------------------------------|
| A1, A2  | , A3, B1        | В                     | 2               | В                  | 3               | Signal |                                       |
| Pin No. | Wiring<br>color | Terminal<br>No.<br>*1 | Wiring<br>color | Wire No.<br>(pair) | Wiring<br>color | names  | VLS-12.8MHP28                         |
| 1       | Brown           | 1 [19]                | Brown           | 1                  | White           | SIN+   | 22 to 60                              |
| 2       | Red             | 2 [20]                | Red             | I                  | Black           | SIN-   | 2310109                               |
| 3       | Orange          | 3 [21]                | Orange          | 2                  | White           | -COS+  | 22 to 60                              |
| 4       | Yellow          | 4 [22]                | Yellow          | 2                  | Black           | -COS-  | 2310109                               |
| 5       | Green           | 5 [23]                | Green           | 2                  | White           | OUT1+  | 61 to 97                              |
| 6       | Blue            | 6 [24]                | Blue            | 3                  | Black           | OUT1-  | 011087                                |
| 7       | -               | 7 [25]                | Violet          | 4                  | White           | -      |                                       |
| 8       | _               | 8 [26]                | Gray            | 4                  | Black           | -      |                                       |
| 9       | —               | —                     | _               | F                  | White           | _      |                                       |
| 10      | —               | —                     | _               | э                  | Black           | _      |                                       |
| 11      | Shield          | 9 [27]                | Shield          | _                  | Shield          | Shield |                                       |
| 12      | —               | _                     | _               | _                  | _               | _      |                                       |

\*1: These are BU902 terminal numbers. Shown in [] are Axis 2 terminal numbers.

The above standard coil resistance ranges are referential data to assist wiring disconnection diagnosis and are not product specification values. There may be no wiring disconnection even when the resistance measurement is out of the standard resistance range.

#### Continuity check

#### [Measurement method]

Measure resistance at Point A or B using a circuit tester or other appropriate device.

Have Point A connected to measure Point B.

If the connector is off, identify the line by the wiring color.

#### [Check details]

Refer to the previous page for the connector pin number.

| Check position            | Criterion            | Check position                          | Criterion |
|---------------------------|----------------------|-----------------------------------------|-----------|
| Between brown and red     |                      | Between brown and orange, green, shield |           |
| Between orange and yellow | The measured value   | Between orange and green, shield        |           |
| Between green and blue    | of the standard soil | Between green and shield                | ∞         |
|                           |                      |                                         |           |
|                           |                      | Between frame and each wire or shield   |           |

\*1: If a check is done at Point B, the measurement value wil be [Standard coil resistance + extension sensor cable resistance].

Extension sensor cable resistance value

The resistance value of the NSD special cable is  $0.2\Omega/m$  (loop resistance).

The resistance value of the JKPEV-S cable is  $0.034\Omega/m$  (loop resistance).

Consider resistance variations due to temperature, which, relative to the standard temperature ( $25^{\circ}$ C), increases 0.4% when the temperature rises 1°C and decreases 0.4% when the temperature falls 1°C.

#### Insulation check

[Measurement method]

Measure using a 500 VDC megger.

#### [Check details]

Refer to the previous page for the connector pin number.

| Check position                          | Criterion           |
|-----------------------------------------|---------------------|
| Between brown and orange, green, shield |                     |
| Between orange and green, shield        |                     |
| Between green and shield                | $10M\Omega$ or more |
|                                         |                     |
| Between frame and each wire or shield   |                     |

#### 

- 1. Make sure to disconnect the ABSOCODER sensor from the AB934N module before carrying out insulation checks.
- 2. If there is a risk that energization may cause damages to the electronic circuits in and around the machine, remove the ABSOCODER sensor from the machine.
- 3. After completing the checks, short-circuit between the pins to discharge remaining voltage before connecting the ABSOCODER sensor to the AB934N module.

### 7-2-2. IRS-51.2P (CYLNUC Mark II)

#### Applicable ABSOCODER sensor models

IRS-51.2P18 MIM, MIJ, MIMJ, MIJJ IRS-51.2P30



#### ●Connector pin position and standard coil resistance ranges (at 25°C)

|         |                 | Check                 | position        |                    |                 |        | Standard coil        | resistance [Ω]                |
|---------|-----------------|-----------------------|-----------------|--------------------|-----------------|--------|----------------------|-------------------------------|
| A1, A2  | , A3, B1        | В                     | 2               | B                  | 3               | Signal |                      |                               |
| Pin No. | Wiring<br>color | Terminal<br>No.<br>*1 | Wiring<br>color | Wire No.<br>(pair) | Wiring<br>color | names  | IRS-51.2P18<br>(¢18) | IRS-51.2P30<br>( <i>ф</i> 30) |
| 1       | Brown           | 1 [19]                | Brown           | 1                  | White           | SIN+   | 10 to 50             | 104 to 174                    |
| 2       | Red             | 2 [20]                | Red             |                    | Black           | SIN-   | 1910-59              | 10410174                      |
| 3       | Orange          | 3 [21]                | Orange          | 0                  | White           | -COS+  | 10 to 60             | 104 to 174                    |
| 4       | Yellow          | 4 [22]                | Yellow          | 2                  | Black           | -COS-  | 1910/09              | 10410174                      |
| 5       | Green           | 5 [23]                | Green           | 2                  | White           | OUT1+  | 102 to 122           | 221 to 271                    |
| 6       | Blue            | 6 [24]                | Blue            | 3                  | Black           | OUT1-  | 10310123             | 33110371                      |
| 7       | -               | 7 [25]                | Violet          | 4                  | White           | -      |                      |                               |
| 8       | _               | 8 [26]                | Gray            | 4                  | Black           | -      |                      |                               |
| 9       | _               | -                     | _               | F                  | White           | -      |                      |                               |
| 10      | _               | _                     | _               | 5                  | Black           | _      |                      |                               |
| 11      | Shield          | 9 [27]                | Shield          | _                  | Shield          | Shield |                      |                               |
| 12      | _               | _                     | _               | _                  | _               | _      | ]                    |                               |

\*1: These are BU902 terminal numbers. Shown in [] are Axis 2 terminal numbers.

The above standard coil resistance ranges are referential data to assist wiring disconnection diagnosis and are not product specification values. There may be no wiring disconnection even when the resistance measurement is out of the standard resistance range.

#### Continuity check

#### [Measurement method]

Measure resistance at Point A or B using a circuit tester or other appropriate device.

Have Point A connected to measure Point B.

If the connector is off, identify the line by the wiring color.

#### [Check details]

Refer to the previous page for the connector pin number.

| Check position            | Criterion            | Check position                                 | Criterion |
|---------------------------|----------------------|------------------------------------------------|-----------|
| Between brown and red     |                      | Between brown and orange, green, shield        |           |
| Between orange and yellow | the measured value   | Between orange and green, shield               |           |
| Between green and blue    | of the standard coil | Stoud be in the range Between green and shield |           |
|                           |                      |                                                |           |
|                           |                      | Between frame and each wire or shield          |           |

\*1: If a check is done at Point B, the measurement value will be [Standard coil resistance + extension sensor cable resistance].

Extension sensor cable resistance value

The resistance value of the NSD special cable is  $0.2\Omega/m$  (loop resistance).

The resistance value of the JKPEV-S cable is  $0.034 \Omega/m$  (loop resistance).

Consider resistance variations due to temperature, which, relative to the standard temperature ( $25^{\circ}$ C), increases 0.4% when the temperature rises 1°C and decreases 0.4% when the temperature falls 1°C.

#### Insulation check

[Measurement method]

Measure using a 500 VDC megger.

#### [Check details]

Refer to the previous page for the connector pin number.

| Check position                          | Criterion           |
|-----------------------------------------|---------------------|
| Between brown and orange, green, shield |                     |
| Between orange and green, shield        |                     |
| Between green and shield                | $10M\Omega$ or more |
|                                         |                     |
| Between frame and each wire or shield   |                     |

#### 

- 1. Make sure to disconnect the ABSOCODER sensor from the AB934N module before carrying out insulation checks.
- 2. If there is a risk that energization may cause damages to the electronic circuits in and around the machine, remove the ABSOCODER sensor from the machine.
- 3. After completing the checks, short-circuit between the pins to discharge remaining voltage before connecting the ABSOCODER sensor to the AB934N module.

### 7-2-3. CYLNUC

#### Applicable ABSOCODER sensor models

SCM, SCJ, SCMJ, SCJJ, SCHH, SCAH, CSAH



#### ●Connector pin position and standard coil resistance ranges (at 25°C)

The standard coil resistance ranges shown below are referential data to assist wiring disconnection diagnosis and are not product specification values. There may be no wiring disconnection even when the resistance measurement is out of the standard resistance range.

| Check position |                 |                       |                 |                       |                 | Standard coil resistance [ $\Omega$ ] |           |         |         |         |         |         |         |         |         |          |
|----------------|-----------------|-----------------------|-----------------|-----------------------|-----------------|---------------------------------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| A, A1,         | A2, A3, B1      | В                     | 2               |                       | B3              | Signal                                |           |         |         |         | Rod di  | ameter  |         |         |         |          |
| Pin<br>No.     | Wiring<br>color | Terminal<br>No.<br>*1 | Wiring<br>color | Wire<br>No.<br>(pair) | Wiring<br>color | names                                 | ф<br>22.4 | ф<br>28 | φ<br>36 | φ<br>45 | φ<br>56 | φ<br>63 | φ<br>70 | ф<br>80 | ф<br>90 | ф<br>100 |
| 1              | Brown           | 1 [19]                | Brown           | 1                     | White           | SIN+                                  | 20 to     | 23 to   | 25 to   | 40 to   | 45 to   | 49 to   | 50 to   | 53 to   | 50 to   | 54 to    |
| 2              | Red             | 2 [20]                | Red             |                       | Black           | SIN-                                  | 66        | 69      | 71      | 86      | 110     | 114     | 115     | 118     | 115     | 119      |
| 3              | Orange          | 3[21]                 | Orange          | 2                     | White           | -COS+                                 | 20 to     | 23 to   | 25 to   | 40 to   | 45 to   | 49 to   | 50 to   | 53 to   | 50 to   | 54 to    |
| 4              | Yellow          | 4 [22]                | Yellow          | 2                     | Black           | -COS-                                 | 66        | 69      | 71      | 86      | 110     | 114     | 115     | 118     | 115     | 119      |
| 5              | Green           | 5 [23]                | Green           | 2                     | White           | OUT1+                                 | 57 to     | 61 to   | 63 to   | 81 to   | 88 to   | 97 to   | 137 to  | 150 to  | 156 to  | 106 to   |
| 6              | Blue            | 6 [24]                | Blue            | 3                     | Black           | OUT1-                                 | 83        | 87      | 89      | 107     | 128     | 137     | 177     | 190     | 196     | 146      |
| 7              | -               | 7 [25]                | Violet          | 4                     | White           | -                                     |           |         |         |         |         |         |         |         |         |          |
| 8              | -               | 8 [26]                | Gray            | 4                     | Black           | -                                     |           |         |         |         |         |         |         |         |         |          |
| 9              | -               | —                     | -               | F                     | White           | -                                     |           |         |         |         |         |         |         |         |         |          |
| 10             | -               |                       | -               | Э                     | Black           | -                                     |           |         |         |         |         |         |         |         |         |          |
| 11             | Shield          | 9 [27]                | Shield          | _                     | Shield          | Shield                                |           |         |         |         |         |         |         |         |         |          |
| 12             | _               | _                     | _               | -                     | _               | _                                     |           |         |         |         |         |         |         |         |         |          |

◆SCM, SCJ, SCMJ, SCJJ

\*1: These are BU902 terminal numbers. Shown in [] are Axis 2 terminal numbers.

#### ♦SCAH, SCHH

| Check position |                 |                       |                 |                       |                 | Standard coil resistance [ $\Omega$ ] |                                                   |              |                |              |               |  |
|----------------|-----------------|-----------------------|-----------------|-----------------------|-----------------|---------------------------------------|---------------------------------------------------|--------------|----------------|--------------|---------------|--|
| A, A1, A       | A2, A3, B1      | В                     | 32              | B3                    |                 | Signal                                | Cylinder bore size, shown in ( ) are rod diameter |              |                |              |               |  |
| Pin No.        | Wiring<br>color | Terminal<br>No.<br>*1 | Wiring<br>color | Wire<br>No.<br>(pair) | Wiring<br>color | Signal<br>names                       | φ40<br>(φ18)                                      | φ50<br>(φ20) | φ63<br>(φ22.4) | φ80<br>(φ28) | φ100<br>(φ36) |  |
| 1              | Brown           | 1 [19]                | Brown           | 4                     | White           | SIN+                                  | 00 to 175                                         | 05 to 100    | 00 40 405      | 100 40 045   | 100 to 200    |  |
| 2              | Red             | 2 [20]                | Red             |                       | Black           | SIN-                                  | 8010175                                           | 85 to 180    | 90 to 185      | 100 to 245   | 100 to 290    |  |
| 3              | Orange          | 3 [21]                | Orange          | 2                     | White           | -COS+                                 | 90 to 175                                         | 95 to 190    | 00 to 195      | 100 to 245   | 100 to 200    |  |
| 4              | Yellow          | 4 [22]                | Yellow          | 2                     | Black           | -COS-                                 | 8010175                                           | 0010100      | 9010105        | 10010243     | 100 10 290    |  |
| 5              | Green           | 5 [23]                | Green           | 2                     | White           | OUT1+                                 | 005 to 005                                        | 045 to 075   | 075 to 005     | 200 to 240   | 245 to 275    |  |
| 6              | Blue            | 6 [24]                | Blue            | 3                     | Black           | OUT1-                                 | 235 10 205                                        | 24510275     | 27510305       | 300 to 340   | 31510375      |  |
| 7              | Ι               | 7 [25]                | Violet          | 4                     | White           | —                                     |                                                   |              |                |              |               |  |
| 8              | Ι               | 8 [26]                | Gray            | 4                     | Black           | —                                     |                                                   |              |                |              |               |  |
| 9              | -               | —                     | -               | _                     | White           | —                                     |                                                   |              |                |              |               |  |
| 10             | 1               | _                     |                 | 5                     | Black           | —                                     |                                                   |              |                |              |               |  |
| 11             | Shield          | 9 [27]                | Shield          | _                     | Shield          | Shield                                |                                                   |              |                |              |               |  |
| 12             | _               | _                     | _               | _                     | _               | _                                     |                                                   |              |                |              |               |  |

\*1: These are BU902 terminal numbers. Shown in [] are Axis 2 terminal numbers.

#### ♦CSAH

| Check position |                 |                       |                 |                       |                 |        | Standard coil resistance [ $\Omega$ ] |                             |  |  |
|----------------|-----------------|-----------------------|-----------------|-----------------------|-----------------|--------|---------------------------------------|-----------------------------|--|--|
| A, A1, A       | 42, A3, B1      | E                     | 32              | E                     | 33              | Cianal | Cylinder bore size, sh                | own in ( ) are rod diameter |  |  |
| Pin No.        | Wiring<br>color | Terminal<br>No.<br>*1 | Wiring<br>color | Wire<br>No.<br>(pair) | Wiring<br>color | names  | φ20<br>(φ10)                          | φ40<br>(φ14)                |  |  |
| 1              | Brown           | 1 [19]                | Brown           |                       | White           | SIN+   | C1 to 100                             | 71 1- 1 40                  |  |  |
| 2              | Red             | 2 [20]                | Red             | 1                     | Black           | SIN-   | 6110136                               | 7110146                     |  |  |
| 3              | Orange          | 3 [21]                | Orange          | 0                     | White           | -COS+  | C1 to 100                             | 71 1- 1 40                  |  |  |
| 4              | Yellow          | 4 [22]                | Yellow          | 2                     | Black           | -COS-  | 6110136                               | 7110146                     |  |  |
| 5              | Green           | 5 [23]                | Green           | 2                     | White           | OUT1+  | 105 to 015                            | 202 to 222                  |  |  |
| 6              | Blue            | 6 [24]                | Blue            | 3                     | Black           | OUT1-  | 18510215                              | 203 10 233                  |  |  |
| 7              | _               | 7 [25]                | Violet          | 4                     | White           | _      |                                       |                             |  |  |
| 8              | -               | 8 [26]                | Gray            | 4                     | Black           | -      |                                       |                             |  |  |
| 9              | -               | —                     | -               | _                     | White           | —      |                                       |                             |  |  |
| 10             |                 | —                     | Ι               | 5                     | Black           | —      |                                       |                             |  |  |
| 11             | Shield          | 9 [27]                | Shield          | _                     | Shield          | Shield |                                       |                             |  |  |
| 12             | _               | _                     | _               | _                     | _               | _      |                                       |                             |  |  |

\*1: These are BU902 terminal numbers. Shown in [ ] are Axis 2 terminal numbers.

#### Continuity check

#### [Measurement method]

Measure resistance at Point A or B using a circuit tester or other appropriate device.

Have Point A connected to measure Point B.

If the connector is off, identify the line by the wiring color.

#### [Check details]

Refer to the previous page for the connector pin number.

| Check position            | Criterion            | Check position                          | Criterion |
|---------------------------|----------------------|-----------------------------------------|-----------|
| Between brown and red     |                      | Between brown and orange, green, shield |           |
| Between orange and yellow | the measured value   | Between orange and green, shield        |           |
| Between green and blue    | of the standard coil | Between green and shield                | $\infty$  |
|                           |                      |                                         |           |
| 1031312                   |                      | Between frame and each wire or shield   |           |

\*1: If a check is done at Point B, the measurement value will be [Standard coil resistance + extension sensor cable resistance].

Extension sensor cable resistance value

The resistance value of the NSD special cable is  $0.2\Omega/m$  (loop resistance).

The resistance value of the JKPEV-S cable is  $0.034\Omega/m$  (loop resistance).

Consider resistance variations due to temperature, which, relative to the standard temperature ( $25^{\circ}$ C), increases 0.4% when the temperature rises 1°C and decreases 0.4% when the temperature falls 1°C.

#### Insulation check

[Measurement method]

Measure using a 500 VDC megger.

#### [Check details]

Refer to the previous page for the connector pin number.

| Check position                          | Criterion           |
|-----------------------------------------|---------------------|
| Between brown and orange, green, shield |                     |
| Between orange and green, shield        |                     |
| Between green and shield                | $10M\Omega$ or more |
|                                         |                     |
| Between frame and each wire or shield   |                     |

#### 

- 1. Make sure to disconnect the ABSOCODER sensor from the AB934N module before carrying out insulation checks.
- 2. If there is a risk that energization may cause damages to the electronic circuits in and around the machine, remove the ABSOCODER sensor from the machine.
- 3. After completing the checks, short-circuit between the pins to discharge remaining voltage before connecting the ABSOCODER sensor to the AB934N module.

## - MEMO -

## 8. SPECIFICATIONS

### 8-1. AB934N Module Specifications

### 8-1-1. General Specification

| Iten                    | ns                                  | Specifications                                                                                             |  |  |
|-------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Power supply voltage    | For TC-net I/O                      | 24VDC (+10%, -15%)                                                                                         |  |  |
| Power consumption       | (supplied to SA911)                 | 0.1A or less (at 24VDC)                                                                                    |  |  |
| Power supply voltage    | For sensors and                     | 24VDC (+10%, -15%)                                                                                         |  |  |
| Power consumption       | external inputs (supplied to BU902) | 0.2A or less (at 24VDC)                                                                                    |  |  |
| Allowable instantaneous | s blackout time                     | 1ms or less                                                                                                |  |  |
| Withstand voltage       |                                     | 500 VAC, 60Hz for 1 minute between external DC power terminals and ground                                  |  |  |
| Vibration resistance    |                                     | $5 \le f < 9 Hz$ : Half amplitude 3.1 mm<br>$9 \le f < 150 Hz$ : Constant acceleration 9.8m/s <sup>2</sup> |  |  |
| Ambient operating temp  | perature                            | 0 to +55°C (No freezing)                                                                                   |  |  |
| Ambient operating hum   | idity                               | 10 to 95 %RH (No condensation)                                                                             |  |  |
| Pollution degree        | *1                                  | 2 or less                                                                                                  |  |  |
| Ambient operating envir | ronment                             | Free from corrosive gases and excessive dust                                                               |  |  |
| Ambient storage tempe   | rature                              | −40 to +70 °C                                                                                              |  |  |
| Ambient storage humid   | ity                                 | 10 to 95 %RH (No condensation)                                                                             |  |  |
| Operating altitude      | *2                                  | 2000m or less                                                                                              |  |  |
| Grounding               |                                     | Must be securely grounded (ground resistance of 100 $\Omega$ or less)                                      |  |  |
| Construction            |                                     | Inside control cabinet                                                                                     |  |  |
| Outside dimension       |                                     | 35mm(W) × 185mm(H) × 95mm(D)                                                                               |  |  |
|                         |                                     | [Refer to dimensions for details.]                                                                         |  |  |
| Mass                    |                                     | Approx. 0.4kg                                                                                              |  |  |

\*1: This index indicates the degree to which conductive material is generated in the environment where the equipment is used. In pollution degree 2, only non-conductive pollution occurs. Temporary conductivity may be produced due to condensation.

\*2: Do not use or store this module under pressure higher than the atmospheric pressure of altitude 0m. Failure to observe this may cause a malfunction.

## 8-1-2. Performance Specification

| Items                       | Specifications                                                                  |  |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| Number of detection axes    | 2                                                                               |  |  |  |  |
| Position detection format   | Semi-absolute format                                                            |  |  |  |  |
| lociation format            | Photo-coupler isolation                                                         |  |  |  |  |
| ISOIdlioi Hoimal            | (between TC-net I/O circuit and sensor circuit)                                 |  |  |  |  |
| Boool ution                 | CYLNUC Cylinder, VLS-12.8 : $1.5625 \mu$ m                                      |  |  |  |  |
| Resolution                  | CYLNUC Mark II Cylinder, IRS-51.2P : 6.25 $\mu$ m                               |  |  |  |  |
| Total number of divisions   | Standard pitch x number of pitches                                              |  |  |  |  |
|                             | [8192 divisions (2 <sup>13</sup> ) x 2048 pitches = 16777216(2 <sup>24</sup> )] |  |  |  |  |
| Function                    | Position data detection function, Origin setting function                       |  |  |  |  |
| Error dotaction function    | Sensor disconnected error (SE), Sensor power supply error (PF),                 |  |  |  |  |
|                             | origin unset (BOS), position data error(DE), CPU watchdog timer error           |  |  |  |  |
| Module state display LED    | RUN(green), ALM(red), ER1(red), ER2(red), OSA1(green), OSA2(green)              |  |  |  |  |
| Position data sampling time | 0.2ms                                                                           |  |  |  |  |
| Number of I/O channels      | Input: 4 words, Output: 4words                                                  |  |  |  |  |
| External connection         | Connect to BU902 terminal block                                                 |  |  |  |  |
| Applicable standard         | CE Marking (EMC directive)                                                      |  |  |  |  |
|                             | KC mark (Korea Certification Mark)                                              |  |  |  |  |

## 8-1-3. External Input Specification

| Items          |                                                  | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|----------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Number of      | input points                                     | 3 points (Origin setting: 2, Error cancel: 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Isolatio       | n format                                         | Photo-coupler isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Rated inp      | out voltage                                      | 24VDC (+10%, -15%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Input volta    | age range                                        | 20.4 to 26.4VDC *1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Rated inp      | out current                                      | 5.2 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| ON v           | oltage                                           | 16.8VDC or more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| OFF \          | voltage                                          | 6VDC or less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Response time  | OFF→ON                                           | 0.04 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| rtesponse unie | ON→OFF                                           | 0.2 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                |                                                  | Input Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                | Error ca<br>Axis 1 origin se<br>Axis 2 origin se | BU902 terminal block<br>ancel<br>etting<br>etting<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel<br>ancel |  |  |  |  |

\*1: This power is intended for both external inputs and sensors.

### 8-2. ABSOCODER Sensor Specifications

#### (1) CYLNUC Cylinder / CYLNUC Mark II Cylinder

|                             |                   | CYLNUC cylinder                         | CYLNUC Mark II Cylinder |  |
|-----------------------------|-------------------|-----------------------------------------|-------------------------|--|
|                             | Models            | SCM, SCJ, SCMJ, SCJJ                    | МІМ, МІЈ                |  |
|                             |                   | SCHH, SCAH, CSAH                        | MIMJ, MIJJ              |  |
| Absolut                     | e detection range | 12.8mm (0.5039inch)                     | 51.2mm (2.0157inch)     |  |
| Resolution                  |                   | 1.5625 µ m (12.8mm/8192)                | 6.25 µ m (51.2mm/8192)  |  |
| Max. sensor<br>cable length | Standard cable    | 4P-S 200m                               |                         |  |
|                             | Robotic cable     | 4P-RBT 100m                             |                         |  |
|                             | JKPEV-S cable     | JKPEV-S (1.25mm <sup>2</sup> × 5P) 200m |                         |  |

For more details, contact your NSD representative.

#### (2) Rod sensor (VLS-12.8PRA28)

| ľ                 | tems           | Specifications                                                                                  |                              |  |  |  |  |
|-------------------|----------------|-------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| Model             |                | VLS-12.8PRA28-[]FA[]                                                                            | VLS-12.8PRA28-[]LA[]         |  |  |  |  |
| Max. detection s  | stroke         | 1200                                                                                            | 1200 mm                      |  |  |  |  |
| Absolute detect   | ion range      | 12.8                                                                                            | mm                           |  |  |  |  |
| Resolution        |                | 1.5625 µ m (1                                                                                   | 2.8mm/8192)                  |  |  |  |  |
| Linearity error   |                | Max. 0.15 + [stroke                                                                             | e (mm)]/2000 mm              |  |  |  |  |
| Mass              | Head           | 6.5 + 0.1 x [cable                                                                              | e length(m)] kg              |  |  |  |  |
| IVId55            | Rod            | 1 + 0.0048 x [st                                                                                | roke (mm)] kg                |  |  |  |  |
| Sliding resistand | æ              | 69 N or less                                                                                    | (7kgf or less)               |  |  |  |  |
| Permissible me    | chanical speed | 1000                                                                                            | mm/s                         |  |  |  |  |
| Ambient           | Operating      | -20 to -                                                                                        | +120°C                       |  |  |  |  |
| temperature       | Storage        | -30 to +120°C                                                                                   |                              |  |  |  |  |
| Ambient operati   | ing humidity   | -                                                                                               |                              |  |  |  |  |
|                   |                | 2.0 x 10 <sup>2</sup> m/s <sup>2</sup> (20G) 200Hz up/down 4h, forward/back/left/right 2h each, |                              |  |  |  |  |
| VIDIALIOITTESISLA |                | conforms to JIS D 1601 standard                                                                 |                              |  |  |  |  |
| Shock resistance  | 2              | 4.9 x 10 <sup>3</sup> m/s <sup>2</sup> (500G) 0.5ms, up/down x 3 times,                         |                              |  |  |  |  |
|                   |                | conforms to JIS C 5026 standard                                                                 |                              |  |  |  |  |
| Protection rating | ]              | IP67, conforms to JEM1030 standard                                                              |                              |  |  |  |  |
| Interconnecting   | cable          | 2 • 5 • 1                                                                                       | 0 • 20m                      |  |  |  |  |
| Max sensor        | Standard cable | 4P-S                                                                                            | 200m                         |  |  |  |  |
| cable length      | Robotic cable  | 4P-RB                                                                                           | Г 100m                       |  |  |  |  |
|                   | JKPEV-S cable  | JKPEV-S (1.25r                                                                                  | nm <sup>2</sup> × 5P) 200m   |  |  |  |  |
| Surface           | Head           | Electroless nickel plated                                                                       | Coated (epoxy resin)         |  |  |  |  |
| Sunace            | Rod            | Hard chromium electro plated                                                                    | Hard chromium electro plated |  |  |  |  |
| Material          | Head           | Steel                                                                                           | Cast iron                    |  |  |  |  |
| ivialCi lai       | Rod            | Steel                                                                                           | Steel                        |  |  |  |  |

### 8. SPECIFICATIONS

(3) Rod sensor (VLS-12.8MHP28)

| Items                        |                | Specifications                                                                                  |                              |  |  |  |
|------------------------------|----------------|-------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
| Model                        |                | VLS-12.8MHP28-[]FA[]                                                                            | VLS-12.8MHP28-[]LA[]         |  |  |  |
| Max. detection stroke        |                | 1200 mm                                                                                         |                              |  |  |  |
| Absolute detection range     |                | 12.8 mm                                                                                         |                              |  |  |  |
| Resolution                   |                | 1.5625 µ m(12.8mm/8192)                                                                         |                              |  |  |  |
| Linearity error              |                | Max. 0.15 + [stroke (mm)]/5000 mm                                                               |                              |  |  |  |
| Mass                         | Head           | 6.5 + 0.1 x [ cable length(m)] kg                                                               |                              |  |  |  |
| IVIdSS                       | Rod            | 1 + 0.0048 x [ stroke (mm)] kg                                                                  |                              |  |  |  |
| Sliding resistance           |                | 69 N or less                                                                                    | (7kgf or less)               |  |  |  |
| Permissible mechanical speed |                | 1000                                                                                            | mm/s                         |  |  |  |
| Ambient                      | Operating      | -20 to +120°C                                                                                   |                              |  |  |  |
| temperature                  | Storage        | -30 to +120°C                                                                                   |                              |  |  |  |
| Ambient operating humidity   |                | _                                                                                               |                              |  |  |  |
| Vibration resistance         |                | 2.0 x 10 <sup>2</sup> m/s <sup>2</sup> (20G) 200Hz up/down 4h, forward/back/left/right 2h each, |                              |  |  |  |
|                              |                | conforms to JIS D 1601 standard                                                                 |                              |  |  |  |
| Shock resistance             |                | 4.9 x 10 <sup>3</sup> m/s <sup>2</sup> (500G) 0.5ms, up/down x 3 times,                         |                              |  |  |  |
|                              |                | conforms to JIS C 5026 standard                                                                 |                              |  |  |  |
| Protection rating            |                | IP67, conforms to JEM1030 standard                                                              |                              |  |  |  |
| Interconnecting cable        |                | 2 • 5 • 10 • 20m                                                                                |                              |  |  |  |
| Max sensor                   | Standard cable | 4P-S 200m                                                                                       |                              |  |  |  |
| cable length                 | Robotic cable  | 4P-RBT 100m                                                                                     |                              |  |  |  |
| cable length                 | JKPEV-S cable  | JKPEV-S (1.25mm <sup>2</sup> × 5P) 200m                                                         |                              |  |  |  |
| Surface                      | Head           | Electroless nickel plated                                                                       | Coated (epoxy resin)         |  |  |  |
| Sunace                       | Rod            | Hard chromium electro plated                                                                    | Hard chromium electro plated |  |  |  |
| Material                     | Head           | Steel                                                                                           | Cast iron                    |  |  |  |
| iviateriai                   | Rod            | Steel                                                                                           | Steel                        |  |  |  |

#### (4) In-rod sensor (IRS-51.2P)

| Items                 |               | Specifications          |                                                                                                                     |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
|-----------------------|---------------|-------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------|---------------------|---------------------|---------------------------------------|---------------------|---------------------|---------------------|---------------------|
| Model                 |               | IRS-51.2P18             |                                                                                                                     |                     |                                   | IRS-51.2P30         |                     |                                       |                     |                     |                     |                     |
| Detection stroke      |               | 25.6 to 1024 mm         |                                                                                                                     |                     | 25.6 to 2048 mm                   |                     |                     |                                       |                     |                     |                     |                     |
| Resolution            |               | 6.25 μ m(51.2mm/8192)   |                                                                                                                     |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| Linearity error       |               |                         |                                                                                                                     |                     |                                   | Max. 0.1            | 5 + [strok          | e (mm)] /5                            | 5000 mm             |                     |                     |                     |
| Maaa                  |               |                         | 1.1 + 0.0012 x [stroke (mm)] + 0.1 x [cable 3.0 + 0.0033 x [stroke (mm)] + 0.1 x [cable                             |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| IVIASS                |               |                         | length (m)] kg length (m)] kg                                                                                       |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| Permissible m         | echanical sp  | beed                    | 2000 mm/s                                                                                                           |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| Ambient               | Operating     |                         | -20 to +120°C                                                                                                       |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| temperature           | Storage       |                         | -30 to +120°C                                                                                                       |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| Ambient opera         | ating humidit | y                       |                                                                                                                     |                     |                                   |                     | -                   | _                                     |                     |                     | -                   |                     |
|                       | Stroke        | mm                      | 512                                                                                                                 | 640                 | 768                               | 896                 | 1024                | 768                                   | 896                 | 1152                | 1408                | 1664                |
|                       |               | m/s <sup>2</sup>        | 2.0x10 <sup>2</sup>                                                                                                 | 1.5x10 <sup>2</sup> | 7.8x10                            | 4.9x10              | 2.9x10              | 2.0x10 <sup>2</sup>                   | 1.5x10 <sup>2</sup> | 9.8x10              | 4.9x10              | 2.9x10              |
| Vibration             | Radial        | (G)                     | (20)                                                                                                                | (15)                | (8)                               | (5)                 | (3)                 | (20)                                  | (15)                | (10)                | (5)                 | (3)                 |
| resistance            |               |                         |                                                                                                                     | Max                 | 2.0x10 <sup>2</sup> m             | /s²(20G)            | 200Hz 4h            | , conforms                            | s to JIS D          | 1601 star           | ndard               |                     |
|                       | Thrust        | m/s <sup>2</sup>        |                                                                                                                     | 2                   | 0.40 <sup>2</sup> m/ <sup>2</sup> | $\frac{2}{2}$       |                     |                                       |                     | 01 atomat           | and                 |                     |
| Inrust (G)            |               | (G)                     |                                                                                                                     | Ζ.                  | JXIUm/s                           | (20G) 20            | UHZ 4N, 0           | UNIONNS IC                            | 0 112 D 10          | OTStanda            | DIG                 |                     |
|                       | Stroke        | mm                      | 512                                                                                                                 | 640                 | 768                               | 896                 | 1024                | 768                                   | 896                 | 1152                | 1408                | 1664                |
|                       |               | m/s <sup>2</sup>        | 9.8x10 <sup>2</sup>                                                                                                 | 6.9x10 <sup>2</sup> | 4.9x10 <sup>2</sup>               | 3.9x10 <sup>2</sup> | 2.9x10 <sup>2</sup> | 7.8x10 <sup>2</sup>                   | 5.9x10 <sup>2</sup> | 3.9x10 <sup>2</sup> | 2.9x10 <sup>2</sup> | 2.0x10 <sup>2</sup> |
| Shock                 | Radial        | (G)                     | (100)                                                                                                               | (70)                | (50)                              | (40)                | (30)                | (80)                                  | (60)                | (40)                | (30)                | (20)                |
| resistance            |               |                         | Max. 9.8 x 10 <sup>2</sup> m/s <sup>2</sup> (100G) 0.5ms, 3times, confirms to JIS C 5026 standard                   |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
|                       | Thrust        | m/s <sup>2</sup><br>(G) | 4.9 x 10 <sup>3</sup> m/s <sup>2</sup> (500G) 0.5ms, 3times, confirms to JIS C 5026 standard                        |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
|                       | Max. oper     | ating                   | $20  \mathrm{eMpc}(210 \mathrm{kgf}/\mathrm{cm}^2) \qquad \qquad 24  \mathrm{eMpc}(200 \mathrm{kgf}/\mathrm{cm}^2)$ |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
|                       | pressure      |                         | 20.61/10/21/0/21/0/21/20/20/20/20/20/20/20/20/20/20/20/20/20/                                                       |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| Protection            | Proof test    | pressure                | 30.9Mpa(315kgf/cm <sup>2</sup> ) 36.8Mpa(375kgf/cm <sup>2</sup> )                                                   |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| rating                | Oil resista   | nce                     |                                                                                                                     | Mineral             | oil water-                        | alvcol wa           | ter-in-oil e        | mulsion r                             | nolvol este         | r nhosnh            | ate ester           |                     |
| raung                 | (Detection    | ı side)                 |                                                                                                                     |                     |                                   |                     |                     | חמוסטרו, פטיסו כאבו, פו וססטומני כאבו |                     |                     |                     |                     |
|                       | Waterproo     | of                      | IP67 conforms to IEM1030 standard                                                                                   |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
|                       | (Flange si    | de)                     |                                                                                                                     |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| Interconnecting cable |               |                         | 5 · 10 · 20m                                                                                                        |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| Max. sensor           | Standard      | cable                   | 4P-S 200m                                                                                                           |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| cable length          | Robotic ca    | able                    | 4P-RBT 100m                                                                                                         |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
|                       | JKPEV-S cable |                         | JKPEV-S (1.25mm <sup>2</sup> × 5P) 200m                                                                             |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| Surface               | Head          |                         | Not treated                                                                                                         |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
|                       | Scale         |                         | Not treated                                                                                                         |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
| Material              | Head          |                         | Stainless                                                                                                           |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |
|                       | Scale         |                         | Stainless, Steel, Brass                                                                                             |                     |                                   |                     |                     |                                       |                     |                     |                     |                     |

### 8-3. Sensor Cable Specification

| Items             | Specifications                                       |                                              |                     |                        |  |  |
|-------------------|------------------------------------------------------|----------------------------------------------|---------------------|------------------------|--|--|
| Model code        | 4P-S                                                 | 4P-RBT                                       | 4P-URT              | 4P-HRT                 |  |  |
|                   | Standard cable                                       | Pohotic cablo                                | Semi-heat-resistant | Heat-resistant robotic |  |  |
| Cable type        |                                                      |                                              | robotic cable       | cable                  |  |  |
| Diameter          | φ8                                                   |                                              |                     |                        |  |  |
| Operating         | -5~-                                                 | -60°C                                        | -5~+105°C           | 0~+150°C               |  |  |
| temperature range | -5.5                                                 |                                              | -5*** 105 C         | 0.4+100 C              |  |  |
|                   | Irradiated cross                                     |                                              |                     |                        |  |  |
| Insulator         | linked formed                                        |                                              |                     |                        |  |  |
|                   | polyethylene                                         |                                              |                     |                        |  |  |
|                   |                                                      |                                              | Heat-resistant      |                        |  |  |
| Sheath            | Polyvinyl chl                                        | oride mixture                                | polyvinyl chloride  | Fluonlex               |  |  |
|                   |                                                      |                                              | mixture             |                        |  |  |
| Construction      | 8-core, 2 pairs without shield + 2 pairs with shield |                                              |                     |                        |  |  |
| Color of sheath   | Gray                                                 | Black                                        |                     |                        |  |  |
|                   | Extensible for long                                  | Heat treatment and                           |                     |                        |  |  |
| Advantage         | distances                                            | Superior flexibility; ideal for moving place |                     | flexible; ideal for    |  |  |
|                   | uistal ICES                                          |                                              | moving place        |                        |  |  |

### REMARKS

Contact your NSD representative when the extension cable combines different types of cables.

## - MEMO -

### 9-1. AB934N Module



### 9-2. ABSOCODER Sensor

#### (1) CYLNUC Cylinder / CYLNUC Mark I Cylinder

Contact your NSD representative for details of the dimension.

#### (2) Rod sensor (VLS-12.8PRA28)



Units: mm



#### VLS-12.8PRA28-[]LA[] (Base-mount type)



(3) Rod sensor (VLS-12.8MHP28)



#### VLS-12.8MHP28-[]FA[] (Flange-mount type)

#### ♦VLS-12.8MHP28-[ ]LA[ ] (Base-mount type)



Units: mm

#### (4) In-rod sensor (IRS-51.2P)

#### **♦**IRS-51.2P18[]

#### Units: mm



#### ♦IRS-51.2P30[]



### 9-3. Extension Sensor Cable

#### (1) 4P-S-9044-[L] / 4P-RBT-9044-[L] / 4P-URT-9044-[L]

Units: mm



(2) 4P-S-4344-[L] / 4P-RBT-4344-[L] / 4P-URT-4344-[L] / 4P-HRT-4344-[L]



#### (3) 4P-S-9040-[L] / 4P-RBT-9040-[L] / 4P-URT-9040-[L]



#### (4) 4P-S-4340-[L] / 4P-RBT-4340-[L] / 4P-URT-4340-[L] / 4P-HRT-4340-[L]





#### (5) 4P-S-9055-[L] / 4P-RBT-9055-[L] / 4P-URT-9055-[L]



#### (6) 4P-S-9090-[L] / 4P-RBT-9090-[L] / 4P-URT-9090-[L]



## **APPENDIX 1. CE MARKING**

The AB934N module conforms to EMC directive.

### **APPENDIX 1-1. EMC Directives**

It is necessary to do CE marking in the customer's responsibility in the state of a final product. The customer should confirm EMC compliance of the machine and the entire device because EMC changes configuration of the control cabinet, wiring, and layout.

### **APPENDIX 1-2. EMC Directive and Standards**

Conforms to Table 01 (see below) of EMC standards and testing.

| Standard No. | Testing item | Name                                                      |
|--------------|--------------|-----------------------------------------------------------|
| EN61000-6-4  | EN55016-2-3  | Radiated disturbance                                      |
| EN61000-6-2  | EN61000-4-2  | Electrostatic Discharge                                   |
|              | EN61000-4-3  | Radiated, Radio frequency, Electromagnetic Field          |
|              | EN61000-4-4  | Electrical Fast Transient / Burst                         |
|              | EN61000-4-5  | Surge Immunity                                            |
|              | EN61000-4-6  | Conducted Disturbances, Induced by Radio-Frequency Fields |
|              | EN61000-4-8  | Power Frequency Magnetic Field                            |

Table 01 EMC Standard and Testing

### **APPENDIX 1-3. Low Voltage Directive**

The low voltage directive is out of the range because the AB934N module is activated by 24VDC power supply.

### APPENDIX

### **APPENDIX 1-4. Measures for EMC Compliance and Restriction**

In this section, restrictions are described for conforming the AB934N module to the EMC Directive. For conforming the Toshiba Corporation Unified Controller nv Series to the EMC Directive, contact Toshiba Corporation.

 $\textcircled$  Install the zippertubing around the cable when the sensor cable is used in 30m or more.

The shield of zippertubing should be grounded.

Recommendation zippertubing

| Mounting location | Model          | Manufacturer              |  |  |
|-------------------|----------------|---------------------------|--|--|
| Sensor cable      | MTFS 20 $\phi$ | ZIPPERTUBING(JAPAN), LTD. |  |  |

②The length of input cable must be under 30m.

③Install the electrolytic capacitor between 24V terminal and 0V terminal of the base unit for the TC-net I/O adapter.

Recommendation electrolytic capacitor

| Mounting location | Model        | Manufacturer         |  |  |
|-------------------|--------------|----------------------|--|--|
| Base unit         | UPM1V102MHD6 | NICHICON CORPORATION |  |  |





Manufacturer NSD Corporation 3-31-28, OSU, NAKA-KU, NAGOYA, JAPAN 460-8302

 Distributor

 NSD Trading Corporation
 3-31-23, OSU, NAKA-KU, NAGOYA, JAPAN 460-8302

 Phone: +81-52-261-2352
 Facsimile: +81-52-252-0522

 URL: www.nsdcorp.com
 E-mail: foreign@nsdcorp.com

 Copyright©2020 NSD Corporation All rights reserved.