

三菱电机通用变频器 PR-A8NC E 套件 使用手册

CC-Link 通讯功能



使用之前

编程示例

8

9

| 安装     2       接线     3       变频器的设定     4       功能的概要     5       输入输出信号一览     6       输入输出信号的详细说明     7 |   |             |
|-----------------------------------------------------------------------------------------------------------|---|-------------|
| 变频器的设定 4 功能的概要 5 输入输出信号一览 6                                                                               | 2 | 安装          |
| 功能的概要 5 输入输出信号一览 6                                                                                        | 3 | 接线          |
| 输入输出信号一览 6                                                                                                | 4 | 变频器的设定      |
| <b>检</b> λ 检电信导的详细说明                                                                                      | 5 | 功能的概要       |
| 输入输出信号的详细说明 7                                                                                             | 6 | 输入输出信号一览    |
|                                                                                                           | 7 | 输入输出信号的详细说明 |

通过 LED 指示灯确认错误的方法

#### 安全注意事项

非常感谢您选择三菱电机通用变频器内置选件。

本使用手册对使用时的操作、注意事项进行说明。由于错误地使用变频器可能会导致意外的故障,所以使用之前请务必通读本使用手册,以便正确安全地使 用变频器。

此外,请将本使用手册交付至使用者。

应在仔细阅读本使用手册及其附带资料的基础上,正确地进行安装、运行、维护、检查。应在熟悉机器的知识、安全信息以及全部有关注意事项以后再使用。在本使用手册中,将安全注意事项等级分为"警告"和"注意"。

⚠警告

错误操作可能造成危险后果,导致死亡或重伤事故。

⚠注意

错误操作可能造成危险后果,导致中度伤害、轻伤及设备损失。

此外, 注意 中记载的事项,根据情况的不同,注意等级的事项也可能造成严重后果。两者所记均为重要内容,请务必遵守。

◆ 防止触电

## ⚠警告

- 变频器通电时,请勿打开其前盖板和接线盖板。此外,不可在卸下前盖板和接线盖板的状态下运行变频器。否则可能会接触到高电压的端子和充电部分而造成触电事故。
- 即使电源断开,除接线、定期检查外,请勿拆下变频器的前盖板。否则,可能会由于接触变频器的充电电路而造成触电事故。
- ●接线或检查时,应在确认了变频器本体操作面板的指示灯已熄灭,并断开电源经过10分钟以上且用万用表等检测电压以后再进行操作。切断电源后的一段时间内电容器仍为高压充电状态,非常危险。
- ●接线作业和检查都应由专业技术人员进行。
- 应在安装内置选件后进行接线。否则会导致触电、受伤。
- 请勿用湿手碰触内置洗件或插拔电缆。否则会导致触电。
- 请勿损伤电缆、对其施加过大的应力、使其承载重物或对其钳压。否则会导致触电。
- ◆ 防止损坏 / 损伤

## ⚠注意

- 仅可对各个端子施加使用手册中所规定的电压。否则会导致破裂、损坏等。
- 请勿错误地连接端子。否则会导致破裂、损坏等。
- 请勿弄错极性 (+、-)。否则会导致破裂、损坏。
- 通电时或电源断开后的一段时间内,变频器温度仍较高,因此请勿触摸。否则会导致烫伤。

#### ◆ 其它注意事项

请充分注意以下注意事项。误操作会导致意外事故、受伤、触电等。

## **⚠注意**

#### 搬运和安装

- 请勿安装和运行有损伤、缺少部件的内置选件。
- 请勿攀爬变频器、或在变频器上放置重物。
- 务必遵守安装方向。
- 请勿让螺丝、金属片等导电性异物及油等可燃异物进入变频器。
- ●用于木质包装材料的消毒、防虫的熏蒸剂中所含有的卤系物质(氟、氯、溴、碘等)一旦渗入本产品,将会导致故障。包装时,应采取相应措施防止残留的熏蒸剂渗入到本公司的产品中、或采取熏蒸以外的方法(热处理等)进行处理。此外,请在包装前实施木质包装材料的消毒及防虫措施。 试运行调整
- 请在运行前进行各参数的确认、调整。否则可能会因机械设备的原因导致变频器出现预料之外的动作。

### ⚠警告

#### 操作方法

- 请勿对设备进行改造。
- 请勿进行使用手册中未记载的部件拆卸。否则会导致故障或损坏。

### 

#### 操作方法

- 讲行了参数清除或全部清除后, 务必在运行前再次设定必要参数。各参数将恢复至初始值。
- 为了防止静电导致损坏,应在接触本产品前去除身体的静电。
- 为了防止经由网络的外部设备的非法访问、DoS\*1 攻击、计算机病毒以及其他的网络攻击,以保障变频器及系统的安全 (可用性、完整性、机密性)时,应设置防火墙及 VPN、对计算机安装杀毒软件等采取相应的对策。对于因 DoS 攻击、非法访问、计算机病毒以及其他的网络攻击导致的变频器及系统故障方面的各种问题,本公司概不负责。

#### 维护、检查和部件更换

● 请勿讲行绝缘测试 (绝缘电阻测定)。

#### 报废后的处理

- 请作为工业废物处理。
- \*1 DoS: 通过耗费目标电脑的资源或使其变得脆弱,来使其无法提供正常服务以及为该种状态

### 一般注意事项

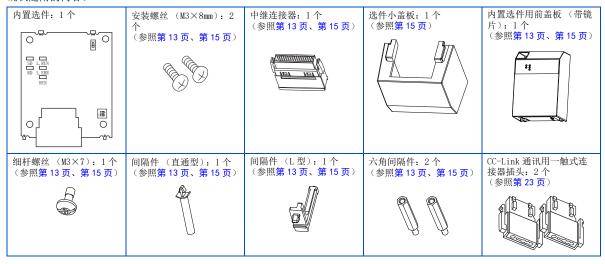
◆本使用手册中的图片,有些为了对细节部位进行说明而表示的是变频器已拆下了盖板或已取下了安全用遮挡物的状态,在运行变频器时务必按规定将盖板、遮挡物恢复原状,并按变频器使用手册运行。

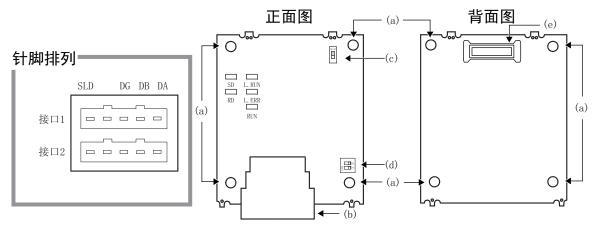
# 一目录一

| 安全注意事项                                                                                                           | 1                                 |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1 使用之前                                                                                                           | 8                                 |
| 1. 1 开封与产品的确认 1. 2 各部分名称 1. 3 变频器侧规格 1. 4 关于 CC-Link 的版本 1. 4. 1 关于 CC-Link Ver. 1. 10 1. 4. 2 关于 CC-Link Ver. 2 | 9<br>10<br>11<br>11               |
| 2 安装                                                                                                             | 2                                 |
| 2. 1 安装前                                                                                                         | 12<br>20                          |
| 3 接线                                                                                                             | 21                                |
| 3. 1                                                                                                             | 21<br>26<br>27<br><b>29</b><br>30 |
| 4 变频器的设定 3<br>                                                                                                   | 32                                |
| 4.1 参数一览                                                                                                         | 32                                |

| 4.2.1 运行模式的切换与通讯启动模式 (Pr. 79、Pr. 340)                                                                                                                                                                                                                                                                                                                                                                                       |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.3 发生通讯异常时的动作                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 4.3.1 发生通讯异常时的动作选择 (Pr. 500 ~ Pr. 502、Pr. 779)                                                                                                                                                                                                                                                                                                                                                                              |    |
| 4.3.2 异常与对策                                                                                                                                                                                                                                                                                                                                                                                                                 | 40 |
| 4.4 变频器复位                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 4.5 CC-Link 功能的设定                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 4.5.1 站号的设定 (Pr. 542)                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 4.5.2 波特率的设定 (Pr.543)                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 4.5.3 带符号的频率指令 (Pr.541)                                                                                                                                                                                                                                                                                                                                                                                                     | 44 |
| 5 功能的概要                                                                                                                                                                                                                                                                                                                                                                                                                     | 46 |
| 5.1 功能块图                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 5.2 从变频器输出至网络                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 5.3 从网络输入至变频器                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 7 11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 6 输入输出信号一览                                                                                                                                                                                                                                                                                                                                                                                                                  | 49 |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 6.1 CC-Link 扩展设定(Pr. 544)                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 6.1 CC-Link 扩展设定(Pr. 544)<br>6.2 输入输出信号一览                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 6.1 CC-Link 扩展设定 (Pr. 544)<br>6.2 输入输出信号一览                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 6.1 CC-Link 扩展设定 (Pr. 544)<br>6.2 输入输出信号一览                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 6.1 CC-Link 扩展设定 (Pr. 544)<br>6.2 输入输出信号一览                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 6.1 CC-Link 扩展设定 (Pr. 544) 6.2 输入输出信号一览. 6.2.1 CC-Link Ver. 1 占用 1 站 (FR-A5NC 兼容) 时的输入输出信号 (Pr. 544 = 6.2.2 CC-Link Ver. 1 占用 1 站时的输入输出信号 (Pr. 544 = "1"). 6.2.3 CC-Link Ver. 2 2 倍设定时的输入输出信号 (Pr. 544 = "12"). 6.2.4 CC-Link Ver. 2 4 倍设定时的输入输出信号 (Pr. 544 = "14"). 6.2.5 CC-Link Ver. 2 8 倍设定时的输入输出信号 (Pr. 544 = "14"). 7 输入输出信号的详细说明                                                                                     |    |
| 6.1 CC-Link 扩展设定 (Pr. 544) 6.2 输入输出信号一览. 6.2.1 CC-Link Ver. 1 占用 1 站 (FR-A5NC 兼容) 时的输入输出信号 (Pr. 544 = 6.2.2 CC-Link Ver. 1 占用 1 站时的输入输出信号 (Pr. 544 = "1")                                                                                                                                                                                                                                                                   |    |
| 6.1 CC-Link 扩展设定 (Pr. 544) 6.2 输入输出信号一览. 6.2.1 CC-Link Ver. 1 占用 1 站 (FR-A5NC 兼容) 时的输入输出信号 (Pr. 544 = 6.2.2 CC-Link Ver. 1 占用 1 站时的输入输出信号 (Pr. 544 = "1"). 6.2.3 CC-Link Ver. 2 2 倍设定时的输入输出信号 (Pr. 544 = "12"). 6.2.4 CC-Link Ver. 2 4 倍设定时的输入输出信号 (Pr. 544 = "14"). 6.2.5 CC-Link Ver. 2 8 倍设定时的输入输出信号 (Pr. 544 = "14"). 7 输入输出信号的详细说明                                                                                     |    |
| 6.1 CC-Link 扩展设定 (Pr. 544) 6.2 输入输出信号一览. 6.2.1 CC-Link Ver. 1 占用 1 站 (FR-A5NC 兼容) 时的输入输出信号 (Pr. 544 = 6.2.2 CC-Link Ver. 1 占用 1 站时的输入输出信号 (Pr. 544 = "1"). 6.2.3 CC-Link Ver. 2 2 倍设定时的输入输出信号 (Pr. 544 = "12"). 6.2.4 CC-Link Ver. 2 4 倍设定时的输入输出信号 (Pr. 544 = "14"). 6.2.5 CC-Link Ver. 2 8 倍设定时的输入输出信号 (Pr. 544 = "14"). 7 输入输出信号的详细说明 7.1 远程输入输出信号的详细说明                                                                   |    |
| 6.1 CC-Link 扩展设定 (Pr. 544) 6.2 输入输出信号一览. 6.2.1 CC-Link Ver. 1 占用 1 站 (FR-A5NC 兼容) 时的输入输出信号 (Pr. 544 = 6.2.2 CC-Link Ver. 1 占用 1 站时的输入输出信号 (Pr. 544 = "1"). 6.2.3 CC-Link Ver. 2 2 倍设定时的输入输出信号 (Pr. 544 = "12"). 6.2.4 CC-Link Ver. 2 4 倍设定时的输入输出信号 (Pr. 544 = "14"). 6.2.5 CC-Link Ver. 2 8 倍设定时的输入输出信号 (Pr. 544 = "14"). 7 输入输出信号的详细说明 7.1 远程输入输出信号的详细说明 7.1.1 输出信号 (主站模块→变频器 (FR-A8NC)).                                  |    |
| 6.1 CC-Link 扩展设定 (Pr. 544) 6.2 输入输出信号一览. 6.2.1 CC-Link Ver. 1 占用 1 站 (FR-A5NC 兼容) 时的输入输出信号 (Pr. 544 = 6.2.2 CC-Link Ver. 1 占用 1 站时的输入输出信号 (Pr. 544 = "1"). 6.2.3 CC-Link Ver. 2 2 倍设定时的输入输出信号 (Pr. 544 = "12"). 6.2.4 CC-Link Ver. 2 4 倍设定时的输入输出信号 (Pr. 544 = "14"). 6.2.5 CC-Link Ver. 2 8 倍设定时的输入输出信号 (Pr. 544 = "14"). 7 输入输出信号的详细说明 7.1 远程输入输出信号的详细说明 7.1.1 输出信号 (主站模块→变频器 (FR-A8NC)). 7.1.2 输入信号 (变频器 (FR-A8NC)→主站模块). |    |

| 7.                                                                   | 2.2       远程寄存器(变频器(FR-A8NC)→主站模块)         2.3       命令代码.         2.4       监视代码.         基于 CC-Link 通讯的转矩指令 / 转矩限制.                        | 67<br>71                                     |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 8                                                                    | 编程示例 7                                                                                                                                       | 75                                           |
| 8. 1<br>8. 2<br>8. 3<br>8. 4<br>8. 5<br>8. 6<br>8. 7<br>8. 8<br>8. 9 | 变频器状态读取的程序示例。 设定运行模式时的程序示例。 设定运行指令的程序示例。 监视输出频率的程序示例。 读取参数时的程序示例。 写入参数时的程序示例。 设定运行频率时的程序示例。 读取异常内容时的程序示例。 读取异常内容时的程序示例。 实频器发生错误时使变频器复位的程序示例。 | 79<br>80<br>81<br>82<br>83<br>84<br>86<br>87 |
| 9                                                                    | 通过 LED 指示灯确认错误的方法                                                                                                                            | 90                                           |
| 9. 1<br>9. 2<br>9. 3                                                 | 连接 1 台变频器时<br>连接多台变频器时<br>运行过程中通讯停止时                                                                                                         | 92                                           |
| 附录                                                                   | 5                                                                                                                                            | 96                                           |
| 附录<br>附录<br>附录<br>附录                                                 | 1       符合欧洲标准的说明         2       EAC 的注意事项         3       关于电器电子产品有害物质限制使用         4       基于中国标准化法的参考标准                                   | 96<br>97<br>98<br>99                         |


# 1 使用之前


### 1.1 开封与产品的确认

从包装箱取出内置选件,确认表面的名称,并确认是否是您订单的产品及有无损伤。本产品是 FR-E800 系列用内置选件。

#### ◆ 确认包装

确认随附的内容。





| 记号 | 号名称说明         |                                  | 参照页 |
|----|---------------|----------------------------------|-----|
| a  | 安装孔           | 用螺丝固定在变频器上,或安装间隔件。               | 12  |
| b  | CC-Link 通讯用接口 | 可以通过 CC-Link 通讯用接口进行 CC-Link 通讯。 | 26  |
| С  | 厂家设定用开关       | 厂家设定用开关。请勿变更初始状态 (OFF 🚾 )。       | _   |
| d  | 终端电阻选择开关      | 选择终端电阻的电阻值。                      | 20  |
| е  | 接口            | 安装中继连接器后与变频器的选件接口连接。             | 12  |
| f  | 运行状态显示用 LED   | 通过 LED 的亮灯 / 闪烁来通知运行状态。          | 10  |

#### ◆ 运行状态显示用 LED

| 项目     | 内容                                                                                                                                            |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| L. RUN | 削新数据的正常接收时会亮灯。某个固定期间发生中断后会熄灯。                                                                                                                 |  |  |
| L. ERR | <ul> <li>在本站的通讯错误时亮灯。</li> <li>在通讯中进行 Pr. 542 或 Pr. 543 的设定变更时闪烁。</li> <li>重新接通电源或将 RES 信号设为 ON 后,将反映设定值,LED 会熄灯。(参照第 43 页、第 44 页)</li> </ul> |  |  |
| RUN    | 正常动作中 (内部 5V 正常时) 会亮灯。(即使为未通讯状态也亮灯。)<br>主站为 CC-Link Ver. 1、FR-A8NC 为 CC-Link Ver. 2 时会闪烁。(参照 <b>第 11 页</b> )                                  |  |  |
| SD     | 发送数据为"0"时会熄灯。                                                                                                                                 |  |  |
| RD     | 检测到接收数据的载波时会亮灯。                                                                                                                               |  |  |

## NOTE

- 站号设定通过 Pr. 542 通讯站号 (CC-Link) 进行设定。(参照第 43 页)
- 传送波特率设定通过 Pr. 543 波特率选择 (CC-Link) 进行设定。(参照第 44 页)

## 1.3 变频器侧规格

| 项目   | 内容                                                 |  |
|------|----------------------------------------------------|--|
| 形状   | 可支持变频器内置选件型、一触式连接器连接方式、在线连接器 (T型 (2 to 1))         |  |
| 电源   | 从变频器供给                                             |  |
| 连接台数 | 最多 42 台 (关于占用站数参照 <b>第 49 页</b> )、可与其他机种共用         |  |
| 站类型  | 远程设备站                                              |  |
| 占用站数 | CC-Link Ver.1:占用1站、CC-Link Ver.2:占用1站(可选择2倍、4倍、8倍) |  |
| 连接电缆 | CC-Link 专用电缆、支持 CC-Link Ver. 1. 10 的 CC-Link 专用电缆  |  |

#### 1.4 关于 CC-Link 的版本

#### 1.4.1 关于 CC-Link Ver. 1.10

改善以往对 CC-Link 的站间电缆长度的限制,将站间电缆长度一律 20cm 以上的定义为 CC-Link Ver. 1.10。相对于此,将以往产品定义为 CC-Link Ver. 1.00。

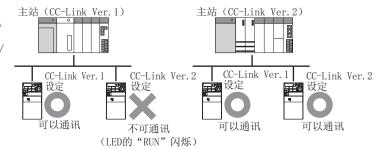
关于 CC-Link Ver. 1.00、Ver. 1.10 的最大电缆总长度及站间电缆长度,请参照 CC-Link 主站模块的手册。

#### CC-Link Ver. 1. 10 支持条件

- 构成 CC-Link 系统的所有单元均应支持 CC-Link Ver. 1, 10。
- 所有的数据链接电缆均应为支持 CC-Link Ver. 1.10 的 CC-Link 专用电缆。

(支持 CC-Link Ver. 1. 10 的电缆上记载有**CC-Link**标记或 Ver. 1. 10。)

## • NOTE


• 同时使用 CC-Link Ver. 1.00、Ver. 1.10 的单元及电缆的系统,其最大电缆总长度及站间电缆长度为 CC-Link Ver. 1.00 的规格。

#### 1.4.2 关于 CC-Link Ver. 2

FR-A8NC 支持 CC-Link Ver. 2。

FR-A8NC 中使用 CC-Link Ver. 2 设定时, 主站也 需要支持 Ver. 2。

CC-Link Ver. 2中,为了增加远程寄存器 (RWw/r)点数,可以使用 2倍、4倍、8倍设定。



# 2 安装

### 2.1 安装前

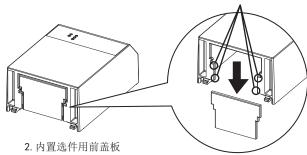
确认变频器的输入电源与控制电路电源已关闭。

## ⚠注意

- 输入电源为 0N 的状态下请勿进行内置选件的安装、拆卸。否则可能会导致变频器或内置选件损坏。
- 为了防止静电引起的损坏,在接触本产品前,应去除身体上的静电。

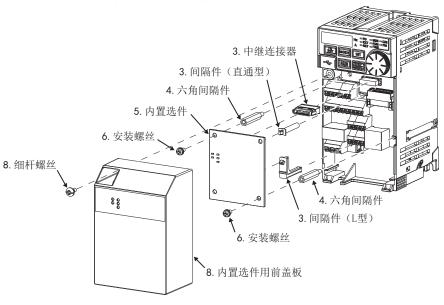
### 2.2 安装方法

#### ◆ 选件的安装

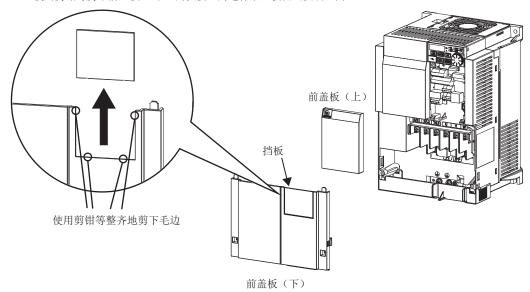

FR-E800 系列的内置选件连接接口仅有1个。

## NOTE

- 安装选件前,应务必进行控制电路端子的接线。内置选件安装后则无法接线。
- 安装内置选件时,应避免安装内置选件、内置选件安装用间隔件夹住电线。夹住电线时,可能会导致变频器及内置选件损坏。

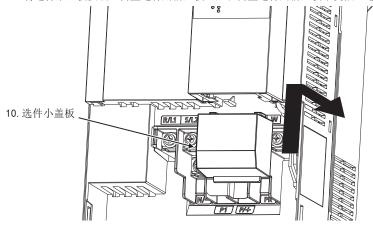

- FR-E820-0175 (3.7K) 以下、FR-E840-0170 (7.5K) 以下、FR-E860-0120 (7.5K) 以下时
- 1. 应从变频器本体上拆下前盖板。(关于前盖板的拆卸方法,请参照FR-E800使用手册 (连接篇)。)
- 2. 应使用剪钳等剪下内置选件用前盖板的底部挡板。

使用剪钳等整齐的剪下毛边。

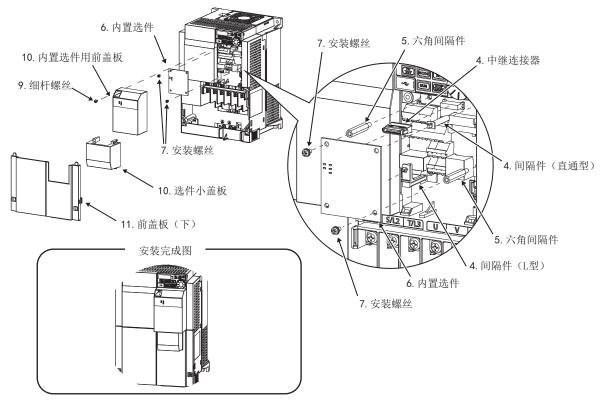



**3.** 应按照**第14页**的示意图将内置选件安装用间隔件(L型)、内置选件安装用间隔件(直通型)、中继连接器安装至内置选件。应使中继连接器对准内置选件侧接口的导槽并切实地将其插入至深处。应将内置选件安装用间隔件(L型)对准间隔件的凹槽安装至内置选件。

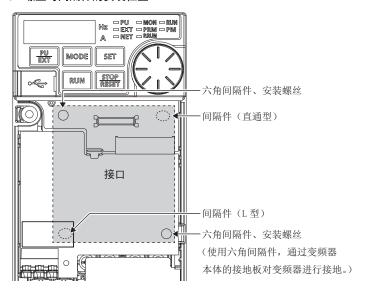
- **4.** 应拆下安装在变频器本体的螺丝后,再将六角间隔件安装至变频器。(紧固转矩0.56N⋅m~0.75N⋅m)
- 5. 将安装在内置选件上的中继连接器对准变频器本体侧接口的导槽切实地插入至深处。
- **6.** 使用附带的安装螺丝,将内置选件的左上和右下两处牢固地固定到变频器本体上。(紧固转矩0.33N•m~0.40N•m)螺丝孔不吻合时,可能是因为连接器没有切实地插入,因此应加以确认。
- 7. 应接线至内置选件的CC-Link通讯用接口。(关于接线请参照第21页)
- 8. 应在内置选件接线完成后,将内置选件用前盖板安装至变频器本体。




- FR-E820-0240 (5.5K) 以上、FR-E840-0230 (11K) 以上时
- **1.** 应从变频器本体上拆下前盖板 (上)和前盖板 (下)。(关于前盖板的拆卸方法,请参照FR-E800使用手册 (连接篇)。)
- 2. 使用剪钳等剪下前盖板 (下)的挡板,为选件小盖板留出安装空间。




- 3. 应使用剪钳等剪下内置选件用前盖板的底部挡板。(关于详细内容请参照第13页)
- **4.** 应按照第17页的示意图将内置选件安装用间隔件(L型)、内置选件安装用间隔件(直通型)、中继连接器安装至内置选件。应将中继接口对准内置选件侧接口的导槽切实地插入至深处。应使中继连接器对准内置选件侧接口的导槽并切实地将其插入至深处。
- 5. 应拆下安装在变频器本体的螺丝后,再将六角间隔件安装至变频器。(紧固转矩0.56N⋅m~0.75N⋅m)
- 6. 将安装在内置选件上的中继连接器对准变频器本体侧接口的导槽切实地插入至深处。


- 7. 使用附带的安装螺丝,将内置选件的左上和右下两处牢固地固定到变频器本体上。(紧固转矩0.33N·m~0.40N·m)螺丝孔不吻合时,可能是因为连接器没有切实地插入,因此应加以确认。
- 8. 应接线至内置选件的CC-Link通讯用接口。(关于接线请参照第21页)
- 9. 应在内置选件接线完成后,将内置选件用前盖板安装至变频器本体。
- **10.** 将选件小盖板安装至内置选件用前盖板。应从内置选件用前盖板下侧插入选件小盖板,滑动至背面进行安装。



#### 11. 应将前盖板 (下) 安装至变频器本体。



#### ◆ 螺丝与间隔件的安装位置





- 中继连接器安装于内置选件后,通过中继连接器的卡爪对内置选件进行了固定。无法从内置选件上拆除中继连接器。
- 将内置选件用前盖板从变频器上本体拆除时,无法从内置选件用前盖板上卸下细杆螺丝。
- 为了安装六角间隔件, 在卸下安装在变频器本体上的螺丝时(第 14 页步骤 4、第 15 页步骤 5), 应注意避免接线等的重量导致 控制电路电路板脱落。
- 内置选件的安装、拆卸应手持选件的两端进行,注意请勿按压到选件基板面的部件。若按压部件等对其直接施加应力,会导 致发生故障。
- 内置选件的安装、拆卸时,注意安装螺丝的掉落。
- 因安装不良等导致变频器无法识别选件安装时,保护功能(E.1)将会起动,从而无法运行。

| 安装位置 | 报警显示 |
|------|------|
| 选件接口 | E. 1 |

• 拆卸内置选件时,应卸下左上和右下两处螺丝后笔直拔出。如果对接口及选件电路板施加压力,有可能会导致损坏。

安装

## 2.3 终端电阻选择开关的设定

预先对作为终端站的变频器(FR-A8NC)进行终端电阻选择开关(参照**第9页**)的设定或带终端电阻的一触式连接器插头的连接(参照**第27**页)中的任一项。

终端电阻选择开关的规格如下表所示。

(初始状态 (1-0FF、2-0FF) 为无终端电阻。)

| 状态 | 1   | 2   | 内容                                        |  | 内容 |  |
|----|-----|-----|-------------------------------------------|--|----|--|
|    | 0FF | 0FF | E终端电阻 (初始状态)                              |  |    |  |
|    | ON  | 0FF | 请勿使用。                                     |  |    |  |
| S  | 0FF | ON  | 130Ω (使用 CC-Link Ver. 1.00 专用高性能电缆时的电阻值。) |  |    |  |
| 2  | ON  | ON  | 110 Ω                                     |  |    |  |

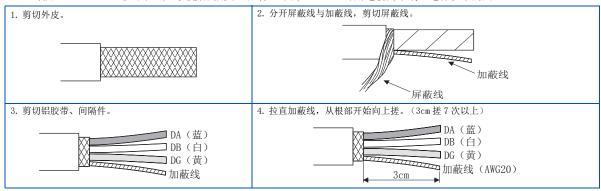
# 3 接线

### 3.1 CC-Link 专用电缆的连接

#### 3.1.1 连接电缆的制作

在 CC-Link 系统中,应使用 CC-Link 专用电缆。使用 CC-Link 专用电缆以外的电缆,无法保证 CC-Link 系统的性能。插入至 CCLink 通讯用一触式连接器插头 (配件)中的 CC-Link 专用电缆,应使用以下产品。

• CC-Link 专用电缆 (2018年10月。会有不预先通知而发生变更的情况。)


| 型号            | 生产厂家                                             |
|---------------|--------------------------------------------------|
| FANC-110SBH   | Kuramo Electric Co., LTD.                        |
| CS-110        | DYDEN CORPORATION                                |
| FA-CBL200PSBH | Mitsubishi Electric Engineering Company, Limited |



• 关于 CC-Link 专用电缆的规格、咨询方式,请参照 CC-Link 协会主页。 (CC-Link 协会主页 http://www.cc-link.org/)

#### 1. 电缆末端处理

对插入至 CC-Link 通讯用一触式连接器插头 (配件)中的 CC-Link 专用电缆的末端,进行以下的处理。



## • NOTE

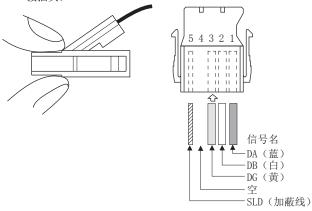
- 用剪钳等剪切的前端尽量剪成圆角。插入电缆时,电缆断面不是圆形的情况下,有可能中途卡住而难以插至深处。
- 对屏蔽线未插入 CC-Link 通讯用一触式连接器插头中的部分,应根据需要进行绝缘处理。

#### 2. 插头盖板的确认

确认 CC-Link 通讯用一触式连接器插头的插头盖板是否已装入至插头本体。



### • NOTE

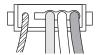

- 插入电缆前请勿将插头盖板按入插头本体。压接过的插头,无法再次使用。
- CC-Link 通讯用一触式连接器插头 (截至 2018 年 10 月。会有不预先通知而发生变更的情况。)

另行购买 CC-Link 通讯用一触式连接器插头时,插头规格请参照以下内容。

| 型号                | 生产厂家             |
|-------------------|------------------|
| A6CON-L5P         | 三菱电机 (株)         |
| 35505-6000-BOM GF | 3M Japan Limited |

#### 3. 电缆的插入

将插头盖板后部抬起后插入电缆,直至接触到插头本体。如下图所示,将各信号用的电缆插入至 CC-Link 通讯用一触式连接插头。

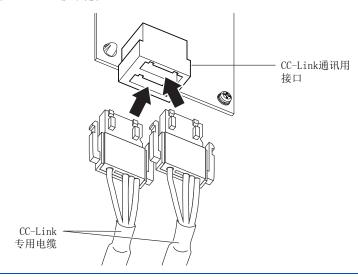



### ■ NOTE

- 插入电缆时,应将电缆插至深处。如电缆未插至深处,会导致压接不良。
- 插入电缆时, 电缆有可能从盖板前部突出。此时, 应往回拉以确保电缆的前端收在插头盖板中。

#### 4. 插头盖板的压接

用钳子等将插头盖板按入压接至插头本体。压接后,应参照下图确认插头盖板是否牢固的嵌入而未偏离插头本体。




## ■ NOTE

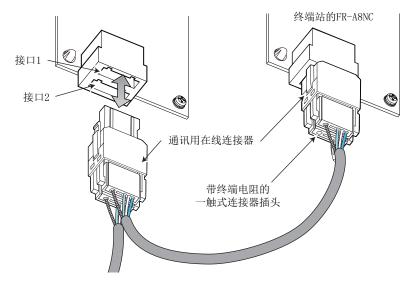
• 压接时,有可能插头盖板与插头本体的锁闩未咬合、盖板浮起。该状态下压接不充分,因此应接入盖板直至插头盖板已牢固嵌入插头本体。

### 3.1.2 与接口的连接

将 CC-Link 专用电缆连接至 CC-Link 通讯用接口。



## ⚠注意


- •注意请勿对电线施加应力。
- •接线时请勿在变频器内留下电线切屑。否则会导致异常、故障、误动作。

#### 3.1.3 进行在线更换时

CC-Link 通讯用接口使用通讯用在线连接器进行连接。通过使用通讯用在线连接器,无需停止通讯即可更换模块。通讯用在线连接器务必连接至 CC-Link 通讯用接口的接口 1 (跟前侧)。(请勿连接至 CC-Link 通讯用接口的接口 2 (后侧)。否则会导致变频器或接口等发生故障或破损。)

此外,应将带终端电阻的一触式接口插头连接至终端站 FR-A8NC 的 CC-Link 通讯用接口。

(进行了内置的终端电阻选择开关的设定时 (参照第20页), 无法进行在线更换。)



应使用以下的通讯用在线连接器与带终端电阻的一触式连接器插头。

• 通讯用在线连接器 (截至 2018 年 10 月。会有不预先通知而发生变更的情况。)

| 产品编号              | 生产厂家             |  |
|-------------------|------------------|--|
| 35715-L010-B00 AK | 3M Japan Limited |  |

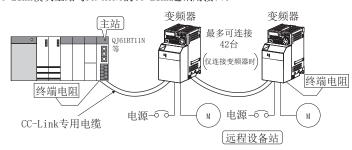
• 带终端电阻的一触式连接器插头 (截至 2018 年 10 月。会有不预先通知而发生变更的情况。)

| 型号          | 生产厂家     |  |
|-------------|----------|--|
| A6CON-TR11N | 三菱电机 (株) |  |

# NOTE

• 本产品请勿使用通讯用在线连接器 A6CON-LJ5P (三菱电机 (株))、35720-L200-B00 AK (3M Japan Limited)。否则会导致 变频器或接口等发生故障或破损。

#### 3.2 系统构成示例


1. 可编程控制器侧

在作为主站的可编程控制器 CPU 的主基板模块或扩展基板模块上, 安装 RJ61BT11 型 /QJ61BT11N 型 /L26CPU-BT 型 / L26CPU-BT 型 /LJ61BT11 型 /A1SJ61QBT11 型 /A1SJ61BBT11 型 "CC-Link 系统主站 • 本地站模块"。

**2.** 变频器侧

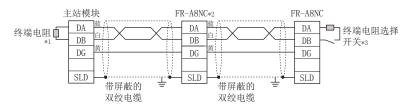
在变频器上安装内置选件 (FR-A8NC)。

- 3. 通过CC-Link专用电缆连接可编程控制器CC-Link模块主站与FR-A8NC的CC-Link通讯用接口。
  - CC-Link主站的手册 • RI61BT11型 CC-Link系统主站·本地站模块 用户手册(应用篇) ···SH-081298CHN • QJ61BT11N型 CC-Link系统主站·本地站模块 用户手册(详细篇) ···SH-080237C · L26CPU-BT型/L26CPU-PBT型/L161BT11型 CC-Link系统主站·本地站模块 用户手册···SH-080950CHN • A1ST61QBT11型 CC-Link系统主站·本地站模块 用户手册(详细篇)···IB-66722 · A1ST61BT11型 CC-Link系统主站·本地站模块 用户手册(详细篇)…IB-66721



## • NOTE

• 配置自动刷新功能的 CPU 时 (例: QnA 系 CPU)


执行可编程控制器 CPU 的 END 命令时,主站的缓冲存储器会被自动刷新,从而与远程设备站进行通讯。

• 未配置自动刷新功能的 CPU 时 (例: AnA 系 CPU)

通过可编程控制器梯形图直接与主站的缓冲存储器进行数据传送,从而与远程设备站进行通讯。

### 3.3 连接多台变频器时

作为 CC-Link 的远程设备站的 1 站共用链接系统,用可编程控制器的程序,通过控制监视进行多台变频器的 FA 化。CC-Link 专用电缆的屏蔽线连接至各模块的 "SLD"上。



- \*1 终端电阻使用可编程控制器附带的终端电阻。
- \*2 中间的模块将终端电阻选择开关设定为 1-0FF、2-0FF (无终端电阻)。(参照第 20 页)
- \*3 进行终端电阻选择开关的设定。(参照**第 20 页**) 使用带终端电阻的一触式连接器插头时,请勿使用内置的终端电阻选择开关。(1-0FF、2-0FF) (带终端电阻的一触式连接器插头的详细内容请参照**第 27 页**。)

#### ◆ 对 1 台主站的最多连接台数 (CC-Link Ver. 1.10)

42 台 (仅连接变频器时)

存在其他模块时,根据模块不同占用站数会有所不同,因此需要满足以下条件。

- $\{(1 \times a) + (2 \times b) + (3 \times c) + (4 \times d)\} \le 64$
- a: 占用1站模块的台数 c: 占用3站模块的台数
- b: 占用 2 站模块的台数 d: 占用 4 站模块的台数
- $\{(16 \times A) + (54 \times B) + (88 \times C)\} \le 2304$
- A: 远程 I/0 站的台数≤ 64 台
- B: 远程设备站的台数≤ 42 台
- C: 本地站、待机主站、智能设备站的台数≤ 26 台

#### ◆ 对 1 台主站的最多连接台数 (CC-Link Ver. 2.00)

42 台 (仅连接变频器时)

存在其他模块时,根据模块不同占用站数会有所不同,因此需要满足以下条件。

- $\{(a + a2 + a4 + a8) + (b + b2 + b4 + b8) \times 2 + (c + c2 + c4 + c8) \times 3 + (d + d2 + d4 + d8) \times 4\} \le 64$
- $\{(a \times 32 + a2 \times 32 + a4 \times 64 + a8 \times 128) + (b \times 64 + b2 \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + c2 \times 160 + c4 \times 320 + c8 \times 640) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + c2 \times 160 + c4 \times 320 + c8 \times 640) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 384) + (c \times 96 + b4 \times 192 + b8 \times 192 +$  $(d \times 128 + d2 \times 224 + d4 \times 448 + d8 \times 896)$   $\leq 8192$
- $\{(a \times 4 + a2 \times 8 + a4 \times 16 + a8 \times 32) + (b \times 8 + b2 \times 16 + b4 \times 32 + b8 \times 64) + (c \times 12 + c2 \times 24 + c4 \times 48 + c8 \times 96) + (d \times 16 + b4 \times 16 + b$  $d2 \times 32 + d4 \times 64 + d8 \times 128$   $\leq 2048$
- a: 占用1站1倍设定台数
- b: 占用 2 站 1 倍设定台数
- c: 占用 3 站 1 倍设定台数
- d: 占用 4 站 1 倍设定台数
- a2: 占用1站2倍设定台数
- b2: 占用2站2倍设定台数
- c2: 占用 3 站 2 倍设定台数
- d2: 占用 4 站 2 倍设定台数
- a4: 占用 1 站 4 倍设定台数
- b4: 占用 2 站 4 倍设定台数
- c4: 占用 3 站 4 倍设定台数
- d4: 占用 4 站 4 倍设定台数
- a8: 占用 1 站 8 倍设定台数
- b8: 占用 2 站 8 倍设定台数
- c8: 占用 3 站 8 倍设定台数
- d8: 占用 4 站 8 倍设定台数
- $16 \times A + 54 \times B + 88 \times C \le 2304$
- A: 远程 I/0 站台数≤ 64 台
- B: 远程设备站台数≤ 42 台
- C: 本地站、智能设备站台数≤ 26 台

# 4 变频器的设定

## 4.1 参数一览

以下为使用内置选件(FR-A8NC)时相关的参数。 应根据需要进行设定。

| Pr.       | Pr. 组      | 名称              | 设定范围              | 最小设定<br>单位 | 初始值                               | 参照页 |
|-----------|------------|-----------------|-------------------|------------|-----------------------------------|-----|
| 79        | D000       | 运行模式选择          | $0 \sim 4$ , 6, 7 | 1          | 0                                 | 34  |
| 313*1     | M410*1     | D00 输出选择        |                   |            |                                   |     |
| 314*1     | M411*1     | D01 输出选择        | *4                | 1          | 9999                              | 60  |
| 315*1     | M412*1     | D02 输出选择        |                   |            |                                   |     |
| 338       | D010       | 通讯运行指令权         | 0, 1              | 1          | 0                                 | *4  |
| 339       | D011       | 通讯速度指令权         | 0, 1, 2           | 1          | 0                                 | *4  |
| 340       | D001       | 通讯启动模式选择        | 0、1、10            | 1          | [E800]<br>0<br>[E800-(SC)E]<br>10 | 34  |
| 342       | N001       | 通讯 EEPROM 写入选择  | 0, 1              | 1          | 0                                 | *4  |
| 349*1     | N010*1     | 通讯复位选择          | 0, 1              | 1          | 0                                 | 42  |
| 500*1     | NO11*1     | 通讯异常等待时间        | $0\sim999.8s$     | 0.1s       | 0s                                | 36  |
| 501*1     | N012*1     | 通讯异常发生次数显示      | 0                 | 1          | 0                                 | 37  |
| 502       | N013       | 通讯异常时停止模式选择     | $0\sim 2$         | 1          | 0                                 | 37  |
| 541*1     | N100*1     | 频率指令符号选择        | 0, 1              | 1          | 0                                 | 44  |
| 542*1*2*3 | N101*1*2*3 | 通讯站号 (CC-Link)  | $1\sim64$         | 1          | 1                                 | 43  |
| 543*1*2*3 | N102*1*2*3 | 波特率选择 (CC-Link) | $0\sim4$          | 1          | 0                                 | 44  |

| Pr.               | Pr. 组    | 名称           | 设定范围                                           | 最小设定<br>单位 | 初始值  | 参照页 |
|-------------------|----------|--------------|------------------------------------------------|------------|------|-----|
| 544*1*2           | N103*1*2 | CC-Link 扩展设定 | 0、1、12、14、18、100、112、<br>114、118               | 1          | 0    | 49  |
| 550* <sup>2</sup> | D012*2   | 网络模式操作权选择    | [E800]<br>0、2、9999<br>[E800-(SC)E]<br>0、5、9999 | 1          | 9999 | *4  |
| 779               | N014     | 通讯异常时运行频率    | $0 \sim 590$ Hz、 $9999$                        | 0.01Hz     | 9999 | 37  |
| 804               | D400     | 转矩指令权选择      | 0, 1, 3 ~ 6                                    | 1          | 0    | 72  |
| 810               | H700     | 转矩限制输入方法选择   | $0\sim 2$                                      | 1          | 0    | 72  |

<sup>\*1</sup> 安装内置选件 (FR-A8NC) 时可显示的参数。 (Pr. 313 ~ Pr. 315、Pr. 349、Pr. 541、Pr. 544 可在使用 Ethernet 规格产品及安全通讯规格产品时随时进行设定)

<sup>\*2</sup> 变频器复位后或下次电源 ON 时将反映设定值。

<sup>\*3</sup> 变更设定值后 LED 的 "L. ERR" 会闪烁。变频器复位后,会反映设定值,LED 会熄灯。

<sup>\*4</sup> 关于各项参数的详细内容,请参照 FR-E800 使用手册 (功能篇)。

#### 4.2 运行模式的设定

#### 4.2.1 运行模式的切换与通讯启动模式 (Pr. 79、Pr. 340)

#### ◆ 运行模式切换条件

在切换运行模式前应确认以下项目。

- 变频器是否已停止。
- STF 信号或 STR 信号是否为 ON。
- Pr. 79 运行模式选择的设定是否正确。

(应在变频器操作面板中进行确认。)

#### ◆ 电源接通时及瞬时停电电源恢复时的运行模式选择

可以选择接通电源时及瞬时停电电源恢复时的运行模式。 选择网络运行模式时,设定 Pr. 340 通讯启动模式选择 # "0"。 在网络运行模式下启动后,可以通过网络进行参数的写入。 (参数写入的程序示例请参照**第**83页。)

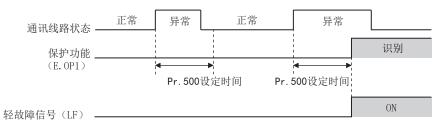
## NOTE

- Pr. 340 的设定值变更在接通电源时或变频器复位时变为有效。
- 在任何运行模式下都可以在操作面板中变更 Pr. 340。
- 设定 Pr. 340 ≠ "0" 时, 务必切实进行变频器的各初始设定。
- Pr. 79、Pr. 340 的详细内容,请参照 FR-E800 使用手册 (功能篇)。

| Pr. 340<br>設定値 | Pr. 79<br>设定值 | 接通电源时、电源恢复时、复位时的<br>运行模式  | 关于运行模式的切换                            |
|----------------|---------------|---------------------------|--------------------------------------|
|                | 0 (初始值)       | 外部运行模式                    | 可以切换至外部、PU、NET 运行模式 *1*3             |
|                | 1             | PU 运行模式                   | 固定为 PU 运行模式                          |
|                | 2             | 外部运行模式                    | 可以切换至外部、NET 运行模式 *3<br>不可切换至 PU 运行模式 |
| 0              | 3, 4          | 外部 /PU 组合模式               | 不可切换运行模式                             |
|                | 6*4           | 外部运行模式                    | 继续运行的同时,可以切换至外部、PU、NET 运行模式 *3       |
|                | 7             | X12 (MRS) 信号 ON: 外部运行模式   | 可以切换至外部、PU、NET 运行模式 *1*3             |
|                | '             | X12 (MRS) 信号 OFF: 外部运行模式  | 固定为外部运行模式 (强制切换至外部运行模式)              |
|                | 0             | NET 运行模式                  |                                      |
|                | 1             | PU 运行模式                   |                                      |
|                | 2             | NET 运行模式                  |                                      |
| 1              | 3, 4          | 外部 /PU 组合模式               | 与 Pr. 340 = "0"相同                    |
|                | 6*4           | NET 运行模式                  |                                      |
|                | 7             | X12 (MRS) 信号 ON: NET 运行模式 |                                      |
|                | 7             | X12 (MRS) 信号 OFF: 外部运行模式  |                                      |
|                | 0             | NET 运行模式                  | 可以切换至 PU、NET 运行模式 *2*3               |
| 10             | 1             | PU 运行模式                   | 与 Pr. 340 = "0"相同                    |
|                | 2             | NET 运行模式                  | 固定为 NET 运行模式                         |
|                | 3, 4          | 外部 /PU 组合模式               | 与 Pr. 340 = "0"相同                    |
|                | 6*4           | NET 运行模式                  | 继续运行的同时,可以切换至 PU、NET 运行模式 *2*3       |
|                | 7             | 外部运行模式                    | 与 Pr. 340 = "0"相同                    |

- \*1 无法直接切换 PU 运行模式与网络运行模式。
- \*2 可以通过操作面板的按键操作及 X65 信号切换 PU 运行模式和网络运行模式。
- \*3 通过网络进行的切换请参照第67页。
- \*4 Pr. 128 = "50、51、60、61"时,动作情况与设定 Pr. 79 = "0"时相同。

# 4.3 发生通讯异常时的动作


# 4.3.1 发生通讯异常时的动作选择 (Pr. 500 ~ Pr. 502、Pr. 779)

网络运行时通过 Pr. 500 ~ Pr. 502、Pr. 779 的设定,可以选择发生通讯异常时的动作。

#### ◆ 从通讯线路发生异常至输出通讯错误为止的设定时间

可以设定从通讯线路发生异常至输出通讯错误为止的等待时间。

| Pr. | 名称       | 设定范围            | 最小设定单位 | 初始值 |
|-----|----------|-----------------|--------|-----|
| 500 | 通讯异常等待时间 | $0 \sim 999.8s$ | 0.1s   | 0s  |



如果通讯线路异常的时间超过 Pr. 500 的设定时间,将识别为通讯错误。

在设定时间内恢复正常通讯时,不会出现通讯错误而将继续运行。

#### ◆ 通讯异常发生次数的显示和清除

可以了解发生通讯异常的累计次数。写入"0"时,将清除该累计次数。

| Pr. | 名称         | 设定范围 | 最小设定单位 | 初始值 |
|-----|------------|------|--------|-----|
| 501 | 通讯异常发生次数显示 | 0    | 1      | 0   |



在通讯线路发生异常时,Pr.501 通讯异常发生次数显示会 +1。发生通讯异常的累计次数范围为  $0 \sim 65535$ 。超过 65535 次时,会清除显示并从 0 开始重新计数。

# NOTE

• 通讯异常发生次数暂时保存在 RAM 中。由于在 EEPROM 中仅为每 1 小时存储 1 次,因此如果进行电源复位及变频器复位,根据复位时机,Pr. 501 的内容可能为上一次 EEPROM 中存储的值。

#### ◆ 发生通讯异常时的变频器动作选择

通讯线路异常或选件单元本身发生异常时,可以选择变频器的动作。

| Pr.             | 名称          | 设定范围                    | 内容                |
|-----------------|-------------|-------------------------|-------------------|
| 502             | 通讯异常时停止模式选择 | 0 (初始值)、1、2、6           | 参照第 38 页          |
| ggo*l           | 通讯员党财运公场家   | $0\sim 590 \mathrm{Hz}$ | 发生通讯异常时,以所设定的频率运行 |
| 779*1 通讯异常时运行频率 |             | 9999 (初始值)              | 以发生通讯异常前的频率运行     |

\*1 设定 Pr. 502 = "6" 时有效。

#### ◆ 关于设定内容

• 发生异常时的动作

| 异常内容         | Pr. 502 设定值 | 动作状态                | 显示      | 异常输出       |
|--------------|-------------|---------------------|---------|------------|
|              | 0           |                     |         |            |
| 通讯线路         | 1           | 1+ v+ *1            | 正常显示*1  | T+A.11. *1 |
| <b>旭</b> 爪纹岭 | 2           | · 持续 * <sup>1</sup> |         | 不输出*1      |
|              | 6           |                     |         |            |
|              | 0           | 输出切断                | E. 1    | 输出         |
| 通讯选件本身       | 1, 2        | 减速停止                | 停止后 E.1 | 停止后输出      |
|              | 6           | 以 Pr. 779 的频率运行 *2  | CF 警报   | 不输出        |

- \*1 在 Pr. 500 的设定时间内恢复到正常通讯状态时,保护功能(E. OP1)不动作。
- \*2 位置控制时将持续运行至目标位置。运行指令权切换为了外部时,在没有通过外部输入端子输入 LX 信号的情况下会切断输出。
- 发生异常后经过 Pr. 500 时的动作

| 异常内容                                      | Pr. 502 设定值 | 动作状态                 | 显示                     | 异常输出           |  |
|-------------------------------------------|-------------|----------------------|------------------------|----------------|--|
|                                           | 0           | 输出切断                 | E. OP1                 | 输出             |  |
| \Z \¬ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | 1           | <b>运</b> 体 位 .L      | 信儿E P OD1              | 停止后输出          |  |
| 通讯线路                                      | 2           | 减速停止                 | 停止后 E. OP1             | T+6.11         |  |
|                                           | 6           | 以 Pr. 779 的频率运行 *4   | CF 警报                  | 不输出            |  |
|                                           | 0           | /÷ 1                 | D 4 4+ 4+ *3           | +A 11 4+ 4+ *3 |  |
| 通讯选件本身                                    | 1, 2        | 停止状态持续*3             | E. 1 持续 * <sup>3</sup> | 输出持续*3         |  |
|                                           | 6           | 以 Pr. 779 的频率运行 *4*5 | CF 警报                  | 不输出            |  |

- \*3 与 Pr. 500 无关,发生异常时会减速停止或切断输出并显示异常。
- \*4 持续运行过程中,将频率指令权切换为了 NET 以外的情况下,可以将来自外部的频率指令设为有效。
- \*5 位置控制时将持续运行至目标位置。运行指令权切换为了外部时,在没有通过外部输入端子输入 LX 信号的情况下会切断输出。

• 异常解除时的动作

| 异常内容        | Pr. 502 设定值 | 动作状态                           | 显示         | 异常输出        |  |
|-------------|-------------|--------------------------------|------------|-------------|--|
|             | 0           | 停止状态持续                         | E. 0P1 持续  | 40 do 44 64 |  |
| du 44 m' Æ' | 1           | 厅山伙心付织                         | E. Ur I 付头 | 输出持续        |  |
| 通讯线路        | 2           | 再启动*6 正常显示                     |            | 不输出         |  |
|             | 6           | 正常运行                           | 正由亚小       | 71.4期 [1]   |  |
|             | 停止状态持续      |                                | E. 1 持续    | 输出持续        |  |
| 通讯选件本身      | 1, 2        | 厅山仏心村织                         | E. 1 付供    | - 制山竹织      |  |
|             | 6           | 以 Pr. 779 的频率运行 * <sup>7</sup> | CF 警报      | 不输出         |  |

- \*6 在减速中解除了通讯异常时,从该时点开始再次加速。
- \*7 位置控制时,即使在减速中解除了通讯异常也不会再次加速。

### **→** NOTE

- 保护功能 [E. 0P1 (异常数据: HA1)] 在发生通讯线路上的异常时动作,保护功能 [E. 1 (异常数据: HF1)] 在发生通讯选件内部的通讯线路异常时动作。
- 异常输出表示输出异常 (ALM) 信号或报警位。
- 设定为实施异常输出时,异常内容将被存储在报警记录中。(在进行异常输出时,写入至报警记录。)
- 不实施异常输出时,异常内容将暂时写入至报警记录的报警显示中,但不被保存。解除异常后,报警显示将复位并恢复至正常的监视状态,报警记录恢复为先前的报警显示。
- Pr. 502 = "1、2" 时,减速时间为常规的减速时间设定(Pr. 8、Pr. 44、Pr. 45 等)。此外,位置控制时的减速时间设定值依据 Pr. 464 与 Pr. 1223 中较小的设定值。
- 通讯线路异常, Pr. 502 为 "2"的情况下,在减速中解除了异常时,从此时开始再次加速。再启动时的运行指令、速度指令为异常发生前的指令。另外,加速时间为常规的加速时间设定(Pr. 7、Pr. 44 等)。(发生通讯选件本身异常的情况下,不会再次加速。)

# ⚠注意

• 设定了 Pr. 502 = "6"时,即使显示了通讯选件异常(E. 0P1)或选件本身的异常(E. 1),也将继续运行。设定了 Pr. 502 = "6"时,应采取输入至外部端子的输入信号(RES、MRS、X92等)及通过操作面板的 PU 停止等通讯以外的方法来安全停止。

# 4.3.2 异常与对策

◆ 发生异常时的各运行模式下的变频器动作

| 日光少七初八       | 状态       |       | 运行模式     |         |         |  |
|--------------|----------|-------|----------|---------|---------|--|
| 异常发生部位       |          |       | 网络运行*1   | 外部运行    | PU 运行   |  |
| 变频器          | 变频器运行    |       | 变频器跳闸    | 变频器跳闸   | 变频器跳闸   |  |
| 又姚翰          | 数据通讯     |       | 持续       | 持续      | 持续      |  |
| 通讯线路         | 变频器运行    |       | 变频器跳闸 *2 | 持续      | 持续      |  |
| <b>远</b> 似线斑 | 数据通讯     |       | 停止       | 停止      | 停止      |  |
|              | 接触不良     | 变频器运行 | 变频器跳闸 *2 | 变频器跳闸*2 | 变频器跳闸*2 |  |
| 通讯选件         | 1女/四/1、区 | 数据通讯  | 持续       | 持续      | 持续      |  |
| <b>迪</b> 讯选件 | 通讯选件本身的  | 变频器运行 | 变频器跳闸 *2 | 持续      | 持续      |  |
|              | 异常       | 数据通讯  | 停止       | 停止      | 停止      |  |

<sup>\*1</sup> 运行指令权由通讯选件执行时。

### ◆ 关于发生异常时的对策

| 报警显示   | 名称     | 对策                                                          |  |
|--------|--------|-------------------------------------------------------------|--|
| E. OP1 | 通讯选件异常 | •确认选件单元的 LED 状态并排除原因。(关于 LED 的显示状态,请参照第 90 页。)<br>•对主站实施检查。 |  |
| E. 1   | 选件异常   | • 确认变频器本体与通讯选件间的选件接口的连接状况并排除原因。                             |  |

<sup>\*1</sup> 出现上述以外的报警显示时,应参照 FR-E800 使用手册 (维护篇)排除异常原因。

<sup>\*2</sup> 由 Pr. 502 的设定决定。

### 4.4 变频器复位

#### ◆ 变频器复位的动作条件

各运行模式下可否使用变频器复位如下所示。

|                    | 运行模式                                          |            |      |      |       |
|--------------------|-----------------------------------------------|------------|------|------|-------|
|                    | 复位方法                                          |            | 网络运行 | 外部运行 | PU 运行 |
|                    | 变频器复位 (参照 <b>第 67 页</b> )*1                   |            | 可    | 不可   | 不可    |
| 通过网络进行的复位          | 变频器异常时的错误复位 (RY1A)                            | Pr.349 = 0 | 可    | 可    | 可     |
|                    | (参照 <b>第 58 页</b> )* <sup>2</sup> Pr. 349 = 1 |            | ΗJ   | 不可   | 不可    |
| 将变频器的端子 RES (RES   | 将变频器的端子 RES (RES 信号)置为 ON                     |            |      | 可    | 可     |
| 将变频器的电源置为 OFF      |                                               |            | 可    | 可    | 可     |
| 通过操作面板进行复位         | 变频器复位                                         |            | 可    | 可    | 可     |
| <b>迪凡採計画似近行</b> 复世 | 变频器异常时的复位                                     |            | 可    | 可    | 可     |

- \*1 始终可以进行变频器复位。
- \*2 仅变频器的保护功能起动时可复位。

# • NOTE

- 通讯线路异常时, 无法通过网络进行复位。
- 初始状态下,网络运行时若复位变频器,将变为外部运行模式。因此,为了重新开始网络运行,需要将运行模式再次切换到网络运行。为了通过网络运行模式启动,应设定 Pr. 340 ≠ "0"。(参照第 34 页)
- 变频器复位过程中也将持续通讯。(解除复位指令后,变频器在约 1s 的时间内无法控制。)
- 变频器复位的程序示例请参照第87页。

### ◆ 变频器异常时的错误复位动作选择

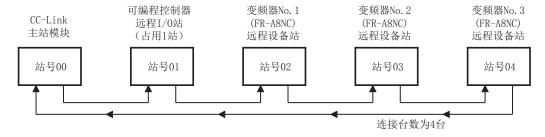
外部运行模式或 PU 运行模式时,可将来自通讯选件的错误复位指令设为无效。

网络的错误复位指令通过 RY1A 进行。(参照第 58 页)

| Pr.        | 名称 | 初始值 | 设定范围 | 功能               |
|------------|----|-----|------|------------------|
| 349 通讯复位选择 |    | 0   | 0    | 与运行模式无关,可进行错误复位  |
|            |    | U   | 1    | 仅在网络运行模式时可进行错误复位 |

### 4.5 CC-Link 功能的设定

### 4.5.1 站号的设定 (Pr.542)


通过 Pr.542 通讯站号(CC-Link)设定变频器的站号指定。在  $1 \sim 64$  的范围内进行设定。

| Pr. | 名称             | 初始值 | 设定范围        |
|-----|----------------|-----|-------------|
| 542 | 通讯站号 (CC-Link) | 1   | $1 \sim 64$ |

### • NOTE

• 无法重复设定站号。(如重复设定则无法正常通讯。)

#### ◆ 连接示例



### NOTE

- 应设定为连续站号。(请勿设定为像站号 1、站号 2、站号 4 此类的空站号。)无论连接顺序如何,均可设定站号。(像站号 1 一站号 3 一站号 4 一站号 2 这样的物理性连接,不一定按照顺序进行。)
- 1台变频器占用1站。(远程设备站的1站)
- 变更设定值后 LED 的 "L. ERR" 会闪烁。重新接通电源或将 RES 信号设为 ON 后,将反映设定值,LED 会熄灯。

### 4.5.2 波特率的设定 (Pr. 543)

进行传送速度的设定。(传送速度的详细内容请参照 CC-Link 主站模块的手册。)

| Pr. | 名称              | 初始值 | 设定范围 | 传送速度    |
|-----|-----------------|-----|------|---------|
|     |                 |     | 0    | 156kbps |
|     |                 |     | 1    | 625kbps |
| 543 | 波特率选择 (CC-Link) | 0   | 2    | 2.5Mbps |
|     |                 |     | 3    | 5Mbps   |
|     |                 |     | 4    | 10Mbps  |

# NOTE

• 变更设定值后 LED 的 "L. ERR" 会闪烁。重新接通电源或将 RES 信号设为 ON 后,将反映设定值, LED 会熄灯。

### 4.5.3 带符号的频率指令 (Pr.541)

在频率指令上加符号可反向运行启动指令 (正转/反转)。 对基于 RWw1 的频率指令,选择有无符号。

| Pr. | 名称       | 初始值 | 设定范围 |
|-----|----------|-----|------|
| 541 | 频率指令符号选择 | 0   | 0, 1 |

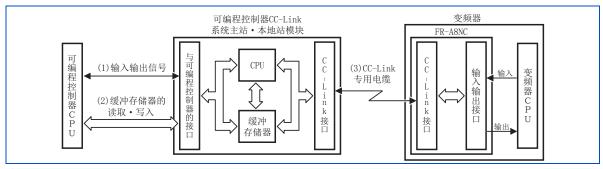
| 基于 Pr. 37、Pr. 53 的转数<br>(机械速度)设定 | Pr. 541<br>设定值 | 符号 | 设定范围                   | 实际频率指令                        |
|----------------------------------|----------------|----|------------------------|-------------------------------|
| 丰                                | 0              | 无  | $0 \sim 59000$         | $0\sim590.00$ Hz              |
| 无                                | 1              | 有  | -32768 ~ 32767 (2 的补码) | -327. 68 ∼ 327. 67Hz          |
| 有                                | 0              | 无  | $0\sim65535$           | 根据 Pr. 37、Pr. 53 的设定情况,为转速指令或 |
| 1                                | 1              | 有  | -32768 ~ 32767 (2 的补码) | 机械速度指令。(1单位)                  |

• 启动指令与符号的关系 (Pr. 541 = "1")

| 启动指令 | 频率指令符号 | 实际运行指令 |
|------|--------|--------|
| 正转   | +      | 正转     |
| 止转   | _      | 反转     |
| 反转   | +      | 反转     |
|      | _      | 正转     |

# NOTE

• Pr. 541 = "1" (有符号)设定时


通过 RYE 指定 EEPROM 写入时,为写入模式错误(错误代码 HO1)。RYD、RYE 可同时执行( $Pr.544 \neq "0"$ )时,RYD、RYE 均设为 ON 的情况下,RYD 为优先。电源 ON(变频器复位)时的初始状态为符号位为 " 正 ",设定频率为 "OHz"。(不以电源 OFF(变频器复位)前的设定频率动作。)用命令代码 HED、HEE 来进行设定频率写入时,频率指令的符号不变。

# 5 功能的概要

### 5.1 功能块图

以下通过功能块图对 CC-Link 中输入输出至变频器的信息的流程进行说明。

• CC-Link 系统的主站与变频器之间,始终以 $1.1 \sim 141$ ms (每1站)进行链接刷新。



- **1.** 分配给CC-Link系统主站·本地站模块的输入输出信号。此信号是可编程控制器CPU与CC-Link系统主站·本地站模块之间进行通讯所需的信号。 信号的详细内容请参照**第**58页。
- 2. 可以与变频器进行输入信息读取、输出信息写入、CC-Link异常站读取等。缓冲存储器的读取・写入通过自动刷新功能进行。(不使用自动刷新功能而使其同步时,应使用顺控程序的FROM/TO命令。)缓冲存储器的详细内容请参照CC-Link系统主站・本地站模块的手册。
- **3.** 从顺控程序进行CC-Link通讯开始指示。CC-Link通讯开始后,通过顺控程序的执行与非同步(或同步),始终进行链接刷新。

详细内容请参照 CC-Link 系统主站 · 本地站模块的手册。

# 5.2 从变频器输出至网络

可从变频器输出至主站的主要项目与概要。

| 项目       | 概要               | 参照页   |
|----------|------------------|-------|
| 变频器状态监视  | 可以监视变频器的输出端子状态。  | 60    |
| 输出频率监视   | 可以监视输出频率。        | 64、67 |
| 输出电流监视   | 可以监视输出电流。        | 67    |
| 输出电压监视   | 可以监视输出电压。        | 67    |
| 特殊监视     | 可以确认所选的监视数据。     | 67    |
| 异常内容     | 可以确认异常内容。        | 64、67 |
| 异常发生时的数据 | 可以确认异常发生时的变频器状态。 | 64    |
| 运行模式     | 可以确认当前的运行模式。     | 67    |
| 参数读取     | 可以读取参数的设定值。      | 67    |
| 设定频率的读取  | 可以读取当前的设定频率。     | 67    |



• 在各运行模式中,关于可通过网络操作的功能,请参照 FR-E800 使用手册 (功能篇)。

# 5.3 从网络输入至变频器

可从主站向变频器发出指令的主要项目与概要。

| 项目               | 概要                              | 参照页   |
|------------------|---------------------------------|-------|
| 正转指令             | 向变频器发出正转指令。                     | 58    |
| 反转指令             | 向变频器发出反转指令。                     | 58    |
| 输入端子功能指令         | 执行分配给变频器的输入端子的功能。               | 58    |
| 变频器输出停止指令        | 停止变频器的输出。                       | 58    |
| 错误复位             | 仅在变频器发生异常时,进行变频器复位。             | 58    |
| 频率 (转矩指令/转矩限制)设定 | 设定频率 (转矩指令/转矩限制)。               | 62、67 |
| 监视指定             | 指定要监视内容。                        | 62、67 |
| 运行模式指定           | 设定运行模式。                         | 67    |
| 异常内容清除           | 清除过去 10 次的异常内容。                 | 67    |
| 参数全部清除           | 参数的内容将恢复至初始值。                   | 67    |
| 变频器复位            | 复位变频器。                          | 67    |
| 参数写入             | 写入参数设定值。                        | 67    |
| PID 控制           | 可通过网络输入 PID 目标值、PID 测量值、PID 偏差。 | 62    |

# NOTE

• 在各运行模式中,关于可通过网络操作的功能,请参照 FR-E800 使用手册 (功能篇)。

# 6 输入输出信号一览

# 6.1 CC-Link 扩展设定 (Pr. 544)

可以扩展远程寄存器的功能。

| Pr. | 名称           | 初始值   | 设定范围  | CC-Link Ver.     | 内容        |                 | 参照页   |
|-----|--------------|-------|-------|------------------|-----------|-----------------|-------|
|     |              | 0     | 1     | 占用1站 (FR-A5NC 兼名 | 字)*1      | 50              |       |
|     |              |       | 1     | 1                | 占用1站      |                 | 53    |
|     |              | 12*2  |       | 占用1站 2倍设定        |           | 54              |       |
|     |              |       | 14*2  | 2                | 占用1站 4倍设定 | 55              | 55    |
| 544 | CC-Link 扩展设定 | 0     | 18*2  |                  | 占用1站 8倍设定 |                 | 56    |
|     |              |       | 100   | 1                | 占用1站      |                 |       |
|     |              | 112   | 112*2 |                  | 占用1站 2倍设定 | MT Library Cole | *3    |
|     |              |       | 114*2 | 2                | 占用1站 4倍设定 | 顺控功能            | _ *** |
|     |              | 118*2 |       | 占用1站 8倍设定        |           |                 |       |

- \*1 可以使用旧系列变频器 (FR-A5NC) 中使用的程序。 RYD、RYE、RYF 同时设为 ON 时,仅执行其中任意 1 个。 此外,RWw2 的高位 8 位不是链接参数扩展设定。
- \*2 使用 CC-Link Ver. 2 的 2 倍、4 倍、8 倍设定时,主站中的站信息也需要设定为 2 倍、4 倍、8 倍。 (主站为 CC-Link Ver. 1 时,无法设定。)
- \*3 请参照顺控功能编程手册。

### **→** NOTE

• 设定值在变频器复位后会反映。(关于变频器复位,请参照第41页。)

# 6.2 输入输出信号一览

# 6.2.1 CC-Link Ver.1 占用1站(FR-A5NC 兼容)时的输入输出信号 (Pr.544 = "0")

### ◆ 远程输入输出 (32点固定)

| 软元件 No<br>*5 | 信号名称                               | 参照页 |
|--------------|------------------------------------|-----|
| RYn0         | 正转指令*2                             | 58  |
| RYn1         | 反转指令*2                             | 58  |
| RYn2         | 高速运行指令 (端子 RH 功能)*1                | 58  |
| RYn3         | 中速运行指令 (端子 RM 功能)*1                | 58  |
| RYn4         | 低速运行指令 (端子 RL 功能)*1                | 58  |
| RYn5         | J0G 运行选择 2 (J0G2 信号)* <sup>2</sup> | 58  |
| RYn6         | 第 2 功能选择 (RT 信号) * <sup>2</sup>    | 58  |
| RYn7         | 电流输入选择 (AU 信号) *2                  | 58  |
| RYn8         | 无功能 (端子 NET X1 功能)*1               | 58  |
| RYn9         | 输出停止 (端子 MRS 功能)*1                 | 58  |
| RYnA         | 无功能 (端子 NET X2 功能)*1               | 58  |
| RYnB         | 复位 (端子 RES 功能) *1                  | 58  |
| RYnC         | 监视指令                               | 58  |
| RYnD         | 频率设定指令(RAM)                        | 58  |
| RYnE         | 频率设定指令 (RAM、EEPROM)                | 58  |
| RYnF         | 命令代码执行要求                           | 58  |

| 软元件 No<br>*5 | 信号名称                             | 参照页 |
|--------------|----------------------------------|-----|
| RXn0         | 正转中                              | 60  |
| RXn1         | 反转中                              | 60  |
| RXn2         | 运行中 (端子 RUN 功能)*3                | 60  |
| RXn3         | 频率到达 (SU 信号) * <sup>2</sup>      | 60  |
| RXn4         | 过载警报 (OL 信号) *2                  | 60  |
| RXn5         | 无功能 (端子 NET Y1 功能)*3             | 60  |
| RXn6         | 频率检测 (端子 FU 功能)*3                | 60  |
| RXn7         | 异常 (端子 ABC1 功能)*3                | 60  |
| RXn8         | 无功能 (端子 NET Y2 功能)*3             | 60  |
| RXn9         | Pr. 313 分配功能 (D00)*4             | 60  |
| RXnA         | Pr. 314 分配功能 (D01)* <sup>4</sup> | 60  |
| RXnB         | Pr. 315 分配功能 (D02)*4             | 60  |
| RXnC         | 监视中                              | 60  |
| RXnD         | 频率设定完成 (RAM)                     | 60  |
| RXnE         | 频率设定完成 (RAM、EEPROM)              | 60  |
| RXnF         | 命令代码执行完成                         | 60  |

| 软元件 No<br>*5                  | 信号名称                 | 参照页 |
|-------------------------------|----------------------|-----|
| RY (n+1) 0<br>~<br>RY (n+1) 7 | 保留                   | _   |
| RY (n+1) 8                    | 未使用<br>(初始数据处理完成标志)  | _   |
| RY (n+1) 9                    | 未使用<br>(初始数据处理要求标志)  | _   |
| RY (n+1) A                    | 错误复位要求标志             | 58  |
| RY (n+1) B                    | 无功能 (端子 NET X3 功能)*1 | 58  |
| RY (n+1) C                    | 无功能 (端子 NET X4 功能)*1 | 58  |
| RY (n+1) D                    | 无功能 (端子 NET X5 功能)*1 | 58  |
| RY (n+1) E                    | វាជាណា               |     |
| RY (n+1) F                    | 保留                   | _   |

| 软元件 No<br>*5                  | 信号名称                         | 参照页 |
|-------------------------------|------------------------------|-----|
| RX (n+1) 0<br>~<br>RX (n+1) 5 | 保留                           | _   |
| RX (n+1) 6                    | 无功能 (端子 NET Y3 功能)*3         | 60  |
| RX (n+1) 7                    | 无功能 (端子 NET Y4 功能)*3         | 60  |
| RX (n+1) 8                    | 未使用<br>(初始数据处理要求标志)          | _   |
| RX (n+1) 9                    | 未使用<br>(初始数据处理完成标志)          | _   |
| RX (n+1) A                    | 错误状态标志                       | 60  |
| RX (n+1) B                    | 远程站 Ready                    | 60  |
| RX (n+1) C                    | 定位完成 (Y36 信号) * <sup>2</sup> | 60  |
| RX (n+1) D                    | 位置指令动作中 (PBSY 信号)*2          | 60  |
| RX (n+1) E                    | 原点复位完成 (ZP 信号)*2             | 60  |
| RX (n+1) F                    | 原占复位异常 (ZA 信号)*2             | 60  |

- \*I 信号名为初始值时的信号名。可以通过 Pr. 180 ~ Pr. 189 变更输入信号的功能。 Pr. 180 ~ Pr. 189 的详细内容,请参照 FR-E800 使用手册(功能篇)。
- \*2 信号是固定的。无法通过参数变更。
- \*3 信号名为初始值时的信号名。可通过 Pr. 190 ~ Pr. 196 变更输出信号的功能。
  - Pr. 190 ~ Pr. 196 的详细内容,请参照 FR-E800 使用手册 (功能篇)。
- \*4 可通过 Pr. 313 ~ Pr. 315 分配输出信号。
  - Pr. 313 ~ Pr. 315 的详细内容,请参照 FR-E800 使用手册 (功能篇)。
- \*5 n 为根据站号设定决定的值。

| DL 1.1 *3 | 内              | 容     | 4 m - |  |
|-----------|----------------|-------|-------|--|
| 地址*3      | 高位 8 位         | 低位8位  | 参照页   |  |
| RWwn      | 监视代码 2         | 监视代码1 | 62    |  |
| RWwn+1    | 设定频率 (0.01Hz 单 | 62    |       |  |
| RWwn+2    | HOO (任意)*1     | 命令代码  | 62    |  |
| RWwn+3    | 写入数据           |       | 62    |  |

| 地址*3   | 内容    | 参照页 |
|--------|-------|-----|
| RWrn   | 第1监视值 | 64  |
| RWrn+1 | 第2监视值 | 64  |
| RWrn+2 | 应答代码  | 64  |
| RWrn+3 | 读取数据  | 64  |

- \*1 即使设定为 H00 以外的值,也会变为 H00。
- \*2 实时无传感器矢量控制的转矩控制时,设定 Pr.804 = "3" 或 "5" 后,RWwn + 1 为转矩指令设定。
- \*3 n 为根据站号设定决定的值。

# 6.2.2 CC-Link Ver. 1 占用 1 站时的输入输出信号 (Pr. 544 = "1")

◆ 远程输入输出 (32点固定)

与 Pr. 544 = "0" 时相同。(参照**第**50页)

| 14.1.1 *2 | 内容                        |        | 4 m = |
|-----------|---------------------------|--------|-------|
| 地址*2      | 高位8位                      | 低位8位   | 参照页   |
| RWwn      | 监视代码 2                    | 监视代码 1 | 62    |
| RWwn+1    | 设定频率 (0.01Hz 单位) / 转矩指令*1 |        | 62    |
| RWwn+2    | 链接参数扩展设定                  | 命令代码   | 62    |
| RWwn+3    | 写入数据                      |        | 62    |

| ut. t.1. *° | 内容            |      | 4四士 |  |
|-------------|---------------|------|-----|--|
| 地址 *2       | 高位 8 位        | 低位8位 | 参照页 |  |
| RWrn        | 第1监视值         |      | 64  |  |
| RWrn+1      | 第2监视值         |      | 64  |  |
| RWrn+2      | 应答代码 2 应答代码 1 |      | 64  |  |
| RWrn+3      | 读取数据          |      | 64  |  |

<sup>\*1</sup> 实时无传感器矢量控制的转矩控制时,设定 Pr. 804 = "3" 或 "5" 后, RWwn + 1 为转矩指令设定。

<sup>\*2</sup> n 为根据站号设定决定的值。

# 6.2.3 CC-Link Ver.2 2 倍设定时的输入输出信号 (Pr. 544 = "12")

◆ 远程输入输出 (32点固定)

与 Pr. 544 = "0" 时相同。(参照**第**50页)

| 14.1.1 *2 | 内容                        |       | <b>全</b> 四五 |
|-----------|---------------------------|-------|-------------|
| 地址*2      | 高位8位                      | 低位8位  | 参照页         |
| RWwn      | 监视代码 2                    | 监视代码1 | 62          |
| RWwn+1    | 设定频率 (0.01Hz 单位) / 转矩指令*1 |       | 62          |
| RWwn+2    | 链接参数扩展设定                  | 命令代码  | 62          |
| RWwn+3    | 写入数据                      |       | 62          |
| RWwn+4    | 监视代码 3                    |       | 62          |
| RWwn+5    | 监视代码 4                    |       | 62          |
| RWwn+6    | 监视代码 5                    |       | 62          |
| RWwn+7    | 监视代码 6                    |       | 62          |

|        | +      | - <del>-</del> |       |
|--------|--------|----------------|-------|
| 地址*2   |        | 容              | 参照页   |
| TETT   | 高位 8 位 | 低位8位           | シバボンベ |
| RWrn   | 第1监视值  |                | 64    |
| RWrn+1 | 第2监视值  |                | 64    |
| RWrn+2 | 应答代码 2 | 应答代码 1         | 64    |
| RWrn+3 | 读取数据   |                | 64    |
| RWrn+4 | 第3监视值  |                | 64    |
| RWrn+5 | 第4监视值  |                | 64    |
| RWrn+6 | 第5监视值  |                | 64    |
| RWrn+7 | 第6监视值  |                | 64    |

<sup>\*1</sup> 实时无传感器矢量控制的转矩控制时,设定 Pr. 804 = "3" 或 "5" 后, RWwn + 1 为转矩指令设定。

<sup>\*2</sup> n 为根据站号设定决定的值。

# 6.2.4 CC-Link Ver.2 4 倍设定时的输入输出信号 (Pr. 544 = "14")

◆ 远程输入输出 (32点固定 (占用 64点))

与 Pr. 544 = "0" 时相同。(参照**第**50页)

| 1d. 1d. ±2 | 内                                | 4 m =      |       |
|------------|----------------------------------|------------|-------|
| 地址*2       | 高位8位                             | 低位8位       | 参照页   |
| RWwn       | 监视代码 2                           | 监视代码1      | 62    |
| RWwn+1     | 设定频率 (0.01Hz 单位                  | <u>(</u> ) | 62    |
| RWwn+2     | 链接参数扩展设定                         | 命令代码       | 62    |
| RWwn+3     | 写入数据                             |            | 62    |
| RWwn+4     | 监视代码3                            |            | 62    |
| RWwn+5     | 监视代码 4                           |            | 62    |
| RWwn+6     | 监视代码 5                           |            | 62    |
| RWwn+7     | 监视代码 6                           |            | 62    |
| RWwn+8     | 异常内容 No.                         | H00        | 62    |
| RWwn+9     | PID 目标值 (0.01% 单位)*1             |            | 62    |
| RWwn+A     | PID 测定值 (0.01% 单位)* <sup>1</sup> |            | 62    |
| RWwn+B     | PID 偏差 (0.01% 单位)*1              |            | 62    |
| RWwn+C     | 转矩指令或转矩限制                        |            | 62、72 |
| RWwn+D     |                                  |            |       |
| RWwn+E     | HOO (空)                          | _          |       |
| RWwn+F     |                                  |            |       |

| 1d. 1.1 *2 | 内容          |            | 4777  |
|------------|-------------|------------|-------|
| 地址*2       | 高位8位        | 低位8位       | 一 参照页 |
| RWrn       | 第1监视值       |            | 64    |
| RWrn+1     | 第2监视值       |            | 64    |
| RWrn+2     | 应答代码 2      | 应答代码1      | 64    |
| RWrn+3     | 读取数据        |            | 64    |
| RWrn+4     | 第3监视值       |            | 64    |
| RWrn+5     | 第4监视值       | 第4监视值      |       |
| RWrn+6     | 第5监视值       |            | 64    |
| RWrn+7     | 第6监视值       |            | 64    |
| RWrn+8     | 异常内容 No.    | 异常内容数据     | 64    |
| RWrn+9     | 异常内容 (输出频   | 率)         | 64    |
| RWrn+A     | 异常内容 (输出电)  | <b></b> 充) | 64    |
| RWrn+B     | 异常内容 (输出电压) |            | 64    |
| RWrn+C     | 异常内容 (通电时间) |            | 64    |
| RWrn+D     |             |            |       |
| RWrn+E     | H00 (空)     |            | -     |
| RWrn+F     |             |            |       |

<sup>\*1</sup> 依据 Pr. 128、Pr. 609、Pr. 610 的设定情况决定是否有效。详细内容,请参照 FR-E800 使用手册 (功能篇)。设定了范围外的数据时,保持上一次的设定值不变。

<sup>\*2</sup> n 为根据站号设定决定的值。

# 6.2.5 CC-Link Ver.2 8 倍设定时的输入输出信号 (Pr. 544 = "18")

◆ 远程输入输出 (32点固定 (占用 128点))

与 Pr. 544 = "0" 时相同。(参照**第**50页)

| 1d. 1.1 *2 | 内容                              |        |       |
|------------|---------------------------------|--------|-------|
| 地址*2       | 高位8位                            | 低位8位   | 参照页   |
| RWwn       | 监视代码 2                          | 监视代码 1 | 62    |
| RWwn+1     | 设定频率 (0.01Hz 单位                 | 江)     | 62    |
| RWwn+2     | 链接参数扩展设定                        | 命令代码   | 62    |
| RWwn+3     | 写入数据                            |        | 62    |
| RWwn+4     | 监视代码 3                          |        | 62    |
| RWwn+5     | 监视代码 4                          |        | 62    |
| RWwn+6     | 监视代码 5                          |        | 62    |
| RWwn+7     | 监视代码 6                          |        | 62    |
| RWwn+8     | 异常内容 No.                        | H00    | 62    |
| RWwn+9     | PID 目标值 (0.01% 单位)*1            |        | 62    |
| RWwn+A     | PID 测定值 (0.01% 单位)*1            |        | 62    |
| RWwn+B     | PID 偏差 (0.01% 单位) <sup>*1</sup> |        | 62    |
| RWwn+C     | 转矩指令或转矩限制                       |        | 62、72 |
| RWwn+D     |                                 |        |       |
| RWwn+E     | HOO (空)                         |        | _     |
| RWwn+F     |                                 |        |       |
| RWwn+10    | 链接参数扩展设定                        | 命令代码   | 62    |
| RWwn+11    | 写入数据                            |        | 62    |
| RWwn+12    | 链接参数扩展设定 命令代码                   |        | 62    |
| RWwn+13    | 写入数据                            |        | 62    |
| RWwn+14    | 链接参数扩展设定                        | 命令代码   | 62    |

|         | 内           | 容      | A 177 T |
|---------|-------------|--------|---------|
| 地址*2    | 高位 8 位      | 低位8位   | 参照页     |
| RWrn    | 第1监视值       |        | 64      |
| RWrn+1  | 第2监视值       |        | 64      |
| RWrn+2  | 应答代码 2      | 应答代码 1 | 64      |
| RWrn+3  | 读取数据        |        | 64      |
| RWrn+4  | 第3监视值       |        | 64      |
| RWrn+5  | 第4监视值       |        | 64      |
| RWrn+6  | 第5监视值       |        | 64      |
| RWrn+7  | 第6监视值       |        | 64      |
| RWrn+8  | 异常内容 No.    | 异常内容数据 | 64      |
| RWrn+9  | 异常内容 (输出频率) |        | 64      |
| RWrn+A  | 异常内容 (输出电流) |        | 64      |
| RWrn+B  | 异常内容 (输出电压) |        | 64      |
| RWrn+C  | 异常内容 (通电时间) |        | 64      |
| RWrn+D  |             |        |         |
| RWrn+E  | HOO (空)     |        | _       |
| RWrn+F  |             |        |         |
| RWrn+10 | 应答代码        |        | 64      |
| RWrn+11 | 读取数据        |        | 64      |
| RWrn+12 | 应答代码        |        | 64      |
| RWrn+13 | 读取数据        |        | 64      |
| RWrn+14 | 应答代码        | ·      | 64      |

| 地址*2    | 内容       |      | ム四工 |
|---------|----------|------|-----|
|         | 高位8位     | 低位8位 | 参照页 |
| RWwn+15 | 写入数据     |      | 62  |
| RWwn+16 | 链接参数扩展设定 | 命令代码 | 62  |
| RWwn+17 | 写入数据     |      | 62  |
| RWwn+18 | 链接参数扩展设定 | 命令代码 | 62  |
| RWwn+19 | 写入数据     |      | 62  |
| RWwn+1A |          |      |     |
| RWwn+1B |          |      |     |
| RWwn+1C | HOO (空)  |      | _   |
| RWwn+1D | 100(至)   |      | _   |
| RWwn+1E |          |      |     |
| RWwn+1F |          |      |     |

| nt. t.t. *2 | 内       | 容    | <b>乡</b> 叨玉 |
|-------------|---------|------|-------------|
| 地址*2        | 高位 8 位  | 低位8位 | 参照页         |
| RWrn+15     | 读取数据    |      | 64          |
| RWrn+16     | 应答代码    |      | 64          |
| RWrn+17     | 读取数据    |      | 64          |
| RWrn+18     | 应答代码    |      | 64          |
| RWrn+19     | 读取数据    |      | 64          |
| RWrn+1A     |         |      |             |
| RWrn+1B     |         |      |             |
| RWrn+1C     | HOO (空) |      |             |
| RWrn+1D     | 100 (至) |      | _           |
| RWrn+1E     |         |      |             |
| RWrn+1F     |         |      |             |

<sup>\*1</sup> 依据 Pr. 128、Pr. 609、Pr. 610 的设定情况决定是否有效。详细内容,请参照 FR-E800 使用手册 (功能篇)。设定了范围外的数据时,保持上一次的设定值不变。

<sup>\*2</sup> n 为根据站号设定决定的值。

# 7 输入输出信号的详细说明

以下所示的软元件 No. 为站号 1 时的软元件编号。站号为 2 以上时,软元件 No. 会改变。 ( 软元件 No. 与站号的对应关系请参照主站模块的手册。)

# 7.1 远程输入输出信号的详细说明

### 7.1.1 输出信号 (主站模块→变频器 (FR-A8NC))

以下所示为主站模块的输出信号。(输入变频器的信号)

| 软元件编号 | 信号名称                               |                                                                              | 内容                   |
|-------|------------------------------------|------------------------------------------------------------------------------|----------------------|
| RYO   | 正转指令*2                             | 0: 停止指令<br>1: 正转启动                                                           | 信号为1时启动指令输入至变频器。     |
| RY1   | 反转指令*2                             | 0:停止指令<br>1:反转启动                                                             | RY0、1 同时为 1 时变为停止指令。 |
| RY2   | 高速运行指令 (端子 RH 功能)*1                |                                                                              |                      |
| RY3   | 中速运行指令 (端子 RM 功能)*1                | 分配给 Pr. 180 ~ Pr. 182                                                        | 的功能起动。               |
| RY4   | 低速运行指令 (端子 RL 功能)*1                |                                                                              |                      |
| RY5   | J0G 运行选择 2 (J0G2 信号)* <sup>2</sup> | 1: 选择了 JOG 运行。                                                               |                      |
| RY6   | 第 2 功能选择 (RT 信号)* <sup>2</sup>     | 1: 选择了第2功能。                                                                  |                      |
| RY7   | 电流输入选择 (AU 信号)*2                   | 1: 端子 4 输入为主速设                                                               | 定。                   |
| RY8   | — (NET X1 功能) <sup>*1</sup>        | 分配给 Pr. 185 的功能起                                                             | 动。                   |
| RY9   | 输出停止 (端子 MRS 功能)*1                 | 分配给 Pr. 183 的功能起动。                                                           |                      |
| RYA   | — (NET X2 功能) *1                   | 分配给 Pr. 186 的功能起动。                                                           |                      |
| RYB   | 复位 (端子 RES 功能)*1                   | 分配给 Pr. 184 的功能起动。                                                           |                      |
| RYC   | 监视指令                               | 将 RYC 设为 1 时,在远程寄存器 RWr0、1、4 $\sim$ 7 中设置监视值,监视中 (RXC)为 1。RYC 为 1 时,始终更新监视值。 |                      |

| 软元件编号             | 信号名称                        | 内容                                                                                                                                                                                      |
|-------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RYD* <sup>4</sup> | 频率设定指令/转矩指令 (RAM)           | 将 RYD 设为 1 时,设定频率 / 转矩指令 (RWw1) 会被写入变频器的 RAM 中。*3<br>写入完成后,频率设定 / 转矩指令完成 (RXD) 为 1。<br>实时无传感器矢量控制、PM 无传感器矢量控制时,以下的值也被同时写入 RAM 中。<br>• 转矩控制时*6:转矩指令值<br>• 速度控制、位置控制:转矩限制值                |
| RYE <sup>*4</sup> | 频率设定指令/转矩指令<br>(RAM、EEPROM) | RYE 设为1时,设定频率/转矩指令 (RWu1)被写入变频器的 RAM 与 EEPROM 中。写入完成后,频率设定/转矩指令完成 (RXE)为1。实时无传感器矢量控制、PM 无传感器矢量控制时,以下的值也被同时写入 RAM 与 EEPROM 中。 •转矩控制时*6:转矩指令值 •速度控制、位置控制:转矩限制值 连续变更频率时,务必将数据写入变频器的 RAM 中。 |
| RYF*4             | 命令代码执行要求                    | RYF 设为 1 时,将执行与 RWv2、10、12、14、16、18 中设置的命令代码相应的处理。命令代码执行完成后,命令代码执行完成 (RXF) 为 1。发生命令代码执行错误时,在应答代码 (RWr2、10、12、14、16、18)中设置 0 以外的值。                                                       |
| RY1A              | 错误复位要求标志                    | 在变频器发生异常时将 RY1A 设为 1 后,变频器会复位、并且错误状态标志(RX1A)<br>变为 0。*5                                                                                                                                 |
| RY1B              | — (NET X3 功能) *1            | 分配给 Pr. 187 的功能起动。                                                                                                                                                                      |
| RY1C              | — (NET X4 功能) *1            | 分配给 Pr. 188 的功能起动。                                                                                                                                                                      |
| RY1D              | - (NET X5 功能) *1            | 分配给 Pr. 189 的功能起动。                                                                                                                                                                      |

- \*1 信号名为初始值时的信号名。通过 Pr. 180 ~ Pr. 189 可以变更输入信号的功能。但是,通过 Pr. 338、Pr. 339 设定的信号可能会出现无法 从网络接收指令的情况。例如,RYB 的复位(端子 RES 功能)无法在网络上进行控制。 Pr. 180 ~ Pr. 189、Pr. 338、Pr. 339 的详细内容,请参照 FR-E800 使用手册(功能篇)。
- \*2 信号是固定的。无法通过参数变更。
- \*3 频率设定指令 (RYD) 为1时, 始终反映设定频率 (RWw1) 的值。
- \*4 设定 Pr. 544 = "0" 时,同时为1的情况下,仅执行其中任意1个。
- \*5 变频器复位动作条件请参照第 41 页。
- \*6 PM 电机无法进行转矩控制。

# 7.1.2 输入信号 (变频器 (FR-A8NC) → 主站模块)

以下所示为输入至主站模块的输入信号。(变频器的输出信号)

| 软元件编号 | 信号名称                      | 内容                                                                                                                                                                     |
|-------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RXO   | 正转中                       | 0: 正转中以外 (停止中、反转中)<br>1: 正转中                                                                                                                                           |
| RX1   | 反转中                       | 0: 反转中以外 (停止中、正转中)<br>1: 反转中                                                                                                                                           |
| RX2   | 运行中 (端子 RUN 功能)*1         | 分配给 Pr. 190 的功能起动。                                                                                                                                                     |
| RX3   | 频率到达 (SU 信号)*3            | 1: 输出频率达到设定频率                                                                                                                                                          |
| RX4   | 过载警报 (OL 信号) *3           | 1: 发生过载警报                                                                                                                                                              |
| RX5   | — (NET Y1 功能) *1          | 分配给 Pr. 193 的功能起动。                                                                                                                                                     |
| RX6   | 频率检测 (端子 FU 功能)*1         | 分配给 Pr. 191 的功能起动。                                                                                                                                                     |
| RX7   | 异常 (端子 ABC1 功能)*1         | 分配给 Pr. 192 的功能起动。                                                                                                                                                     |
| RX8   | — (NET Y2功能)*1            | 分配给 Pr. 194 的功能起动。                                                                                                                                                     |
| RX9   | - (D00 功能) * <sup>2</sup> |                                                                                                                                                                        |
| RXA   | - (D01 功能) * <sup>2</sup> | 分配给 Pr. 313 ~ Pr. 315 的功能执行动作。                                                                                                                                         |
| RXB   | - (D02 功能) * <sup>2</sup> |                                                                                                                                                                        |
| RXC   | 监视中                       | 监视指令 (RYC) 为 1 时,RWr0、1、4 $\sim$ 7 中设置了监视值时,此信号为 1。将监视指令 (RYC) 设为 0 时,此信号为 0。                                                                                          |
| RXD   | 频率设定 / 转矩指令完成 (RAM)       | 频率设定指令/转矩指令 (RYD) 设为 1,将设定频率/转矩指令写入至变频器的 RAM时,此信号为 1。频率设定指令/转矩指令 (RYD) 设为 0 时,此信号为 0。实时无传感器矢量控制、PM 无传感器矢量控制时,以下的值也被同时写入 RAM 和 EEPROM中。 • 转矩控制时:转矩指令值 • 速度控制、位置控制:转矩限制值 |

| 软元件编号 | 信号名称                        | 内容                                                                                                                                                                             |
|-------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RXE   | 频率设定/转矩指令完成<br>(RAM、EEPROM) | 频率设定指令/转矩指令 (RYE) 设为1,将设定频率/转矩指令写入至变频器的 RAM 与 EEPROM 时,此信号为1。将频率设定指令/转矩指令 (RYE) 设为0时,此信号为0。 实时无传感器矢量控制、PM 无传感器矢量控制时,以下的值也被同时写入 RAM 和 EEPROM 中。 • 转矩控制时:转矩指令值 • 速度控制、位置控制:转矩限制值 |
| RXF   | 命令代码执行完成                    | 将命令代码执行要求 (RYF)设为1,执行对应命令代码 (RWw2、10、12、14、16、18)的处理,完成后,此信号为1。将命令代码执行要求 (RYF)设为0时,此信号为0。                                                                                      |
| RX16  | — (NET Y3 功能) *1            | 分配给 Pr. 195 的功能起动。                                                                                                                                                             |
| RX17  | — (NET Y4 功能) *1            | 分配给 Pr. 196 的功能起动。                                                                                                                                                             |
| RX1A  | 错误状态标志                      | 发生变频器错误 (保护功能起动)时,此信号为1。                                                                                                                                                       |
| RX1B  | 远程站 Ready                   | 接通电源、硬件复位后,完成初始化设定并且变频器变为 READY 状态时,此信号为 1。<br>发生变频器错误(保护功能起动)时,此信号为 0。<br>在从主站模块读取 / 写入的互锁中使用。                                                                                |
| RX1C  | 定位完成*3                      | 1: 定位完成                                                                                                                                                                        |
| RX1D  | 位置指令动作中*3                   | 1: 位置指令动作中                                                                                                                                                                     |
| RX1E  | 原点复位完成* <sup>3</sup>        | 1: 原点复位完成                                                                                                                                                                      |
| RX1F  | 原点复位异常* <sup>3</sup>        | 1: 原点复位错误警报发生中                                                                                                                                                                 |

<sup>\*1</sup> 信号名为初始值时的信号名。可通过 Pr. 190 ~ Pr. 196 变更输出信号的功能。 Pr. 190 ~ Pr. 196 的详细内容,请参照 FR-E800 使用手册(功能篇)。

<sup>\*2</sup> 初始值未分配信号。分配给 RX9 ~ RXB 的信号通过 Pr. 313 ~ Pr. 315 来设定。 Pr. 313 ~ Pr. 315 的详细内容,请参照 FR-E800 使用手册(功能篇)。

<sup>\*3</sup> 信号是固定的。无法通过参数变更。

# 7.2 远程寄存器的详细说明

# 7.2.1 远程寄存器 (主站模块→变频器 (FR-A8NC))

### ◆ 远程寄存器的内容

| 软元件编号 | 信号名称                | 内容                                                                                                                                                                                                      |  |
|-------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| RWwO  | 监视代码 1、2            | 设定进行监视的监视代码(参照 <b>第 71 页</b> )。设定后,通过将 RYC 的信号设为 1,从而将指定的监视数据设定于 RWr0、RWr1。                                                                                                                             |  |
| RWw1  | 设定频率*1              | 指定设定频率 / 转数 (机械速度)。此时通过 RYD、RYE 的信号来区别是写入 RAM 中还是写入<br>EEPROM 中。在本寄存器中设定后,通过将 RYD 或 RYE 设为 1 来写入频率。频率写入完成后,对应<br>于输入指令,RXD 和 RXE 中任意一个为 1。<br>设定范围为 0 ~ 590.00Hz (0.01Hz 单位)。设定 590.00Hz 时,应写入 "59000"。 |  |
| KWW1  | 转矩指令值               | 在实时无传感器矢量控制时,设定 Pr. 544 CC-Link 扩展设定= "0、1、12" 且 Pr. 804 转矩指令权选择= "3、5"后,将指定转矩指令值。通过 RYD 或 RYE 写入变频器。Pr. 805 转矩指令值 (RAM)、Pr. 806 转矩指令值 (RAM, EEPROM) 也同时被更新。设定范围及设定单位依从 Pr. 804 的设定。(参照第72页)            |  |
| RWw2  | 链接参数扩展设定 / 命令<br>代码 | 对用于执行改写运行模式、写入/读取参数、参照错误、清除错误等的命令代码(参照 <b>第</b> 67 页)进行设定。寄存器设定完成后,通过将 RVF 设为 1 来执行命令。命令执行完成后,RXF 为 1。<br>Pr. 544 为 "0"以外的值时,高位 8 位为链接参数扩展设定。<br>例)读取 Pr. 160 时→命令代码为 H0200。                            |  |
| RWw3  | 写入数据                | 对通过 RWw2 命令代码指定的数据进行设定。(必要时)<br>设定 RWw2 与本寄存器后,将 RYF 设为 1。<br>无需写入代码时,设为 0。                                                                                                                             |  |
| RWw4  | 监视代码 3              |                                                                                                                                                                                                         |  |
| RWw5  | 监视代码 4              | 几台平台收到66位列15万。几台号 第34位 DVO 几头 1 - 松台66位河来积极65左云 DW 4 - 7                                                                                                                                                |  |
| RWw6  | 监视代码 5              | 设定进行监视的监视代码。设定后,通过将 RYC 设为 1,指定的监视数据将储存至 RWr4 ~ 7。                                                                                                                                                      |  |
| RWw7  | 监视代码 6              |                                                                                                                                                                                                         |  |
| RWw8  | 异常内容 No.            | 设定读取前几次的异常内容。可读取至 9 次之前的异常内容。<br>(低位 8 位固定为 H00)<br>高位 8bit: H00 (最新的异常)~ H09 (9 次前的异常)<br>高位 8 位中,设定为 H0A ~ HFF 时,异常内容为不定值。                                                                            |  |

| 软元件编号                                      | 信号名称                   |                                                                                                                                                                                                                                                         | 内容                                                                                                   |  |  |
|--------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| RWw9                                       | PID 目标值* <sup>2</sup>  | 设定 PID 目标值。<br>设定范围: 0 ~ 100.00%                                                                                                                                                                                                                        | • 输入将设定值增大 100 倍后的数值。<br>例如设定 100.00% 时,输入"10000"。                                                   |  |  |
| RWwA                                       | PID 测量值 * <sup>2</sup> | 设定 PID 测量值。<br>设定范围: 0 ~ 100.00%                                                                                                                                                                                                                        | • PID 控制的详细内容,请参照 FR-E800 使用手册 (功能篇)。                                                                |  |  |
| RWwB                                       | PID 偏差 * <sup>2</sup>  | 设定 PID 偏差。<br>设定范围: −100.00% ~ 100.00%                                                                                                                                                                                                                  |                                                                                                      |  |  |
|                                            | 转矩指令值                  | 以指定转矩指令值。通过 RYD 或 RYE                                                                                                                                                                                                                                   | l),设定 Pr. 544 = "14、18"且 Pr. 804 = "3、5"后,可写入变频器。Pr. 805、Pr. 806 也同时被更新。设定范围与设<br>直围外的数据时,保持上一次的值不变。 |  |  |
| RWwC                                       | 转矩限制值                  | 速度控制时或位置控制时(实时无传感器矢量控制 / PM 无传感器矢量控制),设定 Pr. 544 = "14、18"、Pr. 804 = "3、5"、Pr. 810 转矩限制输入方法选择= "2"后,可以指定转矩限制值。通过 RYD 或 RYE 写入变频器。Pr. 805、Pr. 806 也同时被更新。设定范围与设定单位依从Pr. 804 的设定(绝对值)。设定了范围外的数据时,保持上一次的值不变。                                               |                                                                                                      |  |  |
| RWw10,<br>RWw12,<br>RWw14,<br>RWw16, RWw18 | 链接参数扩展设定 / 命令<br>代码    | 对用于执行改写运行模式、写入/读取参数、参照错误、清除错误等的命令代码(参照第 67 页)进行设定。寄存器设定完成后,通过将 RYF 设定为 1,将按照 RWw2、10、12、14、16、18 的顺序执行命令,直至 RWw18 为止命令执行完成后,RXF 变为 1。不执行基于 RWw10 $\sim$ 18 的命令时,设定为 HFFFF。(RWw2 务必执行。)<br>高位 8 位为链接参数扩展设定。<br>例)读取 Pr. 160 时 $\rightarrow$ 命令代码为 H0200。 |                                                                                                      |  |  |
| RWw11,<br>RWw13,<br>RWw15,<br>RWw17, RWw19 | 写入数据                   | 对通过 RWw10、12、14、16、18 命令代码指定的数据进行设定。(必要时) RWw10 和 11、12 和 13、14 和 15、16 和 17、18 和 19 为分别对应关系。设定与 RWw10、12、14、16、18 命令代码对应的本寄存器后,将 RYF 设为 1。 无需写入数据时,设为 0。                                                                                               |                                                                                                      |  |  |

- \*1 Pr.541 频率指令符号选择 = "1"时,设定频率为带符号。设定值为负时,为反转启动指令后的指令。设定范围: -327.68Hz ~ 327.67Hz (-327.68 ~ 327.67) 0.01Hz 单位详细内容请参照第44页。
- \*2 依据 Pr. 128、Pr. 609、Pr. 610 的设定情况决定是否有效。详细内容,请参照 FR-E800 使用手册 (功能篇)。设定了范围外的数据时,保持上一次的设定值不变。

# 7.2.2 远程寄存器 (变频器 (FR-A8NC) → 主站模块)

### ◆ 远程寄存器内容

| 软元件编号 | 信号名称                         | 内容                                                                                                                              |  |  |  |  |  |
|-------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| RWr0  | 第1监视值                        | RYC 为 1 时,在监视代码 (RWwO)的低位 8 位中设定指定的监视值。                                                                                         |  |  |  |  |  |
| RWr1  | 第2监视值<br>(输出频率)              | 监视代码 $(RWw0)$ 的高位 $8$ 位设定为 "0"时,将设定当前的输出频率。监视代码 $(RWw0)$ 的高位 $8$ 位设定为 "0"以外的值且 RYC 为 $1$ 时,在监视代码 $(RWw0)$ 的高位 $8$ 位中设定指定的监视值。   |  |  |  |  |  |
|       | 应答代码<br>(设定 Pr. 544 = 0 时)   | 将 RYD 或 RYE 设为 1 时,设定相对于频率设定指令的应答代码。将 RYF 设为 1 时,设定与 RWw2 命令<br>代码对应的应答代码。正常回答设定为 "0",数据错误、模式错误等情况时,将设定为 "0"以外<br>的值。(参照第 65 页) |  |  |  |  |  |
| RWr2  | 应答代码 1<br>(设定 Pr. 544 ≠ 0 时) | RWr2 的低位 8 位<br>将 RYD 或 RYE 设为 1 时,设定相对于频率设定指令 (转矩指令 / 转矩限制)的应答代码。(参照 <b>第 65</b><br>页)                                         |  |  |  |  |  |
|       | 应答代码 2<br>(设定 Pr. 544 ≠ 0 时) | RWr2 的高位 8 位<br>将 RYF 设定为 1 时,设定与 RWw2 命令代码对应的应答代码。(参照 <b>第 65 页</b> )                                                          |  |  |  |  |  |
| RWr3  | 读取数据                         | 正常回答时,将设定与通过命令代码发出指令的命令相对的应答数据。                                                                                                 |  |  |  |  |  |
| RWr4  | 第3监视值                        |                                                                                                                                 |  |  |  |  |  |
| RWr5  | 第4监视值                        | DVC 生 1 时                                                                                                                       |  |  |  |  |  |
| RWr6  | 第5监视值                        | RYC 为 $1$ 时,存储监视代码 (RWw4 $\sim$ 7)中指定的监视值。                                                                                      |  |  |  |  |  |
| RWr7  | 第6监视值                        |                                                                                                                                 |  |  |  |  |  |
| RWr8  | 异常内容<br>(异常数据)               | 在 RWw8 中指定的异常内容 No. 的异常数据存储于低位 8 位。高位 8 位为回送的指定异常内容 No.。                                                                        |  |  |  |  |  |
| RWr9  | 异常内容<br>(输出频率)               | 存储 RWw8 中指定的异常内容 No. 的输出频率。                                                                                                     |  |  |  |  |  |
| RWrA  | 异常内容<br>(输出电流)               | 始终存储 RWw8 中指定的异常内容 No. 的输出电流。                                                                                                   |  |  |  |  |  |
| RWrB  | 异常内容<br>(输出电压)               | 始终存储 RWw8 中指定的异常内容 No. 的输出电压。                                                                                                   |  |  |  |  |  |
| RWrC  | 异常内容<br>(通电时间)               | 始终存储 RWw8 中指定的异常内容 No. 的通电时间。                                                                                                   |  |  |  |  |  |

| 软元件编号           | 信号名称 | 内容                                                                                                   |
|-----------------|------|------------------------------------------------------------------------------------------------------|
| RWr10∼<br>RWr19 | 应答代码 | 将 RYF 设为 1 时,存储与 RWw10、12、14、16、18 命令代码对应的应答代码。正常回答存储 "0",<br>有数据错误、模式错误等情况时,将存储 "0" 以外的值。(参照第 65 页) |
| KWI19           | 读取数据 | 正常回答时,将设定与通过命令代码发出指令的的命令相对的应答数据。                                                                     |

### ◆ 应答代码的内容

与命令执行相对的应答设定于 RWr2、10、12、14、16、18。

讲行频率设定 (RYD、RYE)、命令代码执行 (RYF) 时,执行后应确认远程寄存器的应答代码 (RWr2)。

|            | 数据    | 项目                       | 异常内容                | 备注                                               |
|------------|-------|--------------------------|---------------------|--------------------------------------------------|
|            | H0000 | 正常                       | 无异常 (命令代码执行正常完成)    | •与设定Pr. 544= "0"时的RWr2相                          |
| hh / D 777 | H0001 | 写入模式错误                   | 网络运行模式为停止中以外时试图写入参数 | 对的应答代码                                           |
| 应答代码       | H0002 | 参数选择错误                   | 设定了未登录的代码编号         | • 与设定 Pr. 544 = "18" 时的<br>RWw10、12、14、16、18 相对的 |
|            | H0003 | 设定范围错误                   | 设定数据超出了数据允许范围       | 应答代码                                             |
|            | H00   | 正常                       | 无异常 (命令代码执行正常完成)    |                                                  |
| 应答代码 1*1   | H01   | 写入模式错误*2                 | 网络运行模式为停止中以外时试图写入参数 |                                                  |
| 应合代码 I 1   | Н03   | 频率指令/转矩指令/<br>转矩限制设定范围错误 | 设定了范围外的值            | 与设定 <b>Pr. 544</b> ≠ "0" 时的 RWr2                 |
|            | H00   | 正常                       | 无异常 (命令代码执行正常完成)    | 相对的应答代码                                          |
| 应答代码 2     | H01   | 写入模式错误                   | 网络运行模式为停止中以外时试图写入参数 |                                                  |
|            | H02   | 参数选择错误                   | 设定了未登录的代码编号         |                                                  |
|            | Н03   | 设定范围错误                   | 设定数据超出了数据允许范围       |                                                  |

\*1 若执行转矩指令/转矩限制,则应答代码1的内容将会变更。(设定 Pr. 544 = "14、18"时)

应答代码的高位 4 位为转矩指令 / 转矩限制, 低位 4 位为与频率指令相对的应答代码。



例)转矩指令为设定范围错误时,变为H0030。



与转矩指令相对的应答代码

\*2 仅频率设定指令时有效。

# 7.2.3 命令代码

#### ◆ 命令代码的内容

命令代码通过远程寄存器 (RWw) 设定。(参照**第 62 页**) 通过命令代码读取的内容会存储在远程寄存器 (RWr) 中。(参照**第 64 页**)

|        | 项目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 命令代码 | 数据内容                                                                                      |                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-------------------------------------------------------------------------------------------|----------------|
| 运行模式   | \- \langle - \la |           | Н7В  | H0000: 网络运行模式<br>H0001: 外部运行模式、外部 JOG 运行模式<br>H0002: PU 运行模式、外部 /PU 组合运行模式 1、2、PUJOG 运行模式 |                |
| 色11 侯八 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 写入        | HFB  | H0000: 网络运行模式<br>H0001: 外部运行模式<br>H0002: PU 运行模式(设定 Pr. 79 = "6"时)                        |                |
|        | 输出频率 / 转数*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 读取        | Н6Г  | H0000 ~ HFFFF<br>输出频率: 单位 0.01Hz                                                          |                |
|        | 输出电流                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 读取        | Н70  | H0000 ~ HFFFF<br>输出电流 (16 进制): 单位 0. 01A                                                  |                |
| 监视器    | 输出电压                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 读取        | H71  | H0000 ~ HFFFF<br>输出电压 (16 进制):单位 0. 1V                                                    |                |
|        | 特殊监视器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 读取        | H72  | H0000 ~ HFFFF: 通过命令代码 HF3 选择的监视数据                                                         |                |
|        | 44.54 (6.30 88.4.47 (1).77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 读取        | H73  | H01 ~ HFF: 监视选择数据                                                                         |                |
|        | 特殊监视器选择代码                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 特殊监视器选择代码 | 写入   | HF3*2                                                                                     | 参照监视代码(参照第71页) |

|                  | 项目 读取 / 命令代码<br>写入        |    | 命令代码      | 数据内容                                                                                                                                                                                                                                                                                          |
|------------------|---------------------------|----|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 监视器              | 异常内容                      | 读取 | H74 ∼ H78 | H0000 ~ HFFFF: 过去 2 次的异常内容 b15       b8b7       b0         h74       1次前的异常       最新的异常         H75       3次前的异常       2次前的异常         H76       5次前的异常       4次前的异常         H77       7次前的异常       6次前的异常         H78       9次前的异常       8次前的异常         F常内容的数据代码及详细内容,请参照 FR-E800 使用手册(维护篇)。 |
| 设定频率             | 设定频率(RAM)<br>设定频率(EEPROM) |    | H6D       | 从 RAM 或 EEPROM 中读取设定频率 / 转数。<br>H0000 ~ HE678: 设定频率 单位 0.01Hz                                                                                                                                                                                                                                 |
| 设定频率             |                           |    | Н6Е       | • 通过实时无传感器矢量控制进行转矩控制时,设定 Pr. 544 = "0、1、12" 且 Pr. 804 = "3、5" 后,读取转矩指令值。设定范围依从 Pr. 804 的设定值。                                                                                                                                                                                                  |
| 设定频率             | (RAM) *3                  | 写入 | HED       | 在 RAM 或 EEPROM 中写入设定频率 / 转数。<br>H0000 ~ HE678 (0 ~ 590. 00Hz): 頻率 単位 0. 01Hz<br>・连续变更设定频率的情况下,应写入变频器的 RAM 中。(命令代码,HED)                                                                                                                                                                        |
| 设定频率<br>(RAM 与 E | EEPROM) *3                | 写入 | НЕЕ       | •通过实时无传感器矢量控制进行转矩控制时,设定 Pr. 544 = "0、1、12" 且 Pr. 804 = "3、5" 后,读取转矩指令值。<br>设定范围依从 Pr. 804 的设定值。                                                                                                                                                                                               |

| 项目           | 读取 /<br>写入 | 命令代码      | 数据内容                                                                                                                                                                                                                                                                                                               |  |
|--------------|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 参数           | 读取         | H00 ∼ H63 | <ul> <li>・请参照 FR-E800 使用手册 (功能篇)的命令代码,根据需要进行读取、写入。</li> <li>Pr. 77、Pr. 79 无法写入。</li> <li>设定 Pr. 100 以后的参数时,需要进行链接参数扩展设定。</li> <li>・参数设定值 "8888" 设定为 65520 (HFFF0),设定值 "9999" 设定为 65535 (HFFFF)。</li> </ul>                                                                                                         |  |
| <b>参</b> 奴   | 写入         | H80 ∼ HE3 | • 频繁变更参数时,将 Pr. 342 的设定值设为 "1" 并写入至 RAM。(详细内容,请参照 FR-E800 使用手册 (通讯篇)。)                                                                                                                                                                                                                                             |  |
| 异常内容批量清除     | 写入         | HF4       | H9696: 异常内容批量清除                                                                                                                                                                                                                                                                                                    |  |
| 参数清除<br>全部清除 | 写入         | HFC       | 将各参数恢复至初始值。可根据数据选择有无通讯用参数的清除(○:有清除、×:无清除)  • 参数清除 H9696:清除通讯用参数。 H5A5A <sup>84</sup> :不清除通讯用参数。  • 参数全部清除 H9966:清除通讯用参数。 H55AA <sup>84</sup> :不清除通讯用参数。 H55AA <sup>84</sup> :不清除通讯用参数。 从于是否清除各项参数,请参照 FR-E800 使用手册(功能篇)。 使用 H9696、H9966 执行清除后,通讯相关的参数设定也会恢复至初始值,因此重新开始运行时必须重新设定参数。执行清除后,命令代码 HEC、HF3、HFF 的设定也会被清除。 |  |
| 变频器复位        | 写入         | HFD       | H9696: 变频器复位。                                                                                                                                                                                                                                                                                                      |  |
| 链接参数扩展设定*5   | 读取         | H7F       | 进行参数内容的切换。                                                                                                                                                                                                                                                                                                         |  |
| 世女/多数1 版 以 走 | 写入         | HFF       | 设定值的详细内容,请参照 FR-E800 使用手册 (功能篇)的命令代码一览表。                                                                                                                                                                                                                                                                           |  |

| 项目                 | 读取 /<br>写入 | 命令代码 | 数据内容                                                     |
|--------------------|------------|------|----------------------------------------------------------|
| AT 0 42 M 171 M 36 | 读取         | Н6С  | 读取、写入偏置 • 增益的参数。设定值的详细内容,请参照 FR-E800 使用手册 (功能篇)的校正参数一览表。 |
| 第2参数切换*6           | 写入         | НЕС  | H00: 频率*7<br>H01: 设定参数的模拟值<br>H02: 从端子输入的模拟值             |

- \*1 设定 Pr. 52 操作面板主显示器选择 = "100" 时,在停止时监视频率设定值,在运行时监视输出频率。
- \*2 写入数据为16进制,仅低位2位有效。(高位2位被忽略。)
- \*3 也可通过远程寄存器 (RWw1) 进行设定。
- \*4 即使通过 H5A5A、H55AA 执行了清除,如果在清除处理过程中电源 OFF,则通讯用参数会恢复至初始值。
- \*5 仅 Pr. 544 = "0" 时设定有效。Pr. 544 ≠ "0" 时,在 RWw2 或 RWw10、12、14、16、18 中进行设定。(参照第 62 页)
- \*6 链接参数扩展设定= "1、9" 时,可读取、写入。
- \*7 增益频率也可通过 Pr. 125 (命令代码 H99)、Pr. 126 (命令代码 H9A) 写入。

### • NOTE

• 读取了 32bit 大小的参数设定值或监视内容的情况下,当读取值超过了 HFFFF 时,返回数据为 HFFFF。

### 7.2.4 监视代码

通过命令代码的特殊监视选择 No. 和在远程寄存器 RWw0、RWw4 ~ 7 中设定监视代码,可以监视变频器的各种信息。

监视代码 (RWw0) 通过低位 8 位选择第 1 监视值 (RWr0)、通过高位 8 位选择第 2 监视值 (RWr1)的内容。

例

第1监视 (RWr0) ···输出电流、第2监视 (RWr1) ···设为运行速度时→监视代码 (RWw0) H0602

• Pr. 544 = "12、14、18" 时,可以选择监视代码 3 (RWw4)~监视代码 6 (RWw7)的内容。

| 监视代码 | 第 2 监视内容<br>(高位 8 位) | 第 1、第 3 ~ 6 监视内容<br>(低位 8 位) | 单位     |
|------|----------------------|------------------------------|--------|
| H00  | 输出频率                 | 不监视 (监视值固定为0)                | 0.01Hz |
| H01  | 输出频率                 |                              | 0.01Hz |
| H02  | 输出电流                 |                              | 0. 01A |
| H03  | 输出电压                 |                              | 0.1V   |
|      |                      |                              |        |
|      |                      |                              |        |
| •    |                      |                              |        |

# NOTE

- H01 以后的监视代码(监视项目)与变频器本体的 RS-485 通讯特殊监视相同。监视代码与监视内容的详细情况,请参照 FR-E800 使用手册 (功能篇)的监视显示项。
- 通过远程寄存器 RWw0、RWw4  $\sim$  7 监视时,监视代码 H00(输出频率)、H01(输出频率)、H05(设定频率)的内容与 Pr. 37、 Pr. 53 的设定无关,始终显示频率。

### 7.3 基于 CC-Link 通讯的转矩指令 / 转矩限制

实时无传感器矢量控制、PM 无传感器矢量控制时,可进行基于 CC-Link 通讯的转矩指令 / 转矩限制。在速度控制时或位置控制时进行转矩限制,在转矩控制时发出转矩指令。进行转矩限制时,需要设定 Pr. 810 转矩限制输入方法选择= "2"。可通过 Pr. 804 转矩指令权选择选择转矩指令 / 转矩限制的设定方法。(PM 电机无法进行转矩控制。)

| Pr. | 名称             | 初始值 | 设定范围 | 内容                                                                                                                                                              |                                                                                                    |
|-----|----------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|     | 转矩指令权选择        | 0   | 0    | 基于端子 4 的模拟输入的转矩指令                                                                                                                                               |                                                                                                    |
|     |                |     |      | 1                                                                                                                                                               | 基于 CC-Link 通讯的转矩指令 / 转矩限制 (FR-A8NC)  • 基于参数设定 (Pr. 805 或 Pr. 806) 的转矩指令 / 转矩限制 (-400% ~ 400%) *1*2 |
|     |                |     | 3    | 基于 CC-Link 通讯的转矩指令 / 转矩限制(FR-A8NC)<br>•基于参数设定 (Pr. 805 或 Pr. 806)的转矩指令 / 转矩限制( $-400\%\sim400\%$ )*1*2<br>•可通过远程寄存器 RWw1、RWwC 进行设定( $-400\%\sim400\%$ )*2       |                                                                                                    |
| 804 |                |     | 4    | 基于 16 位数字输入的转矩指令 (FR-A8AX)*3                                                                                                                                    |                                                                                                    |
|     |                |     | 5    | 基于 CC-Link 通讯的转矩指令 / 转矩限制 (FR-A8NC)  • 基于参数设定 (Pr. 805 或 Pr. 806) 的转矩指令 / 转矩限制 (-327. 68% ~ 327. 67%) *1*2  • 可通过远程寄存器 RWw1、RWwC 进行设定 (-327. 68% ~ 327. 67%) *2 |                                                                                                    |
|     |                |     | 6    | 基于 CC-Link 通讯的转矩指令 / 转矩限制 (FR-A8NC)<br>• 基于参数设定 (Pr. 805 或 Pr. 806)的转矩指令 / 转矩限制 (-327. 68% ~ 327. 67%)*1*2                                                      |                                                                                                    |
|     | 转矩限制输入方法<br>选择 | 0   | 0    | 内部转矩限制 (基于参数设定的转矩限制)                                                                                                                                            |                                                                                                    |
| 810 |                |     | 1    | 外部转矩限制 (基于端子 4 的转矩限制)                                                                                                                                           |                                                                                                    |
|     | ~311           |     | 2    | 内部转矩限制 2 (基于 CC-Link 通讯的转矩限制 (FR-A8NC))                                                                                                                         |                                                                                                    |

- \*1 也可以通过操作面板进行设定。
- \*2 将转矩限制设为负值时,通过绝对值进行限制。
- \*3 仅在安装了 FR-A8AX 的情况下有效。详细内容,请参照 FR-A8AX E 套件使用手册。

### ◆ 通过参数与控制方法变更功能的输入输出软元件一览

| Pr. 544  | tA > tA       th = /th |                     | 实时无传感器矢量控制 /PM 无传感器矢量控制     |                     |  |  |
|----------|------------------------|---------------------|-----------------------------|---------------------|--|--|
| 设定值      | 输入输出软元件                | │ V/F 控制 / 先进磁通矢量控制 | 速度控制 / 位置控制                 | 转矩控制 *3             |  |  |
| _        | RYD                    | 频率设定指令 (RAM)        | 频率设定/转矩限制指令 (RAM)           | 转矩指令 (RAM)          |  |  |
| _        | RYE                    | 频率设定指令 (RAM、EEPROM) | 频率设定/转矩限制指令(RAM、<br>EEPROM) | 转矩指令 (RAM、EEPROM)   |  |  |
| _        | RXD                    | 频率设定完成 (RAM)        | 频率设定/转矩限制完成 (RAM)           | 转矩指令完成 (RAM)        |  |  |
| _        | RXE                    | 频率设定完成 (RAM、EEPROM) | 频率设定/转矩限制完成(RAM、<br>EEPROM) | 转矩指令完成 (RAM、EEPROM) |  |  |
| 0, 1, 12 | RWw1                   | 设定频率                | 设定频率                        | 转矩指令*1              |  |  |
| 14、18    | KWWI                   | 反足娛學                | 反足娛學                        | 设定频率                |  |  |
| 0, 1, 12 | DW C                   |                     | _                           | _                   |  |  |
| 14、18    | RWwC                   | _                   | 转矩限制*1*2                    | 转矩指令* <sup>1</sup>  |  |  |

<sup>\*1</sup> 需设定为 Pr. 804 = "3、5"。

<sup>\*2</sup> 需设定为 Pr. 810 = "2"。

<sup>\*3</sup> PM 电机无法进行转矩控制。

### ◆ 转矩指令设定方法与速度限制用参数

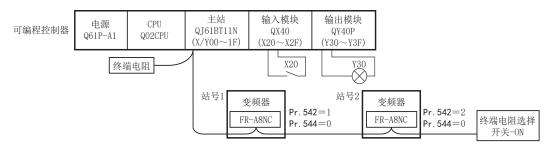
| Pr. 804<br>设定值 | Pr. 544 设定值      | 转矩指令设定方法<br>(以下任一方法均可)                                                                                                                                                                                                                                 | 速度限制用<br>参数        |
|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 3、5            | 0、1、12           | <ul> <li>在 RWwn+1 中设定转矩指令,将 RYD 或 RYE 设为 1。</li> <li>在 RWwn+2 中设定命令代码HED或HEE,在 RWwn+3 中设定转矩指令值,将 RYF 设为 1。(可通过指令代码 H6D、H6E 读取转矩指令值)</li> <li>设为链接参数扩展设定= H08,在 RWwn+2 中设定命令代码 H85 或 H86,在 RWwn+3 中设定转矩指令值,将 RYF 设为 1。(Pr. 805 或 Pr. 806 写入)</li> </ul> | Pr. 808<br>Pr. 809 |
|                | 14、18            | <ul> <li>在 RWwn+C 中设定转矩指令,将 RYD 或 RYE 设为 1。</li> <li>设为链接参数扩展设定= H08,在 RWwn+2 中设定命令代码 H85 或 H86,在 RWwn+3 中设定转矩指令值,将 RYF 设为 1。(Pr. 805 或 Pr. 806 写入)</li> </ul>                                                                                         | Pr. 807            |
| 1, 6           | 0、1、12、14、<br>18 | 设为链接参数扩展设定= H08,在 RWwn+2 中设定命令代码 H85 或 H86,在 RWwn+3 中设定转矩指令值,将 RYF 设为 1。(Pr. 805 或 Pr. 806 写入)                                                                                                                                                         | Pr. 607            |
| 0, 4           | _                | 基于 CC-Link 通讯的转矩指令不可设定                                                                                                                                                                                                                                 |                    |

### ◆ 转矩限制设定方法

| Pr. 804<br>设定值 | Pr. 810<br>设定值 | Pr. 544 设定值      | 转矩限制设定方法<br>(以下任一方法均可)                                                                                                                                          |
|----------------|----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3, 5           | 2              | 14、18            | <ul> <li>在 RWwn+C 中设定转矩限制值,将 RYD 或 RYE 设为 1。</li> <li>设为链接参数扩展设定= H08,在 RWwn+2 中设定命令代码 H85 或 H86,在 RWwn+3 中设定转矩限制值,将 RYF 设为 1。(Pr. 805 或 Pr. 806 写入)</li> </ul> |
| 1, 6           |                | 0、1、12、14、<br>18 | 设为链接参数扩展设定= H08,在 RWwn+2 中设定命令代码 H85 或 H86,在 RWwn+3 中设定转矩限制值,<br>将 RYF 设为 1。(Pr. 805 或 Pr. 806 写入)                                                              |

### ◆ Pr. 804 与设定范围、实际的转矩指令 / 转矩限制的关系 (基于 CC-Link 通讯的设定时)

| Pr. 804 设定值 | 设定范围                         | 实际的转矩指令                 | 实际的转矩限制           |
|-------------|------------------------------|-------------------------|-------------------|
| 1、3         | 600~1400(1%单位)* <sup>1</sup> | −400 ~ 400%             | $0\sim400\%$      |
| 5, 6        | −32768 ~ 32767 (2 的补码) *1    | $-327.68 \sim 327.67\%$ | $0 \sim 327.67\%$ |


\*1 转矩限制的设定范围为绝对值。

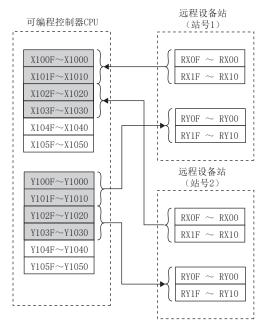
# 8 编程示例

通过顺控程序控制变频器的程序示例如下。

| 项目             | 程序示例                   | 参照页 |
|----------------|------------------------|-----|
| 变频器状态读取        | 从主站的缓冲存储器中读取变频器的状态     | 78  |
| 运行模式的设定        | 设定为网络运行模式              | 79  |
| 运行指令的设定        | 指令正转、中速信号              | 80  |
| 监视功能的设定        | 监视输出频率                 | 81  |
| 参数读取           | 读取 Pr. 7 加速时间          | 82  |
| 参数写入           | 将 Pr. 7 加速时间设定为 "3.0s" | 83  |
| 运行频率 (运行速度)的设定 | 设定为 50.00Hz            | 84  |
| 异常内容的读取        | 读取变频器报警                | 86  |
| 变频器复位          | 变频器发生错误时,执行变频器复位       | 87  |

### ◆ 编程示例的系统构成



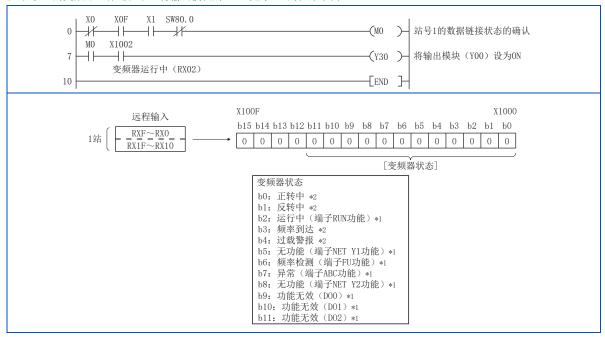

### ◆ 主站的网络参数的设定

编程示例中,如下设定有网络参数。


|           | 项目            | 设定条件          |  |
|-----------|---------------|---------------|--|
| 起始 I/O No |               | 0000          |  |
| 动作设定      | 数据链接<br>异常站设定 | 清除输入          |  |
|           | CPU STOP 时设定  | 刷新            |  |
| 类别        |               | 主站            |  |
| 模式设定      |               | 远程网 -Ver.1 模式 |  |
| 总连接台数     |               | 2台            |  |
| 远程输入(RX   | )             | X1000         |  |
| 远程输出(RY   | )             | Y1000         |  |
| 远程寄存器(I   | RWr)          | WO            |  |

| 项          | 目   | 设定条件  |  |  |
|------------|-----|-------|--|--|
| 远程寄存器(RWw  | 7)  | W100  |  |  |
| 特殊继电器(SB)  | 1   | SB0   |  |  |
| 特殊寄存器 (SW) | )   | SWO   |  |  |
| 重试次数       |     | 3     |  |  |
| 自动恢复台数     |     | 1     |  |  |
| CPU 宕机指定   |     | 停止    |  |  |
| 扫描模式指定     |     | 非同步   |  |  |
| 站信息        | 站类别 | 远程设备站 |  |  |

•可编程控制器 CPU 的软元件与远程设备站的远程输入输出 (RX、RY) 的关系如下所示。实际使用的软元件以阴影表示。



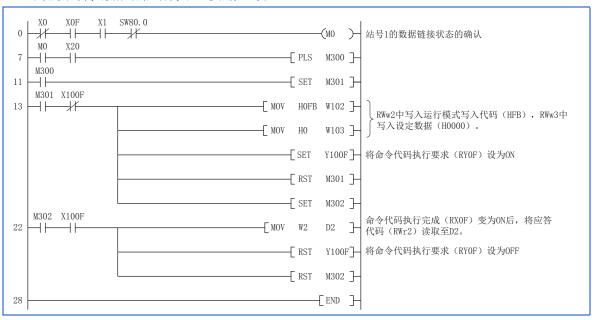

可编程控制器 CPU 的软元件与远程设备站的远程寄存器 (RWw、RWr)的关系如下所示。实际使用的软元件以阴影表示。



### 8.1 变频器状态读取的程序示例

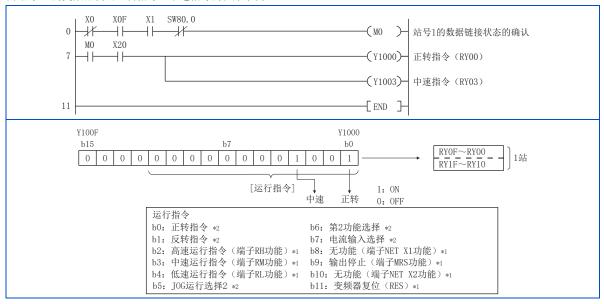
在站号 1 的变频器运行过程中,将输出模块的 Y00 设为 ON 的程序示例




- \*1 信号为初始值时的指令。可通过 Pr. 190 ~ Pr. 196、Pr. 313 ~ Pr. 315 (输出端子功能选择) 更换输出信号。
- \*2 信号是固定的。无法通过参数变更。

# 8.2 设定运行模式时的程序示例

以下对向变频器写入各种数据的程序进行说明。


将站号1的变频器的运行模式变更为网络运行的程序示例

- 运行模式写入代码: HFB (16 讲制)
- 网络运行的设定数据: H0000 (16 讲制) (参照**第 67 页**)
- D2 中设定命令代码执行时的应答代码。(参照第 65 页)



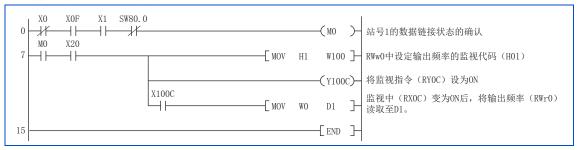
### 8.3 设定运行指令的程序示例

向站号1的变频器发出正转指令、中速指令的程序示例



- \*1 信号为初始值时的指令。可通过 Pr. 180 ~ Pr. 189 (输入端子功能选择) 更换输入信号。但是,根据设定,有的信号可能无法从可编程控制器接受指令。
  - (详细内容,请参照 FR-E800 使用手册 (功能篇)。)
- \*2 信号是固定的。无法通过参数变更。

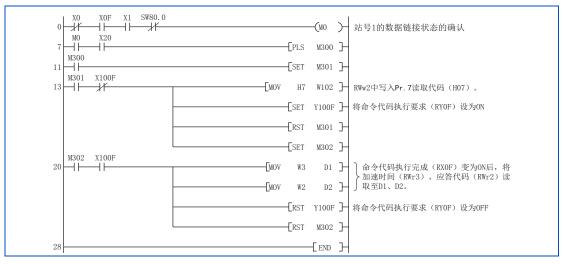
### 8.4 监视输出频率的程序示例


以下对读取变频器监视功能的程序进行说明。

将站号1 的变频器的输出频率读取至 D1 的程序示例

输出频率读取代码: H0001 (16 进制)

关于监视代码,请参照第71页。


(例)输出频率为60Hz 时,数据显示为H1770(6000)。



### 8.5 读取参数时的程序示例

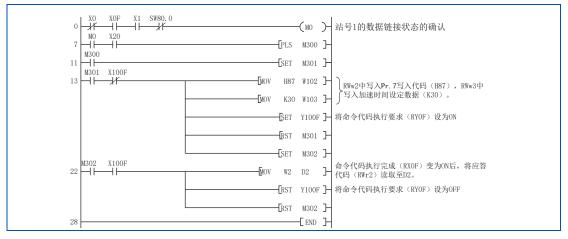
将站号 1 的变频器的 Pr. 7 加速时间读取至 D1 的程序示例

- 读取 Pr. 7 加速时间的命令代码: H07 (16 进制)
- 参数的命令代码,请参照 FR-E800 使用手册 (功能篇)。
- D2 中设定命令代码执行时的应答代码。(参照第65页)



# ■ NOTE

• 关于参数编号 100 以上的参数,应变更(设定为 H00 以外)链接参数扩展设定。设定值的详细内容,请参照 FR-E800 使用手册 (功能篇)的命令代码一览表。

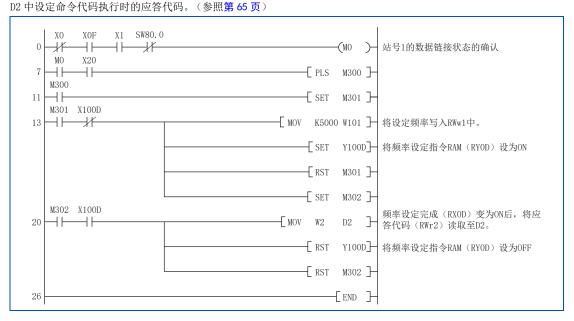

### 8.6 写入参数时的程序示例

将站号 1 的变频器的 Pr. 7 加速时间的设定值变更为 3.0s 的程序示例

- 加速时间写入的命令代码: H87 (16 进制)
- 加速时间设定数据: K30 (10 讲制)

参数的命令代码,请参照 FR-E800 使用手册 (功能篇)。

D2 中设定命令代码执行时的应答代码。(参照第65页)




## • NOTE

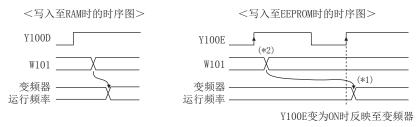
- 关于参数编号 100 以上的参数, 应变更(设定为 H00 以外)链接参数扩展设定。设定值的详细内容, 请参照 FR-E800 使用手册 (功能篇)的命令代码一览表。
- 关于其他的功能,请参照命令代码(参照第67页)。

### 8.7 设定运行频率时的程序示例

• 将站号 1 的变频器的运行频率变更为 50.00Hz 的程序示例 设定频率: K5000 10 进制



• 通过可编程控制器连续变更运行频率时


如果频率设定完成 (例: X100D) 为 0N, 应确认远程寄存器的应答代码是否为 H0000, 并连续变更设定数据 (例: W101)。

• 写入至 EEPROM 的程序示例

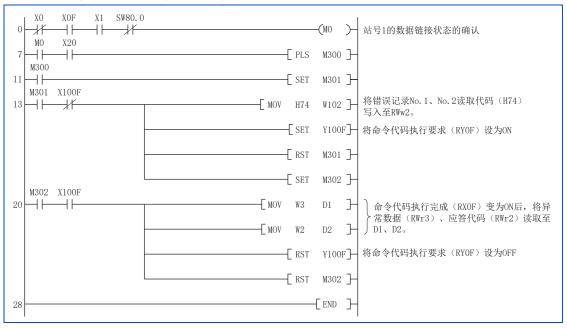
第84页的程序中,变更以下部分。

频率设定指令 Y100D → Y100E

频率设定完成 X100D → X100E



- \*1 EEPROM 时,将 Y100E 设定为 ON,仅写入 1 次。
- \*2 保持 Y100E-ON,即使变更设定数据也不会反映至变频器。


### 8.8 读取异常内容时的程序示例

将站号 1 的变频器的异常内容读取至 D1 的程序示例

• 读取错误记录 No. 1、No. 2 的命令代码: H74 (16 进制)

关于错误代码请参照 FR-E800 使用手册 (维护篇)。

D2 中设定命令代码执行时的应答代码。(参照第 65 页)



# 8

### 8.9 变频器发生错误时使变频器复位的程序示例

使站号1的变频器复位的程序示例

## ■ NOTE

- 通过上述 RY1A 进行的变频器复位,仅可在变频器错误时进行变频器复位。设定 Pr. 349 通讯复位选择= "0"时,与运行模式 无关,均可进行变频器复位。
- 通过命令代码 (HFD)、数据 (H9696) 在命令代码执行要求 (RYF) 中进行变频器复位时,需设定 Pr. 340 通讯启动模式选择≠ "0" (参照第 34 页) 或将网络运行模式作为运行模式。(程序示例参照第 79 页)
- 变频器复位的动作条件请参照第 41 页。

### 8.10 注意事项

#### ◆ 程序上的注意事项

- 由于主站的缓冲存储器的数据会与变频器始终进行链接刷新 (发送接收),因此在数据的写入、读取要求中无需对 TO 命令每次都执行扫描。即使对 TO 命令每次都执行扫描也不会发生问题。
- 頻繁执行FROM/TO命令,可能造成数据无法完全写入。通过缓冲存储器在变频器与顺控程序之间进行数据交换时,应进行握手并确认数据完全写入。

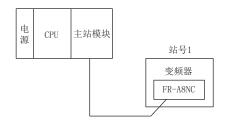


#### ◆ 操作及使用上的注意事项

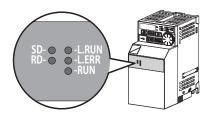
- 通过 CC-Link 通讯进行的运行过程中,仅接收来自可编程控制器的指令。
- 来自外部的运行指令及来自操作面板的运行指令将被忽略。
- 在多个变频器中重复设定站号将导致无法正常通讯。
- 通过 CC-Link 通讯进行的运行过程中,如果由于可编程控制器的故障、CC-Link 专用电缆断线等导致 Pr. 500 通讯异常等待时间中设定的时间以上的数据通讯停止,变频器的保护功能 (E. 0P1) 将启动。
- 通过 CC-Link 通讯进行的运行过程中,如果使可编程控制器 (主站) 复位或将可编程控制器的电源设为 0FF,数据通讯将停止、变频器的保护功能 (E. 0P1) 将启动。
- 进行可编程控制器(主站)复位时,先将运行模式切换为外部运行后再进行可编程控制器复位。
- Pr. 340 = "0"时,由于主电源恢复供电的变频器复位后运行模式会返回外部运行,若要重新启动网络运行,应通过顺控程序设定为网络运行模式。

变频器复位后,若要通过网络运行模式启动,应设定  $Pr.340 \neq "0"$ 。(参照**第**34页)

8


### ◆ 故障排除

| 内容                  | 检查要点                                                        |
|---------------------|-------------------------------------------------------------|
|                     | 选件模块 (FR-A8NC)及 CC-Link 专用电缆是否正确安装。(是否存在接触不良、断线等情况。)        |
|                     | Pr. 542 通讯站号(CC-Link) 设定是否正确。<br>(与程序是否一致、站号是否重复、站号是否超出范围。) |
| 运行模式不切换为网络运行模式      | 变频器是否为外部运行模式。                                               |
|                     | 运行模式切换程序是否正在运行。                                             |
|                     | 运行模式切换程序设计是否正确。                                             |
|                     | 启动变频器的程序是否正在运行。                                             |
| 即使处于网络运行模式,变频器也无法启动 | 启动变频器的程序设计是否正确。                                             |
| +94                 | Pr. 338 通讯运行指令权是否超出范围。                                      |

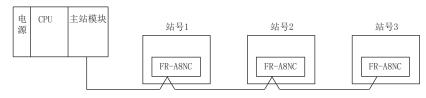

# 9 通过 LED 指示灯确认错误的方法

### 9.1 连接1台变频器时

连接1 台变频器的系统构成示例中,可从变频器的通讯选件(FR-A8NC)的 LED 状态进行判断的故障原因如下所示。 (主站模块的 SW、M/S、PRM 的 LED 显示设为已熄灯 (主站模块已正常设定)。)



运行状态显示LED




| LED 状态                                  |        |    |       |        | Б <sub>С</sub>                              |
|-----------------------------------------|--------|----|-------|--------|---------------------------------------------|
| RUN                                     | L. RUN | SD | RD    | L. ERR | 原因                                          |
| •                                       | •      | 0  | 0     | 0      | 正在进行正常通讯,但因噪声导致发生了 CRC 错误                   |
| •                                       | •      | 0  | 0     | 0      | 正常通讯                                        |
| •                                       | •      | 0  | 0     | 0      | H/W 异常                                      |
| •                                       | •      | 0  | 0     | 0      | H/W 异常                                      |
| •                                       | •      | 0  | 0     | 0      | 接收数据发生 CRC 错误,无法响应                          |
| •                                       | •      | 0  | 0     | 0      | 未收到发向本站的数据                                  |
| •                                       | •      | 0  | 0     | 0      | H/W 异常                                      |
| •                                       | •      | 0  | 0     | 0      | H/W 异常                                      |
| •                                       | 0      | 0  | 0     | 0      | 正在进行轮询响应,但刷新接收发生 CRC 错误                     |
| •                                       | 0      | 0  | 0     | 0      | H/W 异常                                      |
| •                                       | 0      | 0  | 0     | 0      | H/W 异常                                      |
| •                                       | 0      | 0  | 0     | 0      | H/W 异常                                      |
| •                                       | 0      | 0  | 0     | 0      | 发向本站的数据发生 CRC 错误                            |
| •                                       | 0      | 0  | 0     | 0      | 不存在发向本站的数据,或因噪声导致无法接收发向本站的数据                |
| •                                       | 0      | 0  | 0     | 0      | H/W 异常                                      |
| •                                       | 0      | 0  | 0     | 0      | 因断线等无法接收数据                                  |
| •                                       | 0      | 0  | 00    | •      | 波特率、站号设定不正确                                 |
| •                                       | •      | 0  | 0     | 0      | 波特率、站号在中途发生变化                               |
| 0                                       | 0      | 0  | 0     | 0      | 发生 WDT 错误 (H/W 异常)、电源切断、电源部故障               |
| <ul><li>○</li><li>⇒</li><li>ば</li></ul> |        |    | —<br> | -      | 主站为CC-Link Ver.1、FR-A8NC 为CC-Link Ver.2 的组合 |

●: 亮灯 ○: 熄灯 ◎: 闪烁

# 9.2 连接多台变频器时

在下述系统构成示例中,可从变频器的通讯选件(FR-A8NC)的 LED 状态进行判断的故障原因与处理方法如下所示。 (主站模块的 SW、M/S、PRM 的 LED 显示设为已熄灯 (主站模块已正常设定)。)



|                       | LED                                           | 状态                                |                                   |                         |                         |
|-----------------------|-----------------------------------------------|-----------------------------------|-----------------------------------|-------------------------|-------------------------|
| 主站模块                  | 变频器(FR-A8NC)                                  |                                   |                                   | 原因                      | 处理方法                    |
| 土均保坏                  | 站号1 立                                         |                                   | 站号 3                              |                         |                         |
| TIME O                | RUN ● L. RUN ● SD ● RD ● L. ERR ○             | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | 正常                      | _                       |
| 或<br>TIME ●<br>LINE 〇 | RUN O<br>L. RUN O<br>SD O<br>RD O<br>L. ERR O | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | 站号 1 的变频器与 FR-A8NC 接触不良 | 正确安装 FR-A8NC。<br>确认连接器。 |

|                                           | LED                                         | 状态                                          |                                             |                                                                                                   |                                                                             |
|-------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 主站模块                                      | 变频器(FR-A8NC)                                |                                             |                                             | 原因                                                                                                | 处理方法                                                                        |
| 工如铁坎                                      | 站号1                                         | 站号 2                                        | 站号 3                                        |                                                                                                   |                                                                             |
|                                           | RUN ● L. RUN ● SD ● RD ● L. ERR ○           | RUN ● L. RUN ○ SD* RD* L. ERR ○             | RUN ●<br>L. RUN ○<br>SD*<br>RD*<br>L. ERR ○ | 站号 2 的 FR-A8NC 以后的 L. RUN 已熄灯,因此<br>远程 I/O 模块 A 与 B 之间发生了 CC-Link 专用<br>电缆断线或已从 CC-Link 通讯用接口中脱落。 | 参考 LED 的亮灯情况,找出断线<br>部位并进行修理。                                               |
| TIME ○<br>LINE ○<br>或<br>TIME ●<br>LINE ○ | RUN ●<br>L. RUN ○<br>SD*<br>RD*<br>L. ERR ○ | RUN ●<br>L. RUN ○<br>SD*<br>RD*<br>L. ERR ○ | RUN ●<br>L. RUN ○<br>SD*<br>RD*<br>L. ERR ○ | CC-Link 专用电缆发生短路。                                                                                 | 找出 CC-Link 专用电缆的 3 线<br>(蓝、白、黄)中发生短路的电线<br>并进行修复。                           |
|                                           | RUN ●<br>L. RUN ○<br>SD*<br>RD*<br>L. ERR*  | RUN ●<br>L. RUN ○<br>SD*<br>RD*<br>L. ERR*  | RUN ●<br>L. RUN ○<br>SD*<br>RD*<br>L. ERR*  | CC-Link 专用电缆出现错误接线。                                                                               | 确认 CC-Link 通讯用一触式连接<br>器插头中是否已正确插入CC-Link<br>专用电缆的 3 线(蓝、白、<br>黄),修理错误接线部位。 |

<sup>●:</sup> 亮灯、○: 熄灯、◎: 闪烁、\*: 亮灯 • 闪烁 • 熄灯中任一种

# 9.3 运行过程中通讯停止时

- 选件模块 (FR-A8NC) 及 CC-Link 专用电缆是否正确安装。(是否存在接触不良、断线等情况。)
- 可编程控制器的程序是否正确执行。
- 是否因瞬时停电等导致数据通讯中断。

| LED 状态                                    |                                   |                                   |                                   |                                                                               |                                                                                           |  |
|-------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| 主站模块                                      | 变频器(FR-A8NC)                      |                                   |                                   | 原因                                                                            | 处理方法                                                                                      |  |
|                                           | ***                               |                                   | 站号 3                              |                                                                               |                                                                                           |  |
|                                           | RUN ● L. RUN ○ SD* RD ● L. ERR ○  | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | RUN ● L. RUN ○ SD* RD ● L. ERR ○  | 站号 1 的 FR-A8NC 与站号 3 的 FR-A8NC 的 L. RUN 己熄灯,因此站号 1 与站号 3 的变频器 的站号出现重复。        | 通过 Pr. 542 通讯站号(CC-<br>Link)将重复的变频器站号设为<br>正常后,重新启动电源。                                    |  |
| TIME ○<br>LINE ○<br>或<br>TIME ●<br>LINE ○ | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | RUN ● L. RUN ○ SD ○ RD ● L. ERR ○ | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | 站号 2 的 FR-A8NC 的 L. RUN 与 SD 已熄灯,因此站号 2 的 FR-A8NC 的传送速度设定在设定范围内 (0 ~ 4) 出现错误。 | 通过 Pr. 543 波特率选择(CC-<br>Link)正确设定传送速度后,重<br>新启动变频器的电源。                                    |  |
|                                           | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | RUN ● L. RUN ● SD ● RD ● L. ERR ◎ | 站号 3 的 FR-A8NC 的 L. ERR 出现闪烁,因此已<br>将站号 3 的 FR-A8NC 的站号或传送速度的设定<br>变更为正常动作中。  | 通过 Pr. 542 通讯站号(CC-<br>Link)或 Pr. 543 波特率选择<br>(CC-Link)将变频器的设定恢复<br>至原样后,重新启动变频器的电<br>源。 |  |

| LED 状态                                    |                                   |                                   |                                   |                                                                                       |                                                                                                             |  |
|-------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| 主站模块                                      | 变频器(FR-A8NC)                      |                                   |                                   | 原因                                                                                    | 处理方法                                                                                                        |  |
|                                           | 站号 1                              | 站号 2                              | 站号 3                              |                                                                                       |                                                                                                             |  |
|                                           | RUN                               |                                   | L. RUN ●<br>SD ●<br>RD ●          | 站号 2 的 FR-A8NC 的 L. ERR 已亮灯,因此站号 1 的 FR-A8NC 本身受到了噪声的影响。<br>(也有可能出现 L. RUN 熄灯的情况。)    | 正确进行各变频器、主站模块的<br>接地。                                                                                       |  |
| TIME ●<br>LINE ●<br>或<br>TIME ○<br>LINE ● | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | RUN ● L. RUN ● SD ● RD ● L. ERR ● | RUN • L. RUN • SD • RD • L. ERR • | 站号 2 的 FR-A8NC 以后的 L. ERR 已亮灯,因此站号 2 与站号 3 的变频器之间的传送电缆受到了噪声的影响。(也有可能出现 L. RUN 熄灯的情况。) | 确认 CC-Link 通讯用一触式连接<br>器插头中是否已正确插入CC-Link<br>专用电缆的屏蔽线 (加蔽线)。<br>(参照第 21 页)<br>此外,尽量远离动力线进行接线。<br>(100mm 以上) |  |
|                                           | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | RUN ● L. RUN ● SD ● RD ● L. ERR ○ | RUN ● L. RUN ● SD ● RD ● L. ERR ● | 忘记安装终端电阻或忘记安装带终端电阻的一触式连接器插头。<br>(也有可能出现 L. RUN 熄灯的情况。)                                | • 确认终端电阻选择开关的设定。<br>(参照第30页)<br>• 使用带终端电阻的一触式连接器<br>插头。(参照第27页)                                             |  |

●: 亮灯、○: 熄灯、◎: 闪烁、\*: 亮灯 • 闪烁 • 熄灯中任一种

## 附录

### 附录 1 符合欧洲标准的说明

欧洲指令是以统一欧盟各成员国的限制规定,促进安全性有保证的产品在欧盟内部的流通为目的而发行的指令。 1996 年,对欧洲指令之一的 EMC 指令的符合证明被赋予了法律义务此外,自 1997 年起,对欧洲指令之一的低电压指令的符合也被赋予了法律义务。符合 EMC 指令以及低电压指令的制造商所认可的产品必须由制造商自己宣布符合,并标注 "CE 标识"。



• 欧盟圈内销售负责人

以下为欧盟圈内销售负责人。

公司名称: Mitsubishi Electric Europe B.V.

地址: Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany

#### ◆ 关于 EMC 指令

本产品在安装到相对应的本公司变频器的条件下,声明符合 EMC 指令,并标有 "CE 标识"。

- EMC 指令: 2014/30/EU
- 标准规格: EN61800-3:2004+A1:2012 (Second environment/PDS Category "C3")

#### ■ 注意事项

- 对于安装本产品的变频器,应参照变频器本体随附的使用手册的" 关于欧洲指令的注意事项",进行安装和接线。
- · 应确认接入安装有本产品的变频器的最终系统符合 EMC 指令。

#### ◆ 关于欧洲 RoHS

本产品在安装于对应的本公司变频器的条件下,声明符合欧洲 RoHS 指令 (2011/65/EU),并标有 "CE 标志"。

# 附录 2 EAC 的注意事项

在已取得 EAC 认证的产品上标有 EAC 标志。

注 EAC 标志

2010年,俄罗斯、白俄罗斯、哈萨克斯坦三国共同签署了关税同盟协议,旨在通过废止或降低关税、制定产品安全的统一标准和要求以达到利用更大的经济圈来活化经济的目的。

在该关税同盟三国内流通的产品必须符合 CU-TR (Custom-Union Technical Regulation): 海关联盟技术法规、并标有 EAC 标志。

本产品的原产地、生产日期的确认方法及 CU 圈内销售负责人 (进口者)如下所示。

• 原产地表示

可以通过本产品的包装箱进行确认。

例: MADE IN JAPAN

• 生产日期

可以通过本产品上记载的 SERIAL (生产编号)进行确认。

 □
 ○
 ○
 ○
 ○
 ○

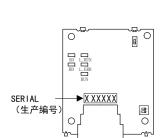
 记号
 年
 月
 管理编号

SERIAL(生产编号)

SERIAL 由记号 1 位和生产年月 2 位、管理编号 3 位构成。

生产年份表示为公历年的最后 1 位,生产月的数字 1  $\sim$  9 代表 1  $\sim$  9 月、X 代表 10 月、Y 代表 11 月、Z 代表 12 月。

• CU 域内销售负责人 (讲口者)


以下为CU 域内销售负责人 (进口者)。

公司名称: Mitsubishi Electric (Russia) LLC

地址: 52, bld 1 Kosmodamianskava Nab 115054, Moscow, Russia

电话: +7 (495) 721-2070

FAX: +7 (495) 721-2071



# 附录 3 关于电器电子产品有害物质限制使用

根据中华人民共和国的 《电器电子产品有害物质限制使用管理办法》,对适用于产品的 "电器电子产品有害物质限制使用标识"的内容记载如下。

电器电子产品有害物质限制使用标识要求



本产品中所含有的有害物质的名称、含量、含有部件如下表所示。

• 产品中所含有害物质的名称及含量

|                                                  | 有害物质 *1   |           |           |                 |               |                 |
|--------------------------------------------------|-----------|-----------|-----------|-----------------|---------------|-----------------|
| 部件名称 * <sup>2</sup>                              | 铅<br>(Pb) | 汞<br>(Hg) | 镉<br>(Cd) | 六价铬<br>(Cr(VI)) | 多溴联苯<br>(PBB) | 多溴二苯醚<br>(PBDE) |
| 电路板组件(包括印刷电路板及其构成的零部件,<br>如电阻、电容、集成电路、连接器等)、电子部件 | ×         | 0         | ×         | 0               | 0             | 0               |
| 金属壳体、金属部件                                        | ×         | 0         | 0         | 0               | 0             | 0               |
| 树脂壳体、树脂部件                                        | 0         | 0         | 0         | 0               | 0             | 0               |
| 螺丝、电线                                            | 0         | 0         | 0         | 0               | 0             | 0               |

上表依据 SJ/T11364 的规定编制。

- O:表示该有害物质在该部件所有均质材料中的含量均在 GB/T26572 规定的限量要求以下。
- ×:表示该有害物质在该部件的至少一种均质材料中的含量超出 GB/T26572 规定的限量要求。
  - \*1 即使表中记载为 × , 根据产品型号, 也可能会有有害物质的含量为限制值以下的情况。
  - \*2 根据产品型号,一部分部件可能不包含在产品中。

# 附录 4 基于中国标准化法的参考标准

本产品按照以下中国标准设计制造。

EMC : GB/T 12668.3

### 附录 5 关于符合英国认证制度

本产品在安装于对应的本公司变频器的条件下,声明符合相关的英国法律的技术要求事项并标有 "UKCA 标志"。

符合条件与欧洲指令相同。(参照第96页)



注: UKCA 标志

本标志是伴随着 2020 年 1 月 31 日的英国脱欧,从 2021 年 1 月 1 日开始,进入大不列颠岛 (英格兰、威尔士、苏格兰)市场的产品需要标有的符合英国认证制度的标志。

# MEMO

# 修订记录

\* 本使用手册编号在封底的左下角。

| 修订日期     | * 使用手册编号              | 修订内容                     |
|----------|-----------------------|--------------------------|
| 2019年12月 | IB (NA) -0600887CHN-A | 第一版                      |
| 2021年12月 | IB (NA) -0600887CHN-B | 追加 • 支持位置控制 • 关于符合英国认证制度 |
|          |                       |                          |
|          |                       |                          |
|          |                       |                          |
|          |                       |                          |
|          |                       |                          |
|          |                       |                          |
|          |                       |                          |
|          |                       |                          |

# IB (NA) -0600887CHN-B (2112) MEE MODEL:FR-A8NC E套件使用手册



# ▲ 三菱电机自动化(中国)有限公司

地址:上海市虹桥路1386号三菱电机自动化中心

邮编: 200336

电话: 021-23223030 传真: 021-23223000 网址: http://cn.MitsubishiElectric.com/fa/zh/

技术支持热线 400-821-3030





内容如有更改 恕不另行通知