& MITSUBISHI
ELECTRIC
Programmable Controller

eeeeee

MELSEC iQ-R Programming Manual
(CPU Module Instructions, Standard Functions/
Function Blocks)

SAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using MELSEC iQ-R series programmable controllers, please read the manuals for the product and the relevant
manuals introduced in those manuals carefully, and pay full attention to safety to handle the product correctly.

Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

CONDITIONS OF USE FOR THE PRODUCT

(1) MELSEC programmable controller ("the PRODUCT") shall be used in conditions;

i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident;

and

ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the

case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.

MITSUBISHI ELECTRIC SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO

ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT

LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the

PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY

INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI ELECTRIC USER'S, INSTRUCTION

AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.

("Prohibited Application™)

Prohibited Applications include, but not limited to, the use of the PRODUCT in;

* Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the
public could be affected if any problem or fault occurs in the PRODUCT.

 Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality
assurance system is required by the Purchaser or End User.

« Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator,
Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and
Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other
applications where there is a significant risk of injury to the public or property.

Notwithstanding the above restrictions, Mitsubishi Electric may in its sole discretion, authorize use of the PRODUCT in

one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific

applications agreed to by Mitsubishi Electric and provided further that no special quality assurance or fail-safe,
redundant or other safety features which exceed the general specifications of the PRODUCTSs are required. For details,
please contact the Mitsubishi Electric representative in your region.

(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and
system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

* When the SIL2 Process CPU is used

(1) Although Mitsubishi Electric has declared Product's compliance with the international safety standards IEC61508,
IEC61511, this fact does not guarantee that Product will be free from any malfunction or failure. The user of this Product
shall comply with any and all applicable safety standard, regulation or law and take appropriate safety measures for the
system in which the Product is installed or used and shall take the second or third safety measures other than the
Product. Mitsubishi Electric is not liable for damages that could have been prevented by compliance with any applicable
safety standard, regulation or law.

(2) Mitsubishi Electric prohibits the use of Products with or in any application involving, and Mitsubishi Electric shall not be
liable for a default, a liability for defect warranty, a quality assurance, negligence or other tort and a product liability in
these applications.

(a) power plants,

(b) trains, railway systems, airplanes, airline operations, other transportation systems,

(c) hospitals, medical care, dialysis and life support facilities or equipment,

(d) amusement equipments,

(e) incineration and fuel devices,

(f) handling of nuclear or hazardous materials or chemicals,

(9) mining and drilling,

(h) and other applications where the level of risk to human life, health or property are elevated.

(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and
system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

* When the Safety CPU is used

(1) Although Mitsubishi Electric has obtained the certification for Product's compliance to the international safety standards
IEC61508, 1ISO13849-1 from TUV Rheinland, this fact does not guarantee that Product will be free from any malfunction
or failure. The user of this Product shall comply with any and all applicable safety standard, regulation or law and take
appropriate safety measures for the system in which the Product is installed or used and shall take the second or third
safety measures other than the Product. Mitsubishi Electric is not liable for damages that could have been prevented by
compliance with any applicable safety standard, regulation or law.

(2) Mitsubishi Electric prohibits the use of Products with or in any application involving, and Mitsubishi Electric shall not be
liable for a default, a liability for defect warranty, a quality assurance, negligence or other tort and a product liability in
these applications.

(a) power plants,

(b) trains, railway systems, airplanes, airline operations, other transportation systems,

(c) hospitals, medical care, dialysis and life support facilities or equipment,

(d) amusement equipments,

(e) incineration and fuel devices,

(f) handling of nuclear or hazardous materials or chemicals,

(g) mining and drilling,

(h) and other applications where the level of risk to human life, health or property are elevated.

(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and
system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

INTRODUCTION

Thank you for purchasing the Mitsubishi Electric MELSEC iQ-R series programmable controllers.

This manual describes the instructions and standard functions/function blocks required for programming.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the
functions and performance of the MELSEC iQ-R series programmable controller to handle the product correctly.

When applying the program examples provided in this manual to an actual system, ensure the applicability and confirm that it
will not cause system control problems.

Please make sure that the end users read this manual.

CONTENTS

SAFETY PRECAUTIONS . . . e 1
CONDITIONS OF USE FOR THE PRODUCT e 1
INTRODUCTION. . . e e e e e 3
RELEVANT MANUALS . . . e e 21
TERMS . 22
GENERIC TERMS AND ABBREVIATIONS. e 24
MANUAL PAGE ORGANIZATION. . . . e e 26

PART1 OVERVIEW

CHAPTER1 OVERVIEW 32
1.1 Instruction Configuration i i et 32
1.2 Data Specification Method i i i i et et ataan e nnaennnnens 34
Bt data . .. 38
16-bit data (word data) e 40
32-bit data (double word data). 43
Real number data (floating-pointdata) e 46
String data.o 49
1.3 Execution Conditiont i i e it 51
14 High-speed Instruction Processing.ttt ittt it 52
SUDSE PrOCESSING. . . . ottt 52
1.5 Precautions on Programmingt it e 53
Errors common to instructions. e 53
Checking the ranges of instruction runtime devices and labels. 53
Operation when a long timer or long retentive timer deviceisused 56
Operations arising when the OUT, SET/RST, and PLS/PLF instructions of the same device are used 58
Restrictions on using file registers. 64

PART 2 LISTS OF INSTRUCTIONS AND FUN/FB

CHAPTER 2 CPU MODULE INSTRUCTIONS 66
2.1 Sequence INStruCtioNS i i i it e e a et s 66
2.2 Basic INStructions i i e e et e 70
2.3 Application INstructions i i e et a e et 92
Program CONtrOl. o e 92
Data proCessing.o 94
Debugging and failure diagnostic 102
StHNG PrOCESSING. . . o . o ot ottt e e et e e e 102
Real value proCessing oo e 105
Random NUMbET 112
DeviCe Operation e 113
TIMEr, COUNEET . . . o e e e 114
ShortCUL CONtIOl 115
Ramp signal. 115
MatriX INPUL . 115

CPU module database access function. e 116

MOdUIE @CCESS. . . . oot 120
Parameter setting operation 122
CPU module data logging function e e 122
Recording funCtion. 122
Built-in Ethernet function instructions 123
PID operation instruction 125
PID control inStructions 125
Process control inStruCtions. 127
Multiple CPU dedicated instructions 128
SFC program inStrUCHIONS 129
Redundant system inStructions 131
Safety system instructions. e 132
CHAPTER 3 MODULE DEDICATED INSTRUCTIONS 134
CHAPTER 4 STANDARD FUNCTIONS/FUNCTION BLOCKS 136
4.1 Standard Functions. i 136
4.2 Standard FunctionBlocks i i s i e 147

PART 3 SEQUENCE INSTRUCTIONS

CHAPTER 5 SEQUENCE INSTRUCTIONS 150
5.1 Contact INStructions it e 150
Operation start, series connection, parallel connection. 150
Pulse operation start, pulse series connection, pulse parallel connection 153
Pulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection. 156
5.2 Association InStructions. i i e et 159
Ladder block series/parallel connection 159
Storing/reading/clearing the operation result. 160
Inverting the operation result. e 162
Converting the operation resultinfoapulse 163
Converting the edge relay operation resultintoapulse i 164
5.3 OUtPUL INStrUCHIONS i i i it e s et e 166
Out (excluding the timer, counter, and annunciator) 166
iMoo e 168
LoNg M . . 171
COUNEET .« L o 174
LONg COUN T 176
ANNUNCIATOT e 178
Setting devices (excluding annunciator) 179
Resetting devices (excluding annunciator) 181
Setting annUNCIator e e 183
Resetting annunciator 185
Rising edge oUtpUL.o 187
Falling edge outputo 189
Inverting the bit device output 191
Converting the direct access outputintoapulse. 193
5.4 Shift INStructions. i e et 195
Shifting bit devices. 195

n
-
<
1]
-
prd
O
&

5.5

5.6

5.7

5.8

5.9

Master Control InStructions i ittt i e et ettt e e e 197

Setting/resetting a master control 197
Phase Processing Instructions i it e a e 201
OVBIVIBW .« . . ottt e e e 201
Starting the phase processing. o 202
Changing the execution phase e 204
Terminating the execution phase. e 206
Termination INStructions. i i i i e 207
Ending the main routine program 207
Ending the sequence program 208
StoP INStrUCHION. e e 210
Stopping the SEqUENCE Programt e e 210
No Operation Instruction it i ettt aa e narnerannennnnnns 211
No operation (NOP). 211
No operation (NOPLF). e e e e 212

PART 4 BASIC INSTRUCTIONS

CHAPTER 6 BASIC INSTRUCTIONS 214
6.1 Comparison Operation InStructions ittt it enenenaraneennnns 214
Comparing 16-bit binary data e 214
Comparing 32-bit binary data e 216
Outputting a comparison result of 16-bit binary data. 218
Outputting a comparison result of 32-bit binary data. 220
Outputting a band comparison result of 16-bitbinarydata, 222
Outputting a band comparison result of 32-bit binarydata 224
Comparing 16-bit binary block data. 226
Comparing 32-bit binary block data. 228
6.2 Arithmetic Operation Instructions it i i i et et e aeean e nnennns 231
Adding 16-bit binary data. 231
Subtracting 16-bit binary data 235
Adding 32-bit binary data. 239
Subtracting 32-bit binary data e 243
Multiplying 16-bit binary data. 247
Dividing 16-bit binary data. 249
Multiplying 32-bit binary data. 251
Dividing 32-bit binary data. 253
Adding BCD 4-digit data 255
Subtracting BCD 4-digit data. 258
Adding BCD 8-digit data 261
Subtracting BCD 8-digit data. 265
Multiplying BCD 4-digitdata 269
Dividing BCD 4-digit data 271
Multiplying BCD 8-digit data 273
Dividing BCD 8-digit data 275
Adding 16-bit binary block data. 277
Subtracting 16-bit binary block data e 279
Adding 32-bit binary block data. 281
Subtracting 32-bit binary block data 284

Incrementing 16-bit binary data. 287

6.3

6.4

6.5

6.6

Decrementing 16-bit binary data 289

Incrementing 32-bit binary data. 291
Decrementing 32-bit binary data 293
Logical Operation INnStructionsttt it ne e ranrnaennnnannnens 295
Performing an AND operationon 16-bitdata. e 295
Performing an AND operation on 32-bitdata. 299
Performing an AND operation on 16-bitblock data. 303
Performing an OR operation on 16-bitdata. 305
Performing an OR operation on 32-bitdata. 309
Performing an OR operation on 16-bitblock data. i 313
Performing an XOR operation on 16-bitdata 315
Performing an XOR operation on 32-bitdata 319
Performing an XOR operation on 16-bitblock data. 323
Performing an XNOR operationon 16-bitdata 325
Performing an XNOR operationon 32-bitdata 329
Performing an XNOR operation on 16-bitblockdata 333
Bit Processing Instructions i i e e 335
Settingabitinthe word device e 335
Resetting a bitinthe word device 337
Performing a 16-bit test. 339
Performing a 32-bit test. 341
Batch-resetting bit devices 343
Shift INStruCtions. o e e e e e 345
Shifting 16-bit binary data to the right by n bit(s). 345
Shifting 16-bit binary datato the leftby nbit(s). 347
Shifting n-bit data to the rightby one bit 349
Shifting n-bitdata to the leftbyone bit 351
Shifting n-word data to the right by oneword 353
Shifting n-word data to the leftbyoneword 355
Shifting n double word(s) of data to the right by one doubleword 357
Shifting n double word(s) of data to the left by one doubleword. 359
Shifting n point(s) of single-precision real number data to the rightbyone point 361
Shifting n point(s) of single-precision real number data to the leftby onepoint 363
Shifting n point(s) of double-precision real number data to the right by one point 365
Shifting n point(s) of double-precision real number data to the leftby one point. 367
Shifting n-bit data to the right by n bit(s) 369
Shifting n-bitdatato the leftby n bit(s) 373
Shifting n-word data to the right by nword(s) 377
Shifting n-word data to the leftby nword(s) 381
Shifting n double word(s) of data to the right by n double word(s) 385
Shifting n double word(s) of data to the left by n double word(s) 389
Shifting n point(s) of single-precision real number data to the right by npoint(s) 393
Shifting n point(s) of single-precision real number data to the leftby npoint(s) 397
Shifting n point(s) of double-precision real number data to the right by n point(s) 401
Shifting n point(s) of double-precision real number data to the leftby n point(s) 405
Data Conversion InsStructions ittt i i ettt it ey 409
Converting binary data to BCD 4-digitdata. 409
Converting binary data to BCD 8-digitdata. 411
Converting BCD 4-digit data to 16-bit binary data. 413
Converting BCD 8-digit data to 32-bit binary data. 415
Converting single-precision real number to 16-bit signed binarydata. 417

n
-
<
1]
-
prd
O
&

6.7

Converting single-precision real number to 16-bit unsigned binarydata. 419

Converting single-precision real number to 32-bit signed binarydata. 421
Converting single-precision real number to 32-bit unsigned binarydata. 423
Converting double-precision real number to 16-bit signed binarydata............................... 425
Converting double-precision real number to 16-bit unsigned binarydata............................. 427
Converting double-precision real number to 32-bit signed binarydata............................... 429
Converting double-precision real number to 32-bit unsigned binarydata............................. 431
Converting 16-bit signed binary data to 16-bit unsigned binarydata 433
Converting 16-bit signed binary data to 32-bit signed binarydata 435
Converting 16-bit signed binary data to 32-bit unsigned binarydata 437
Converting 16-bit unsigned binary data to 16-bit signed binarydata 439
Converting 16-bit unsigned binary data to 32-bit signed binarydata 441
Converting 16-bit unsigned binary data to 32-bit unsigned binarydata 443
Converting 32-bit signed binary data to 16-bit signed binarydata 445
Converting 32-bit signed binary data to 16-bit unsigned binarydata 447
Converting 32-bit signed binary data to 32-bit unsigned binarydata 449
Converting 32-bit unsigned binary data to 16-bit signed binarydata 451
Converting 32-bit unsigned binary data to 16-bit unsigned binarydata 453
Converting 32-bit unsigned binary data to 32-bit signed binarydata 455
Converting 16-bit binary datato Gray code data. 457
Converting 32-bit binary datato Gray code data. 459
Converting 16-bit binary Gray code data to 16-bit binarydata 461
Converting 32-bit binary Gray code data to 32-bitbinarydata 463
Converting 16-bit binary data block to BCD 4-digitdatablock 465
Converting BCD 4-digit block data to 16-bit binary blockdata 467
Converting decimal ASCll data to 16-bitbinary data. 469
Converting decimal ASCIl data to 32-bitbinary data. 472
Converting hexadecimal ASCIl data to 16-bitbinarydata. 476
Converting hexadecimal ASCIl data to 32-bitbinary data. 479
Converting decimal ASCll data to BCD 4-digitdata 482
Converting decimal ASCll data to BCD 8-digitdata 485
Converting decimal string data to 16-bit binarydata. i 488
Converting decimal string data to 32-bitbinary data. 491
Converting hexadecimal ASCII to hexadecimal binarydata 494
Converting single-precision real number to BCD formatdata. 496
Two's complement of 16-bit binary data (signinversion). 498
Two's complement of 32-bit binary data (signinversion). 500
Decoding 8-bit data to 256-bitdata 502
Encoding 256-bitdatato 8-bitdata 504
Decoding data to seven-segment displaydata 506
Separating data in units of 4 bits 509
Combining datainunits of 4 bits e 511
Separating datain units of bits 513
Combining datain units of bits e 515
Separating data in units of bytes. e 517
Combining datainunits of bytes e 519
Data Transfer InStructions it i i i e s e et a e neaas 521
Transferring 16-bit binary data 521
Transferring 32-bit binary data e 523
Inverting and transferring 16-bit binary data e 525

Inverting and transferring 32-bit binary data 527

Shifting datain units of 4 bits. 529

Inverting and transferring 1-bitdata. e 532
Transferring 16-bit binary data block (16 bits). e 534
Transferring 16-bit binary data block (32 bits). 537
Transferring the same 16-bit binary data block (16 bits). 539
Transferring the same 16-bit binary data block (32 bits). i 541
Transferring the same 32-bit binary data block (16 bits). 543
Transferring the same 32-bit binary data block (32 bits). 545
Exchanging 16-bitbinary data. 547
Exchanging 32-bitbinary data. 549
Exchanging 16-bit binary block data 551
Exchanging the upper and lower bytes of 16-bit binarydata. 553
Exchanging the upper and lower bytes of 32-bit binarydata. 554
Transferring 1-bitdata 556
Transferring n-bit data 558

PART 5 APPLICATION INSTRUCTIONS

CHAPTER 7 PROGRAM CONTROL 563
71 Program Branch Instructions. e 563
Pointer branCho 563
JUMPING 10 END . ..o 566
7.2 Program Execution Control Instructions ittt innernaennnnnns 567
Disabling/enabling interrupt programs. 567
Disabling interrupt programs with specified priorityorlower. 570
Interrupt program mask e 575
Disabling/enabling the specified interrupt pointer e 577
Returning from the interrupt program 579
Resetting the watchdog timer 580
7.3 Structure Creation Instructions it i ittt e e 581
Performing the FOR to NEXT instruction 100p. e 581
Forcibly terminating the FOR to NEXT instruction loop. e e 583
Calling @ subroutine program e 585
Returning from the subroutine programcalled 589
Calling a subroutine program and turning the outputoff. 590
Calling a subroutine program in the specified programfile......... 594
Calling a subroutine program in the specified program file and turning the outputoff 599
Calling @ subroutine program e 604
7.4 Program Control Instructions i i i i it sttt 609
Changing the program execution type to standby type. 609
Changing the program execution type to standby type (outputoff). 611
Changing the program execution type to scan executiontype i 613
CHAPTER 8 DATA PROCESSING 615
8.1 Rotation Instructions i i e e 615
Rotating 16-bit binary datato theright 615
Rotating 16-bit binary datatothe left. 618
Rotating 32-bit binary datato theright 621
Rotating 32-bit binary datatothe left. 623

n
-
<
1]
-
prd
O
&

10

8.2

8.3

8.4

8.5

8.6

Data Table Operation Instructions. ittt it ittt et e aeennnnanrnnnnens 625

Reading the oldest data from the datatable 625
Reading the newest data fromthe datatable 627
Writing data to the data table. 629
Inserting datatothe datatable e 631
Deleting data from datatable 633
Reading/Writing Data Instructions. ittt ittt e i aa s nnnanannnens 635
Reading data from the datamemory. 636
Writing data to the data memory e 638
File Operation InStructions. ittt i i ittt e ae e an e rarannennnnnns 641
Reading data from the specified file 641
Writing data to the specified file. 660
Deleting the specified file. 678
Copying the specified file. 682
Moving the specified file 687
Renaming the specified file 692
Acquiring the status of the specified file 696
Error codes generated for file operation instructions. 700
Data Control INStructionso it i i i e et e 701
Upper and lower limit control of 16-bitbinary data 701
Upper and lower limit control of 32-bitbinarydata 703
Dead band control of 16-bit binary data 705
Dead band control of 32-bit binary data 707
Zone control of 16-bit binary data e 709
Zone control of 32-bit binary data e 711
Scaling 16-bit binary data (point coordinates). 713
Scaling 32-bit binary data (point coordinates). 716
Scaling 16-bit binary data (XY coordinates) 719
Scaling 32-bit binary data (XY coordinates) 721
Data Processing INnStructions. it i e et e 723
Searching 16-bit binary data e 723
Searching 32-bitbinary data 725
Searching 16-bit binary data (minimum, match, maximum) 727
Searching 32-bit binary data (minimum, match, maximum) 729
Checking 16-bit binary data. 731
Checking 32-bitbinary data. e e 733
Checking the bit status in 16-bitbinarydata 735
Checking the bit status in 32-bitbinarydata 737
Searching the maximum value of 16-bitbinarydata......... 739
Searching the maximum value of 32-bitbinarydata..... 741
Searching the minimum value of 16-bit binarydata 743
Searching the minimum value of 32-bitbinarydata 745
Sorting 16-bit binary data e 747
Sorting 32-bit binary data e 749
Sorting 16-bit binary datatable 751
Sorting 16-bit binary data table 2. e 755
Sorting 32-bit binary data table 2. e 759
Adding 16-bit binary data. 763
Adding 32-bit binary data. 765
Calculating the mean value of 16-bitbinary data 767
Calculating the mean value of 32-bitbinarydata 769

Calculating the square root of 16-bit binary data. 771

Calculating the square root of 32-bit binary data. 773
CRC OperatioN. o 774
8.7 Check Code INStructions it i i i it ettt a s a e ataane i nnans 776
CheCK COOE 776
CHAPTER 9 DEBUGGING AND FAILURE DIAGNOSTIC 779
9.1 Debugging and Failure Diagnostic Instructions. i 779
Resetting the error display and the annunciatordisplay i 779

Generating a continuation eImor. e 781 (72)

Generating @ Stop ITOrot e 783 IE

LLl

CHAPTER 10 STRING PROCESSING 785

10.1 String Processing InStructions i i et e 785 %

Comparing string data. 785 o
Concatenating string data 788
Transferring string data e 792
Transferring Unicode string data 794
Converting 16-bit binary data to decimal ASCII. 796
Converting 32-bit binary data to decimal ASCII. 800
Converting 16-bit binary data to hexadecimal ASCII. i 805
Converting 32-bit binary data to hexadecimal ASCII. e 809
Converting 16-bit binary data to stringdata. 813
Converting 32-bit binary datato stringdata. 816
Converting BCD 4-digit data to decimal ASCllcode i e 819
Converting BCD 8-digit data to decimal ASCllcode e 823
Converting single-precision real numberto stringdata. 828
Converting hexadecimal binary data to hexadecimal ASCllcode. 832
Converting Unicode character string to Shift JIS characterstring. 834
Converting shift JIS character string to Unicode character string (without byte ordermark). 836
Converting shift JIS character string to Unicode (with byte ordermark) 838
Detecting a string length 840
Extracting string data from the right. 842
Extracting string data from the left. e 844
Extracting the specified stringdata 846
Replacing the specified stringdata 848
Searching string data. e 851
Inserting string data. 853
Deleting string data 855
CHAPTER 11 REAL VALUE PROCESSING 857
111 Floating-point instruction. i i i ettt e 857
Comparing single-precision real numbers. 857
Comparing double-precision real NUMbErS e 859
Outputting a comparison result of single-precision real numbers, 862
Outputting a comparison result of double-precisionreal numbers 864
Outputting a band comparison result of single-precision realnumber 866
Outputting a band comparison result of double-precision real number. 868
Adding single-precision real nUMbeErs 870
Subtracting single-precision real nUMbErs 874

11

12

Adding double-precision real numbers 878

Subtracting double-precision real numbers. 882
Multiplying single-precision real numbers 886
Dividing single-precision real numbers 888
Multiplying double-precision real numbers 890
Dividing double-precision real numbers 892
Converting 16-bit signed binary data to single-precision realnumber. 894
Converting 16-bit unsigned binary data to single-precision real number. 896
Converting 32-bit signed binary data to single-precision realnumber. 898
Converting 32-bit unsigned binary data to single-precision realnumber. 900
Converting double-precision real number to single-precisionreal number. 902
Converting 16-bit signed binary data to double-precisionrealnumber. 904
Converting 16-bit unsigned binary data to double-precision realnumber. 906
Converting 32-bit signed binary data to double-precisionrealnumber. 908
Converting 32-bit unsigned binary data to double-precision real number. 910
Converting single-precision real number to double-precisionreal number. 912
Converting string data to single-precision realnumber. 914
Converting BCD format data to single-precisionrealnumber. 918
Inverting the sign of single-precision real number. e 920
Inverting the sign of double-precisionrealnumber 921
Transferring single-precision real number. 922
Transferring double-precision real number 923
Calculating the sine of single-precision real number. 924
Calculating the cosine of single-precision realnumber. 926
Calculating the tangent of single-precision realnumber 928
Calculating the arc sine of single-precisionreal number. 930
Calculating the arc cosine of single-precision real number. i 932
Calculating the arc tangent of single-precisionrealnumber 934
Calculating the sine of double-precisionreal number 936
Calculating the cosine of double-precision real number 938
Calculating the tangent of double-precision real number 940
Calculating the arc sine of double-precision real number 942
Calculating the arc cosine of double-precision real number i 944
Calculating the arc tangent of double-precision realnumber 946
Calculating the sine of BCD data. 948
Calculating the cosine of BCD data.t 950
Calculating the tangentof BCD data. e 952
Calculating the arc sine of BCD data. 954
Calculating the arc cosine of BCD data. 956
Calculating the arc tangent of BCD data. i 958
Converting single-precision real number angletoradian 960
Converting single-precision real number radiantoangle i 962
Converting double-precision real number angle toradian. 964
Converting double-precision real number radiantoangle. 966
Calculating the square root of single-precision realnumber. 968
Calculating the square root of double-precision realnumber 970
Calculating the exponent of single-precision real number. 972
Calculating the exponent of double-precision real number. 974
Calculating the natural logarithm of single-precisionreal number. 976
Calculating the natural logarithm of double-precision real number. 978
Calculating the square root of BCD 4-digitdata 980

Calculating the square root of BCD 8-digitdata 982

Calculating the exponentiation of single-precision realnumber 984
Calculating the exponentiation of double-precision realnumber. 986
Calculating the common logarithm of single-precisionrealnumber 988
Calculating the common logarithm of double-precision real number. 990
Searching the maximum value of single-precisionrealnumber 992
Searching the maximum value of double-precision realnumber. 994
Searching the minimum value of single-precisionreal number. L. 996
Searching the minimum value of double-precisionrealnumber 998
CHAPTER 12 RANDOM NUMBER 1000
121 Random Number Instructionst i i ittt a it eanaas 1000
Generating random NUMDET e 1000
Changing random SEQUENCEottt ettt e e e e e e e e e 1001
CHAPTER 13 DEVICE OPERATION 1002
13.1 Index Register Instructions ittt ittt e 1002
Saving all data of the index register e 1002
Returning all data of the index register 1004
Saving the selected data of the index register and long index register. 1005
Returning the selected data of the index register and long index register. 1008
13.2 File Register Operation Instructions it ittt ettt enrnnnennns 1010
Switching the file register block number e 1010
Changing the file register file name. 1012
13.3 File Register Read/Write Instructionst it ettt aenanenns 1014
Reading 1-byte data from the file register. 1014
Writing 1-byte data to the file register 1016
13.4 Indirect Address Read Instructions.t i ittt ettt e i a e s 1018
Reading the indirect address. 1018
CHAPTER 14 TIMER, COUNTER 1020
14.1 Special Counter InStructions it it i ittt it e aa e a e anraneanns 1020
Counting up or down the current value (1-phase input) i 1020
Counting up or down the current value (2-phase input) i 1023
14.2 Special TImer Instructions ittt i ittt et a e nanernenannraneenns 1025
Teaching imer. . ..o e 1025
Special function timer e 1027
14.3 Pulse Related Instructions i i sttt e i 1030
Measuring the density of pulses 1030
Outputting pulses at regularintervals 1032
Performing the pulse width modulation 1034
CHAPTER 15 SHORTCUT CONTROL 1036
15.1 Shortcut Control Instructiono i i i i ettt a et 1036
Rotary table shortest direction control. e 1036
CHAPTER 16 RAMP SIGNAL 1039
16.1 Ramp Signal Instruction i i i i et et 1039
Ramp signal. 1039

n
-
<
1]
-
<
O
&

13

14

CHAPTER 17 MATRIX INPUT 1042

171 Matrix Input Instruction. e e e e 1042
MatriX INPUL . . 1042
CHAPTER 18 CPU MODULE DATABASE ACCESS FUNCTION 1045
18.1 Database Access INStructionsttt i i i i i it e 1045
Importing datatothe database. 1045
Exporting data fromthe database 1048
Openingthe data base 1051
Closingthe database e e e 1053
Addingarecordtothedatabase 1055
Updating the record inthe database 1062
Searching the record inthe database. e 1068
Deleting the record inthe database 1076
Starting a transaction. 1080
Committing @ transaction. 1082
Performing a database rollback. e 1084
Error codes related to database access instructions. 1086
CHAPTER 19 CLOCK 1090
191 Clock InStructions it i i i i i it et 1090
Reading clock data 1090
Writing clock data 1092
Adding clock data 1094
Subtracting clock data. e 1096
Converting time data from hour/minute/secondtosecond i 1098
Converting time data from second to hour/minute/second 1100
Converting date and time data from date and timetosecond. 1102
Converting date and time data from second todate and time. 1104
Comparing date data. e e 1106
Comparing time data. 1110
Outputting a comparison result of timedata 1113
Outputting a band comparison result of time data. 1115
Reading expansion clock data. 1117
Adding expansion clock data. 1119
Subtracting expansion clock data e 1121
19.2 Timing ChecklInstructions i it ittt e e 1123
Generating timing PUISES. 1123
Measuring time of the specified data. 1125
HoUr meter. . oo 1127
CHAPTER 20 MODULE ACCESS 1131
20.1 Module Access INStructions.ottt i i i e e e e e 1131
Performing I/O refresh. 1131
Selecting refresh to be performed e 1133
Performing module refresh e 1135
Reading 1-word/2-word data from another module (16-bit specification) 1137
Writing 1-word/2-word data to a module (16-bit specification) 1141
Reading 1-word/2-word data from another module (32-bit specification) 1146
Writing 1-word/2-word data to a module (32-bit specification) 1150

Reading the module model name 1155

Reading module specific information. 1159
CHAPTER 21 PARAMETER SETTING OPERATION 1164
211 Routing Information Instructions. i i i i e e 1164
Reading routing information 1164
Registering routing information L 1166
CHAPTER 22 CPU MODULE DATA LOGGING FUNCTION 1168
221 Logging INStructions.ot e e 1168 f,—)
Setting trigger I0gging oot 1168 Z
Resetting trigger [0ggingot 1170 L
-
CHAPTER 23 RECORDING FUNCTION 1171 %
231 DataCollection Instruction. i i it it e e 171 (&)
Setting data collection trigger e 1171
CHAPTER 24 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS 173
241 Open/Close Processing Instructions. ittt it ia e ine s nnennnennnns 1173
Opening @ CONNECHIONt e e e e e e e e 1173
Closing @ CONNECHON o e e e 1176
24.2 Socket Communications Instructions. i e e e 1178
Reading receive data during the END processing. e e 1178
Reading receive data when the instructionisexecuted 1182
Sending data. e 1184
Reading connection information 1187
Changing the communication target (UDP/IP) e e e 1189
Changing the receive Mode. e 1191
Reading socket communications receivedata 1195
24.3 Predefined Protocol Support Function Instruction i iiirrnnrnnnn. 1197
Executing the registered protocols 1197
24.4 SLMP Frame Send Instructionttt iaa ettt naaneenannnnnnees 1205
Sending an SLMP frameo e 1205
24.5 File Transfer Function Instructions it i i e ittt e e e aeans 1212
Sending FTP client files. e 1212
Retrieving FTP client files e e 1217
CHAPTER 25 PID OPERATION INSTRUCTION 1223
TRt B © 11 T 1223
Control data.o 1225
AULO tUNING .« . 1232
25.2 PID Operation Instruction. ittt i i e ettt e e 1234
CHAPTER 26 PID CONTROL INSTRUCTIONS 1238
0 B © 1YY T 1238
Operation method e 1238
PID control procedure 1239
Helpful fuNCHioNs e 1245
26.2 PID Control Instructions (Inexact Differential) it it iiaennns 1247
Registering the PID control datatothe CPUmodule 1249

15

Performing PID operation 1252

Stopping the operation of specified loop number 1255
Starting the operation of specified loop number 1256
Changing the parameters of specified loop number 1257
26.3 PID Control Instructions (Exact Differential) i it i 1259
Registering the PID control datatothe CPUmodule 1261
Performing PID operation 1263
Stopping the operation of specified loop number 1266
Starting the operation of specified loop number 1267
Changing the parameters of specified loop number 1268
CHAPTER 27 MULTIPLE CPU DEDICATED INSTRUCTIONS 1270
271 Another CPU Module Access Instructions i i i 1270
Reading device data from another CPUmodule. i 1274
Writing device data to another CPU module 1277
CHAPTER 28 SFC PROGRAM INSTRUCTIONS 1280
28.1 SFCControllnstructions i i 1280
Checkingthe status of a step e 1280
Checking the status of @a blOCK. e 1283
Batch-reading the status of steps 1285
Starting @ bloCKo e 1294
Ending @ blocK. o 1296
Pausing @ blocK 1298
Restarting a block 1300
Activating @ stepo 1302
Deactivating @ stepo 1304
Switching atarget blocCK. e 1306
28.2 SFCDedicated Instruction i it e ittt n e 1308
Creating a dummy transition condition e 1308
CHAPTER 29 REDUNDANT SYSTEM INSTRUCTIONS 1309
291 System SwitChing i e e e 1309
29.2 Disabling/Enabling System Switching i i e e 1313
29.3 Writing Data from the Standby System to the Control System.cooun. 1315
CHAPTER 30 SAFETY SYSTEM INSTRUCTIONS 1320
30.1 Reading Safety Data Identify Check Information.............. i, 1320
Error codes generated by safety system instructions 1322

PART 6 MODULE DEDICATED INSTRUCTIONS

CHAPTER 31 MODULE DEDICATED INSTRUCTIONS 1324

PART 7 STANDARD FUNCTIONS

CHAPTER 32 TYPE CONVERSION FUNCTIONS 1328

321 Converting BOOLtO WORD ittt ittt ittt i et aaa s an e aaneaaneanennnenanns 1328
32.2 Converting BOOLtO DWORD.ttt ittt et a et s ae s iaa s aassaansanssnnnsnnns 1330

323

324

32,5

32.6

32.7

32.8

32.9

32.10
32.11
32.12
32.13
32.14
32.15
32.16
32.17
32.18
32.19
32.20
32.21
32.22
32.23
32.24
32.25
32.26
32.27
32.28
32.29
32.30
32.31
32.32
32.33
32.34
32.35
32.36
32.37
32.38
32.39
32.40
32.41
32.42
32.43
32.44
32.45
32.46
32.47
32.48
32.49
32.50
32.51
32.52
32.53

Converting BOOL to INTo ittt it e et et naae e saeeannesaenanasnnennns 1331

Converting BOOL to DINTot i et ittt a et et sa s an e nnsnnasansennn 1332
Converting BOOL to TIME ittt ittt a et nna et e sarennnesansannsnneenns 1333
Converting BOOL to STRING ittt et et aa e arennnesaneanesnnnenns 1334
Converting WORD to BOOKLttt et et s a e s e sa s nn e snsnnesansennn 1335
Converting WORD to DWORD ottt ittt it et e e e e et sasanneaanarnanrnnnenns 1336
Converting WORD to INT ittt it ittt e e et e nanesanesnarannannnennns 1337
Converting WORD to DINTot i i i e it ettt e a e a s 1338
Converting WORD to TIME it ittt e e et e nan e nanannenanennns 1340
Converting WORD to STRING ittt ettt e e e ennnesannanaraneenns 1341
Converting DWORD to BOOKL.ttt ittt a ittt a e st et a s e a e annans 1342
Converting DWORD tOWORDttt it et e aae s et e saesaan e nanasnnsnnnennn 1343
Converting DWORD tO INT i ittt et ettt a e aan e nanaanennnennns 1345
Converting DWORD to DINT.ttt i ittt ettt et s st a e a i a i nannaes 1347
Converting DWORD tO TIME.ottt it ettt e et en e sa e nnn e anranesnneennn 1348
Converting DWORD to STRING ittt it ettt e et sa s ann e annrnnrnnnenns 1349
Converting INT to BOOL i i i i e ittt sttt e nans 1350
Converting INTtoO WORD it ettt e e et e e aan e san s aaraanennnennns 1351
Converting INT to DWORNDottt ittt ettt e e e et a e nan e nannanenanennns 1352
Converting INT to DINTot i it i ittt a sttt a e 1354
Converting INT toO BC Dottt ittt e et et e aae e s a e aaneanerannennnennn 1355
Converting INT o REAL ittt e et et e aa e et sa e aan e anesannrnneennn 1357
Converting INTto LREAL i i i i e ittt e a i aaaans 1358
Converting INT to TIME. i ittt ettt a e naa e saernarennnennns 1359
Converting INTto STRING i et ittt e et et a e nnae e sannrnneennn 1360
Converting DINT to BOOL o i i i ittt ittt et a et aaaaes 1362
Converting DINT toO WORDottt it it et a e et e e nan e nananrennnennns 1363
Converting DINT to DWORD. i i et ettt e et e e et e aan e erannennn 1365
Converting DINT to INT i it sttt i s s s anas 1366
Converting DINT to BCD it i et ettt e et e e e ann e an e ennnennn 1367
Converting DINT to REAL. et ettt et et et e an e aneeannennn 1369
Converting DINT to LREAL. i ittt sttt st 1370
Converting DINT tO TIME it et et et e e aa e raeenanenanennns 1371
Converting DINT to STRING i it ittt et a e et na e ansannrnnnennn 1372
Converting BCD to INT i i it ittt it a st e n e aes 1374
Converting BCD to DINT it i et et a et et sae s anneanesannsnnnenns 1376
Converting BCD to STRING i it ettt et ittt a s ane e aaesanasannennn 1379
Converting REAL tO INTt i e it sttt it a st n et a e ansenns 1381
Converting REAL tO DINTot e et et e e et e a s an e aaesanerannennn 1383
Converting REALtO LREALt ittt e et e e et e an e sanasaneennn 1385
Converting REALtO STRING it i it ittt et i e e et a e anenesnns 1387
Converting LREAL f0 INT i i ittt e ettt a s an e e rannennn 1390
Converting LREAL t0 DINTo o ittt ettt e e ettt et e aa e aasaarenanennns 1392
Converting LREAL tO REALottt et ittt a e et e aa s ane e nanarnnnenns 1394
Converting TIME to BOOKLttt et et s s et e a et a s nnesassnnasansennn 1396
Converting TIMEto WORDD it i ittt et ittt et s aa s a e aasanrananennns 1397
Converting TIME to DWORDD.o ittt it it e e et e s aae e saeeannesansanesnneenns 1398
Converting TIME to INTottt i ittt et s et e aan s aasansnarenaneanns 1399
Converting TIME to DINT i i ittt et et et s aa s sa e assanrananennns 1400
Converting TIME t0 STRING. ittt et ittt aa et an e saennnesansanernneennn 1401
Converting STRING to BOOKLttt it i ettt i et ittt it e e a e aenns 1403

n
-
<
1]
-
<
O
&

17

18

32.54 Converting STRINGtOWORDot it ittt ettt a e ta e e ananans 1404

32.55 Converting STRINGtO DWORDttt it ittt ittt it a ettt aeaas 1405
32.56 Converting STRING tO INT it i i it it a e st a s nna e annnens 1406
32.57 Converting STRING toO DINT it i e i et it et e st e ansneaasnnnnens 1408
32.58 Converting STRINGto BCD it i i ittt sttt a et a it a e aas 1410
32.59 Converting STRINGtO REAL ittt et ettt it e st a s nsaeansannnens 1412
32.60 Converting STRINGtO TIME. it i i ittt it et a e ansnsanraannns 1415
32.61 Converting Bit Array to INT i e i e ittt sttt a e i 1417
32.62 Converting Bit Array to DINT ottt it et ettt et ane s aaesaanaanennnnennns 1418
32.63 Converting INTto Bit Arrayottt et et ettt iaaesaaesaasaaneanansnnns 1419
32.64 Converting DINTto Bit Arrayottt i e ittt ittt it et e et aenas 1420
32.65 Copyingthe Bit Arrayottt ettt e et e e n e sanesaaeeaneaanesannsnnns 1421
32.66 Reading the Specified Bitofthe Word Label it it iaaennnns 1422
32.67 Writing the Specified Bitofthe Word Label i i 1424
32.68 Copying the Specified Bit ofthe Word Labelc. ittt enaennnns 1426
32.69 Gettingthe Start Data ittt et i eae s naeaanaaneannenanennnns 1428
CHAPTER 33 SINGLE VARIABLE FUNCTIONS 1429
33.1 Calculatingthe Absolute Value i e ittt st e e aaeeanns 1429
33.2 Calculatingthe Square ROOtttt a et aetnaneranneaneaanennnens 1431
33.3 Calculating the Natural Logarithm. i i i i ettt s e e naeranns 1432
33.4 Calculating the Common Logarithm i i i e s i e e 1433
33.5 Calculatingthe EXponent. ittt iattnaarraneraareaanaaneannnsnnns 1435
33.6 Calculatingthe Sine i i i i e ittt ittt e e i 1436
33.7 Calculatingthe Cosinet i i ittt ittt e a i ae s 1437
33.8 Calculatingthe Tangent ittt et sae e aeenanerannanneaaneenness 1438
33.9 Calculatingthe Arc Sine.ttt i i i it e ittt ittt e et 1439
33.10 Calculatingthe Arc CoSiNe.ottt i i i i ittt a ittt et nnenns 1440
33.11 Calculatingthe Arc Tangent. ittt i s ettt ee e aa s aae s aaaanenannnnnns 1441
CHAPTER 34 ARITHMETIC OPERATION FUNCTIONS 1442
341 Addition e e 1442
34.2 Multiplication. o i i 1445
34.3 SuUbtraction. a e 1447
34,4 DiIVISION. ...ttt e e e 1450
34.5 ReMaiNderttt i et e e 1452
34.6 Exponentiation. e 1454
34.7 Assignment (Move Operation)c.iiiiiiiiiiii ittt it et iaa e, 1455
CHAPTER 35 BIT SHIFT FUNCTIONS 1457
35.1 Shifting Datatothe Leftby N Bit(S). oot i it et ettt aannnnens 1457
35.2 Shifting Datatothe Right by N Bit(s). oottt i i ettt e e aa e nnes 1459
35.3 Rotating Datatothe Leftby nBit(s)ot i ettt s e e na e anes 1461
35.4 Rotating Datatothe Rightby nBit(s)c.oiiitiiiii i it et ie e s earaanennnens 1463
CHAPTER 36 BOOLEAN FUNCTIONS 1465
36.1 AND Operation, OR Operation, and XOR Operation it iiiiiiiniinnnnnnnnnn 1465
36.2 NOT Operation.o ottt ittt et e et e et s e s e s aanssaneaanesanssanennnsennesnnsss 1468

CHAPTER 37 SELECTION FUNCTIONS 1469

371 SelectingaValue. i it e e e 1469
37.2 Selecting the Maximum/Minimum Value ittt it e e ene s nneenaennnns 1471
37.3 Controlling the Upper/Lower Limitttt it et in e narnnennnns 1473
B 0 S 0]« = - 1476
CHAPTER 38 COMPARISON FUNCTIONS 1478
381 Comparing Data.t i i e e a e 1478
38.2 Comparing Data.t i e e e e 1480
CHAPTER 39 STRING FUNCTIONS 1482
39.1 Detectinga StringLength. i e e 1482
39.2 Extracting String Data From the Left/Right. i e 1484
39.3 Extracting String Data.t e e e e 1486
39.4 Concatenating String Data.oiiiiiiii it ia ettt iaa e aa et 1488
39.5 Inserting String Data. it i i it e 1490
39.6 Deleting String Datattt it et e e e e 1492
39.7 Replacing String Data.ttt i it et e e 1494
39.8 Searching String Data. it i i e it it e e e 1497
CHAPTER 40 TIME DATA TYPE FUNCTIONS 1499
401 Addition e 1499
40.2 SUbBIraCtioN. oo e 1501
40.3 Multiplication i i e e e e e aa e e, 1503
40.4 DiIVISION. . .ottt i i e e 1505

PART 8 STANDARD FUNCTION BLOCKS

CHAPTER 41 BISTABLE FUNCTION BLOCKS 1508
41.1 Bistable Function Block (Set-Dominant).ottt ittt aeaans 1508
41.2 Bistable Function Block (Reset-Dominant).c. ittt iinereaeennnennnas 1510
CHAPTER 42 EDGE DETECTION FUNCTION BLOCKS 1512
421 Detectinga Rising Edge i i i e e i 1512
42.2 Detectinga Falling Edge. i i i it e et ettt s 1514
CHAPTER 43 COUNTER/TIMER FUNCTION BLOCKS 1516
431 Up CoUNter. ... it i e ettt e e e e e e, 1516
By 0 1o 31 T 0o 1 =Y 1518
43.3 Up/DOWN COUNEEEttt i ittt ettt e et aae e e e san s anesannssnnesnseanennnesnnns 1520
43.4 Counter Function BloCk it i i it it e 1523
43.5 Pulse TiMer ...ttt it ittt ettt et s 1525
43.6 OnDelay Timerttt ittt ettt aa s aeeaanssanesnaneaaneanesannsnnnennnns 1528
43.7 Off Delay Timer i i i ittt ettt ittt a st et 1531
43.8 Timer Function BIOCK it i it ettt e e 1533
APPENDICES 1537
Appendix 1 Instruction Processing Time. ittt i et ettt na e anean e aae e 1537

Time added to instruction processing time e 1572

n
-
<
1]
-
<
O
&

19

Appendix 2 Number of Basic Steps and Availability of Subset Processing. 1573

Appendix 3 Determining Three PID Constantsttt iiaeinaeranranrenns 1598
Appendix 4 PID Operation Program Examplesttt ettt na e aeannnnns 1600
Auto tuning (step response method) + PID control program example 1601
Auto tuning (step response method) programexample, 1603
Appendix 5 PID Control Program Examplesttt a e neannnns 1605
Program examples for PID control in automaticmode 1605
Program examples for PID control when switchingmodes. 1612
Appendix 6 Replacement of Other Format Projects. it e ianas 1619
Replacement of a GX Works2 format project 1619
Replacement of a PX Developer format project e 1636
INDEX 1637
INSTRUCTION INDEX 1639
REVISIONS . . 1651
WA RR AN T Y e 1653
TRADEMARKS . . . 1654

RELEVANT MANUALS

Manual name [manual number] Description Available form
MELSEC iQ-R Programming Manual (CPU Module Instructions, Instructions for the CPU module and standard functions/ e-Manual
Standard Functions/Function Blocks) function blocks PDF

[SH-081266ENG] (this manual)

MELSEC iQ-R Programming Manual (Module Dedicated Instructions) Dedicated instructions for the intelligent function modules e-Manual
[SH-081976ENG] PDF

MELSEC iQ-R Programming Manual (Process Control Function Blocks/ | General process FBs, tag access FBs, tag FBs, and process e-Manual
Instructions) control instructions designed for process control PDF
[SH-081749ENG]

MELSEC iQ-R Programming Manual (Program Design) Program specifications (ladder, ST, FBD/LD, and SFC e-Manual

[SH-081265ENG] programs) PDF

GX Works3 Operating Manual System configuration, parameter settings, and online e-Manual

[SH-081215ENG] operations of GX Works3 PDF
Point />

e-Manual refers to the Mitsubishi Electric FA electronic book manuals that can be browsed using a dedicated
tool.

e-Manual has the following features:

» Required information can be cross-searched in multiple manuals.

» Other manuals can be accessed from the links in the manual.

» The hardware specifications of each part can be found from the product figures.

» Pages that users often browse can be bookmarked.

» Sample programs can be copied to an engineering tool.

22

TERMS

Unless otherwise specified, this manual uses the following terms.

Term

Description

Backup mode

An operation mode of the redundant system. This mode can continue the operation by switching the systems from the
control system to the standby system when an error occurs in the control system.

Buffer memory

Memory in an intelligent function module for storing data such as setting values and monitored values.
Buffer memory in a CPU module stores setting values and monitored values of the Ethernet function and data used for
data communications among the CPU modules in a multiple CPU system.

Control CPU

A CPU module that controls connected 1/0 modules and intelligent function modules.
In a multiple CPU system, there are multiple CPU modules and each connected module can be controlled by a
different CPU module.

Control system

A system that takes control and performs network communications in a redundant system

Engineering tool

A tool used for setting up programmable controllers, programming, debugging, and maintenance

Intelligent function module

A module that has functions other than input and output, such as an analog module

Label

A label that represents a device in a given character string

Local station

A station that performs cyclic transmission and transient transmission with the master station and other local stations.

Master station

A station that controls the entire network. This station can perform cyclic transmission and transient transmission with
all stations.

Predefined protocol support function

A function of GX Works3.
This function sets protocols appropriate to each external device and reads/writes protocol setting data.

Process CPU (process mode)

A Process CPU operating in process mode.
Process control function blocks and the online module change function can be used.

Process CPU (redundant mode)

A Process CPU operating in redundant mode.
A redundant system is configured with this CPU module. Process control function blocks and the online module
change function can be used even in this mode.

Redundant system

A system consisting of two systems that have same configuration (CPU module, power supply module, network
module, and other modules). Even after an error occurs in one of the two system, the other system takes over the
control of the entire system.

Request message

A processing request message sent from external devices to SLMP-compatible devices

Response message

A processing result message sent from SLMP-compatible devices in response to the request message

Safety CPU

A module that performs both standard control and safety control and is used with a safety function module. The Safety
CPU models include the RO8SFCPU, R16SFCPU, R32SFCPU, and R120SFCPU.

Safety function module

A module that performs safety control and must be used with a Safety CPU. This module can only be used with the
Safety CPU. The safety function module model name is R6SFM.

Separate mode

A mode for system maintenance in a redundant system. This mode can maintain a redundant system without stopping
control while the system is running.

SIL2 function module

A module that performs safety control and must be used with a SIL2 Process CPU. This module can only be used with
the SIL2 Process CPU. The SIL2 function module model name is R6PSFM.

SIL2 Process CPU

A module that performs both standard control and safety control and is used with a SIL2 function module. This module
is also used with a redundant function module and configures a redundant system. The SIL2 Process CPU models
include the ROBPSFCPU, R16PSFCPU, R32PSFCPU, and R120PSFCPU.

Standby system A backup system in a redundant system

System A A system that is set as system A to distinguish two systems, which are connected with two tracking cables.
When the two systems start up at the same time, this system will be a control system. System switching does not affect
the system A/B setting.

System B A system that is set as system B to distinguish two systems, which are connected with two tracking cables.

When the two systems start up at the same time, this system will be a standby system. System switching does not
affect the system A/B setting.

The following terms are used to explain systems using the SIL2 Process CPU and the Safety CPU.

Term

Description

Safety communications

Communication service that performs send/receive processing in the safety layer of the safety communication protocol

Safety control

Machine control by safety programs and safety data communications. When an error occurs, the machine in operation
is securely stopped.

Safety cycle processing

Processing of safety input/output and safety program

Safety device

A device that can be used in safety programs (L1 MELSEC iQ-R CPU Module User's Manual (Application))

Safety label

A generic term for the safety global label, safety local label, and standard/safety shared label (L] MELSEC iQ-R CPU
Module User's Manual (Application))

Safety program

A program for performing safety control

Term

Description

Standard communications

Communications other than safety communications, such as cyclic transmission and transient transmission of CC-Link
|IE Field Network

Standard device

Adevice (X, Y, M, D, or others) in a CPU module. (Safety devices are excluded.) This device can be used only in
standard programs. (This term is used to distinguish from a safety device.)

Standard program

A program that performs sequence control. (Safety programs are excluded.) (This term is used to distinguish from a
safety program.)

23

GENERIC TERMS AND ABBREVIATIONS

Unless otherwise specified, this manual uses the following generic terms and abbreviations.

Generic term and abbreviation

Description

A/D converter module

A MELSEC iQ-R series analog-digital converter module, channel isolated analog-digital converter module, and high
speed analog-digital converter module

Analog module

An A/D converter module, a D/A converter module, and a temperature input module

CC-Link IE Controller Network-
equipped module

An RJ71GP21-SX CC-Link IE Controller Network module, an RJ71GP21S-SX CC-Link IE Controller Network module,
and the following modules when the CC-Link IE Controller Network function is used:

* RJ71ENT1

* RnENCPU

CC-Link IE Field Network-equipped
master/local module

An RJ71GF11-T2 CC-Link IE Field Network master/local module and the following modules when the CC-Link |E Field
Network function is used:

* RJ71ENT1

* RnENCPU

CC-Link IE TSN master/local module

RJ71GN11-T2, RJ71GN11-EIP (CC-Link IE TSN part)

D/A converter module

A MELSEC iQ-R series digital-analog converter module, channel isolated digital-analog converter module, and high
speed digital-analog converter module

Ethernet interface module with built-
in CC-Link |IE

RJ71EN71

External device

A personal computer and other Ethernet-equipped modules connected over Ethernet for data communications

External device

A device that sends SLMP request messages to an SLMP-compatible device (personal computers, HMI (Human
Machine Interface) and others)

FBD/LD Function block diagram/ladder diagram

1/0 module An input module, an output module, an I1/0 combined module, and an interrupt module
MELSECNET/10 A MELSECNET/10 network system

MELSECNET/H A MELSECNET/H network system

Network module

Includes the following:

« Ethernet interface module

» CC-Link IE TSN master/local module

« CC-Link IE Controller Network module

» CC-Link IE Field Network master/local module
* MELSECNET/H module

* MELSECNET/10 module

* RnENCPU (network part)

Operand

A device, such as source data (s), destination data (d), number of devices (n), and others, used as parts to configure
instructions and functions

Positioning module

A MELSEC iQ-R series positioning module

Process CPU

R0O8PCPU, R16PCPU, R32PCPU, R120PCPU

Programmable controller CPU

ROOCPU, R0O1CPU, R02CPU, R04CPU, RO4ENCPU, RO8CPU, ROBENCPU, R16CPU, R16ENCPU, R32CPU,
R32ENCPU, R120CPU, R120ENCPU

Remote head module

An RJ72GF15-T2 CC-Link IE Field Network remote head module

RJ71GN11-EIP (CC-Link IE TSN
part)

An RJ71GN11-EIP when it performs communications on CC-Link IE TSN

RJ71GN11-EIP (EtherNet/IP part)

An RJ71GN11-EIP when it performs communications on EtherNet/IP

RnCPU

ROOCPU, R0O1CPU, R02CPU, R04CPU, R08CPU, R16CPU, R32CPU, R120CPU

RnENCPU RO4ENCPU, ROBENCPU, R16ENCPU, R32ENCPU, R120ENCPU

RnNENCPU (network part) The right side (network part) of the RnNENCPU (L] MELSEC iQ-R Ethernet/CC-Link IE User's Manual (Startup))
RnPCPU RO8PCPU, R16PCPU, R32PCPU, R120PCPU

SFC Sequential function chart

SLMP Seamless Message Protocol.

This protocol is used to access an SLMP-compatible device or a programmable controller connected to an SLMP-
compatible device from an external device.

SLMP-compatible device

A device of the Mitsubishi Electric product that can transfer SLMP (Ethernet adapter module and Ethernet-equipped
module)

ST language

Structured text language

Temperature input module

A MELSEC iQ-R series channel isolated thermocouple input module and channel isolated RTD input module

The following terms are used to explain systems using the SIL2 Process CPU and the Safety CPU.

Term Description

Safety label A safety global label, a safety local label, and a standard/safety shared label (L1 MELSEC iQ-R CPU Module User's
Manual (Application))

Standard CPU AMELSEC iQ-R series CPU module that performs standard control (This term is used to distinguish from the CPU
modules that perform safety control.)

Instruction symbols

Unless otherwise specified, this manual uses the following generic symbols for some instructions.

Classification Instruction symbol Generic symbol

Multiple CPU dedicated instruction D(P).DDRD, M(P).DDRD DDRD
D(P).DDWR, M(P).DDWR DDWR

PID control instruction S(P).PIDINIT, PIDINIT(P) PIDINIT
S(P).PIDCONT, PIDCONT(P) PIDCONT
S(P).PIDPRMW, PIDPRMW(P) PIDPRMW

MANUAL PAGE ORGANIZATION

In this manual, pages are organized and the symbols are used as shown below.

How to read Part 3 to Part 5

The following illustration is for explanation purpose only, and should not be referred to as an actual documentation.

Adding a record to the data base

@ ——————> DBINSERT(P)

TR Y i e
(2] —> =D D) (sm i

These instructions add a record to the table of the database corresponding to the specified identification number.

Ladder ST
ENO:=DBINSERT(EN, 51,52,53,54,d1,d2);
— ENO:=DBINSERTP(EN, 51,52,53,54,d1,d2);
@ ——+—» . J[en][ea][a]en]@n]e
FBD/LD
| E——
— e ENO (—
— = ot -
— = @ —
— =
— .
@ —————————» mExecution condition
Instruction Execution condition
DBINSERT iml
DBINSERTP I
@ ————————|—>» Settingdata
HDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) Database identification number 1104 16-bit signed binary | ANY16
(s2) Start device for storing the database table names. — Unicode string ANYSTRING_DOUB
LE
(s3) Start device for storing the database field names. - Word ANY16™!
(s4) Start device for storing insertion data - Word ANY16™
- Completion device (start device Bit
o on completion of instr

e e

(6] » mAppli devices [
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |JOO | T,ST,C,D,W,SD, |uDiem, o, z st [z KH[E|s
F,B, SB, FX, FY SW, FD, R, ZR, RD | U3ED\(H)GOI Lc
(s1) — o — —|- — |o — [-[-]-
= — o —|- — |o =
- = - - |- le _
@ ————————|—» HEControl data [
Operand: (s3)
Device | Item Description Setting range | Set by
+0 Number of fields Specify the number of fields to which a value is to be added. 11016 User
Specify a value equal to or less than the number of fields of the table specified in (s2).
+1to+0 | Field name Specify the name of each field. Specify field names, each fixed to 32 characters, by | — User
A the number of fi aracter strings. For the name less than 32 | —
’\ chara tjustified and filled with 0000H to
— ~—
@ ———————>» _Processing details [
« These instructions add a record to the table specified by (s2) in the database corresponding to the identification number
specified by (s1).
« Specify the number of fields of the record to be added, fi eld names, and data types in (s3). For the field names to be added,
not all fields making up the table need to be specified. Store NULL in the fields which are not specified.
« Specify the number of records to be added and the size and value per record in (s4). One to sixteen records can be set
A
—— |
©@ ———|—» Precautions —
In the following cases, the error completion signal in (d1)+1 is turned on and an error code is stored as the completion status
in the device (d2).
+ The DBINSERT(P) instruction is executed during execution of the database access instruction.
« An identification number outside the range is specified by (s1).
« An identification number of a database which is not open is specified by (s1).
« The table name specified by (s2) does not exist.
+ The number of characters of the table name specified by (s2) exceeds 32.
« An out-of-range value is specified in (s3) for the number of fields to be added.
+ An out-of-range value is specified in (s4) for the number of records to be added.
« Database insertion processing failed.
« The range of the data for one record set in (s4)+2 does not match the size specified by (s4)+1.
® —————>» .Operation.error

Error code (SD0) ‘ Description

28204 ‘ The area specified by (s) o (d) exceeds the applicable range of the devicellabel used.

@ Instruction symbol
+ An instruction symbol followed by parentheses indicates multiple instructions. For example, "GRY(P)(_U)" indicates four
instructions: GRY, GRYP, GRY_U, and GRYP_U.

Instruction symbol Meaning

Instruction symbol followed by "(P)" This instruction is executed only on the rising edge (off to on).

Instruction symbol followed by "(_U)" This instruction handles 16-bit or 32-bit unsigned binary data.

» An instruction symbol followed by "O" indicates multiple instructions. For example, "LDDTO" indicates six instructions:
LDDT=, LDDT<>, LDDT>, LDDT<=, LDDT<, and LDDT>=.

O Availability by the CPU module type (The instruction cannot be used by the CPU module marked X.)

© Description formats of ladder diagram, structured text language, and FBD/LD

An instruction symbol should be described in the enclosed area of each ladder or FBD/LD program.

Execution condition is input to EN of each structured text or FBD/LD program. And, execution result should be described for

ENO.

O Execution condition (=~ Page 51 Execution Condition)

© Description of operands, setting ranges, data types, and label data types

 For the data type, refer to the following.

[=5~ Page 34 Data Specification Method

0 Devices that can be used as operands

Operand | Bit Word Double word | Indirect Constant | Others™
X, Y,M,L, |JOWO |T,ST,C,D,W, |um\GO,Jo\O% LT,LST, | Lz | specificatio ['y [['g
SM,F,B,SB, |4 SD, SW, FD, R, | U3EO\(H)GO LC 0
S, FX, FY ZR, RD

Applicable | X, Y, M, L, SM, | JO\X T8, sT3,c® D, |uDGO LTS Lz | @O KHI|E|[S$ |PLJU,

device™! F,B, SB, S, Jovy W, SD, SW, FD2, | U3EC\GO LST® @O.o0 DX, DY,
FX'2, FY™2 JO\B R, ZR, RD UBEO\HGO Lc™ N,V, BL,

JO\sB Jow BLO\SO
JO\sw

The following table lists safety devices that can be used as operands in safety programs executed by the SIL2 Process CPU
and the Safety CPU.

Operand Bit Word Constant
SA\X, SA\Y, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H
Applicable device™ | SAX, SAY, SAWM, SA\SM, SA\B SA\T™3, SA\ST™3, SA\C™®, SA\D, SA\W, SA\SD K, H

*1 For details on each device, refer to the following.

L1 MELSEC iQ-R CPU Module User's Manual (Application)

FX and FY can be used for bit data only, and FD for word data only.

When T, ST, C, LT, LST, or LC is used for instructions other than those listed below, it can only be used as word data. It cannot be used
as bit data.

[Instructions that can be used as bit data]

LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, OUT, RST, BKRST,
MOVB(P), CMLB(P)

When SA\T, SA\ST, or SA\C is used for instructions other than those listed below, it can only be used as word data. It cannot be used as
bit data.

[Instructions that can be used as bit data]

LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, OUT, RST, MOVB(P)

*4 This device can be used with a network module with a network number specified.

*5 In the "Others" column, a device(s) that can be set for each instruction is shown.

@ Control data. Some instructions require control data that determine the operations of the instructions. When control data

*2
*3

need to be set by a user, set values according the setting range.

@ Processing details of the instruction. Unless otherwise specified, the following programs are regarded as interrupt
programs.

* Interrupt program using the interrupt pointer (1)

» Fixed scan execution type program

» Event execution type program that is triggered by the interrupt pointer (1)

27

28

O Precautions

@ Error code and error details if the instruction has any possible operation error

» A device in which an error code is stored is provided in the error code column. When an error code is stored in SDO, an
error flag (SMO) turns on. (The error status can be checked with the module label of the CPU module.)

* For the errors not provided here, refer to the following.

L1 MELSEC iQ-R CPU Module User's Manual (Application)

How to read Part 7 and Part 8

The following illustration is for explanation purpose only, and should not be referred to as an actual documentation.

@ —————————1—» BOOL_TO_DINT(_E)
RiPCPU Jf RnPCPU B RnSFCPURASFCPU!

(2] —>

These instructions convert a value from BOOL data type to DINT data type.

Ladder, FBD/LD Structured text

[Without ENENO] [With ENENO] [Without EN/ENO]

— — d:=BOOL_TO_DINT(s);
o _> | | — [With EN/ENO]
N M i eNo | 4:=BOOL_TO_DINT_E(EN,ENO,s);
I P
Setting data

@ ————» HDescription, type, data type

Argument Description Type Data type

EN Execution condition (TRUE: Executed, FALSE: Not executed) Input variable BOOL

s (IN) Input Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal or operation stop) | Output variable BOOL

d Output Output variable DINT
© —————1—>» _Processing.details

HOperation processing

+ These functions convert the value input to (s) from BOOL data type to DINT data type, and output the converted value from
(d)-

+ When the input value is FALSE, 0 (DINT data type) is output.

+ When the input value is TRUE, 1 (DINT data type) is output.

(s) (d)
[FALSE —> | 0]
[TRUE J—> | 1]
BOOL DINT

« Input a BOOL data type value to (s).

HOperation result

1. Function without ENJENO

The operation processing is performed. The operation result is output from (d).

2. Function with ENJENO
The execution conditions and operation results will be as follows.

Execution condition Operation result

EN ENO (d)

TRUE (executed) TRUE Operation result output value
FALSE (not executed) FALSE™ Undefined value

“1 If the value FALSE is output from ENO, the output data from (d) will be undefined. Create a program so that the undefined value will not
be used in operations.

@ ——————+—» . Operation.error

There is no operation error.

W\

@ Function symbol

A function symbol followed by parentheses indicates multiple functions or function blocks. For example,
"BOOL_TO_DINT(_E)" includes two functions: "BOOL_TO_DINT" and "BOOL_TO_DINT_E".

Function symbol Meaning

Function symbol followed by "(_E)" This standard function or standard function block can write program with EN/ENO.

O Availability by the CPU module type (The function or function block cannot be used by the CPU module marked X.)
© Description formats of ladder diagram, structured text language, and FBD/LD

In the enclosed area, either of the following symbol should be described.

« Standard function: Function symbol

« Standard function block: Instance name and function block symbol

Execution condition is input to EN of each standard function or function block. And, execution result is output from ENO of
each standard function or function block.

The return value of functions are not displayed in FBD/LD programs.

For instances, refer to the following.

L[] MELSEC iQ-R Programming Manual (Program Design)

29

O Description of operands, types, data types, and label data types

* For the data type, refer to the following.

[=5~ Page 34 Data Specification Method

© Processing details of the standard function or standard function block

O Error code and error details if the standard function or standard function block has any possible operation error

A device in which an error code is stored is provided in the error code column. When an error code is stored in SDO, an error
flag (SMO) turns on. (The error status can be checked with the module label of the CPU module.)

For the errors not provided here, refer to the following.

L1 MELSEC iQ-R CPU Module User's Manual (Application)

30

PART 1

OVERVIEW

This part consists of the following chapter.

1 OVERVIEW

31

1 OVERVIEW

1.1 Instruction Configuration

Many instructions available for programmable controllers are each divided into the instruction part and operand part.

The instruction part and operand part are used as follows.

* Instruction part: Indicates the function of the relevant instruction.

» Operand part: Indicates the data used for the instruction.

The operand part is further classified to source data, destination data, and numerical data.

Source (s)

Source is the data used in the operation.
Depending on the label or device specified in each instruction, the source becomes as follows.

Type Description

The constant specifies a numerical value used in the operation.

Constant
It is set during program creation and cannot be changed during program execution.
When using constants in variable data, perform index modification.”
Device The user specifies the device or label where the data to be used in the operation is stored.

Label Necessary data must be thus stored in the specified device or label before operation execution.
By changing the data to be stored in the specified device or label during program execution, the data to be used by the

instruction can be changed.

*1 For the index modification, refer to the following.
L1 MELSEC iQ-R CPU Module User's Manual (Application)

Destination (d)

Data after operation is stored in the destination area.
However, some instructions require the data to be used in the operation to be stored before the operation.

Binary 16-bit data addition instruction

() @)
(1) The data required for operation is stored before the operation.
(2) Only the operation result is stored.

A label or device to store data must be set for the destination.

32 1 OVERVIEW
1.1 Instruction Configuration

Numerical value (n)

For the numerical values of the numbers of devices, transfers, data, and character strings, specify those used by an

instruction which uses multiple devices or an instruction which specifies the numbers of repetitions, data to be processed, and

character strings.

[Ex]

Block transfer instruction

—fewov] 5 [@ [«
O dl}—{

(1

(1) The number of transfers executed by the BMOV instruction is specified.

A numerical value from 0 to 65535 or 0 to 4294967295 can be set for the size such as the number of devices, transfers, or
characters.”

Note, however, that when the size specification such as the number of devices, transfers, or characters is 0, the relevant
instruction results in non-processing.

The upper limit of the numerical value may be less than the values mentioned above, depending on the capacity of the device
memory or file storage area.”?

*1 The setting range varies depending on the instruction. For details, refer to the description of each instruction.
*2 The capacities of the device memory and file storage area vary depending on models. For details, refer to the following.
L1 MELSEC iQ-R CPU Module User's Manual (Startup)

Point}@

Be careful when a large numerical value is used such as for the number of transfers. It delays the scan time.

1 OVERVIEW
1.1 Instruction Configuration 33

1.2 Data Specification Method

The following table lists the types of data that can be used for instructions in CPU modules.

Data Classification
Bit data Bit data
16-bit data (word data) 16-bit signed binary data

16-bit unsigned binary data

32-bit data (double word data) 32-bit signed binary data

32-bit unsigned binary data

Real number data (floating-point data) Single-precision real number data

Double-precision real number data

BCD data BCD 4-digit data

BCD 8-digit data

BCD 16-digit data

String data String

Unicode string

3 4 1 OVERVIEW
1.2 Data Specification Method

Device data

The following table lists devices and constants that can be used to specify the setting data of instructions.

Data type Description Specifiable device/constant™!
Bit Bit data can be handled. « Bit device

=~ Page 38 Bit data « Bit specification of word device
Word Word data can be handled. » Word device

=~ Page 40 16-bit data (word data)

16-bit signed binary

16-bit unsigned binary

16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

=~ Page 40 16-bit data (word data)

« Digit-specified bit device (K1 to K4)2
« Decimal constant
» Hexadecimal constant

Double word

Double-word data can be handled.
=~ Page 43 32-bit data (double word data)

32-bit signed binary

32-bit unsigned binary

Two consecutive sets of 32-bit data or 16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

=~ Page 43 32-bit data (double word data)

* Word device

» Double-word device

- Digit-specified bit device (K1 to K8)2
« Decimal constant

» Hexadecimal constant

BCD 4-digit BCD 4-digit data can be handled. » Word device
16-bit data is divided by 4 digits and each digit is specified in 0 to 9. « Digit-specified bit device (K1 to K4)*2
« Decimal constant
* Hexadecimal constant
BCD 8-digit BCD 8-digit data can be handled. » Word device

32-bit data is divided by 8 digits and each digit is specified in 0 to 9.

» Double-word device

« Digit-specified bit device (K1 to K8)2
« Decimal constant

» Hexadecimal constant

Single-precision real
number

Single-precision real number data (single-precision floating-point data) can be
handled.
=~ Page 46 Configuration of single-precision real number data

» Word device
» Double-word device
* Real constant

Double-precision real
number

Double-precision real number data (double-precision floating-point data) can
be handled.
=~ Page 47 Configuration of double-precision real number data

» Word device
« Double-word device
* Real constant

Character string

ASCII code and Shift JIS code character string data can be handled.
=" Page 49 String data

* Word device
« Character string constant

Unicode character string

Unicode character string data can be handled.
=~ Page 49 String data

« Word device
« Character string constant

Device name

A device can be specified directly.

» Device name corresponding to applicable
device

*1 Aconstant can be used in the data specified for the source (s) or numerical data (n) by an instruction.
*2 For the specification method, refer to the detail page of each data type.

1 OVERVIEW
1.2 Data Specification Method

35

36

Label data

The following table lists labels that can be used to specify the setting data of instructions.

EPrimitive data type

Data type (label)

Specifiable label

Bit
(BOOL)

« Bit type label
* Bit-specified word [unsigned]/bit string [16 bits] type label
« Bit-specified word [signed] type label

« Timer/retentive timer/long timer/long retentive timer type label contact/coil

« Counter/ long counter type label contact/coil

Word [unsigned]/bit string [16 bits]
(WORD)

» Word [unsigned]/bit string [16 bits] type label

« Digit-specified bit type label (K1 to K4)

« Current value of timer/retentive timer type label
« Current value of counter type label

Double word [unsigned]/bit string [32 bits]
(DWORD)

» Double word [unsigned]/bit string [32 bits] type label

« Digit-specified bit type label (K1 to K8)

« Current value of long timer/long retentive timer type label
« Current value of long counter type label

Word [signed]
(INT)

» Word [signed] type label

« Digit-specified bit type label (K1 to K4)

« Current value of timer/retentive timer type label
« Current value of counter type label

Double word [signed]
(DINT)

« Double word [signed] type label

« Digit-specified bit type label (K1 to K8)

« Current value of long timer/long retentive timer type label
« Current value of long counter type label

Single-precision real number

« Single-precision real data type label

(REAL)

Double-precision real number « Double-precision real data type label

(LREAL)

Time « Time type label

(TIME)

Character string « Character string type label

(STRING)

Character string [Unicode] « Character string [Unicode] type label

(WSTRING)

Pointer « Pointer type label

(POINTER)

Pointp . — _
For details on individual labels, refer to the following.
1 MELSEC iQ-R CPU Module User's Manual (Application)
1 OVERVIEW

1.2 Data Specification Method

HEGeneric data type

The generic data type is the data type of the labels which summarize several primitive data types.
Generic data types are used when multiple data types are allowed for arguments and return values of functions or function

blocks.

Labels defined in generic data types can be used in any sub-level data type.

Data type (label) Specifiable data type
ANY"" | ANY_ELEMENTARY ANY_BIT ANY_BOOL Bit
ANY_BITADDR’ Bit
ANY16_U Word [unsigned]/bit string [16 bits]
ANY32_U Double word [unsigned]/bit string [32
bits]
ANY_WORDADDR | ANY_NUM | ANY_IN | ANY16 | ANY16_S Word [signed]
T ANY16_U Word [unsigned]/bit string [16 bits]
ANY32 | ANY32_S Double word [signed], time
ANY32_U Double word [unsigned]/bit string [32
bits]
ANY_REAL ANYREAL_32 Single-precision real number
ANYREAL_64 Double-precision real number
ANY_STRING ANYSTRING_SINGLE | String

ANYSTRING_DOUBLE

Character string [Unicode]

ANY16_OR_STRING_SINGLE | ANY16_S

Word [signed]

ANY16_U

Word [unsigned]/bit string [16 bits]

ANYSTRING_SINGLE

String

ANY_DT Word [signed], word [unsigned]/bit
string [16 bits]
ANY_TM Word [signed], word [unsigned]/bit

string [16 bits]

ANY_STRUCT"!

Structures

STRUCT

Structures

*1 Can also be used as an array.

HEGeneric data type (array)

For the following generic data type, define the number of array elements.

Data type (label)

Specifiable data type

ANYBIT_ARRAY

Bit array

ANYWORD_ARRAY ANY16_ARRAY

ANY16_S_ARRAY

Word [signed] array

ANY16_U_ARRAY

Word [unsigned]/bit string [16
bits] array

ANY32_ARRAY

ANY32_S_ARRAY

Double word [signed] array,
time array

ANY32_U_ARRAY

Double word [unsigned]/bit
string [32 bits] array

ANY_REAL_ARRAY

ANY_REAL_32_ARRAY

Single-precision real number
array

ANY_REAL_64_ARRAY

Double-precision real number
array

ANY_STRING_ARRAY

ANY_STRING_SINGLE_ARRAY

Character string array

ANY_STRING_DOUBLE_ARRAY

Character string [Unicode]
array

STRUCT_ARRAY

Structure array

1 OVERVIEW

1.2 Data Specification Method 37

38

Bit data

Data size and data range

Bit data is handled in increments of bits such as contacts and coils.

Data name

Data size

Value range

Bit data

1 bit

0,1

Handling bit data with bit devices and labels

One point of bit device/label can handle 1-bit data.

Handling bit data with bit word devices

By specifying a bit number for a word device, bit data of the specified bit number can be handled.

A bit in a word device can be specified by "Word device number.Bit number".

A bit number can be specified in hexadecimal in the range from 0 to F.
For example, bit 5 (b5) of DO is specified as D0.5, and bit 10 (b10) of DO is specified as DO.A.

The following word devices support bit specification.

Item

Device

Word devices which support bit specification

« Data register (D)

« Link register (W, JO\W)

« Link special register (SW, JO\SW)

« Function register (FD)

« Special register (SD)

* Module access device (UO\G)

» CPU buffer memory access device (USEO\G, UBEO\HG)
« File register (R, ZR)

* Module refresh register (RD)

A bit number of a safety device used in safety programs executed by the SIL2 Process CPU and Safety CPU can be specified

in hexadecimal within the range from 0 to F.
For example, bit 5 (b5) of SA\DO is specified as SA\DO0.5, and bit 10 (b10) of SA\DO is specified as SA\DO.A.

The following word devices support bit specification.

Item

Device

Word devices which support bit specification

« Safety data register (SA\D)
« Safety link register (SA\W)
« Safety special register (SA\SD)

1 OVERVIEW
1.2 Data Specification Method

Handling bit data with word type labels
By specifying a bit number for a word type label, bit data of the specified bit number can be handled.
A bit in a word type label can be specified by "Label name.Bit number".

[Ex]

L_INT.O o« L_INT[1].0 o L_STRUCT[1].S_INT.O

ANV

Label name Bit specification Bit number Label name Bit specification Bit number Structure label name Label name Bit specification Bit number

The following data types of labels support bit specification.

Item Data type

Data types of labels which support bit specification. » Word [signed] (INT type)

« Word [unsigned]/bit string [16 bits] (WORD type)

« Current value (N) of timer (TIMER type)!

« Current value (N) of retentive timer (RETENTIVETIMER type)”!
« Current value (N) of counter (COUNTER type)*1

*1 Cannot be specified in ladder programs.

1 OVERVIEW
1.2 Data Specification Method 39

16-bit data (word data)

Data size and data range

16-bit data includes signed and unsigned 16-bit data.
In signed 16-bit data, a negative number is represented in two's complement.

Data name Data size Value range

Decimal notation Hexadecimal notation
Signed 16-bit data 16 bits (1 word) -32768 to 32767 0000H to FFFFH
Unsigned 16-bit data 0 to 65535

Handling 16-bit data with bit devices

A bit device can be handled as 16-bit data by performing digit specification.

Item Notation Example
Bit device Other than link direct device KOBIt device start number K4X10
O: Number of digits (Specify the number within the range of 1 to 4.) K2M113
Link direct device JO\KOBIt device start number J1\K3B10
O (on the left): Network number J10\K2Y10
O (on the right): Number of digits (Specify the number within the range of 1 to 4.)

A bit device used in safety programs executed by the SIL2 Process CPU and Safety CPU can be handled as 16-bit data by
performing digit specification.

Item Notation Example
Bit device SA\KOBIt device start number SA\K4X10
O: Number of digits (Specify the number within the range of 1 to 4.) SA\K2M113

Handling 16-bit data with bit type array labels

A bit type array label can be handled as 16-bit data by performing digit specification.
The following table shows the notation for handling a bit type array label as 16-bit data by digit specification.

Item Notation Example

Bit type array label KOLabel name K1L_BOOL
O: Number of digits (Specify the number within the range of 1 to 4.)
Specify a label name without an array element.

40 1 OVERVIEW
1.2 Data Specification Method

Digit specification range

The following table lists the range of 16-bit data for each digit specification.

Digit Decimal notation Hexadecimal notation

specification

K1 Oto 15 OH to FH

K2 0 to 255 00H to FFH

K3 0 to 4095 000H to FFFH

K4 Signed 16-bit data: -32768 to 32767 0000H to FFFFH
Unsigned 16-bit data: 0 to 65535

[Ex]

When digit specification is made for X0, the applicable number of points is as follows.
* K1X0—4 points from X0 to X3
* K2X0—8 points from X0 to X7
* K3X0—12 points from X0 to XB
* K4X0—16 points from X0 to XF

XF - XC XB

X8 X7

<3X0

< K2X0

K4X0

ESpecifying a bit device with digit specification in the source (s)
When a bit device is specified with digit specification in the source of an instruction, 0 is stored in the word device of the

destination, in the upper bits than those specified in the source of the instruction.

Ladder example Processing
* 16-bit data instruction
o[z <[]
X10
|—| MOV | K1X0 | DO v
i : v
A
- ~

(s)

5 4 b3 b2 b1 b0
D0|0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘X3‘X2‘X1‘X0|

ESpecifying a bit device with digit specification in the destination (d)
When a digit specification is made in the destination of an instruction, the number of points by the digit specification is
applicable in the destination.

The upper bit devices than the number of points specified by digits remain unchanged.

Ladder example

Processing

* When the source data is a word device

X10 D0|1‘1‘1‘0‘1‘0‘1‘0‘1‘0‘0‘1‘1‘1‘0‘1|
- mov | Do |kami00 . »
1 §
(d)
M115 M108M107 M100
kewoo| | | | | | | | [1]ofofaf[s]1]o]1]
- /
N
(1)
(1) The data remain the same.
1 OVERVIEW 41

1.2 Data Specification Method

Handling 16-bit data with word devices/labels

HEWord device

One point of word device can handle 16-bit data.

EWord type label
One point of word type label can handle 16-bit data.

42 1 OVERVIEW
1.2 Data Specification Method

32-bit data (double word data)

Data size and data range

32-bit data includes signed and unsigned 32-bit data.

In signed 32-bit data, a negative number is represented in two's complement.

Data name

Data size Value range

Decimal notation

Hexadecimal notation

Signed 32-bit data

Unsigned 32-bit data

32 bits (2 word) -2147483648 to 2147483647

0 to 4294967295

00000000H to FFFFFFFFH

Handling 32-bit data with bit devices

A bit device can be handled as 32-bit data by performing digit specification.

Item Notation Example
Bit device Other than link direct device K8X80
KO | Bit device start number | K6B018
Number of digits: Specify the number within the range of 1 to 8.
Link direct device J1\K7B30
JO/KO | Bit device start number | J10\K5X128

Number of digits: Specify the number within the range of 1 to 8.
Network number

A bit device used in safety programs executed by the SIL2 Process CPU and Safety CPU can be handled as 32-bit data by

performing digit specification.

Item Notation Example
Bit device SA\K8X80
SA\KO | Bit device start number SA\K6B018
Number of digits: Specify the number within the range of 1 to 8.
Handling 32-bit data with bit type array labels
A bit type array label can be handled as 32-bit data by performing digit specification.
The following table shows the notation for handling a bit type array label as 32-bit data by digit specification.
Item Notation Example
Bit type array label K8L_BOOL
<
Number of digits: Specify the number within the range of 1 to 8.
Specify a label name without an array element.
For languages other than ladder, specify the number within the range of K5 to K8.
(For languages other than ladder, the label with digit specification within the range
of K1 to K4 is handled as ANY16.)
1 OVERVIEW

1.2 Data Specification Method

43

44

Digit specification range

The following table lists the range of 32-bit data for each digit specification.

Digit Decimal notation Hexadecimal notation

specification

K1 Oto 15 OH to FH

K2 0 to 255 00H to FFH

K3 0 to 4095 000H to FFFH

K4 0 to 65535 0000H to FFFFH

K5 0 to 1048575 00000H to FFFFFH

K6 0to 16777215 000000H to FFFFFFH

K7 0 to 268435455 0000000H to FFFFFFFH

K8 Signed 32-bit data: -2147483648 to 2147483647 00000000H to FFFFFFFFH
Unsigned 32-bit data: 0 to 4294967295

[Ex]

When digit specification is made for X0, the applicable number of points is as follows.

* K1X0—4 points
* K2X0—8 points
* K3X0—12 point
* K4X0—16 point
* K5X0—20 point
* K6X0—24 point

from X0 to X3
from X0 to X7

s from X0 to XB
s from X0 to XF
s from X0 to X13
s from X0 to X17

* K7X0—28 points from X0 to X1B
+ K8X0—32 points from X0 to X1F

X1F - X1CX1B - X18X17 --- X14X13 - X10XF -~ XCXB - X8X7 --

X4X3 -+ X0

_K2X0

KIX0 |

| K3X0
¢

_ K4x0

o K5X0

K6X0

_ K7X0

<

_ K8X0

1 OVERVIEW

1.2 Data Specification Method

BSpecifying a bit device with digit specification in the source (s)
When a bit device is specified with digit specification in the source of an instruction, 0 is stored in the word device of the

destination, in the upper bits than those specified in the source of the instruction.

Ladder example Processing
« 32-bit data instruction
EAEAEIED
X10
———— omov | kixo [Do N
0 U
T A
e ~
) b15 b4 b3 b2 b1 b0

d|0[{0(0|0|O0|O0O|O0O|O0|O0]|O0] 0| O0]|X3|X2X1|X0

d|{0|0|0|O0O|O0]O0]O 0/0(0|0]O

o
o
o
o

b31 b16
A /

ESpecifying a bit device with digit specification in the destination (d)

When a digit specification is made in the destination of an instruction, the number of points by the digit specification is

applicable in the destination.

The upper bit devices than the number of points specified by digits remain unchanged.

Ladder example

Processing

* When the source data is a word device

X10
}—{ F———omov| oo | K5M10}—{

(d)

b15

d0|1‘1‘1‘0‘0‘1‘0‘0‘0‘1‘0‘1‘1‘1‘O‘1|
b15

at{ofol1[1]ofr]o]o]1]o]o]1]o]1]1]1]

M25 M10

L1[1l1lofolrfofofolt]ofr]r]r]o]1]
M41 M30M29 - M26

L PP PP] Jofele]n]

— _
~

(1)

(1) The data remain the same.

Handling 32-bit data with word devices/labels

EWord device

Two points of word device can handle 32-bit data.

Note, however, that one point of the following devices can handle 32-bit data.

* Long timer (LT)

* Long retentive timer (LST)
* Long counter (LC)

» Long index register (LZ)

EDouble word type label

One point of double word device can handle 32-bit data.

1 OVERVIEW
1.2 Data Specification Method

45

46

Real number data (floating-point data)

Data size and data range

Real number data includes single-precision 32-bit real number data and double-precision 64-bit real number data.
Real number data can be stored only in devices other than bit devices or in single-precision or double-precision real data type

labels.
Data name Data size Value range
Single-precision real number data (single-precision Positive | 32 bits (2 word) 271%6<real number<2128
floating-point data) number
Zero 0
Negative -2"28<real number<-2-126
number
Double-precision real number data (double-precision | Positive | 64 bits (4 word) 271022<reg] number<21024
floating-point data) number
Zero 0
Negative -21024<real number<-271022
number

Configuration of single-precision real number data

Single-precision real number data consists of a sign, mantissa, and exponent, and is expressed as shown below.

| Exponent |

x 2

| Sign | 1. | Mantissa

The following figure shows the bit configuration of the internal expression of single-precision real number data and the
meaning of each part.

HERNEEEEEEENE NN

b31 b30 b23 b22 b16 b15 b0
\)\ ANE /
A ~
Sign Exponent Mantissa

WSign (1 bit)
This bit represents the positive or negative sign of a numerical value. "0" indicates a positive number or 0. "1" Indicates a
negative number.

EMantissa (23 bits)

A mantissa means XXXXX:- of 1. XXXXX--x2N representing a single-precision real number in binary.

HEExponent (8 bits)

An exponent means N of 1 XXXXX:-x2N representing a single-precision real number in binary. The following table shows the
relationships between the exponent value and N of a single-precision real number.

Exponent (b24 to b30) | FFH FEH FDH -« | 81H 80H 7FH 7EH -~ | 02H 01H 00H

N Not used | 127 126 2 1 0 -1 -125 -126 Not used

1 OVERVIEW
1.2 Data Specification Method

Configuration of double-precision real number data

Double-precision real number data consists of a sign, mantissa, and exponent, and is expressed as shown below.

| Exponent |

| Sign | 1. | Mantissa x 2

The following figure shows the bit configuration of the internal expression of double-precision real number data and the
meaning of each part.

HERNEEEEEEENE NN

b63 b62 b52 b51 b16 b15 b0
\ A AN)
g ~
Sign Exponent Mantissa

WSign (1 bit)
This bit represents the positive or negative sign of a numerical value. "0" indicates a positive number or 0. "1" Indicates a
negative number.

EMantissa (52 bits)

A mantissa means XXXXX:- of 1. XXXXX--x2N representing a single-precision real number in binary.

EExponent (11 bits)

An exponent means N of 1 XXXXX:-x2N representing a single-precision real number in binary. The following table shows the
relationships between the exponent value and N of a single-precision real number.

Exponent (b52 to b62) | 7FFH 7FEH 7FDH - | 401H 400H 3FFH 3FEH -~ | 02H 01H 00H
N Not used | 1023 1022 2 1 0 -1 -1021 -1022 Not used
1 OVERVIEW 47

1.2 Data Specification Method

48

Precautions

EWhen setting an input value of single-precision real number from the engineering tool

The number of significant digits is about 7 because the engineering tool processes single precision real number data in 32-bit
single precision.

When the input value of single-precision real number data exceeds 7 digits, the 8th digit is rounded off.

Therefore, if the rounded-off value goes out of the range from -2147483648 to 2147483647, it will not be an intended value.

When "2147483647" is set as an input value, it is handled as "2147484000" because 8th digit "6" is rounded off.

[Ex]

When "E1.1754943562" is set as an input value, it is handled as "E1.175494" because 8th digit "3" is rounded off.
Set an input value within the following range. If the set value is out of the following range, a conversion error occurs.
Decimal point expression: 0.0000000001 < Absolute value of real number data < 999999900000.0

Exponential notation: 1.175494351E-38 < Absolute value of real number data < 3.402823466E+38

EWhen setting an input value of double-precision real number from the engineering tool

The number of significant digits is about 15 because the engineering tool processes double precision real number data in 64-
bit double precision.

When the input value of double-precision real number data exceeds 15 digits, the 16th digit is rounded off.

Therefore, if the rounded-off value goes out of the range from -2147483648 to 2147483647, it will not be an intended value.

[Ex]

When "2147483646.12345678" is set as an input value, it is handled as "2147483646.12346" because 16th digit "6" is
rounded off.

When "E1.7976931348623157+307" is set as an input value, it is handled as "E1.79769313486232+307" because 16th digit
"8" is rounded off.

Set an input value within the following range. If the set value is out of the following range, a conversion error occurs.
Decimal point expression: 0.00000000000000000001 < Absolute value of real number data < 999999999999999000000.0
Exponential notation: 2.22507385850721E-308 < Absolute value of real number data < 1.79769313486231E+308

Point

The monitor function of the engineering tool can monitor real number data of CPU modules.

To represent "0" in real number data, set all numbers in each of the following range to 0.

« Single-precision real number data: b0 to b31

» Double-precision real number data: b0 to b63

The setting range of real number data is as follows.”

« Single-precision real number data: -2128<[single-precision real number data]£-2'126, 0, 2'126£[single-
precision real number data]<2128

* Double-precision real number data: -21024<[d0uble-precision real number data]s-2‘1°22, 0, 2'1022£[double-
precision real number data]<21024

Do not specify "-0" (only the most significant bit is 1) in real number data. Performing a real number operation

using -0 results in an operation error.

*1 For the operations to be performed when an overflow or underflow occurs or when a special value is input, refer to the following.
L1 MELSEC iQ-R CPU Module User's Manual (Application)

1 OVERVIEW
1.2 Data Specification Method

String data

Format of character string data

The following table lists the types of character string data, each of which ends with a NULL code to be handled as a character

string.
Type Character code Last character
Character string ASCII code, Shift JIS code NULL(OOH)
Unicode character string Unicode (UTF-16 (little endian)) NULL(0O000H)

Character string data is stored in devices or an array in ascending order of device numbers or array element numbers.

Lower

» Upper

(1

NULL

v

ABC - XYZ

"ABC - XYZ"

(1) Character code string

Notation of character string

The following shows the notation

of character strings in ladder programs.

Data type Notation Example
String STRING Enclose a string (ASCII code, Shift JIS code) and Unicode string in double | "ABC"
Character string WSTRING quotation marks (*).
[Unicode]
The following shows the notation of character strings in ST programs.
Data type Notation Example
String STRING Enclose a string (ASCII code, Shift JIS code) in single quotation marks ('). | 'ABC'
Character string WSTRING Enclose a Unicode string in double quotation marks ("). "ABC"
[Unicode]
The following shows the notation of character strings in FBD/LD programs.
Data type Notation Example
String STRING Enclose a string (ASCII code, Shift JIS code) in single quotation marks (').
Character string WSTRING Enclose a Unicode string in double quotation marks (").
[Unicodel
Data range

The following table summarizes the ranges of character string data.

Type Maximum number of characters that can be set | Maximum number of characters that can be
in a label used for character string constant

Character string 255 single-byte characters (excluding the last NULL 255 single-byte characters (excluding the last NULL
character) character)

Unicode character string*1 255 characters (excluding the last NULL character) 255 characters (excluding the last NULL character)

*1 For the Unicode character string, characters up to the basic multilingual plane can be used.

1 OVERVIEW 4
1.2 Data Specification Method 9

50

Number of words required for storing data

Character string data can be stored in word devices.

The following table lists the numbers of words required for storing character string data.

Number of
character string
bytes

Number of words required for storing character
strings

Number of words required for storing Unicode
character strings

0 byte

1 [word]

1 [word]

Odd number of bytes

(Number of character string bytes+1)+ 2 [words]

— (because one character is an even number of bytes)

Even number of bytes

(Number of character string bytes+2) +1 [words]

Number of characters+1 [words]

Character string data storage location

An image of the character string data storage location is shown below.

BMCharacter strings
In each character string storage image, "NULL" indicates a NULL code (00H).

Character string
to be stored

Image of storing character string data from DO

Image of storing character string data from word type
label array arrayA[0]

Null character string

((nu) or (n)) DO NULL : NULL arrayA[O] | NULL : NULL
ABC
Do B i A arrayA[0] B i A
D1 NULL ' o] arrayA[1] NULL ' ¢}
ABCD
Do B H A arrayA[0] B H A
D1 D ' C arrayA[1] D ' c
D2 NULL ' NULL arrayA[2] NULL ' NULL

EUnicode character strings
In each Unicode character string storage image, "NULL" indicates a NULL code (0000H).

Character string
to be stored

Image of storing character string data from DO

Image of storing character string data from word type
label array arrayA[0]

Null character string

™) DO NULL arrayA[0] | NULL
ABCD
DO A arrayA[0] A
D1 B arrayA[1] B
D2 C arrayA[2] C
D3 D arrayA[3] D
D4 NULL arrayA[4] NULL
1 OVERVIEW

1.2 Data Specification Method

1.3 Execution Condition

Types of execution conditions

The following table lists the execution conditions of instructions.

Execution condition Description”!
On An instruction is executed during on. It is executed only while the precondition of the instruction is on. When the
precondition is off, the instruction is not executed.
Rising edge An instruction is executed one time when turned on. It is executed only once on the rising edge (off to on) of the
I precondition of the instruction and is no longer executed later even when the condition turns on.
Off An instruction is executed during off. It is executed only while the precondition of the instruction is off. When the
U precondition is on, the instruction is not executed.
Falling edge An instruction is executed one time when turned off. It is executed only once on the falling edge (on to off) of the
1 precondition of the instruction and is no longer executed later even when the condition turns off.
Every scan — An instruction is always executed regardless of whether the precondition of the instruction is on or off. When the
precondition is off, the instruction performs off processing.

*1 When the program is described in structured text language (ST) or function block diagram/ladder diagram (FBD/LD), EN will be the
precondition of the instruction.

Execution condition of each instruction

The execution condition varies depending on the instruction. For execution condition, refer to the details of each instruction in

this manual.

When the program is described in structured text language (ST) or function block diagram/ladder diagram (FBD/LD), EN will
be the execution condition. The instruction is executed only when EN is TRUE. The status of ENO will be the same as that of
EN.

Note that the execution condition of standard functions and function blocks differs depending on the existence of EN. If there
is no EN, the standard function or function block is executed at every scan. For the execution condition of the standard
function or function block with EN, refer to the details of each standard function or function block in this manual.

1 OVERVIEW 1
1.3 Execution Condition 5

52

1.4 High-speed Instruction Processing

Subset processing

Subset processing can reduce the number of steps or speed up the instruction processing when the device and label
specified by each operand of an instruction satisfy the specified conditions.
Instruction symbols and the number of operands do not change whether subset processing is applicable or not.

Instructions that support subset processing

For the availability of subset processing for each instruction, refer to the following.
[=5~ Page 1573 Number of Basic Steps and Availability of Subset Processing

Operand condition

The conditions that the operands need to satisfy to enable subset processing are shown.

EWhen a device is specified in an operand
The following table lists the conditions that an operand which specifies a device needs to satisfy.

Data type of operand Condition™

Bit data One of the following is satisfied.

« User device

- Host CPU specification of CPU buffer memory access device (excluding index modification to "U3En") 2

» Other CPU modules specification of fixed scan communication area of CPU buffer memory access device”
* File register

* Local device

* Refresh data register

3

Signed 16-bit data One of the following is satisfied.

Unsigned 16-bit data * User device

Signed 32-bit data « Host CPU specification of CPU buffer memory access device (excluding index modification to "U3En")"2
Unsigned 32-bit data « Other CPU modules specification of fixed scan communication area of CPU buffer memory access device ™

* Index register

* File register

* Local device

* Refresh data register

+ Constant (decimal, hexadecimal)

Single-precision real number One of the following is satisfied.

+ User device

* Host CPU specification of CPU buffer memory access device (excluding index modification to "U3En")*2

» Other CPU modules specification of fixed scan communication area of CPU buffer memory access device”
* Index register

* File register

* Local device

* Refresh data register

+ Constant (single-precision real number)

3

*1 Including the cases where bit numbers, digits, indirect addresses, or index-modified devices are specified

*2 True when U3En\GO, U3En\GOZn, U3EN\HGO, or U3EN\HGOZn is used in the CPU buffer memory access device of the host CPU

module.
*3 True when U3SEn\HGO or USEn\HGOZn is used in the CPU buffer memory access device of another CPU module.

EWhen the label assigned a device is specified in an operand
The same conditions as those applicable when a device is specified in an operand apply.

HEWhen the label assigned to each label area is specified in an operand

When the label assigned to a label area or latch label area is specified in an operand, any instruction which supports subset
processing performs subset processing regardless of the data type of the operand. (Including the cases where bit numbers or

digits are specified.)

1 OVERVIEW
1.4 High-speed Instruction Processing

1.5 Precautions on Programming

Errors common to instructions

The following table lists the conditions under which an error occurs when the instruction is executed.

Error content™! Error code
An 1/0 number which is out of range (other than 000H to FFFH and 3EOH to 3E3H) is specified. 2800H
An 1/0 number which corresponds to no module is specified. 2801H
An 1/O number of the module that cannot be specified by using the instruction is specified. 2803H
A network number which is out of range (1 to 239) is specified. 2804H
A network number which does not exist is specified. 2805H

« The device or label specified by the instruction exceeds the available range. 2820H

« The file register is accessed while the file register is not set in the file setting of a CPU parameter or the file register to be used in

the program is not set.
* The range of the buffer memory of the module specified by the instruction is exceeded. 2823H
» The module specified by the instruction does not have buffer memory.

*1 For a contact instruction, an error is not detected but the operation result becomes no continuity.

Checking the ranges of instruction runtime devices and labels

Checking the ranges of devices and labels
When a device or label is specified in an instruction, no range check is performed, so a program needs to be created so that

the operation result falls within the range of the relevant device or label.
If a range exceeding that of the relevant device or label is specified, no error is detected but data is written to other device or

label areas.
However, an error (error code: 2820H) occurs if data is written to outside the areas.
The same applies if the label assigned to a device is specified in an instruction in the program.

[Ex]

When WO is assigned after global device D1023 in the device/label memory

Device assignment image in

F}—'BMOVl Do [D1023] K10 }—{ the device/label memory

(1) Do

D1022

D1023

wo
(1)

W0008

WO3FF
(1) The transfer destination is in the range corresponding to D1023 to D1032. Even though the range D1024 to D1032 does not exist, the data are written and
the data in WO to WO008 are overwritten.

1 OVERVIEW
1.5 Precautions on Programming 53

[Ex]

When local devices are set in the range from MO to M63 or DO to D11

Program A
Device assignment image in

F }—'BMOVl DO |K4#|v|43| K12 }—{ the device/label memory
T

@) #M15| - [#MO
#M31| - [#M16

o] — s
#DO
#D1 (2)

Local device area of
Program A

#D10

#D11

(2) The transfer destination is in the range corresponding to local devices #M48 to #M239 of program A. Even though the range #M64 to #M239 does not exist,
the data are written and the data in #DO0 to #D10 are overwritten.

[Ex]

When labels are arrayed as follows

Label name Data type Number of array elements

labelA Bit string [16 bits] 2
abc Bit string [16 bits] 10

Device assignment image in
}—'BMOVl DO | labelA[1 | K10 the device/label memory
3) labelA[0]
labelA[1] A

abc[0]

> @)

abc[8]

abc[9]

(3) The transfer destination is in the range corresponding to 10 points from labelA[1]. Even though the range labelA[2] to labelA[9] does not exist, the data are
written and the data in abc[0] to abc[8] are overwritten.

4 1 OVERVIEW
5 1.5 Precautions on Programming

Checking the range of file register

When a file register is specified in an instruction, a range check is performed, so a program needs to be created so that the
operation result falls within the range of the relevant file register.

If a range exceeding that of the file register (ZR) is specified, an error (error code: 2820H) occurs.

If a range exceeding that of the file register of the block number used by the file register (R) is specified, an error (error code:
2820H) occurs.

[Ex]

When a file register (ZR) is specified
}—'BMOVl Do |&| K2
}—' BMO\/l Do |zresso0| ks

I

Device assignment image in
the device/label memory

) ZRO

@ : File register file: MAIN1

ZR65535
ZR0

File register file: MAIN2
ZR50000

(1) The transfer destination is in the range of file register MAIN1. Data is written to ZR0 and ZR1.
(2) The transfer destination is out of the range of file register MAIN1. An error occurs because the area range of file register MAIN1 is exceeded.

When a file register (R) is specified
Device assignment image in
_| the device/label memory

RO
—H—'Br\novl DolﬂlKZI—]
T—_ 1) : Block No.0

H }—' BMO\/| Do |R32760| K50 I—

R32767
RO

@)

Block No.1

R32767

(1) The transfer destination is in the range of the R device of block number 0. Data is written to RO and R1.
(2) The transfer destination is out of the range of the R device of block number 0. An error occurs because the area range of the R device of block number 0.

1 OVERVIEW
1.5 Precautions on Programming 55

Operation when a long timer or long retentive timer device is
used

When the data to be handled exceeds the width (32 bits) of the current value, the long timer or long retentive timer operates
by using not only the area of the current value but also the areas of the previous value, contact, and coil.

Device Configuration
Timer (T) To To
Retentive timer (ST) | ------- Contact Coil
Counter (C)
Current value TO
......... T1
Current value T2
Long timer (LT)
LTO
Long retentive timer (LST) — Current value
. Contact Coil
— FRT previous value
LT1
— Current value
X Contact Coil
— FRT previous value
Long counter (LC) LCo LCo
--------- Contact Coil
LCO
— Current value
LC1
— Current value

When the BMOV instruction is used to batch-transfer current values, current values alone cannot be batch-transferred. Batch-
transfer the current values, contacts, and coils altogether and, after the batch transfer is finished, use only the current values.
When the DMOV instruction is used to batch-transfer current values, repeat the transfer of the current values alone using the
FOR to NEXT instruction.

[Ex]

To batch-transfer the current values of the timer device
When the BMOV instruction is used, only current values are batch-transferred.

Mo
— —{smove[10 | po | k4 }—{

TO Current value DO

T1 Current value :> D1

T2 Current value D2

T3 Current value D3
1 OVERVIEW

56 1.5 Precautions on Programming

[Ex]

To batch-transfer the current values of the long timer device
When the BMQOV instruction is used, all current values, contacts, and coils are batch-transferred.

Mo

— F—{emove] LTo | po | kie

_r

DO
— Current value

D1
LTOY [~==---""=---""-=----------------- >
Contact Coil D2

— FRT previous value
D3

D4
D5

R B R L ELEEE LT
Contact Coil D6

— FRT previous value
previous valu b7

D8
D9

LT2{ fm===m=-mm-mmmmmmmmmooomooooooo
Contact Coil D10

— FRT previous value
D11

D12
D13

LT3 [~~"""""""""""="==-=-=----=-------
Contact Coil D14

— FRT previous value D15

— Current value

— Current value

— Current value

When the DMOV instruction is used, only current values are batch-transferred.

-FOR -K4
SM402
DMOV | LT0Z0 | D0Z1
NEXT l—
DO
Current value D1»
LTO
. Contact Coil D2
— FRT previous value
D3
c | D4
urrent value
D5y’
LT1
. Contact Coil D6
— FRT previous value .
D7
Current value
LT2
. Contact Coil
— FRT previous value
Current value
LT3
. Contact Coil
— FRT previous value

1 OVERVIEW
1.5 Precautions on Programming 57

Operations arising when the OUT, SET/RST, and PLS/PLF
instructions of the same device are used

This section describes the operation when two or more OUT, SET/RST, and PLS/PLF instructions that use the same device
are executed within one scan.

Point}’

For the operation when two or more OUT, SET/RST, and PLS/PLF instructions that use the same device are
executed within one safety cycle processing in safety programs executed by the SIL2 Process CPU and
Safety CPU, replace some words as follows:

» "Scan" — "Safety cycle processing"

« "X0" — "SA\XO0", "X1" — "SAX1", "M0" — "SA\M0"

« "END" on the rising edge of X0 (in Figures) — "Safety cycle processing start" '

« "END" on the falling edge of X0 (in Figures) — "Safety cycle processing end""

*1 For the PLF instruction, replace "END" with "safety cycle processing start" regardless of the X0 status (rising edge or falling edge).

For OUT instructions of the same device

More than one OUT instruction of the same device must not be issued during one scan.

Otherwise, the specified device turns on or off, depending on the operation result up to each OUT instruction while it is in
execution.

In this case, the device may turn on/off during one scan because the on/off state of the specified device is determined during
execution of each OUT instruction.

The following figure shows the behavior arising when a circuit turning on/off the same internal relay (MO) is created with input

X0 and X1.
X0 MO
Il
1 (O
X1 MO
|l
] O—
X0 MO X0 MO
X1 MO X1 MO
END /H END /H END
] | | [||
I | [[| | [
ON ' ' ' ' ON
X0 _ OFF ! , lOFF |
ON ON :
X OFF ! ! T ! ! OFF

|ON

1) (3)

(1) Since X0 is on, MO turns on.
(2) Since X1 is off, MO turns off.
(3) Since X0 is off, MO remains off.
(4) Since X1 is on, MO turns on.

If output (Y) is specified using an OUT instruction, the on/off state of the last OUT instruction executed during the one scan will
be output.

1 OVERVIEW
58 1.5 Precautions on Programming

If SET/RST instructions of the same device are used

BFor SET instructions

The SET instruction turns on the specified device if the execution command is on, and causes no operation if it is off.

Thus, if two or more SET instructions of the same device are executed during one scan, the specified device turns on even if
one execution command is on.

BFor RST instructions

The RST instruction turns on the specified device if the execution command is off, and causes no operation if it is off.

Thus, if two or more RST instructions of the same device are executed during one scan, the specified device turns on even if
one execution command is off.

HIf the SET and RST instructions of the same device exist in one scan

If the SET and RST instructions of the same device exist in one scan, the SET instruction turns on the specified device if the
execution command is on, and turns off the specified device if it is on.

If both the SET and RST instructions are off, the on/off state of the specified device will be unchanged.

X0
I SET | Mo |
X1
| RST | Mo |
X0
—fserlwoH [SET[Mo
X1
Rs] wo
EN END END
| | |
| I | | 1
ON ! ! ! !
X0 _ OFF i i lOFF . .
| | ON : .
X1 o : : 1 ; ;
. ON . : :
Mo _ OFF \

@)

(1
(1) Since X0 is on, MO turns on.
(2) Since X1 is off, MO remains on. (The RST instruction results in non-processing.)
(3) Since X0 is off, MO remains on. (The SET instruction results in non-processing.)
(4) Since X1 is on, MO turns off.

If output (Y) is specified using a SET/RST instruction, the on/off state of the last SET/RST instruction executed during the one
scan will be output.

1 OVERVIEW
1.5 Precautions on Programming 59

If PLS instructions of the same device are used

The PLS instruction turns on the specified device when the execution command specifies an off-to-on change. The specified
device is turned off unless the execution command specifies an off-to-on change (i.e. off to off, on to on, on to off).

Thus, if two or more PLS instructions of the same device are issued during one scan, the specified device is turned on when
the execution command of each PLS instruction specifies an off-to-on change. The specified device is turned off unless the
execution command specifies an off-to-on change.

Thus, if two or more PLS instructions are issued during one scan, the device turned on by a PLS instruction may not turn on
for one scan.

X0
1]
X1
1 LS
« If X0 and X1 differs in the on/off timing (i.e. the specified device does not turn on for one scan)
X0 X0
[PLs[wio]
X1 X1
IIEND | 'IENDI EIND |
1 [1 | l
ON : : ' '
X0 OFF : : lOFF
5 5 ON 5 5
Xt _orr L] o
' ON : ' ON
Mo OFF N OFF :
@ \ “)
) @)

(1) Since X0 turns on, MO turns on.

(2) Since X1 is other than turning on, MO turns off.
(3) Since X0 is other than turning on, MO remains off.
(4) Since X1 turns on, MO turns on.

1 OVERVIEW
60 1.5 Precautions on Programming

« If the off-to-on changes of X0 and X1 are at the same timing

X0

X0
% I—M—I
END /_{ END

END
[|

I I

ON ! ! ! !

X0 _ OFF lOFF

ON E E E E

X1 _oFF E E E E

:ON i

Mo _OFF \ OFF
2 4)

M 3)

(1) Since X0 turns on, MO turns on.

(2) Since X1 turns on, MO remains off.

(3) Since XO0 is other than turning on, MO turns off.
(4) Since X1 is other than turning on, MO remains off.

If output (Y) is specified using a PLS instruction, the on/off state of the last PLS instruction executed during the one scan will
be output.

1 OVERVIEW 1
1.5 Precautions on Programming 6

62

If PLF instructions of the same device are used

The PLF instruction turns on the specified device when the execution command specifies an off-to-on change. The specified
device is turned off unless the execution command specifies an on-to-off change (i.e. off to off, off to on, on to on).

Thus, if two or more PLF instructions of the same device are issued during one scan, the specified device is turned on when
the execution command of each PLF instruction specifies an on-to-off change. The specified device is turned off unless the
execution command specifies an on-to-off change.

Thus, if two or more PLF instructions are issued during one scan, the device turned on by a PLF instruction may not turn on
for one scan.

X0
I PLF
X1
I PLF
« If X0 and X1 differs in the on/off timing (i.e. the specified device does not turn on for one scan)
xo X0
PLF [PLF]
I|END | END END
1 [| [|
ON i i i i
ol o A | |
E E ON i E
X1 _orr E ’ | : :
Mo OFF N OFF ! !
())

M 3)

(1) Since XO0 turns off, MO turns on.

(2) Since X1 is other than turning off, MO turns off.
(3) Since X0 is other than turning off, MO remains off.
(4) Since X1 is other than turning off, MO remains off.

1 OVERVIEW
1.5 Precautions on Programming

« If the on-to-off changes of X0 and X1 are at the same timing

X0 %0
[PLF[o] PLF
X1
END END /H END
N | | — | | |
ol o .
ON : : : : ON
X1 OFF : ; ; : -
LON : :
Mo OFF OFF |
! ! A\
(4)
(1) (3)

(1) Since X0 turns off, MO turns on.

(2) Since X1 turns off, MO remains on.

(3) Since XO0 is other than turning off, MO turns off.
(4) Since X1 is other than turning off, MO remains off.

If output (Y) is specified using a PLF instruction, the on/off state of the last PLF instruction executed during the one scan will
be output.

1 OVERVIEW
1.5 Precautions on Programming 63

64

Restrictions on using file registers

When a file register is specified for the refresh device, note the following restrictions.

When a file register having the same name as a program is specified

If the use of a file register having the same name as a program is specified in the parameter, refresh cannot be performed

correctly. When a file register having the same name of a program is used, data is refreshed by the file register having the
same name of the program that has been set at the final number in the program settings.
To read or write refresh data, use the QDRSET instruction to switch to the corresponding file register and specify it.

If the file name or drive number is changed by the QDRSET instruction

If the file register file name or drive number is changed by the QDRSET instruction, the setting file is linked immediately before

refresh.
To read or write refresh data, specify it in the setting file immediately before refresh.

When the block number is changed by the RSET instruction

When the block number is changed by the RSET instruction, note the following.

 Data is refreshed by the file register (R) of the new block number.

 Data is refreshed by the file register (R) of the block number immediately before refresh.
To read or write refresh data, specify the block number immediately before refresh.

1 OVERVIEW
1.5 Precautions on Programming

PART 2

PART 2 LISTS OF
INSTRUCTIONS AND
FUN/FB

This part consists of the following chapters.

2 CPU MODULE INSTRUCTIONS

3 MODULE DEDICATED INSTRUCTIONS

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

65

66

2 CPU MODULE INSTRUCTIONS

The following table summarizes how to read the instruction lists.

Item

Description

Instruction symbol

An instruction name

Processing details

An overview of the instruction

Reference

Section where detailed information is described

2.1 Sequence Instructions

Contact instructions

HEOperation start, series connection, parallel connection

Instruction symbol

Processing details

Reference

LD

Outputs the on/off information of the specified device as the operation result. (Normally open
contact operation start instruction)

LDI

Outputs the on/off information of the specified device as the operation result. (Normally closed
contact operation start instruction)

AND

Performs an AND operation between the on/off information of the specified device and the previous
operation result, and output the operation result. (Normally open contact series connection
instruction)

ANI

Performs an AND operation between the on/off information of the specified device and the previous
operation result, and output the operation result. (Normally closed contact series connection
instruction)

OR

Performs an OR operation between the on/off information of the specified device and the previous
operation result, and output the operation result. (Single normally open contact parallel connection
instruction)

ORI

Performs an OR operation between the on/off information of the specified device and the previous
operation result, and output the operation result. (Single normally closed contact parallel
connection instruction)

Page 150 LD, LDI,
AND, ANI, OR, ORI

HPulse operation st

art, pulse series connection, pulse parallel connection

Instruction symbol

Processing details

Reference

LDP Turns on only at the rising edge (off to on) of the specified bit device. (Rising edge pulse operation
start instruction)

LDF Turns on only at the falling edge (on to off) of the specified bit device. (Falling edge pulse operation
start instruction)

ANDP Performs an AND operation with the previous operation result. (Rising edge pulse series
connection instruction)

ANDF Performs an AND operation with the previous operation result. (Falling edge pulse series
connection instruction)

ORP Performs an OR operation with the previous operation result. (Rising edge pulse parallel
connection instruction)

ORF Performs an OR operation with the previous operation result. (Falling edge pulse parallel

connection instruction)

Page 153 LDP, LDF,
ANDP, ANDF, ORP,
ORF

2 CPU MODULE INSTRUCTIONS

2.1 Sequence Instructi

ons

HPulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection

Instruction symbol

Processing details

Reference

LDPI

Turns on when the specified device is off, on, or at the falling edge (on to off). (Rising edge pulse
NOT operation start instruction)

Page 156 LDPI, LDFI,
ANDPI, ANDFI, ORPI,

LDFI Turns on when the specified device is at the rising edge (off to on), off, or on. (Falling edge pulse ORFI
NOT operation start instruction)
ANDPI Performs an AND operation with the previous operation result. (Rising edge pulse NOT series
connection instruction)
ANDFI Performs an AND operation with the previous operation result. (Falling edge pulse NOT series
connection instruction)
ORPI Performs an OR operation with the previous operation result. (Rising edge pulse NOT parallel
connection instruction)
ORFI Performs an OR operation with the previous operation result. (Falling edge pulse NOT parallel
connection instruction)
Association instructions
HLadder block series/parallel connection
Instruction symbol Processing details Reference

ANB

Performs AND operations between logical blocks (series connection between logical blocks)

ORB

Performs OR operations between logical blocks (series connection between logical blocks)

Page 159 ANB, ORB

BStoring/reading/clearing the operation result

Instruction symbol

Processing details

Reference

MPS

Stores the operation result (on/off) immediately before the MPS instruction.

Page 160 MPS, MRD,

MRD Reads the operation result stored by using the MPS instruction. MPP
MPP Clears the operation result stored by using the MPS instruction.
Hinverting the operation result
Instruction symbol Processing details Reference
INV Inverts the operation result up to just before the INV instruction. Page 162 INV
EConverting the operation result into a pulse
Instruction symbol Processing details Reference

MEP

Turns on at the rising edge (off to on) of the operation result up to the MEP instruction.

MEF

Turns on at the falling edge (on to off) of the operation result up to the MEF instruction.

Page 163 MEP, MEF

EConverting the edge relay operation result into a pulse

Instruction symbol

Processing details

Reference

EGP

Stores the operation result up to the EGP instruction in the edge relay (V). The instruction turns on
at the rising edge (off to on) of the operation result.

EGF

Stores the operation result up to the EGF instruction in the edge relay (V). The instruction turns on
at the falling edge (on to off) of the operation result.

Page 164 EGP, EGF

2 CPU MODULE INSTRUCTIONS
2.1 Sequence Instructions 67

Output instructions

HOut (excluding the timer, counter, and annunciator)

Instruction symbol

Processing details

Reference

ouT

Outputs the operation result to the specified device.

Page 166 OUT

HTimer, long timer

Instruction symbol

Processing details

Reference

OUTT Starts time measurement when the operation result up to the OUT instruction is on. When time is Page 168 OUT T,

OUTHT up, the normally open contact turns on (continuity state) and the normally closed contact turns off | OUTH T, OUT ST,
(non-continuity state). OUTH ST

OouT ST * OUT T: Low-speed timer instruction

OUTH ST « OUTH T: High-speed timer instruction

OUT LT « OUT ST: Low-speed retentlw? t|mler |ns.truct|or.1 Page 171 OUT LT,
* OUTH ST: High-speed retentive timer instruction OUTLST

OUTLST . ; ; ;
* OUT LT: Low-speed long timer instruction
* OUT LST: Low-speed long retentive timer instruction

HECounter, long counter
Instruction symbol Processing details Reference

ouTC Increments the current counter value (count value) by one when the operation result up to the OUT | Page 174 OUT C
OUT LC instruction turns on. When the count value reaches the set value, the normally open contact of the Page 176 OUT LC
counter turns on (continuity state) and the normally closed contact turns off (non-continuity state).
» OUT C: Counter
« OUT LC: Long counter
HEAnnunciator

Instruction symbol

Processing details

Reference

OUTF

Outputs the operation result up to the OUT F instruction to the specified annunciator.

Page 178 OUT F

ESetting devices (excluding annunciator)

Instruction symbol

Processing details

Reference

SET

Turns on the specified bit.

Page 179 SET

HResetting devices

(excluding annunciator)

Instruction symbol

Processing details

Reference

RST

Turns off the specified device. For the timer and counter, the instruction clears the current value to
0 and turns off the contact or coil.

Page 181 RST

ESetting/resetting annunciator

Instruction symbol

Processing details

Reference

SETF

Turns on the specified annunciator.

Page 183 SET F

RSTF

Turns off the specified annunciator.

Page 185 RSTF

HRising/falling edge output

Instruction symbol

Processing details

Reference

PLS

Turns on the specified device for one scan on the rising edge (off to on) of the execution command.

Page 187 PLS

PLF

Turns on the specified device for one scan on the falling edge (on to off) of the execution
command.

Page 189 PLF

Hinverting the bit device output

Instruction symbol Processing details Reference

FF Inverts the status of the specified device. Page 191 FF
HEConverting the direct access output into a pulse

Instruction symbol Processing details Reference

DELTA

DELTAP

Converts the specified direct access output (DY) into pulse output.

Page 193 DELTA(P)

2 CPU MODULE INSTRUCTIONS
2.1 Sequence Instructions

Shift instructions

EShifting bit devices

Instruction symbol

Processing details

Reference

SFT

SFTP

Shifts the on/off state of the device area just before the one specified to the specified device area,
and turns off the shift source device.

Page 195 SFT(P)

Master control instructions

ESetting/resetting a master control

Instruction symbol

Processing details

Reference

MC

Starts a master control.

MCR

Ends a master control.

Page 197 MC, MCR

Phase processing instructions

HPhase processing

Instruction symbol

Processing details

Reference

PHASE Starts phase processing. Page 202 PHASE
PHASECHG Ends the phase currently being executed and shifts to the specified phase. Page 204 PHASECHG
PHASEEND Ends the phase currently being executed. Page 206 PHASEEND

Termination instructions

BEnding the main routine program

Instruction symbol

Processing details

Reference

FEND

Separates the main routine program from subroutine programs and interrupt programs in a
program file.

Page 207 FEND

BEnding the sequence program

Instruction symbol

Processing details

Reference

END

Indicates the end of a program.

Page 208 END

Stop instruction

EStopping the sequence program

Instruction symbol

Processing details

Reference

STOP

Stops the operation of the CPU module. (The operation of this instruction is the same as setting the
switch of the CPU module to the STOP position.)

Page 210 STOP

No operation instruction

HENo operation

Instruction symbol

Processing details

Reference

NOP

Inserts a space for debugging.

Page 211 NOP

NOPLF

This instruction is a no-operation instruction and has no impact on the previous operations.

Page 212 NOPLF

2 CPU MODULE INSTRUCTIONS
2.1 Sequence Instructions

69

70

2.2 Basic Instructions

Comparison operation instructions

BComparing 16-bit binary data

Instruction symbol

Processing details

Reference

LD=, AND=, OR=

LD=_U, AND=_U, OR=_U

LD<>, AND<>, OR<>

LD<> U, AND<>_U, OR<> U

LD>, AND>, OR>

LD> U, AND> U, OR> U

LD<=, AND<=, OR<=

LD<= U, AND<=_U, OR<=_U

LD<, AND<, OR<

LD<_U, AND<_U, OR<_U

LD>=, AND>=, OR>=

LD>=_ U, AND>=_U, OR>= U

Compares the two sets of 16-bit binary data specified. (Devices are used as normally open
contacts.)

Page 214 LDO(_U),
ANDO(_U), ORO(_U)

EComparing 32-bit binary data

Instruction symbol

Processing details

Reference

LDD=, ANDD=, ORD=

LDD=_U, ANDD=_U,
ORD=_U

LDD<>, ANDD<>, ORD<>

LDD<>_U, ANDD<>_U,
ORD<>_U

LDD>, ANDD>, ORD>

LDD>_U, ANDD>_U,
ORD> U

LDD<=, ANDD<=, ORD<=

LDD<=_U, ANDD<=_U,
ORD<=_U

LDD<, ANDD<, ORD<

LDD<_U, ANDD<_U,
ORD<_U

LDD>=, ANDD>=, ORD>=

LDD>=_U, ANDD>=_U,
ORD>=_U

Compares the two sets of 32-bit binary data specified. (Devices are used as normally open
contacts.)

Page 216 LDDO(_U),
ANDDO(_U),
ORDO(_U)

EOutputting a comparison result of 16-bit binary data

Instruction symbol

Processing details

Reference

CMP

CMPP

CMP_U

CMPP_U

Compares the 16-bit binary data specified by (s1) with the 16-bit binary data specified by (s2), and
according to the result (small, equal, or large), (d), (d)+1, or (d)+2 is turned on.

Page 218 CMP(P)(_U)

2 CPU MODULE INSTRUCTIONS

2.2 Basic Instructions

HEOutputting a comparison result of 32-bit binary data

Instruction symbol Processing details Reference
DCMP Compares the 32-bit binary data specified by (s1) with the 32-bit binary data specified by (s2), and | Page 220
DCMPP according to the result (small, equal, or large), (d), (d)+1, or (d)+2 is turned on. DCMP(P)(_U)
DCMP_U

DCMPP_U

EOutputting a band

comparison result of 16-bit binary data

Instruction symbol Processing details Reference
ZCP Compares the band between the 16-bit binary data specified by lower limit value (s1) and the 16-bit | Page 222 ZCP(P)(_U)
ZCPP binary data specified by upper limit value (s2) with the 16-bit binary data in the device specified by
comparison data (s3). According to the comparison result (below, within zone, or above), (d), (d)+1,
ZCP_U or (d)+2 is turned on.
ZCPP_U
HEOutputting a band comparison result of 32-bit binary data
Instruction symbol Processing details Reference
DzCP Compares the band between the 32-bit binary data specified by lower limit value (s1) and the 32-bit | Page 224
DZCPP binary data specified by upper limit value (s2) with the 32-bit binary data in the device specified by | DZCP(P)(_U)
comparison data (s3). According to the comparison result (below, within zone, or above), (d), (d)+1,
bzcp_U or (d)+2 is turned on.
DZCPP_U

BEComparing 16-bit binary block data

Instruction symbol

Processing details

Reference

BKCMP=, BKCMP<>,
BKCMP>, BKCMP<=,
BKCMP<, BKCMP>=

BKCMP=P, BKCMP<>P,
BKCMP>P, BKCMP<=P,
BKCMP<P, BKCMP>=P

BKCMP=_U, BKCMP<>_U,
BKCMP>_U, BKCMP<=_U,
BKCMP<_U, BKCMP>=_U

BKCMP=P_U, BKCMP<>P_U,
BKCMP>P_U, BKCMP<=P_U,
BKCMP<P_U, BKCMP>=_U

Compares the two sets of 16-bit binary block data specified.

Page 226
BKCMPO(P)(_U)

BComparing 32-bit binary block data

Instruction symbol

Processing details

Reference

DBKCMP=, DBKCMP<>,
DBKCMP>, DBKCMP<=,
DBKCMP<, DBKCMP>=

DBKCMP=P, DBKCMP<>P,
DBKCMP>P, DBKCMP<=P,
DBKCMP<P, DBKCMP>=P

DBKCMP=_U,
DBKCMP<>_U,
DBKCMP>_U,
DBKCMP<=_U,
DBKCMP<_U, DBKCMP>=_U

DBKCMP=P_U,
DBKCMP<>P_U,
DBKCMP>P_U,
DBKCMP<=P_U,
DBKCMP<P_U,
DBKCMP>=P_U

Compares the two sets of 32-bit binary block data specified.

Page 228
DBKCMPO(P)(_U)

2 CPU MODULE INSTRUCTIONS
2.2 Basic Instructions

71

Arithmetic operation instructions

BAdding/subtracting 16-bit binary data

Instruction symbol

Processing details

Reference

+

Adds the two sets of 16-bit binary data specified. (Two operands)

Page 231 +(P)(_U)
[when two operands

+P
are set]

+ U

+P_U

+ Adds the two sets of 16-bit binary data specified. (Three operands) Page 233 +(P)(_U)

+P [when three operands
are set]

+ U

+P_U

- Performs subtraction between the two sets of 16-bit binary data specified. (Two operands) Page 235 -(P)(_U)

P [when two operands
are set]

- U

-P_U

- Performs subtraction between the two sets of 16-bit binary data specified. (Three operands) Page 237 -(P)(_U)

P [when three operands
are set]

- U

-P_U

BAdding/subtracting 32-bit binary data

Instruction symbol

Processing details

Reference

D+ Adds the two sets of 32-bit binary data specified. (Two operands) Page 239 D+(P)(_U)

D+P [when two operands
are set]

D+_U

D+P_U

D+ Adds the two sets of 32-bit binary data specified. (Three operands) Page 241 D+(P)(_U)

D+P [when three operands
are set]

D+_U

D+P_U

D- Performs subtraction between the two sets of 32-bit binary data specified. (Two operands) Page 243 D-(P)(_V)

D-P [when two operands
are set]

D-_U

D-P_U

D- Performs subtraction between the two sets of 32-bit binary data specified. (Three operands) Page 245 D-(P)(_U)

D-P [when three operands
are set]

D-_U

D-P_U

EMultiplying/dividing 16-bit binary data

Instruction symbol

Processing details

Reference

Multiplies the two sets of 16-bit binary data specified.

Page 247 *(P)(_U)

P_U

Performs division between the two sets of 16-bit binary data specified.

Page 249 /(P)(_U)

2 CPU MODULE INSTRUCTIONS

72 2.2 Basic Instructions

EMultiplying/dividing 32-bit binary data

Instruction symbol

Processing details

Reference

D*

D*P

D*_U

D*P_U

Multiplies the two sets of 32-bit binary data specified.

Page 251 D*(P)(_U)

D/

D/P

D/_U

D/P_U

Performs division between the two sets of 32-bit binary data specified.

Page 253 D/(P)(_U)

BAdding/subtracting BCD 4-digit data

Instruction symbol

Processing details

Reference

B+ Adds the two sets of BCD 4-digit data specified. (Two operands) Page 255 B+(P) [when
B+P two operands are set]
B+ Adds the two sets of BCD 4-digit data specified. (Three operands) Page 256 B+(P) [when
B+P three operands are set]
B- Performs subtraction between the two sets of BCD 4-digit data specified. (Two operands) Page 258 B-(P) [when
B-P two operands are set]
B- Performs subtraction between the two sets of BCD 4-digit data specified. (Three operands) Page 259 B-(P) [when
B-P three operands are set]

BAdding/subtracting BCD 8-digit data

Instruction symbol

Processing details

Reference

DB+ Adds the two sets of BCD 8-digit data specified. (Two operands) Page 261 DB+(P)

DB+P [when two operands
are set]

DB+ Adds the two sets of BCD 8-digit data specified. (Three operands) Page 263 DB+(P)

DB+P [when three operands
are set]

DB- Performs subtraction between the two sets of BCD 8-digit data specified. (Two operands) Page 265 DB-(P)

DB-P [when two operands
are set]

DB- Performs subtraction between the two sets of BCD 8-digit data specified. (Three operands) Page 267 DB-(P)

DB-P [when three operands
are set]

EMultiplying/dividing BCD 4-digit data
Instruction symbol Processing details Reference

B*

B*P

Multiplies the two sets of BCD 4-digit data specified.

Page 269 B*(P)

B/

B/P

Performs division between the two sets of BCD 4-digit data specified.

Page 271 B/(P)

EMultiplying/dividing BCD 8-digit data

Instruction symbol

Processing details

Reference

DB*

DB*P

Multiplies the two sets of BCD 8-digit data specified.

Page 273 DB*(P)

DB/

DB/P

Performs division between the two sets of BCD 8-digit data specified.

Page 275 DB/(P)

2 CPU MODULE INSTRUCTIONS

2.2 Basic Instructions 73

74

BAdding/subtracting 16-bit binary block data

Instruction symbol

Processing details

Reference

BK+

BK+P

BK+ U

BK+P_U

Adds the two 16-bit binary data blocks specified.

Page 277 BK+(P)(_U)

BK-

BK-P

BK-_U

BK-P_U

Performs subtraction between the two 16-bit binary data blocks specified.

Page 279 BK-(P)(_U)

BAdding/subtracting 32-bit binary block data

Instruction symbol

Processing details

Reference

DBK+

DBK+P

DBK+ U

DBK+P_U

Adds the two 32-bit binary data blocks specified.

Page 281
DBK+(P)(_U)

DBK-

DBK-P

DBK-_U

DBK-P_U

Performs subtraction between the two 32-bit binary data blocks specified.

Page 284 DBK-(P)(_U)

Hincrementing/decrementing 16-bit binary data

Instruction symbol

Processing details

Reference

INC

INCP

INC_U

INCP_U

Increments the specified 16-bit binary data by one.

Page 287 INC(P)(_U)

DEC

DECP

DEC_U

DECP_U

Decrements the specified 16-bit binary data by one.

Page 289 DEC(P)(_U)

Hincrementing/decrementing 32-bit binary data

Instruction symbol

Processing details

Reference

DINC

DINCP

DINC_U

DINCP_U

Increments the specified 32-bit binary data by one.

Page 291 DINC(P)(_U)

DDEC

DDECP

DDEC_U

DDECP_U

Decrements the specified 32-bit binary data by one.

Page 293
DDEC(P)(_U)

2 CPU MODULE INSTRUCTIONS

2.2 Basic Instructions

Logical operation instructions

EPerforming an AND operation on 16-bit/32-bit data

Instruction symbol Processing details Reference

WAND Performs an AND operation on the two sets of 16-bit binary data specified. (Two operands) Page 295 WAND(P)

WANDP [when two operands
are set]

WAND Performs an AND operation on the two sets of 16-bit binary data specified. (Three operands) Page 297 WAND(P)

WANDP [when three operands
are set]

DAND Performs an AND operation on the two sets of 32-bit binary data specified. (Two operands) Page 299 DAND(P)

DANDP [when two operands
are set]

DAND Performs an AND operation on the two sets of 32-bit binary data specified. (Three operands) Page 301 DAND(P)

DANDP [when three operands
are set]

HPerforming an AND operation on 16-bit block data
Instruction symbol Processing details Reference

BKAND

BKANDP

Performs an AND operation on the two 16-bit binary data blocks specified.

(s1) (s2) ()

— =

Page 303 BKAND(P)

HPerforming an OR

operation on 16-bit/32-bit data

Instruction symbol

Processing details

Reference

WOR Performs an OR operation on the two sets of 16-bit binary data specified. (Two operands) Page 305 WOR(P)

WORP [when two operands
are set]

WOR Performs an OR operation on the two sets of 16-bit binary data specified. (Three operands) Page 307 WOR(P)

WORP [when three operands
are set]

DOR Performs an OR operation on the two sets of 32-bit binary data specified. (Two operands) Page 309 DOR(P)

DORP [when two operands
are set]

DOR Performs an OR operation on the two sets of 32-bit binary data specified. (Three operands) Page 311 DOR(P)

DORP [when three operands
are set]

EPerforming an OR operation on 16-bit block data
Instruction symbol Processing details Reference

BKOR

BKORP

Performs an OR operation on the two 16-bit binary data blocks specified.
(s1) (s2) (d)

— v - i}m

Page 313 BKOR(P)

HPerforming an XOR operation on 16-bit/32-bit data

Instruction symbol

Processing details

Reference

WXOR Performs an XOR operation on the two sets of 16-bit binary data specified. (Two operands) Page 315 WXOR(P)

WXORP [when two operands
are set]

WXOR Performs an XOR operation on the two sets of 16-bit binary data specified. (Three operands) Page 317 WXOR(P)

WXORP [when three operands
are set]

DXOR Performs an XOR operation on the two sets of 32-bit binary data specified. (Two operands) Page 319 DXOR(P)

DXORP [when two operands
are set]

DXOR Performs an XOR operation on the two sets of 32-bit binary data specified. (Three operands) Page 321 DXOR(P)

DXORP [when three operands

are set]

2 CPU MODULE INSTRUCTIONS
2.2 Basic Instructions

75

76

HPerforming an XOR operation on 16-bit block data

Instruction symbol

Processing details

Reference

BKXOR

BKXORP

Performs an XOR operation on the two 16-bit binary data blocks specified.

(s1) (s2) ()

v - i]n)

Page 323 BKXOR(P)

HPerforming an XNOR operation on 16-bit/32-bit data

Instruction symbol

Processing details

Reference

WXNR

Performs an XNOR operation on the two sets of 16-bit binary data specified. (Two operands)

Page 325 WXNR(P)
[when two operands

WXNRP
are set]
WXNR Performs an XNOR operation on the two sets of 16-bit binary data specified. (Three operands) Page 327 WXNR(P)
WXNRP [when three operands
are set]
DXNR Performs an XNOR operation on the two sets of 32-bit binary data specified. (Two operands) Page 329 DXNR(P)
DXNRP [when two operands
are set]
DXNR Performs an XNOR operation on the two sets of 32-bit binary data specified. (Three operands) Page 331 DXNR(P)
DXNRP [when three operands

are set]

EPerforming an XNOR operation on 16-bit block data

Instruction symbol

Processing details

Reference

BKXNR

BKXNRP

Performs an XNOR operation on the two 16-bit binary data blocks specified.

3 I(n)

(s1) (s2) (d)

£
L

Page 333 BKXNR(P)

2 CPU MODULE INSTRUCTIONS

2.2 Basic Instructions

Bit processing instructions

ESetting/resetting a bit in the word device

Instruction symbol

Processing details

Reference

BSET

Sets the 'n'th bit in the specified word device to 1.

Page 335 BSET(P)

BSETP (d)
b15 ‘bn‘ bO‘
t
BRST Resets the 'n'th bit in the specified word device to 0. Page 337 BRST(P)
BRSTP (d)
‘b15 ‘bn‘ bO‘
to

EPerforming a bit test

Instruction symbol

Processing details

Reference

TEST

Extracts the 'n'th bit in the specified word device.

Page 339 TEST(P)

TESTP (s1)
b15 - b0 (d)
[la] | | \
(s2)
DTEST Extracts the 'n'th bit in the specified double-word device. Page 341 DTEST(P)
DTESTP (s1)

b31 b0 (d)
\ [a] | | |

I

(s2)

EBatch-resetting bit devices

Instruction symbol

Processing details

Reference

BKRST

BKRSTP

Resets the (n) points of bit devices starting from the bit device specified.

(d)[ON (d)| OFF
OFF OFF

|) i(m)
ON OFF
ON OFF

Page 343 BKRST(P)

Data conversion instructions

EConverting binary data to BCD 4-digit/8-digit data

Instruction symbol

Processing details

Reference

BCD

Converts the specified 16-bit binary data (0 to 9999) to BCD 4-digit data.

Page 409 BCD(P)

BCDP

() — ()

L BIN L a— BCD
DBCD Converts the specified 32-bit binary data (0 to 99999999) to BCD 8-digit data. Page 411 DBCD(P)
DBCDP

(S)+1, (8) ———————>(@)*1, (@)
BIN L BCD

2 CPU MODULE INSTRUCTIONS
2.2 Basic Instructions 77

78

HEConverting BCD 4-digit/8-digit data to 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

BIN Converts the specified BCD 4-digit data (0 to 9999) to 16-bit binary data. Page 413 BIN(P)
BINP

() —— ()

- BCD L — BIN
DBIN Converts the specified BCD 8-digit data (0 to 99999999) to 32-bit binary data. Page 415 DBIN(P)
DBINP

)+, (8)————— > (d)+1, (d)

BCD BIN

HEConverting single-precision real number to 16-bit/32-bit signed binary data

Instruction symbol

Processing details

Reference

FLT2INT Converts the specified single-precision real number (-32768 to 32767) to 16-bit signed binary data. | Page 417 FLT2INT(P)
FLT2INTP
(8)*+1, () ——————>(d)
(1) - BIN
(1) Real number
FLT2DINT Converts the specified single-precision real number (-2147483648 to 2147483647) to 32-bit signed | Page 421
FLT2DINTP binary data. FLT2DINT(P)

(&)1, () ————————— > (d)+1, (d)
()

(1) Real number

BIN

EConverting single-precision real number to 16-bit/32-bit unsigned binary data

Instruction symbol Processing details Reference
FLT2UINT Converts the specified single-precision real number (0 to 65535) to 16-bit unsigned binary data. Page 419
FLT2UINTP FLT2UINT(P)

(s)*1, (8) ———— »(d)

1) BIN

(1) Real number
FLT2UDINT Converts the specified single-precision real number (0 to 4294967295) to 32-bit unsigned binary Page 423
FLT2UDINTP data. FLT2UDINT(P)

(s)+1, (s) ———————— > (d)+1,. (d)
()

(1) Real number

BIN

HEConverting double-precision real number to 16-bit/32-bit signed binary data

Instruction symbol

Processing details

Reference

DBL2INT Converts the specified double-precision real number (-32768 to 32767) to 16-bit signed binary Page 425 DBL2INT(P)
DBL2INTP data.
(S)#3, (8)#2, (81, (8) —————————> ()
(1) BIN
(1) Real number
DBL2DINT Converts the specified double-precision real number (2147483648 to 2147483647) to 32-bit Page 429
DBL2DINTP signed binary data. DBL2DINT(P)

()43, (s)+2, (s)+1, (8) ———————— > (d)+1,
()

(1) Real number

2 CPU MODULE INSTRUCTIONS

2.2 Basic Instructions

EConverting double-precision real number to 16-bit/32-bit unsigned binary data

Instruction symbol

Processing details

Reference

DBL2UINT

Converts the specified double-precision real number (0 to 65535) to 16-bit unsigned binary data.

Page 427
DBL2UINT(P)

DBL2UINTP
(8)*3, (s)*2, (s)*1, (s) ———(d)
Q)] JR TN
(1) Real number
DBL2UDINT Converts the specified double-precision real number (0 to 4294967295) to 32-bit unsigned binary Page 431
DBL2UDINTP data. DBL2UDINT(P)

(8)+3, ()42, (s)+1,(s) —————»(d)+1,(d)
(1) t BN

(1) Real number

EConverting 16-bit signed binary data to 16-bit/32-bit unsigned binary data

Instruction symbol

Processing details

Reference

INT2UINT

Converts the 16-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data,
and stores the converted data in the device specified by (d).

Page 433 INT2UINT(P)

INT2UINTP
INT2UDINT Converts the 16-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, | Page 437
INT2UDINTP and stores the converted data in the device specified by (d). INT2UDINT(P)

HEConverting 16-bit signed binary data to 32-bit signed binary data

Instruction symbol

Processing details

Reference

INT2DINT

INT2DINTP

Converts the 16-bit signed binary data in the device specified by (s) to 32-bit signed binary data,
and stores the converted data in the device specified by (d).

Page 435 INT2DINT(P)

EConverting 16-bit unsigned binary data to 16-bit/32-bit signed binary data

Instruction symbol

Processing details

Reference

UINT2INT

Converts the 16-bit unsigned binary data in the device specified by (s) to 16-bit singed binary data,
and stores the converted data in the device specified by (d).

Page 439 UINT2INT(P)

UINT2INTP
UINT2DINT Converts the 16-bit unsigned binary data in the device specified by (s) to 32-bit singed binary data, | Page 441
UINT2DINTP and stores the converted data in the device specified by (d). UINT2DINT(P)

EConverting 16-bit unsigned binary data to 32-bit unsigned binary data

Instruction symbol Processing details Reference
UINT2UDINT Converts the 16-bit unsigned binary data in the device specified by (s) to 32-bit unsigned binary Page 443
UINT2UDINTP data, and stores the converted data in the device specified by (d). UINT2UDINT(P)

EConverting 32-bit signed binary data to 16-bit signed binary data

Instruction symbol

Processing details

Reference

DINT2INT

DINT2INTP

Converts the 32-bit signed binary data in the device specified by (s) to 16-bit signed binary data,
and stores the converted data in the device specified by (d).

Page 445 DINT2INT(P)

EConverting 32-bit signed binary data to 16-bit/32-bit unsigned binary data

Instruction symbol Processing details Reference
DINT2UINT Converts the 32-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, | Page 447
DINT2UINTP and stores the converted data in the device specified by (d). DINT2UINT(P)
DINT2UDINT Converts the 32-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, | Page 449
DINT2UDINTP and stores the converted data in the device specified by (d). DINT2UDINT(P)

EConverting 32-bit unsigned binary data to 16-bit/32-bit signed binary data

Instruction symbol Processing details Reference
UDINT2INT Converts the 32-bit unsigned binary data in the device specified by (s) to 16-bit singed binary data, | Page 451
UDINT2INTP and stores the converted data in the device specified by (d). UDINT2INT(P)
UDINT2DINT Converts the 32-bit unsigned binary data in the device specified by (s) to 32-bit singed binary data, | Page 455
UDINT2DINTP and stores the converted data in the device specified by (d). UDINT2DINT(P)

2 CPU MODULE INSTRUCTIONS
2.2 Basic Instructions 79

80

HEConverting 32-bit unsigned binary data to 16-bit unsigned binary data

Instruction symbol Processing details Reference
UDINT2UINT Converts the 32-bit unsigned binary data in the device specified by (s) to 16-bit unsigned binary Page 453
UDINT2UINTP data, and stores the converted data in the device specified by (d). UDINT2UINT(P)

EConverting 16-bit/32-bit binary data to 16-bit/32-bit binary Gray code data

Instruction symbol

Processing details

Reference

GRY

Converts the specified 16-bit binary data (-32768 to 32767) to 16-bit binary Gray code data.

Page 457 GRY(P)(_U)

GRYP
(s) > (d)
T L
Gc: Gray code
GRY_U Converts the specified 16-bit binary data (0 to 65535) to 16-bit binary Gray code data.
GRYP_U .
(s) >(d)
f— BIN L Ge
Gc: Gray code
DGRY Converts the specified 32-bit binary data (-2147483648 to 2147483647) to 32-bit binary Gray code | Page 459
DGRYP data. DGRY(P)(_U)
(s)+1, (s) > (d)+1, (d)
BIN Y
Gc: Gray code
DGRY_U Converts the specified 32-bit binary data (0 to 4294967295) to 32-bit binary Gray code data.
DGRYP_U

(s)+1, (s)

»(d)+1, (d)
BIN -

Gc: Gray code

EConverting 16-bit/32-bit binary Gray code data to 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

GBIN

Converts the specified 16-bit binary Gray code data (-32768 to 32767) to 16-bit binary data.

Page 461 GBIN(P)(_U)

GBINP
(8) ————— ()
- Ge L — BIN
Gc: Gray code
GBIN_U Converts the specified 16-bit binary Gray code data (0 to 65535) to 16-bit binary data.
GBINP_U (s) ————»(d)
L Ge J — BIN
Gc: Gray code
DGBIN Converts the specified 32-bit binary Gray code data (-2147483648 to 2147483647) to 32-bit binary | Page 463
DGBINP data. DGBIN(P)(_U)
()1, (8) ——————— > (d)*+1, (d)
Ge g BIN
Gc: Gray code
DGBIN_U Converts the specified 32-bit binary Gray code data (0 to 4294967295) to 32-bit binary data.
DGBINP_U

()1, () —————————>(@)*1, (@)
Ge g BIN

Gc: Gray code

EConverting 16-bit binary data block to BCD 4-digit data block

Instruction symbol

Processing details

Reference

BKBCD

BKBCDP

Batch-converts the (n) points of binary data in the device starting from the one specified by (s) to
BCD data, and stores the converted data in the device specified by (d) and later.

Page 465 BKBCD(P)

2 CPU MODULE INSTRUCTIONS

2.2 Basic Instructions

EConverting BCD 4-digit data block to 16-bit binary data block

Instruction symbol

Processing details

Reference

BKBIN

BKBINP

Batch-converts the (n) points of BCD data in the device starting from the one specified by (s) to
binary data, and stores the converted data in the device specified by (d) and later.

Page 467 BKBIN(P)

EConverting decimal ASCII data to 16-bit/32-bit binary data

Instruction symbol Processing details Reference
DABIN Converts the decimal ASCII value in the device specified by (s) to 1-word binary data, and stores Page 469
DABINP the converted data in the word device number specified by (d). DABIN(P)(_U)
DABIN_U

DABINP_U

DDABIN Converts the decimal ASCII value in the device specified by (s) to 2-word binary data, and stores Page 472
DDABINP the converted data in the word device number specified by (d). DDABIN(P)(_U)
DDABIN_U

DDABINP_U

EConverting hexadecimal ASCII data to 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

HABIN Converts the hexadecimal ASCII value in the device specified by (s) to 1-word binary data, and Page 476 HABIN(P)
HABINP stores the converted data in the word device number specified by (d).

DHABIN Converts the hexadecimal ASCII value in the device specified by (s) to 2-word binary data, and Page 479 DHABIN(P)
DHABINP stores the converted data in the word device number specified by (d).

EConverting decimal ASCII data to BCD 4-digit/8-digit data

Instruction symbol

Processing details

Reference

DABCD

Converts the decimal ASCII value in the device specified by (s) to 1-word BCD data, and stores the
converted data in the word device number specified by (d).

Page 482 DABCD(P)

DABCDP
DDABCD Converts the decimal ASCII value in the device specified by (s) to 2-word BCD data, and stores the | Page 485 DDABCD(P)
DDABCDP converted data in the word device number specified by (d).

HEConverting decimal string data to 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

VAL

Converts a character string including the decimal point in the device specified by (s) to 1-word
binary data and the number of decimal positions, and stores the converted data in the device areas

Page 488 VAL(P)(_U)

VALP
specified by (d1) and (d2).
VAL_U
VALP_U
DVAL Converts a character string including the decimal point in the device specified by (s) to 2-word Page 491 DVAL(P)(_U)
DVALP binary data and the number of decimal positions, and stores the converted data in the device areas
specified by (d1) and (d2).
DVAL_U
DVALP_U

EConverting hexadecimal ASCII data to hexadecimal binary data

Instruction symbol

Processing details

Reference

ASC2INT

ASC2INTP

Converts the hexadecimal ASCII data in the word device specified by (s) and later to binary data by
the number of characters specified by (n), and stores the converted data in the device number
specified by (d) and later.

Page 494 ASC2INT(P)

EConverting single-precision real number to BCD format data

Instruction symbol

Processing details

Reference

EMOD

EMODP

Converts the 32-bit floating-point data in the device specified by (s1) to BCD of the number of
decimal positions specified by (s2), and stores the converted data in the device specified by (d).

Page 496 EMOD(P)

2 CPU MODULE INSTRUCTIONS 1
2.2 Basic Instructions 8

82

HETwo's complement of 16-bit/32-bit binary data (sign inversion)

Instruction symbol

Processing details

Reference

NEG Inverts the sign of 16-bit binary device. Page 498 NEG(P)
NEGP (d_) — ()

BIN
DNEG Inverts the sign of 32-bit binary device. Page 500 DNEG(P)
DNEGP @1 () ———— @*1,(d)

BIN

EDecoding 8-bit data to 256-bit data

Instruction symbol

Processing details

Reference

DECO
DECOP

Decodes the lower (n) bits of the specified device.

(d)

(s) ==Y

(n) ! 1| 2 pits
—VY

Page 502 DECO(P)

HBEncoding 256-bit data to 8-bit data

Instruction symbol

Processing details

Reference

ENCO
ENCOP

Encodes the bit data of 'n'th power of 2.
(s)

(d)
E. 2(M bits >
1 | (n)

Page 504 ENCO(P)

EDecoding data to seven-segment display data

Instruction symbol

Processing details

Reference

SEG

SEGP

Decodes the data consisting of 0 to F specified by the lower 4 bits of the device to seven-segment
display data.

b3 - b0
(s) (d)

7SEG

Page 506 SEG(P)

EMSeparating data in

units of 4 bits

Instruction symbol

Processing details

Reference

DIS

DISP

Separates the 16-bit in the device specified by (s) in units of 4 bits, and stores the separated data in
the (n) points of 4 low-order bits in the device starting from the one specified by (d). (n<4)

Page 509 DIS(P)

ECombining data in

units of 4 bits

Instruction symbol

Processing details

Reference

UNI

UNIP

Adds the (n) points of 4 low-order bit data in the device starting from the one specified by (s), and
stores the connected data in the device specified by (d). (n<4)

Page 511 UNI(P)

ESeparating/combining data in units of bits

Instruction symbol

Processing details

Reference

NDIS

NDISP

Separates the data in the device, specified by (s1) and later, to the bits in the device specified by
(s2) and later, and stores the separated data in order in the device starting from the one specified
by (d).

Page 513 NDIS(P)

NUNI

NUNIP

Connects the data in the device specified by (s1) and later, in units of bits in the device specified by
(s2) and later, and stores the connected data in order in the device starting from the one specified
by (d).

Page 515 NUNI(P)

ESeparating/combining data in units of bytes

Instruction symbol

Processing details

Reference

WTOB Converts the (n) points of 16 bit data in the device specified by (s) in units of 8 bits, and stores the | Page 517 WTOB(P)
WTOBP converted data in order in the device starting from the one specified by (d).

BTOW Connects 8 low-order bits of the (n) points of 16 bit data in the device specified by (s) to 16 bits, and | Page 519 BTOW(P)
BTOWP stores the connected data in order in the device starting from the one specified by (d).

2 CPU MODULE INSTRUCTIONS

2.2 Basic Instructions

Shift instructions

EShifting 16-bit binary data to the right/left by n bit(s)

Instruction symbol

Processing details

Reference

SFR Shifts the 16-bit binary data in the specified device to the right. In the empty area after the shift, 0 is | Page 345 SFR(P)
SFRP stored.

b15 bn bn-1 b0

[[[T T 11

b15\\ bo (SM700)

[o0 T 7 | |
SFL Shifts the 16-bit binary data in the specified device to the left. In the empty area after the shift, 0 is | Page 347 SFL(P)
SFLP stored.

15 bn+1 bn b0
I I |
// b0

(SM700) b15,
[

b
[] [T o0]

EShifting n-bit data

to the right/left by one bit

Instruction symbol

Processing details

Reference

BSFR Shifts the n points of data starting from the specified device to the right by one bit. In the empty Page 349 BSFR(P)
BSFRP area after the shift, 0 is stored.
(n)
(d)
(LT TR TTT]
\ \\(SWOO)
ol TTRTTTT] L]
BSFL Shifts the n points of data starting from the specified device to the left by one bit. In the empty area | Page 351 BSFL(P)
BSFLP after the shift, 0 is stored.

[T 11
(SM700) ‘/,/

[T]
[T]

/

0]

(@)
L]
|

BShifting n-word data to the right/left by one word

Instruction symbol

Processing details

Reference

DSFR Shifts the n points of data starting from the specified device to the right by one word. In the empty | Page 353 DSFR(P)
DSFRP area after the shift, 0 is stored.
(n)
(d)
\ \\4 [T T TTT]
Ll TTYTTTT]
DSFL Shifts the n points of data starting from the specified device to the left by one word. In the empty Page 355 DSFL(P)
DSFLP area after the shift, 0 is stored.

(n)

Y

(d)
[]
\

\
[1]

0]

2 CPU MODULE INSTRUCTIONS
2.2 Basic Instructions

83

EShifting n double word(s) of data to the right/left by one double word

Instruction symbol

Processing details

Reference

DDSFR Shifts the n double word(s) of data starting from the specified device to the right by one double Page 357 DDSFR(P)
DDSFRP word. In the empty area after the shift, 0 is stored.
(n)
A
! ~—(d)+1, (d)
I \IA [% [[| \IA |
Lol [T % [[[[1
DDSFL Shifts the n double word(s) of data starting from the specified device to the left by one double word. | Page 359 DDSFL(P)
DDSFLP In the empty area after the shift, 0 is stored.
(n)
A
! = (d)+1, (d)
I AI/ [[% [| AI/ |
L T % [[JTo]
EShifting n point(s) of single-precision real number data to the right/left by one point
Instruction symbol Processing details Reference

ESFR Shifts the n point(s) of single-precision real number data starting from the specified device to the Page 361 ESFR(P)
ESFRP right by one point. In the empty area after the shift, 0 is stored.
(n)
A
! ~—(d)+1, (d)
I \IA [T % [T | \IA |
(ol [T % [[[[1
ESFL Shifts the n point(s) of single-precision real number data starting from the specified device to the Page 363 ESFL(P)
ESFLP left by one point. In the empty area after the shift, 0 is stored.

! ~—(d)*+1, (d)

EShifting n point(s)

of double-precision real number data to the right/left by one point

Instruction symbol

Processing details

Reference

EDSFR Shifts the n point(s) of double-precision real number data starting from the specified device to the Page 365 EDSFR(P)
EDSFRP right by one point. In the empty area after the shift, 0 is stored.
(n)
A
‘ > (d)+3 to (d)
I \I‘ [T % [T | \I‘ |
(ol [T % [[[[1
EDSFL Shifts the n point(s) of double-precision real number data starting from the specified device to the | Page 367 EDSFL(P)
EDSFLP left by one point. In the empty area after the shift, 0 is stored.
(n)
A
’ > (d)+3 to (d)
I AI/ [T % T 1 AI/ |
L [% [[JTo]
84 2 CPU MODULE INSTRUCTIONS
2.2 Basic Instructions

BShifting n-bit data to the right/left by n bit(s)

Instruction symbol

Processing details

Reference

SFTBR

Shifts the n-bit data starting from the specified device to the right by n bit(s). In the empty area after
the shift, 0 is stored.

Page 369 SFTBR(P)

SFTBRP
(n1)
(n2)
—
(d)
(LI TSI 111
\ \‘\A (SM700)
lofol THTTTTT I \
SFTR Shifts bit data to the right by the (n2) bit(s) within the (n1) bits of data area starting from the Page 371 SFTR(P)
SFTRP specified device. In the empty area after the shift, specified data is stored.
(n1)
(n2)
—
(d) 2
n
(LT T§TTTT]
o~ o~)
LTSIty L
i |
SFTBL Shifts the n-bit data starting from the specified device to the left by n bit(s). In the empty area after | Page 373 SFTBL(P)
SFTBLP the shift, 0 is stored.
(n1)
(n2)
—_ (d)
LTI TTT]
w700 o e
\] LT T [ofo]
SFTL Shifts bit data to the left by the (n2) bit(s) within the (n1) bits of data area starting from the specified | Page 375 SFTL(P)
SETLP device. In the empty area after the shift, specified data is stored.

(n1)
_n2) (d)
T o
\/H . |ﬁ\ o
o

2 CPU MODULE INSTRUCTIONS
2.2 Basic Instructions 85

BShifting n-word data to the right/left by n word(s)

Instruction symbol

Processing details

Reference

SFTWR Shifts the n-word data starting from the specified device to the right by n word(s). In the empty area | Page 377 SFTWR(P)
SFTWRP after the shift, 0 is stored.
(n1)
(n2)
—
(d)
| Q‘ REE Q‘ |
lofof [§ T TTT]
WSFR Shifts word data to the right by the (n2) word(s) within the (n1) words of data area starting from the | Page 379 WSFR(P)
WSFRP specified device. In the empty area after the shift, specified data is stored.
(n1)
(n2)
—
II\I\HIHM)I 2
n
(n2)
\ \ (s)
(I I I I I e B
?
SFTWL Shifts the n-word data starting from the specified device to the left by n word(s). In the empty area | Page 381 SFTWL(P)
SETWLP after the shift, 0 is stored.
(n1)
(n2)
)
| y [T y |
LT T T T Tolo
WSFL Shifts word data to the left by the (n2) word(s) within the (n1) words of data area starting from the | Page 383 WSFL(P)
WSFLP specified device. In the empty area after the shift, specified data is stored.

(n1)
,—(ﬂ (d)
O] @2
‘/ / (s)

I I e B

EShifting n double word(s) of data to the right/left by n double word(s)

Instruction symbol

Processing details

Reference

SFTDWR Shifts the (n2) double word(s) of area to the right within the (n1) double word(s) of data area Page 385 SFTDWR(P)
SFTDWRP starting from the specified device. In the empty area after the shift, 0 is stored.
(n1)
r A N\
(n2)
(d)+1, (d)

| QA T 1 Q‘ &

(oJol [&% [[[[]
DWSFTR Shifts the (n2) double word(s) of area to the right within the (n1) double word(s) of data area Page 387 DWSFTR(P)
DWSFTRP starting from the specified device. In the empty area after the shift, specified data is stored.

(n1)

(n2)

2 CPU MODULE INSTRUCTIONS

86 2.2 Basic Instructions

Instruction symbol

Processing details

Reference

SFTDWL Shifts the (n2) double word(s) of area to the left within the (n1) double word(s) of data area starting | Page 389 SFTDWL(P)
SETDWLP from the specified device. In the empty area after the shift, 0 is stored.
(n1)
r A A}
(n2)
(d)+1, (d)

| A» T %1 A»]

LI T T % [Joflol]
DWSFTL Shifts the (n2) double word(s) of area to the left within the (n1) double word(s) of data area starting | Page 391 DWSFTL(P)
DWSETLP from the specified device. In the empty area after the shift, specified data is stored.

(n1)

(n2)

EShifting n point(s)

of single-precision real number data to the right/left by n point(s)

Instruction symbol

Processing details

Reference

SFTER Shifts the (n2) point(s) of area of the single-precision real number data to the right within the (n1) Page 393 SFTER(P)
SFTERP point(s) of area starting from the specified device. In the empty area after the shift, 0 is stored.
(n1)
r A A}
(n2)
(d)+1, (d)
| QA [T 1 Q‘]
(ool T % [[[[1
ESFTR Shifts the (n2) point(s) of area of the single-precision real number data to the right within the (n1) Page 395 ESFTR(P)
ESFTRP point(s) of area starting from the specified device. In the empty area after the shift, specified data is
stored.
(n1)
r A A}
(n2)
(d)+1, (d)
L.t % [[T ["] (n2)
\ \ (s)
I [T % [1T [1
SFTEL Shifts the (n2) point(s) of area of the single-precision real number data to the left within the (n1) Page 397 SFTEL(P)
SFTELP point(s) of area starting from the specified device. In the empty area after the shift, 0 is stored.
(n1)
A
r A}
(n2)
(d)+1, (d)
| ‘» I - A» “J
LI [T T % [Jofo]
ESFTL Shifts the (n2) point(s) of area of the single-precision real number data to the left within the (n1) Page 399 ESFTL(P)
ESFTLP point(s) of area starting from the specified device. In the empty area after the shift, specified data is

stored.

(n1)

(n2)

2 CPU MODULE INSTRUCTIONS
2.2 Basic Instructions 87

88

EShifting n point(s) of double-precision real number data to the right/left by n point(s)

Instruction symbol

Processing details

Reference

SFTEDR Shifts the (n2) point(s) of area of the double-precision real number data to the right within the (n1) | Page 401 SFTEDR(P)
SFTEDRP point(s) of area starting from the specified device. In the empty area after the shift, 0 is stored.
(n1)
r A N\
(n2)
(d)+3 to (d)
| QA T 1 Q‘ &
(ofol [&% [[[[1]
EDSFTR Shifts the (n2) point(s) of area of the double-precision real number data to the right within the (n1) | Page 403 EDSFTR(P)
EDSFTRP point(s) of area starting from the specified device. In the empty area after the shift, specified data is
stored.
(n1)
r A N\
(n2)
(d)+3 to (d)
L1 % [[1T ["] (n2)
\ \ (S)
% [7T [] :’:I
)
SFTEDL Shifts the (n2) point(s) of area of the double-precision real number data to the left within the (n1) Page 405 SFTEDL(P)
SFTEDLP point(s) of area starting from the specified device. In the empty area after the shift, 0 is stored.
(n1)
r A N\
(n2)
(d)+3 to (d)
| A» I A» 7
LT [T T % [Jofol]
EDSFTL Shifts the (n2) point(s) of area of the double-precision real number data to the left within the (n1) Page 407 EDSFTL(P)
EDSFTLP point(s) of area starting from the specified device. In the empty area after the shift, specified data is

stored.

(n1)

(n2)
(d)+3 to (d)
LT T T 1% 1T 1T T1T"] (n2)

- - SO

2 CPU MODULE INSTRUCTIONS

2.2 Basic Instructions

Data transfer instructions

ETransferring 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

MOV Transfers the 16-bit binary data in the device specified. Page 521 MOV(P)
MOVP (8) ——— ()

DMOV Transfers the 32-bit binary data in the device specified. Page 523 DMOV(P)
DMOVP

(8)+1, (8) —————> (d)*1, (d)

Hinverting and transferring 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

CML Inverts the specified 16-bit binary data bit by bit, and transfers the inverted data. Page 525 CML(P)
CMLP (s) ——————»(d)

DCML Inverts the specified 32-bit binary data bit by bit, and transfers the inverted data. Page 527 DCML(P)
DCMLP

()41, (8) ——————>(d)+1,(d)

EShifting data in un

its of 4 bits

Instruction symbol

Processing details

Reference

SMOV

SMOVP

Distributes and combines data in units of 4 bits.

Page 529 SMOV(P)

Hinverting and transferring 1-bit data

Instruction symbol

Processing details

Reference

CMLB

CMLBP

Inverts the bit data in the device specified by (s), and stores the inverted data in the device
specified by (d).

Page 532 CMLB(P)

ETransferring 16-bit binary data block (16 bits)

Instruction symbol

Processing details

Reference

BMOV

BMOVP

Batch-transfers the (n) points of 16-bit binary data starting from the device specified.

(s) (d)

= ==

| > i I(n)
= =

(n) = 1 to 65535

Page 534 BMOV(P)

HETransferring 16-bit binary data block (32 bits)

Instruction symbol

Processing details

Reference

BMOVL

BMOVLP

Batch-transfers the (n) points of 16-bit binary data starting from the device specified.

(s) (d)

== ==

| > | I(n)
= =

(n) = 1 to 4294967295

Page 537 BMOVL(P)

HETransferring the same 16-bit binary data block (16 bits)

Instruction symbol

Processing details

Reference

FMOV
FMOVP

Transfers 16-bit binary data to the (n) points starting from the device specified.

(d)
(s) =
i | I(n)
==

——

(n) = 1 to 65535

Page 539 FMOV/(P)

2 CPU MODULE INSTRUCTIONS

89

2.2 Basic Instructions

ETransferring the same 16-bit binary data block (32 bits)

Instruction symbol

Processing details

Reference

FMOVL

FMOVLP

Transfers 16-bit binary data to the (n) points starting from the device specified.

(d)
(s) =
A

(n) = 1 to 4294967295

Page 541 FMOVL(P)

ETransferring the same 32-bit binary data block (16 bits)

Instruction symbol

Processing details

Reference

DFMOV

DFMOVP

Transfers 32-bit binary data to the (n) points starting from the device specified.

(d)+1, (d)
(s)+1, (s) ——%
—— 1 1| (n)

—i

(n) = 1 to 65535

Page 543 DFMOV/(P)

ETransferring the same 32-bit binary data block (32 bits)

Instruction symbol

Processing details

Reference

DFMOVL

DFMOVLP

Transfers 32-bit binary data to the (n) points starting from the device specified.
(d)+1, (d)

(s)*1, (s) %
— <' 1(n)
e 2

(n) = 1 to 4294967295

Page 545 DFMOVL(P)

BExchanging 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

XCH Exchanges the 16-bit binary data specified. Page 547 XCH(P)
XCHP (d1) —»(d2)

DXCH Exchanges the 32-bit binary data specified. Page 549 DXCH(P)
DXCHP

(d1)+1, (d1) ¢———» (d2)+1, (d2)

BExchanging 16-bit

binary block data

Instruction symbol

Processing details

Reference

BXCH

BXCHP

Exchanges the (n) points of 16-bit binary data starting from the devices specified.

(d1) (d2)
=] =
| > i I(n)
== ==

Page 551 BXCH(P)

BExchanging the upper and lower bytes of 16-bit binary data

Instruction symbol

Processing details

Reference

SWAP

SWAPP

Exchanges upper and lower 8-bit data in the specified device.

b15 - b8b7 - b0
(d) [_8bits | B8bits |

b15 > b8b7 - b0
(d) [8bits [8bhits |

Page 553 SWAP(P)

90 2 CPU MODULE INSTRUCTIONS

2.2 Basic Instructions

BExchanging the upper and lower bytes of 32-bit binary data

Instruction symbol

Processing details

Reference

DSWAP

DSWAPP

Exchanges upper and lower 8-bit data in the specified device.

b15 -+ b8b7 - b0 b15 - b8b7 - b0
(d+1 [_8bits | 8bits | (d) [_8bits | 8bits |

b0 b15 - b8b7 --- b0

8 bits | (d)y[8bits | 8bhits |

- b8b7
8 bits |

b
(@)1 |

Page 554 DSWAP(P)

ETransferring 1-bit data

Instruction symbol

Processing details

Reference

MOVB

MOVBP

Stores the bit data in the device specified by (s) in the device specified by (d).

Page 556 MOVB(P)

ETransferring n-bit data

Instruction symbol Processing details Reference
BLKMOVB Batch-transfers the (n) points of bit data in the device starting from the one specified by (s) to the Page 558
BLKMOVBP (n) points of bit data in the device starting from the one specified by (d). BLKMOVB(P)
2 CPU MODULE INSTRUCTIONS 91
2.2 Basic Instructions

92

2.3

Application Instructions

Program control

Program branch instructions

HEPointer branch

Instruction symbol

Processing details

Reference

CcJ Executes the program specified by the pointer number within the same program file.

SCJ Executes the program specified by the pointer number within the same program file starting with
the next scan.

JMP Unconditionally executes the program specified by the pointer number within the same program

file.

Page 563 CJ, SCJ,
JMP

BJumping to END

Instruction symbol

Processing details

Reference

GOEND

Invokes a jump to the FEND or END instruction within the same program file.

Page 566 GOEND

Program execution control instructions

EDisabling/enabling interrupt programs

Instruction symbol Processing details Reference
DI Disables the execution of interrupt programs. Page 567 DI, El
El Clears the interrupt disabled state.
EDisabling the interrupt program with specified priority or lower
Instruction symbol Processing details Reference
DI Disables the execution of the interrupt program with a priority specified by (s) or lower until the EI Page 570 DI
instruction is executed.
Hinterrupt program mask
Instruction symbol Processing details Reference

IMASK

Enables or disables the execution of the interrupt program with the specified interrupt pointer
number.

Page 575 IMASK

EDisabling/enabling the specified interrupt pointer

Instruction symbol

Processing details

Reference

SIMASK

Enables or disables the execution of the interrupt program with the specified interrupt pointer
number.

Page 577 SIMASK

HReturning from the interrupt program

Instruction symbol

Processing details

Reference

IRET

Indicates the end of the processing of an interrupt program.

Page 579 IRET

HResetting the watchdog timer

Instruction symbol

Processing details

Reference

WDT

WDTP

Resets the watchdog timer.

Page 580 WDT(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

Structure creation instructions

EPerforming the FOR to NEXT instruction loop

Instruction symbol

Processing details

Reference

FOR

NEXT

Executes the processing between FOR to NEXT (n) times.

Page 581 FOR, NEXT

HForcibly terminating the FOR to NEXT instruction loop

Instruction symbol

Processing details

Reference

BREAK

BREAKP

Forcibly terminates the loop processing between the FOR and NEXT instructions, and passes the
control to the specified pointer.

Page 583 BREAK(P)

HCalling a subroutine program

Instruction symbol

Processing details

Reference

CALL

CALLP

Executes a subroutine program specified by (P) when the input condition is met.
(For (s1) to (s5), specify the arguments to be passed to the subroutine program.)

Page 585 CALL(P)

EReturning from the subroutine program called

Instruction symbol

Processing details

Reference

RET

Indicates the end of a subroutine program.

Page 589 RET

HCalling a subroutine program and turning the output off

Instruction symbol

Processing details

Reference

FCALL

FCALLP

Performs non-execution processing of the subroutine program specified by (P) when the input
conditions are not met.
(For (s1) to (s5), specify the arguments to be passed to the subroutine program.)

Page 590 FCALL(P)

HCalling a subroutine program in the specified program file

Instruction symbol

Processing details

Reference

ECALL

ECALLP

Executes the subroutine program specified by (P) of the specified program when the input
conditions are met.
(For (s1) to (s5), specify the arguments to be passed to the subroutine program.)

Page 594 ECALL(P)

HCalling a subroutine program in the specified program file and turning the out

put off

Instruction symbol

Processing details

Reference

EFCALL

EFCALLP

Performs non-execution processing of the subroutine program specified by (P) of the specified
program when the input conditions are not met. (For (s1) to (s5), specify the arguments to be
passed to the subroutine program.)

Page 599 EFCALL(P)

HCalling a subroutine program

Instruction symbol

Processing details

Reference

XCALL

Executes a subroutine program specified by (P) when the input condition is met.

Perform non-execution processing of the subroutine program specified by (P) when the input
conditions are not met.

(For (s1) to (s5), specify the arguments to be passed to the subroutine program.)

Page 604 XCALL

Program control instructions

BEChanging the program execution type to standby type

Instruction symbol

Processing details

Reference

PSTOP

PSTOPP

Changes the type of the specified program to standby type.

Page 609 PSTOP(P)

BEChanging the program execution type to standby type (output off)

Instruction symbol

Processing details

Reference

POFF

POFFP

Turns off the coil of the OUT instruction used in the specified program and changes the type of the
specified program to standby type.

Page 611 POFF(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions 93

94

EChanging the program execution type to scan execution type

Instruction symbol

Processing details

Reference

PSCAN

Changes the type of the specified program to scan execution type.

PSCANP

Page 613 PSCAN(P)

Data processing

Rotation instructions

HRotating 16-bit binary data to the right

Instruction symbol

Processing details

Reference

ROR

Rotates the 16-bit binary data to the right by (n) bit(s) (not including the carry flag).

RORP b15 (d) b0 (SM700)
£ i } %
Q)]
(1) Right rotation by (n) bits
RCR Rotates the 16-bit binary data to the right by (n) bit(s) (including the carry flag).
RCRP b15 (d) b0 (SM700)

H | {j

(M
(1) Right rotation by (n) bits

Page 615 ROR(P),
RCR(P)

HRotating 16-bit binary data to the left

Instruction symbol

Processing details

Reference

ROL

Rotates the 16-bit binary data to the left by (n) bit(s) (not including the carry flag).

ROLP (SM700) b15 (d) b0
>
g A
——
Q]
(1) Left rotation by (n) bits
RCL Rotates the 16-bit binary data to the left by (n) bit(s) (including the carry flag).
RCLP (SM700) b15 (d) b0

==)

()

(1) Left rotation by (n) bits

Page 618 ROL(P),
RCL(P)

HRotating 32-bit binary data to the right

Instruction symbol

Processing details

Reference

DROR

Rotates the 32-bit binary data to the right by (n) bit(s) (not including the carry flag).

L

DRORP (d)+1 (d)
b31 - b16b15 -+ b0 (SM700)
\ N
£ \ 10
] —
(1
(1) Right rotation by (n) bits
DRCR Rotates the 32-bit binary data to the right by (n) bit(s) (including the carry flag).
DRCRP (d)+1 (d)
b31 -+ b16b15 -+ b0 (SM700)
I | [,
£ I | '!

(1)

(1) Right rotation by (n) bits

Page 621 DROR(P),
DRCR(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

HRotating 32-bit binary data to the left

Instruction symbol Processing details Reference
DROL Rotates the 32-bit binary data to the left by (n) bit(s) (not including the carry flag). Page 623 DROL(P),
DROLP (d)+1 (d) DRCL(P)
(SM700) b31 - b16b15 - b0
S
(1)
(1) Left rotation by (n) bits
DRCL Rotates the 32-bit binary data to the left by (n) bit(s) (including the carry flag).
DRCLP (d)+1 (d)
(SM700) b31 - b16b15 - b0
e ——
M
(1) Left rotation by (n) bits
Data table operation instructions
HReading the oldest data from the data table
Instruction symbol Processing details Reference
FIFR Stores the data first stored in the table in the specified device. Page 625 FIFR(P)
FIFRP oL]
@[N (@[N-1

(d)y+1

N: Number of data

2 CPU MODULE INSTRUCTIONS

2.3 Application Instructions 95

HEReading the newest data from the data table

Instruction symbol

Processing details

Reference

FPOP Stores the data last stored in the table in the specified device.
FPOPP @
(d|N (d)| N-1

N: Number of data

Page 627 FPOP(P)

EWriting data to the data table

Instruction symbol

Processing details

Reference

FIFW Stores 16-bit binary data to the specified data table. Page 629 FIFW(P)
FIFWP] I
(d)|N (d)| N+1
u
|
N: Number of data
Hinserting/deleting data to/from the data table

Instruction symbol

Processing details

Reference

FINS Inserts 16-bit binary data to the (n)th position in the specified data table. Page 631 FINS(P)
FINSP o
)N (d)| N+1
~ —
N: Number of data
FDEL Deletes the data at the (n)th position in the data table. Page 633 FDEL(P)
FDELP O]

(d)|N (d)| N-1

(n) —»

N: Number of data

Reading/writing data instructions

BReading data from the data memory

Instruction symbol

Processing details

Reference

S.DEVLD

Reads data from the device data storage file in data memory.

SP.DEVLD

Page 636 S(P).DEVLD

EWriting data to the data memory

Instruction symbol

Processing details

Reference

SP.DEVST

Writes the specified number of points of data to the device data storage file in data memory.

Page 638 SP.DEVST

2 CPU MODULE INSTRUCTIONS
96 2.3 Application Instructions

File operation instructions

BReading data from

the specified file

Instruction symbol

Processing details

Reference

SP.FREAD

Reads data from the specified file.

Page 641 SP.FREAD

EWriting data to the

specified file

Instruction symbol

Processing details

Reference

SP.FWRITE

Writes data to the specified file.

Page 660 SP.FWRITE

HDeleting the specified file

Instruction symbol Processing details Reference
SP.FDELETE Deletes the specified file or folder. Page 678
SP.FDELETE
HCopying the specified file
Instruction symbol Processing details Reference

SP.FCOPY

Copies the specified file or folder.

Page 682 SP.FCOPY

EMoving the specifi

ed file

Instruction symbol

Processing details

Reference

SP.FMOVE

Moves the specified file or folder.

Page 687 SP.FMOVE

ERenaming the specified file

Instruction symbol Processing details Reference
SP.FRENAME Renames the specified file or folder. Page 692
SP.FRENAME
BAcquiring the status of the specified file
Instruction symbol Processing details Reference

SP.FSTATUS

Acquires the status of the specified file or folder.

Page 696 SP.FSTATUS

Data control instructions

BUpper and lower limit control of 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

LIMIT Controls the output value depending on whether the specified 16-bit binary bit value is within the Page 701 LIMIT(P)(_U)
LIMITP upper and lower limits.

LIMIT_U

LIMITP_U

DLIMIT Controls the output value depending on whether the specified 32-bit binary bit value is within the Page 703

DLIMITP upper and lower limits. DLIMIT(P)(_U)
DLIMIT_U

DLIMITP_U

HEDead band control

of 16-bit/32-bit binary data

Instruction symbol Processing details Reference
BAND Controls the output value depending on whether the specified 16-bit binary bit value is within the Page 705
BANDP upper and lower limits of the dead band. BAND(P)(_U)
BAND_U

BANDP_U

DBAND Controls the output value depending on whether the specified 32-bit binary bit value is within the Page 707
DBANDP upper and lower limits of the dead band. DBAND(P)(_U)
DBAND_U

DBANDP_U

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

97

98

BZone control of 16-bit/32-bit binary data

Instruction symbol Processing details Reference
ZONE Adds a bias value to the specified input value (16-bit binary). Page 709
ZONEP ZONE(P)(_U)
ZONE_U
ZONEP_U
DZONE Adds a bias value to the specified input value (32-bit binary). Page 711
DZONEP DZONE(P)(_U)
DZONE_U
DZONEP_U

EScaling 16-bit/32-bit binary data (point coordinates)
Instruction symbol Processing details Reference

SCL

Scales the scaling conversion data (16-bit data) in the device specified by (s2) on the basis of the
input value in the device specified by (s1), and stores the operation result in the device specified by

Page 713 SCL(P)(_U)

SCLP
(d).

SCL_U Scaling conversion is performed based on the scaling conversion data stored in the device

SCLP_U specified by (s2) and later.

DSCL Scales the scaling conversion data (32-bit data) in the device specified by (s2) on the basis of the | Page 716

DSCLP input value in the device specified by (s1), and stores the operation result in the device specified by | DSCL(P)(_U)
(d).

bscL_U Scaling conversion is performed based on the scaling conversion data stored in the device

DSCLP_U specified by (s2) and later.

EScaling 16-bit/32-bit binary data (XY coordinates)

Instruction symbol

Processing details

Reference

SCL2

Scales the scaling conversion data (16-bit data) in the device specified by (s2) on the basis of the
input value in the device specified by (s1), and stores the operation result in the device specified by

Page 719 SCL2(P)(_U)

SCL2P
(d).

scLz u Scaling conversion is performed based on the scaling conversion data stored in the device

SCL2P_U specified by (s2) and later.

DSCL2 Scales the scaling conversion data (32-bit data) in the device specified by (s2) on the basis of the | Page 721

DSCL2P input value in the device specified by (s1), and stores the operation result in the device specified by | DSCL2(P)(_U)
(d).

bscLz u Scaling conversion is performed based on the scaling conversion data stored in the device

DSCL2P_U specified by (s2) and later.

Data processing instructions

BSearching 16-bit/32-bit binary data

Instruction symbol Processing details Reference
SERDATA Searches the (n) points in the 16-bit binary data specified by (s2) for the 16-bit binary data specified | Page 723 SERDATA(P)
SERDATAP by (s1).
(s2)
L. =
! | (n)
——
()
(d)+1
(d): Location
(d)+1: Number of matches
DSERDATA Searches the (n) points in the 32-bit binary data specified by (s2) for the 32-bit binary data specified | Page 725
DSERDATAP by (s1). DSERDATA(P)

32 bit
e (s2)

(81) e |
e — o
()

(d)+1

(d): Location
(d)+1: Number of matches

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

BSearching 16-bit/32-bit binary data (minimum, match, maximum)

Instruction symbol

Processing details

Reference

SERMM

Searches the (n) points in the 16-bit binary data specified by (s1) for the same data as the 16-bit
binary data specified by (s2), the minimum value, and the maximum value.

Page 727 SERMM(P)

SERMMP

s1

o I

! ! I(n)

—

T (d)to(d)+4

DSERMM Searches the (n) points in the 32-bit binary data specified by (s1) for the same data as the 32-bit Page 729 DSERMM(P)
DSERMMP binary data specified by (s2), the minimum value, and the maximum value.

(s1)

e | (s2)
3I<n> ‘

> [(d)+1, (@)]to[(d)+9, (d)+8]

BChecking 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

SUM

Stores the total number of "1" bits in the 16-bit binary data stored in the specified device.

Page 731 SUM(P)

SUMP (s)

b15 ... b0

L]

T ()

(d): Number of 1s
DSUM Stores the total number of "1" bits in the 32-bit binary data stored in the specified device. Page 733 DSUM(P)
DSUMP

(s)*1 (s)
I
R C— (d)

(d): Number of 1s

BChecking the bit status in 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

BON

Checks whether (n) bit(s) of the specified device are on or off, and stores the result in the device
specified by (d).

Page 735 BON(P)

BONP
DBON Checks whether (n) bit(s) of the specified device are on or off, and stores the result in the device Page 737 DBON(P)
DBONP specified by (d).

BSearching for the maximum value of 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

MAX

MAXP

MAX_U

MAXP_U

Searches the (n) points of data in the device specified by (s) in units of 16 bits, and stores the
maximum value in the device specified by (d).

Page 739 MAX(P)(_U)

DMAX

DMAXP

DMAX_U

DMAXP_U

Searches the (n) points of data in the device specified by (s) in units of 32 bits, and stores the
maximum value in the device specified by (d).

Page 741
DMAX(P)(_V)

ESearching for the minimum value of 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

MIN

MINP

MIN_U

MINP_U

Searches the (n) points of data in the device specified by (s) in units of 16 bits, and stores the
minimum value in the device specified by (d).

Page 743 MIN(P)(_U)

DMIN

DMINP

DMIN_U

DMINP_U

Searches the (n) points of data in the device specified by (s) in units of 32 bits, and stores the
minimum value in the device specified by (d).

Page 745 DMIN(P)(_U)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions 99

100

BSorting 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

SORTD Sorts the (n) points of data in the device specified by (s1) in units of 16 bits. Page 747 SORTD(_U)
SORTD U ("(n)x((n)-1)+2" scanning required)
DSORTD Sorts the (n) points of data in the device specified by (s1) in units of 32 bits. Page 749
DSORTD U ("(n)x((n)-1)+2" scanning required) DSORTD(_U)
ESorting 16-bit binary data table
Instruction symbol Processing details Reference
SORTTBL Sorts the data rows in the 16-bit binary data table (sorting source) of ((n1) x (n2)) points specified | Page 751
SORTTBL U by (s), based on the data in the column (n3) in ascending or descending order. (For the sorting, the | SORTTBL(_U)
- data table where the value to the right of (s) in each column increases consecutively is used.) The
result is stored in the 16-bit binary data table (sorting result) of ((n1) x (n2)) points specified by (d).
ESorting 16-bit/32-bit binary data table 2
Instruction symbol Processing details Reference
SORTTBL2 Sorts the data rows in the 16-bit binary data table (sorting source) of ((n1) x (n2)) points specified | Page 755
SORTTBL2 U by (s), based on the data in the column (n3) in ascending or descending order. (For the sorting, the | SORTTBL2(_U)
- data table where the value to the right of (s) in each row increases consecutively is used.) The
result is stored in the 16-bit binary data table (sorting result) of ((n1) x (n2)) points specified by (d).
DSORTTBL2 Sorts the data rows in the 32-bit binary data table (sorting source) of ((n1) x (n2)) points specified | Page 759
DSORTTBL2 U by (s), based on the data in the column (n3) in ascending or descending order. (For the sorting, the | DSORTTBL2(_U)
- data table where the values (odd number and even number) to the right of (s) in each row increase
consecutively is used.) The result is stored in the 32-bit binary data table (sorting result) of ((n1) x
(n2)) points specified by (d).
BAdding 16-bit binary data
Instruction symbol Processing details Reference
WSUM Adds the (n) points of 16-bit binary data in the device starting from the one specified by (s), and Page 763
WSUM_U stores the result in the device specified by (d). WSUM(P)(_U)
WSUMP
WSUMP_U

BAdding 32-bit binary data

Instruction symbol Processing details Reference
DWSUM Adds the (n) points of 32-bit binary data in the device starting from the one specified by (s), and Page 765
DWSUM U stores the result in the device specified by (d). DWSUM(P)(_U)
DWSUMP

DWSUMP_U

HCalculating the mean value of 16-bit/32-bit binary data

Instruction symbol Processing details Reference
MEAN Calculates the average value of the (n) points of 16-bit data in the device starting from the one Page 767
MEANP specified by (s), and stores the average value in the device specified by (d). MEAN(P)(_U)
MEAN_U
MEANP_U
DMEAN Calculates the average value of the (n) points of 32-bit data in the device starting from the one Page 769
DMEANP specified by (s), and stores the average value in the device specified by (d). DMEAN(P)(_U)
DMEAN_U
DMEANP_U

HCalculating the square root of 16-bit/32-bit binary data
Instruction symbol Processing details Reference

SQRT Performs a square root operation of the specified 16-bit binary data. Page 771 SQRT(P)
SQRTP Vsl (@)

DSQRT Performs a square root operation of the specified 32-bit binary data. Page 773 DSQRT(P)
DSQRTP (s)+1, (s)—>(d)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

BCRC operation

Instruction symbol

Processing details

Reference

CRC

CRCP

Generates the CRC value for (n) 8-bit data (unit: byte) starting from the device specified by (s), and
store the CRC value to the device specified by (d).

Page 774 CRC(P)

Check code instructions

HECheck code

Instruction symbol

Processing details

Reference

CCD

CCDP

Performs addition of the data stored in the devices specified by (s) to (s)+(n)-1 and calculate the
horizontal parity, and stores the added data in the device specified by (d) and the horizontal parity
in the device specified by (d)+1.

Page 776 CCD(P)

2 CPU MODULE INSTRUCTIONS 1 1
2.3 Application Instructions 0

102

Debugging and failure diagnostic

Debugging and failure diagnostic instructions

HEResetting the error display and the annunciator display

Instruction symbol

Processing details

Reference

LEDR

This instruction resets the self-diagnostic error (continuation error) display and the annunciator
display of the CPU module.

Page 779 LEDR

EGenerating a continuation error

Instruction symbol

Processing details

Reference

PALERT

PALERTP

Generates a continuation error in the CPU module.

Page 781 PALERT(P)

EGenerating a stop

error

Instruction symbol

Processing details

Reference

PABORT

Stops program execution and generates a stop error in the CPU module.

Page 783 PABORT

String processing

String processing

instructions

EComparing string data

Instruction symbol Processing details Reference
LD$=, AND$=, OR$= Compares the character string specified by (s1) with the character string specified by (s2) Page 785 LD$O,
LD$<>, AND$<>, OR$<> (character by character). ANDSO, ORO
LD$>, AND$>, OR$>
LD$<=, AND$<=, OR$<=
LD$<, AND$<, OR$<
LD$>=, AND$>=, OR$>=

EConcatenating string data
Instruction symbol Processing details Reference

$+ Connects the character strings in the device specified by (s) to those in the device specified by (d), | Page 788 $+(P) [when
$+P and stores the connected data in the device specified by (d) and later. two operands are set]

$+ Connects the character strings in the device specified by (s2) to those in the device specified by Page 790 $+(P) [when
$+P (s1), and stores the connected data in the device specified by (d) and later. three operands are set]

HTransferring string data

Instruction symbol

Processing details

Reference

$MOV Transfers the character strings in the device specified by (s) to the device specified by (d) and later. | Page 792 $MOV(P)
$MOVP

$MOV_WS Transfers the Unicode character strings in the device specified by (s) to the device specified by (d) | Page 794

SMOVP WS and later. $MOV(P)_WS

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

HEConverting 16-bit/32-bit binary data to decimal ASCII

Instruction symbol

Processing details

Reference

BINDA

BINDAP

BINDA_U

BINDAP_U

Converts the 1-word binary data in the device specified by (s) to decimal ASCII data, and stores the
converted data in the word device number specified by (d) and later.

Page 796
BINDA(P)(_U)

DBINDA

DBINDAP

DBINDA_U

DBINDAP_U

Converts the 2-word binary data in the device specified by (s) to decimal ASCII data, and stores the
converted data in the word device number specified by (d) and later.

Page 800
DBINDA(P)(_U)

EConverting 16-bit/32-bit binary data to hexadecimal ASCII

Instruction symbol

Processing details

Reference

BINHA

Converts the 1-word binary data in the device specified by (s) to hexadecimal ASCII data, and
stores the converted data in the word device number specified by (d) and later.

Page 805 BINHA(P)

BINHAP
DBINHA Converts the 2-word binary data in the device specified by (s) to hexadecimal ASCII data, and Page 809 DBINHA(P)
DBINHAP stores the converted data in the word device number specified by (d) and later.

HEConverting 16-bit/32-bit binary data to string data

Instruction symbol

Processing details

Reference

STR

Converts the 1-word binary data in the device specified by (s2) to a decimal character string
consisting of the total number digits and the number of digits in the decimal part in the device

Page 813 STR(P)(_U)

STRP
specified by (s1), and stores the converted data in the word device specified by (d).

STR_U

STRP_U

DSTR Converts the 2-word binary data in the device specified by (s2) to a decimal character string Page 816

DSTRP consisting of the total number digits and the number of digits in the decimal part in the device DSTR(P)(_U)
specified by (s1), and stores the converted data in the word device specified by (d).

DSTR_U

DSTRP_U

EConverting BCD 4-digit/8-digit data to decimal ASCII code

Instruction symbol

Processing details

Reference

BCDDA

Converts the 1-word BCD data in the device specified by (s) to decimal ASCII data, and stores the
converted data in the word device number specified by (d) and later.

Page 819 BCDDA(P)

BCDDAP
DBCDDA Converts the 2-word BCD data in the device specified by (s) to decimal ASCII data, and stores the | Page 823 DBCDDA(P)
DBCDDAP converted data in the word device number specified by (d) and later.

EConverting single-precision real number to string data

Instruction symbol

Processing details

Reference

ESTR

ESTRP

Converts the single-precision real number in the device specified by (s1) to a character string, and
stores the converted data in the word device specified by (d).

Page 828 ESTR(P)

EConverting hexadecimal binary data to hexadecimal ASCIl code

Instruction symbol

Processing details

Reference

INT2ASC

INT2ASCP

Converts the 1-word binary data in the device number specified by (s) and later to hexadecimal
ASCII, and stores the converted data by the number of characters in the device specified by (n) in
the word device number specified by (d) and later.

Page 832 INT2ASC(P)

EConverting Unicode character string to Shift JIS character string

Instruction symbol

Processing details

Reference

WS28JIS

WS2SJISP

Converts the Unicode character string in the device specified by (s) to the shift JIS character string,
and stores the converted data in the device specified by (d).

Page 834 WS2SJIS(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

103

104

EConverting shift JIS character string to Unicode character string (without byte order mark)

Instruction symbol

Processing details

Reference

SJIS2WS

SJIS2WSP

Converts the shift JIS character string in the device specified by (s) to a Unicode character string,
and stores the converted data in the device specified by (d).

Page 836 SJIS2WS(P)

EConverting shift JIS to Unicode (with byte order mark)

Instruction symbol Processing details Reference
SJIS2WSB Converts the shift JIS character string in the device specified by (s) to the Unicode character string, | Page 838
SJIS2WSBP add a byte order mark to the head of the converted data, and stores it in the device specified by (d). | SJIS2WSB(P)

EDetecting a string

length

Instruction symbol

Processing details

Reference

LEN

LENP

Stores the length (the number of characters) of the character string data, which is stored in the
device specified by (s), in the device specified by (d).

Page 840 LEN(P)

BExtracting string data from the right/left

Instruction symbol

Processing details

Reference

RIGHT Stores the (n) characters from the last character of the character string, which is stored in the Page 842 RIGHT(P)
RIGHTP device specified by (s), in the device specified by (d).

LEFT Stores the (n) characters from the first character of the character string, which is stored in the Page 844 LEFT(P)
LEFTP device specified by (s), in the device specified by (d).

HExtracting/replacing the specified string data

Instruction symbol

Processing details

Reference

MIDR Retrieves the character string in the device specified by (s1) by the number of specified characters | Page 846 MIDR(P)
MIDRP from the location in the device specified by (s2), and stores the retrieved data in the device

specified by (d).
MIDW Retrieves the specified number of characters from the character string in the device specified by Page 848 MIDW(P)
MIDWP (s1), and stores the retrieved data at the location specified by (s2) in the character string stored in

the device specified by (d).

BSearching string data

Instruction symbol

Processing details

Reference

INSTR

INSTRP

Searches the character string in the device specified by (s2), starting from the (s3)th character, for
the character string in the device specified by (s1), and stores the matching location in the device
specified by (d).

Page 851 INSTR(P)

Hinserting string data

Instruction symbol

Processing details

Reference

STRINS

STRINSP

Inserts the character string data in the device specified by (s1) to the (s2)th character (insertion
position) from the head of the character string data in the device specified by (d).

Page 853 STRINS(P)

HDeleting string data

Instruction symbol

Processing details

Reference

STRDEL

STRDELP

Deletes the (n) characters starting from the position (deletion start position) specified by the (s)th
character from the head of the character string data in the device specified by (d).

Page 855 STRDEL(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

Real value processing

Floating-point instruction

BEComparing single-precision real numbers

Instruction symbol

Processing details

Reference

LDE=, ANDE=, ORE=

LDE<>, ANDE<>, ORE<>

LDE>, ANDE>, ORE>

LDE<=, ANDE<=, ORE<=

LDE<, ANDE<, ORE<

LDE>=, ANDE>=, ORE>=

Performs a comparison operation of a single-precision real number. (Devices are used as a
normally open contact.)

Page 857 LDED,
ANDEDO, OREO

EComparing double-precision real numbers

Instruction symbol

Processing details

Reference

LDED=, ANDED=, ORED=

LDED<>, ANDED<>, ORED<>

LDED>, ANDED>, ORED>

LDED<=, ANDED<=, ORED<=

LDED<, ANDED<, ORED<

LDED>=, ANDED>=, ORED>=

Performs a comparison operation of a double-precision real number. (Devices are used as a
normally open contact.)

Page 859 LDEDO,
ANDEDO, OREDO

HEOutputting a comparison result of single-precision real numbers

Instruction symbol

Processing details

Reference

ECMP

ECMPP

Compares the single-precision real number data specified by (s1) with the single-precision real
number data specified by (s2), and according to the result (small, equal, or large), (d), (d)+1, or
(d)+2is turned on.

Page 862 ECMP(P)

EOutputting a comparison result of double-precision real numbers

Instruction symbol

Processing details

Reference

EDCMP

EDCMPP

Compares the double-precision real number data specified by (s1) with the double-precision real
number data specified by (s2), and according to the result (small, equal, or large), (d), (d)+1, or
(d)+2 is turned on.

Page 864 EDCMP(P)

EOutputting a band

comparison result of single-precision real number

Instruction symbol

Processing details

Reference

EZCP

EZCPP

Compares the band between the single-precision real number specified by lower limit value (s1)
and the single-precision real number specified by upper limit value (s2) with the single-precision
real number in the device specified by comparison data (s3). According to the comparison result
(below, within zone, or above), (d), (d)+1, or (d)+2 is turned on.

Page 866 EZCP(P)

EOutputting a band

comparison result of double-precision real number

Instruction symbol

Processing details

Reference

EDZCP

EDZCPP

Compares the band between the double-precision real number specified by lower limit value (s1)
and the double-precision real number specified by upper limit value (s2) with the double-precision
real number in the device specified by comparison data (s3). According to the comparison result
(below, within zone, or above), (d), (d)+1, or (d)+2 is turned on.

Page 868 EDZCP(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

105

BAdding/subtracting single-precision real numbers

Instruction symbol

Processing details

Reference

E+ Adds single-precision real numbers. (Using two operands) Page 870 E+(P) [when
E+P two operands are set]
E+ Adds single-precision real numbers. (Using three operands) Page 872 E+(P) [when
E+P three operands are set]
E- Performs subtraction between single-precision real numbers. (Using two operands) Page 874 E-(P) [when
E-P two operands are set]
E- Performs subtraction between single-precision real numbers. (Using three operands) Page 876 E-(P) [when
E-P three operands are set]

BAdding/subtracting double-precision real numbers

Instruction symbol

Processing details

Reference

ED+ Adds double-precision real numbers. (Using two operands) Page 878 ED+(P)

ED+P [when two operands
are set]

ED+ Adds double-precision real numbers. (Using three operands) Page 880 ED+(P)

ED+P [when three operands
are set]

ED- Performs subtraction between double-precision real numbers. (Using two operands) Page 882 ED-(P)

ED-P [when two operands
are set]

ED- Performs subtraction between double-precision real numbers. (Using three operands) Page 884 ED-(P)

ED-P [when three operands

are set]

EMultiplying/dividing single-precision real numbers

Instruction symbol

Processing details

Reference

E* Multiplies single-precision real numbers. Page 886 E*(P)
E*P
E/ Performs division between single-precision real numbers. Page 888 E/(P)
E/P

EMultiplying/dividing double-precision real numbers

Instruction symbol

Processing details

Reference

ED* Multiplies double-precision real numbers. Page 890 ED*(P)
ED*P
ED/ Performs division between double-precision real numbers. Page 892 ED/(P)
ED/P

EConverting 16-bit/32-bit signed binary data to single-precision real number

Instruction symbol

Processing details

Reference

INT2FLT Converts the 16-bit signed binary data in the device specified by (s) to a single-precision real Page 894 INT2FLT(P)
INT2FLTP number, and stores the converted data in the device specified by (d).

DINT2FLT Converts the 32-bit signed binary data in the device specified by (s) to a single-precision real Page 898
DINT2FLTP number, and stores the real number in the device specified by (d). DINT2FLT(P)

EConverting 16-bit/32-bit unsigned binary data to single-precision real number

Instruction symbol Processing details Reference
UINT2FLT Converts the 16-bit unsigned binary data in the device specified by (s) to a single-precision real Page 896
UINT2FLTP number, and stores the real number in the device specified by (d). UINT2FLT(P)
UDINT2FLT Converts the 32-bit unsigned binary data in the device specified by (s) to a single-precision real Page 900
UDINT2FLTP number, and stores the real number in the device specified by (d). UDINT2FLT(P)

106

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

EConverting double-precision real number to single-precision real number

Instruction symbol

Processing details

Reference

DBL2FLT

Converts the double-precision real number in the device specified by (s) to a single-precision real

DBL2FLTP

number, and stores the real number in the device specified by (d).

Page 902 DBL2FLT(P)

EConverting 16-bit/32-bit signed binary data to double-precision real number

Instruction symbol

Processing details

Reference

INT2DBL Converts the 16-bit signed binary data in the device specified by (s) to a double-precision real Page 904 INT2DBL(P)

INT2DBLP number, and stores the real number in the device specified by (d).

DINT2DBL Converts the 32-bit signed binary data in the device specified by (s) to a double-precision real Page 908

DINT2DBLP number, and stores the real number in the device specified by (d). DINT2DBL(P)
EConverting 16-bit/32-bit unsigned binary data to double-precision real number

Instruction symbol Processing details Reference

UINT2DBL Converts the 16-bit unsigned binary data in the device specified by (s) to a double-precision real Page 906

UINT2DBLP number, and stores the real number in the device specified by (d). UINT2DBL(P)

UDINT2DBL Converts the 32-bit unsigned binary data in the device specified by (s) to a double-precision real Page 910

UDINT2DBLP number, and stores the real number in the device specified by (d). UDINT2DBL(P)

EConverting single-precision real number to double-precision real number

Instruction symbol

Processing details

Reference

FLT2DBL

Converts the single-precision real number in the device specified by (s) to a double-precision real

FLT2DBLP

number, and stores the double-precision real number in the device specified by (d).

Page 912 FLT2DBL(P)

EConverting string

data to single-precision real number

Instruction symbol

Processing details

Reference

EVAL

Converts the character string in the device specified by (s) to a single-precision real number, and

EVALP

stores the converted data in the device specified by (d).

Page 914 EVAL(P)

EConverting BCD format data to single-precision real number

Instruction symbol

Processing details

Reference

EREXP

Converts the BCD data in the device specified by (s1) to a single-precision real number with the

EREXPP

number of decimal positions specified by (s2), and stores the converted data in the device
specified by (d).

Page 918 EREXP(P)

Hinverting the sign

of single-precision real number

Instruction symbol

Processing details

Reference

ENEG

Inverts the sign of single-precision real number data.

ENEGP

(d)+1, (d) —————»(d)*+1,(d)
(1M

(1) Real number

Page 920 ENEG(P)

Hinverting the sign

of double-precision real number

Instruction symbol

Processing details

Reference

EDNEG

Inverts the sign of double-precision real number data.

EDNEGP

(d)+3, (d)+2, (d)+1, (d) —— (d)+3, (d)+2, (d)*+1, (d)
M

(1) Real number

Page 921 EDNEG(P)

ETransferring single-precision real number

Instruction symbol

Processing details

Reference

EMOV

Transfers single-precision real number data to the specified device.

EMOVP

()1, (8) ———————— > (d)+1,(d)
Q)

(1) Real number

Page 922 EMOV(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

107

ETransferring double-precision real number

Instruction symbol

Processing details

Reference

EDMOV

EDMOVP

Transfers double-precision real number data to the specified device.
(8)*3, (8)+2, (s)*1, (s) ———» (d)+3, (d)+2, (d)+1, (d)
1)

(1) Real number

Page 923 EDMOV(P)

HCalculating the sine of single-precision real number

Instruction symbol

Processing details

Reference

SIN

SINP

Calculates the sine of the angle specified by a single-precision real number.

Page 924 SIN(P)

HCalculating the cosine of single-precision real number

Instruction symbol

Processing details

Reference

Ccos

COSP

Calculates the cosine of the angle specified by a single-precision real number.

Page 926 COS(P)

ECalculating the tangent of single-precision real number

Instruction symbol Processing details Reference
TAN Calculates the tangent of the angle specified by a single-precision real number. Page 928 TAN(P)
TANP
HCalculating the arc sine of single-precision real number
Instruction symbol Processing details Reference

ASIN

ASINP

Calculates the angle from the sine specified by a single-precision real number.

Page 930 ASIN(P)

HCalculating the arc cosine of single-precision real number

Instruction symbol

Processing details

Reference

ACOS

ACOSP

Calculates the angle from the cosine specified by a single-precision real number.

Page 932 ACOS(P)

ECalculating the arc tangent of single-precision real number

Instruction symbol

Processing details

Reference

ATAN

ATANP

Calculates the angle from the tangent specified by a single-precision real number.

Page 934 ATAN(P)

ECalculating the sine of double-precision real number

Instruction symbol

Processing details

Reference

SIND

SINDP

Calculates the sine of the angle specified by a double-precision real number.

Page 936 SIND(P)

HCalculating the cosine of double-precision real number

Instruction symbol

Processing details

Reference

COSD

COsDP

Calculates the cosine of the angle specified by a double-precision real number.

Page 938 COSD(P)

HCalculating the tangent of double-precision real number

Instruction symbol

Processing details

Reference

TAND

TANDP

Calculates the tangent of the angle specified by a double-precision real number.

Page 940 TAND(P)

1 08 2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

HCalculating the arc sine of double-precision real number

Instruction symbol

Processing details

Reference

ASIND

ASINDP

Calculates the angle from the sine specified by a double-precision real number.

Page 942 ASIND(P)

HCalculating the arc cosine of double-precision real number

Instruction symbol

Processing details

Reference

ACOSD

ACOSDP

Calculates the angle from the cosine specified by a double-precision real number.

Page 944 ACOSD(P)

HCalculating the arc tangent of double-precision real number

Instruction symbol

Processing details

Reference

ATAND

ATANDP

Calculates the angle from the tangent specified by a double-precision real number.

Page 946 ATAND(P)

ECalculating the sine of BCD data

Instruction symbol

Processing details

Reference

BSIN

BSINP

Calculates the sine of the angle specified by a BCD value.

SIN(s) ——» (d)
(d)+1
(d)+2
(d): Sign

(d)+1: Integral part
(d)+2: Decimal part

Page 948 BSIN(P)

HCalculating the cosine of BCD data

Instruction symbol

Processing details

Reference

BCOS

BCOSP

Calculates the cosine of the angle specified by a BCD value.

COS(s) ——» (d)
(d)+1
(d)+2
(d): Sign

(d)+1: Integral part
(d)+2: Decimal part

Page 950 BCOS(P)

HCalculating the tangent of BCD data

Instruction symbol

Processing details

Reference

BTAN

BTANP

Calculates the tangent of the angle specified by a BCD value.

TAN(S) ——» @
(d)+1
(d)+2
(d): Sign

(d)+1: Integral part
(d)+2: Decimal part

Page 952 BTAN(P)

2 CPU MODULE INSTRUCTIONS 1
2.3 Application Instructions 09

HCalculating the arc sine of BCD data

Instruction symbol

Processing details

Reference

BASIN

BASINP

Calculates the arc sine of the angle specified by a BCD value.

SIN'(s) — » (d)
(d)+1
(d)+2
(d): Sign

(d)+1: Integral part
(d)+2: Decimal part

Page 954 BASIN(P)

ECalculating the arc cosine of BCD data

Instruction symbol

Processing details

Reference

BACOS

BACOSP

Calculates the arc cosine of the angle specified by a BCD value.

Cos'(s) — » (d)
(d)+1
(d)+2
(d): Sign

(d)+1: Integral part
(d)+2: Decimal part

Page 956 BACOS(P)

ECalculating the arc tangent of BCD data

Instruction symbol

Processing details

Reference

BATAN

BATANP

Calculates the arc tangent of the angle specified by a BCD value.

TAN'(s) — » (d)
(d)+1
(d)+2
(d): Sign

(d)+1: Integral part
(d)+2: Decimal part

Page 958 BATAN(P)

EConverting single-precision real number angle to radian

Instruction symbol

Processing details

Reference

RAD

RADP

Converts the unit of the measure of angle from the degree specified by a single-precision real
number to radian.
Converting degree to radian

(s)+1, (8) ——> (d)+1,(d)

Page 960 RAD(P)

EConverting single-precision real number radian to angle

Instruction symbol

Processing details

Reference

DEG

DEGP

Converts the unit of the measure of angle from the radian specified by a single-precision real
number to the degree.
Converting radian to degree

(s)+1,(8) —— (d)*1,(d)

Page 962 DEG(P)

HEConverting double-precision real number angle to radian

Instruction symbol

Processing details

Reference

RADD

RADDP

Converts the unit of the measure of angle from the degree specified by a single-precision real
number to radian.
Converting degree to radian

(8)+3, (8)*2, (8)+1, (8) ———> (d)+3, (d)+2, (d)*+1, (d)

Page 964 RADD(P)

EConverting double-precision real number radian to angle

Instruction symbol

Processing details

Reference

DEGD

DEGDP

Converts the unit of the measure of angle from the radian specified by a double-precision real
number to the degree.
Converting radian to degree

(s)+3, (8)*2, (8)*1, (8) ———> (d)+3, (d)+2, (d)*1, (d)

Page 966 DEGD(P)

1 1 0 2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

ECalculating the sq

uare root of single-precision real number

Instruction symbol

Processing details

Reference

ESQRT

Calculates the square root of the value specified by a single-precision real number.

ESQRTP

(8)+1, (s) ——— (d)+1,(d)

Page 968 ESQRT(P)

ECalculating the sq

uare root of double-precision real number

Instruction symbol

Processing details

Reference

EDSQRT

Calculates the square root of the value specified by a double-precision real number.

EDSQRTP

(8)+3, (8)+2, (8)*1, () ——» (d)+3, (d)*2, (d)+1, (d)

Page 970 EDSQRT(P)

HCalculating the exponent of single-precision real number

Instruction symbol

Processing details

Reference

EXP

Calculates the exponent of the value specified by a single-precision real number.

EXPP

Page 972 EXP(P)

ECalculating the exponent of double-precision real number

Instruction symbol

Processing details

Reference

EXPD

Calculates the exponent of the value specified by a double-precision real number.

EXPDP

Page 974 EXPD(P)

ECalculating the natural logarithm of single-precision real number

Instruction symbol

Processing details

Reference

LOG

Calculates the logarithm using the natural logarithm (e) of the value specified by a single-precision

LOGP

real number as the base.

Page 976 LOG(P)

HCalculating the natural logarithm of double-precision real number

Instruction symbol

Processing details

Reference

LOGD

Calculates the logarithm using the natural logarithm (e) of the value specified by a double-precision

LOGDP

real number as the base.

Page 978 LOGD(P)

ECalculating the sq

uare root of BCD 4-digit/8-digit data

Instruction symbol

Processing details

Reference

BSQRT Calculates the square root of the value specified by a BCD 4-digit data. Page 980 BSQRT(P)
BSQRTP (s) %)
(d)+1
(d): Integral part
(d)+1: Decimal part
BDSQRT Calculates the square root of the value specified by a BCD 8-digit data. Page 982 BDSQRT(P)
BDSQRTP

S, (8) ——»

(d)
(d)+1

(d): Integral part
(d)+1: Decimal part

ECalculating the exponentiation of single-precision real number

Instruction symbol

Processing details

Reference

POW

Calculates the exponentiation of a single-precision real number.

POWP

Page 984 POW(P)

ECalculating the exponentiation of double-precision real number

Instruction symbol

Processing details

Reference

POWD

Calculates the exponentiation of a double-precision real number.

POWDP

Page 986 POWD(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

111

112

ECalculating the co

mmon logarithm of single-precision real number

Instruction symbol

Processing details

Reference

LOG10

Calculates the logarithm using the common logarithm (using 10 as the base) of the value specified

LOG10P

by a single-precision real number.

Page 988 LOG10(P)

ECalculating the co

mmon logarithm of double-precision real number

Instruction symbol

Processing details

Reference

LOG10D

Calculates the logarithm using the common logarithm (using 10 as the base) of the value specified

LOG10DP

by a double-precision real number.

Page 990 LOG10D(P)

BSearching the maximum value of single-precision real number

Instruction symbol

Processing details

Reference

EMAX

Searches for the maximum value in the (n) points of single-precision real number block data in the

EMAXP

device starting from the one specified by (s), and stores the maximum value in the search result
(maximum value) in the device specified by (d).

Page 992 EMAX(P)

ESearching the maximum value of double-precision real number

Instruction symbol

Processing details

Reference

EDMAX

Searches for the maximum value in the (n) points of double-precision real number block data in the

EDMAXP

device starting from the one specified by (s), and stores the maximum value in the search result
(maximum value) in the device specified by (d).

Page 994 EDMAX(P)

ESearching the min

imum value of single-precision real number

Instruction symbol

Processing details

Reference

EMIN

Searches for the minimum value in the (n) points of single-precision real number block data in the

EMINP

device starting from the one specified by (s), and stores the maximum value in the search result
(minimum value) in the device specified by (d).

Page 996 EMIN(P)

ESearching the min

imum value of double-precision real number

Instruction symbol

Processing details

Reference

EDMIN

Searches for the minimum value in the (n) points of double-precision real number block data in the

EDMINP

device starting from the one specified by (s), and stores the maximum value in the search result
(minimum value) in the device specified by (d).

Page 998 EDMIN(P)

Random num

ber

Random number i

nstructions

BGenerating random number, changing random sequence

Instruction symbol

Processing details

Reference

RND Generates a random number between 0 and less than 32767, and stores the random number in Page 1000 RND(P)
RNDP the device specified by (d).

SRND Changes the random number sequence according to the content of the 16-bit binary data stored in | Page 1001 SRND(P)
SRNDP the device specified by (s).

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

Device operation

Index register instructions

ESaving/returning all data of the index register

Instruction symbol

Processing details

Reference

ZPUSH Saves data of the index register to the area specified by (d). Page 1002 ZPUSH(P)
ZPUSHP

ZPOP Reads the data, which has been saved to the area specified by (d)and later, into the index register. | Page 1004 ZPOP(P)
ZPOPP

ESaving/returning the selected data of the index register and long index registe

-

Instruction symbol

Processing details

Reference

ZPUSH

Saves the contents of the index register and long index register specified by (s) to the area
specified by (d).

Page 1005 ZPUSH(P)

ZPUSHP
ZPOP Reads the data, which has been saved to the area specified by (d), into the index register and long | Page 1008 ZPOP(P)
ZPOPP index register.

File register operation instructions

BSwitching the file register block number

Instruction symbol

Processing details

Reference

RSET

RSETP

Switches the block number of the file register used in the program to that stored in the device
specified by (s).

Page 1010 RSET(P)

BChanging the file register file name

Instruction symbol Processing details Reference
QDRSET Changes the file name of the file register used in the program. Page 1012
QDRSETP QDRSET(P)
File register read/write instructions
EReading 1-byte data from the file register
Instruction symbol Processing details Reference

ZRRDB

ZRRDBP

Reads the data from the file register with the specified serial byte number.

0 Lower 8 bits J 7RO
1 Upper 8 bits
2 Lower 8 bits } ZR1
3l Upper8bits) :
)| 8 bits [—> (@) |

Page 1014 ZRRDB(P)

EWriting 1-byte data to the file register

Instruction symbol

Processing details

Reference

ZRWRB

ZRWRBP

Writes the data in the lower bits of the specified device to the file register with the specified serial
byte number.

(s2) 0 Lower 8 bits 7RO
1 Upper 8 bits

2 Lower 8 bits ZR1
3 Upper 8 bits

)

(s1)] 8 bits |

Page 1016 ZRWRB(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

113

114

Indirect address read instructions

HEReading the indirect address
Instruction symbol Processing details Reference
ADRSET Reads the indirect address of the specified device. Page 1018
ADRSETP (8) ———»(d) ADRSET(P)
I M
2
(1) Indirect address of specified device
(2) Device name
Timer, counter
Special counter instructions
HECounting up or down the current value (1-phase input)
Instruction symbol Processing details Reference

UDCNT1

Updates the current value of the specified counter.
(s1) JUUUUUUUUyvrruUUuyUUUL
(1941 Y = [Dbown LU
(1) 012345676543210-12-3-2-10
()]

(1) Current value of Cn
(2) Contact of Cn

Page 1020 UDCNT1

ECounting up or do

wn the current value (2-phase input)

Instruction symbol

Processing details

Reference

UDCNT2

Updates the current value of the counter depending on the status of phases A and B pulses.

G UL L LU L UL
(shy+1 A& &L &y vlv/vvlv
()01 2 138 4 5 4 3 2 1 0 -1
(2

(1) Current value of Cn
(2) Contact of Cn

Page 1023 UDCNT2

Special timer instructions

ETeaching timer

Instruction symbol

Processing details

Reference

TTMR

Measures the on time of the measurement command in seconds, multiplies it by a multiplier, and
stores the operation result.

TonX(s) ——> (d)

(s)=0:1, (s)=1:10, (s)=2:100
Ton: On time of TTMR

Page 1025 TTMR

ESpecial function ti

mer

Instruction symbol

Processing details

Reference

STMR

Performs the following operations at the four points from the bit device specified by (d) according to
on/off of the input condition of the instruction.

« (d)+0: Off delay timer output

* (d)+1: After-off one-shot timer output

« (d)+2: After-on one-shot timer output

* (d)+3: On delay + off delay timer

Page 1027 STMR

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

Pulse related instructions

HEMeasuring the density of pulses

Instruction symbol

Processing details

Reference

SPD

Counts the input pulses in the device specified by (s1) for the period specified by (s2), and stores
the result data in the device specified by (d).

Page 1030 SPD

HEOutputting pulses

at regular intervals

Instruction symbol

Processing details

Reference

PLSY

Outputs the pulses at the frequency specified by (s), by the number of times specified by (n), to the
output number (Y) in the device specified by (d).

Page 1032 PLSY

HPerforming the pu

Ise width modulation

Instruction symbol

Processing details

Reference

PWM

Outputs the on time specified by (s1) and the pulses in the period specified by (s2) to the output

number (Y) in the device specified by (d).

Page 1034 PWM

Shortcut control

Shortcut control instruction

ERotary table shortest direction control

Instruction symbol

Processing details

Reference

ROTC

Controls the rotary table divided by (n1) so that it makes s shortcut rotation from the stop position to
the position specified by (s)+1.

Page 1036 ROTC

Ramp signal

Ramp signal instruction

ERamp signal

Instruction symbol

Processing details

Reference

RAMPQ

Changes the value specified by (s1) to the value specified by (s2) by the number of times specified

by (n).
The current value is stored in the device specified by (d1)+0.

Page 1039 RAMPQ

Matrix input

Matrix input instruction

EMatrix input

Instruction symbol

Processing details

Reference

MTR

Reads 16 points by (n) columns of data from the device specified by (s), and stores it in the device
specified by (d2) and later.

Page 1042 MTR

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

115

116

CPU module database access function

Database access instructions

HOpening the database

Instruction symbol Processing details Reference

DBOPEN Connects to the database specified by (s), and makes it available. Page 1051

DBOPENP DBOPEN(P)
HClosing the database

Instruction symbol Processing details Reference

DBCLOSE Releases the identification number specified by (s) and the allocation of the database. Page 1053

DBCLOSEP DBCLOSE(P)
BAdding a record to the database

Instruction symbol Processing details Reference

DBINSERT Adds a record to the table specified by (s2) in the database corresponding to the identification Page 1055

DBINSERTP number specified by (s1). DBINSERT(P)

EUpdating the record in the database

Instruction symbol Processing details Reference
DBUPDATE Updates all record that meets the condition specified by (s5) in the table specified by (s2) in the Page 1062
DBUPDATEP database specified by the identification number specified by (s1). DBUPDATE(P)

ESearching the record in the database

Instruction symbol Processing details Reference

DBSELECT Searches the records in the table specified by (s2) in the database corresponding to the Page 1068

DBSELECTP identification number specified by (s1). DBSELECT(P)
HDeleting the record in the database

Instruction symbol Processing details Reference

DBDELETE Deletes the record that meets the condition specified by (s3) in the table specified by (s2) in the Page 1076

DBDELETEP database corresponding to the identification number specified by (s1). DBDELETE(P)
Himporting data to the database

Instruction symbol Processing details Reference

DBIMPORT Imports the data set in the Unicode text file stored in the path specified by (s) to construct a Page 1045

DBIMPORTP database. DBIMPORT(P)

BExporting data fro

m the database

Instruction symbol Processing details Reference

DBEXPORT Exports the data stored in the database to the Unicode text file stored in the path specified by (s). Page 1048

DBEXPORTP DBEXPORT(P)
EStarting a transaction

Instruction symbol Processing details Reference

DBTRANS Declares the start of a transaction in relation to the database corresponding to the identification Page 1080

DBTRANSP number specified by (s). DBTRANS(P)
ECommitting a transaction

Instruction symbol Processing details Reference

DBCOMMIT Commits the transaction in relation to the database corresponding to the identification number Page 1082

DBCOMMITP specified by (s). DBCOMMIT(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

HPerforming a rollback

Instruction symbol Processing details Reference
DBROLBAK Executes the rollback in relation to the database corresponding to the identification number Page 1084
DBROLBAKP specified by (s). DBROLBAK(P)
Clock instructions
HReading clock data
Instruction symbol Processing details Reference
DATERD Reads "year, month, day, hour, minute, second, and day of week" from the clock element of the Page 1090
DATERDP CPU module. DATERD(P)
(d)
(d)+1
(d)+2
(d)+3
(d)+4
(d)+5
(d)+6
(d): Year
(d)+1: Month
(d)+2: Day
(d)+3: Hour
(d)+4: Minute
(d)+5: Second
(d)+6: Day of week
EWriting clock data
Instruction symbol Processing details Reference
DATEWR Writes the clock data stored in the specified device and later to the clock element of the CPU Page 1092
DATEWRP module. DATEWR(P)
(s)
(s)+1
(s)+2
(s)*+3
(s)*+4
(s)*5
(s)+6
(s): Year
(s)+1: Month
(s)+2: Day
(s)+3: Hour
(s)*+4: Minute
(s)+5: Second
(s)+6: Day of week
BAdding clock data
Instruction symbol Processing details Reference
DATE+ Adds time data. Page 1094 DATE+(P)
DATE+P (s1) (s2) (d)
hour hour hour
minute | + minute | — | minute
second second second

ESubtracting clock data

Instruction symbol

Processing details

Reference

DATE-

DATE-P

Subtracts time data.

(s1) (s2) (d)
hour hour hour
minute | _ minute | — | minute
second second second

Page 1096 DATE-(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

117

118

EConverting time data from hour/minute/second to second

Instruction symbol Processing details Reference
TIME2SEC Converts time data from hour/minute/second to second. Page 1098
TIME2SECP ©) @1 @ TIME2SEC(P)

minute | —

second

EConverting time data from second to hour/minute/second

Instruction symbol Processing details Reference
SEC2TIME Converts time data from second to hour/minute/second. Page 1100
SECZTIMEP (1) @ SEC2TIME(P)

— [minute

second
EConverting date and time data
Instruction symbol Processing details Reference
DATE2SEC Converts date and time data (year/month/day/time/minute/second) into second data. Page 1102
DATE2SECP ©) DATE2SEC(P)(_U)
DATE2SEC_U year
DATE2SECP_U month (@1 @
- /_H_/%
da
Y — | second |
hour
minute
second

SEC2DATE

SEC2DATEP

SEC2DATE_U

SEC2DATEP_U

Converts second data into date and time data (year/month/day/time/minute/second/day of week).

(d)

year

() month

— day

hour

minute

second

day of week

Page 1104
SEC2DATE(P)(_V)

EComparing date data

Instruction symbol

Processing details

Reference

LDDT=, ANDDT=, ORDT=

LDDT<>, ANDDT<>, ORDT<>

LDDT>, ANDDT>, ORDT>

LDDT<=, ANDDT<=, ORDT<=

LDDT<, ANDDT<, ORDT<

LDDT>=, ANDDT>=, ORDT>=

Compares the specified date data, or compares the date data with the current date.

Page 1106 LDDT0,
ANDDTO, ORDTO

EComparing time data

Instruction symbol

Processing details

Reference

LDTM=, ANDTM=, ORTM=

LDTM<>, ANDTM<>,
ORTM<>

LDTM>, ANDTM>, ORTM>

LDTM<=, ANDTM<=,
ORTM<=

LDTM<, ANDTM<, ORTM<

LDTM>=, ANDTM>=,
ORTM>=

Compares the specified time data, or compares the specified time data with the current time.

Page 1110 LDTMO,
ANDTMO, ORTMO

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

EOutputting a comparison result of time data

Instruction symbol

Processing details

Reference

TCMP

TCMPP

Compares the time data to be compared that is specified by (s1), (s2), and (s3) with the time data
specified by (s4), and according to the result (small, match, or large), (d), (d)+1, or (d)+2 is turned
on.

Page 1113 TCMP(P)

EOutputting a band

comparison result of time data

Instruction symbol

Processing details

Reference

TZCP

TZCPP

Compares the band between the time data of lower limit value (s1) and the time data of upper limit
value (s2) with the time data (s3) to be compared, and according to the comparison result (below,
within zone, or above), (d), (d)+1, or (d)+2 is turned on.

Page 1115 TZCP(P)

HReading expansion clock data

Instruction symbol

Processing details

Reference

S.DATERD

SP.DATERD

Reads clock data including millisecond from the clock elements in the CPU module.

+1

d)
d)
d)
d)
d)
d)
d)
d)

+2
+3
+4
+5
+6
+7

)
)+1: Month
)+2: Day
)+3: Hour
d)+4: Minute
)+5: Second
)+6: Day of week
)+7: Millisecond

Page 1117
S(P).DATERD

BAdding expansion

clock data

Instruction symbol

Processing details

Reference

S.DATE+

SP.DATE+

Page 1119 S(P).DATE+

Adds time data.
(s1) (s2) (d)
hour hour hour
minute minute minute
second second second
1/1000 second 1/1000 second 1/1000 second

2 CPU MODULE INSTRUCTIONS

2.3 Application Instructions

119

BSubtracting expansion clock data

Instruction symbol

Processing details

Reference

S.DATE-

SP.DATE-

Subtracts time data.

(s1) (s2) (d)
hour hour hour
minute minute minute
second - second - second
1/1000 second 1/1000 second 1/1000 second

Page 1121 S(P).DATE-

Timing check instructions

EGenerating timing

pulses

Instruction symbol

Processing details

Reference

DUTY

Turns on the user timing clock for the specified number of scans and off for the specified number of
scans.

) 1 E—
(n1)

(n1): (n1) scans
(n2): (n2) scans
(d): SM420 to SM424

Page 1123 DUTY

EMeasuring time of

the specified data

Instruction symbol

Processing details

Reference

TIMCHK

Measures the on time of the input condition and, if the on time has continued as specified or longer,
turns on the device specified by (d).

Page 1125 TIMCHK

HEHour meter

Instruction symbol

Processing details

Reference

HOURM Measures the period of time for which the start contact is ON in units of hour, and turns on the Page 1127 HOURM
device specified by (d2) when the accumulated ON time reaches the time (16-bit binary data)
specified in (s).

DHOURM Measures the period of time for which the start contact is ON in units of hour, and turns on the Page 1129 DHOURM

device specified by (d2) when the accumulated ON time reaches the time (32-bit binary data)
specified in (s).

Module access

Module access instructions

HPerforming I/O refresh

Instruction symbol

Processing details

Reference

RFS

RFSP

Performs partial refresh of the relevant input/output during one scan.

Page 1131 RFS(P)

BSelecting refresh to be performed

Instruction symbol

Processing details

Reference

COM

COMP

Performs refresh and service processing for various modules when the input condition is met.

Page 1133 COM(P)

HPerforming module refresh

Instruction symbol

Processing details

Reference

S.ZCOM

SP.ZCOM

Performs refresh processing for the specified modules.

Page 1135 S(P).ZCOM

120

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

HEReading 1-word/2-word data from another module (16-bit specification)

Instruction symbol Processing details Reference
FROM Reads (n) words of data in units of 16 bits from the buffer memory areas of the intelligent function | Page 1137 FROM(P),
FROMP module and other CPU modules. DFROM(P)
DFROM Reads (n)x2 words of data in units of 16 bits from the buffer memory areas of the intelligent
DFROMP function module and other CPU modules.
EWriting 1-word/2-word data to a module (16-bit specification)
Instruction symbol Processing details Reference
TO Writes (n) words of data in units of 16 bits to the buffer memory areas of the intelligent function Page 1141 TO(P),
Top module and own CPU module. DTO(P)
DTO Writes (n)x2 words of data in units of 16 bits to the buffer memory areas of the intelligent function
DTOP module and own CPU module.
HReading 1-word/2-word data from another module (32-bit specification)
Instruction symbol Processing details Reference
FROMD Reads (n) words of data in units of 32 bits from the buffer memory areas of the intelligent function | Page 1146 FROMD(P),
FROMDP module and other CPU modules. DFROMD(P)
DFROMD Reads (n)x2 words of data in units of 32 bits from the buffer memory areas of the intelligent
DFROMDP function module and other CPU modules.
HEWriting 1-word/2-word data to a module (32-bit specification)
Instruction symbol Processing details Reference

TOD Writes (n) words of data in units of 32 bits to the buffer memory areas of the intelligent function Page 1150 TOD(P),
ToDP module and own CPU module. DTOD(P)
DTOD Writes (n)x2 words of data in units of 32 bits to the buffer memory areas of the intelligent function
DTODP module and own CPU module.
HBReading the module model name
Instruction symbol Processing details Reference

TYPERD

Reads the module model name mounted on the slot specified by (H), and stores the model name in

TYPERDP

the device areas specified by (d) and later.

Page 1155 TYPERD(P)

HEReading module s

pecific information

Instruction symbol Processing details Reference
UNIINFRD Reads the module information by the number of points specified by (n) from the module specified | Page 1159
UNIINFRDP by (H), and stores the information in the device areas specified by (d) and later. UNIINFRD(P)

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

121

Parameter setting operation

Routing information instructions

HReading routing information

Instruction symbol Processing details Reference
S.RTREAD Reads the data set by routing parameters. Page 1164
SP.RTREAD S(P).RTREAD

HRegistering routing information

Instruction symbol Processing details Reference
S.RTWRITE Registers the routing information to the area specified by a routing parameter. Page 1166
SPRTWRITE S(P).RTWRITE

CPU module data logging function

Logging instructions

ESetting/resetting trigger logging

Instruction symbol Processing details Reference

LOGTRG Generates a trigger for trigger logging. Data sampled for the number of records (specified in the Page 1168 LOGTRG
trigger logging setting parameter using the engineering tool) are stored in the data logging file.

LOGTRGR Resets the trigger condition. Page 1170 LOGTRGR

Recording function

Data collection instruction

ESetting data collection trigger

Instruction symbol Processing details Reference

DATATRG Collects data for the specified setting number of the recording function. Page 1171 DATATRG

1 22 2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

Built-in Ethernet function instructions

Open/close processing instructions

HOpening a connection
Instruction symbol Processing details Reference
SP.SOCOPEN Opens the connection specified by (s1). Page 1173
SP.SOCOPEN
HClosing a connection
Instruction symbol Processing details Reference
SP.SOCCLOSE Closes the connection specified by (s1). (Closing a connection) Page 1176
SP.SOCCLOSE
Socket communications instructions
BReading receive data during the END processing
Instruction symbol Processing details Reference
SP.SOCRCV Reads the receive data of the connection specified by (s1) during END processing from the socket | Page 1178
communication receive data area. SP.SOCRCV
HReading receive data when the instruction is executed
Instruction symbol Processing details Reference
S.SOCRCVS Reads the receive data of the connection specified by (s) during instruction execution from the Page 1182
socket communication receive data area. S.SOCRCVS
ESending data
Instruction symbol Processing details Reference
SP.SOCSND Sends the data in the device specified by (s3) to the external device of the connection specified by | Page 1184
(s1). SP.SOCSND
HReading connection information
Instruction symbol Processing details Reference
SP.SOCCINF Reads the connection information of the connection specified by (s1). Page 1187
SP.SOCCINF
BChanging the communication target (UDP/IP)
Instruction symbol Processing details Reference
SP.SOCCSET Changes the communication target IP address and port number of the connection specified by Page 1189
(s1). SP.SOCCSET
(UDP/IP communications only)
EChanging the receive mode
Instruction symbol Processing details Reference
SP.SOCRMODE Changes the TCP receive mode and receive data size for the connection specified by (s1). Page 1191
SP.SOCRMODE
HBReading socket communications receive data
Instruction symbol Processing details Reference
S.SOCRDATA Reads data by the number of words specified by (n) from the socket communication receive data Page 1195
SP.SOCRDATA area of the connection specified by (s1), and stores them in the device specified by (d) and later. S(P).SOCRDATA

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

123

Predefined protocol support function instruction

EExecuting the registered protocols

Instruction symbol Processing details Reference
SP.ECPRTCL Executes the protocol specified by the communication protocol support tool of the engineering tool. | Page 1197
SP.ECPRTCL
SLMP frame send instruction
BSending an SLMP frame
Instruction symbol Processing details Reference
SP.SLMPSND Sends SLMP messages to the SLMP-compatible device. Page 1205
SP.SLMPSND
File transfer function instructions
BSending FTP client files
Instruction symbol Processing details Reference
SP.FTPPUT Sends files in the CPU module, which are specified by (s2), to the folder path of the FTP server, Page 1212
which is specified by (s3). SP.FTPPUT
HRetrieving FTP client files
Instruction symbol Processing details Reference
SP.FTPGET Retrieves files on the FTP server, which are specified by (s2), to the folder path of the CPU module, | Page 1217
which is specified by (s3). SP.FTPGET

1 24 2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

PID operation instruction

Performing PID operation

Instruction symbol

Processing details

Reference

PID

Performs PID operation using the values set in (s1) to (s3), and stores the operation result in (d) at
each cycle of sampling time.

Page 1234 PID

PID control instructions

PID control instructions (inexact differential)

HRegistering the PID control data to the CPU module

Instruction symbol Processing details Reference

S.PIDINIT Stores the PID control data by the number of loops used that is set in the device number specified | Page 1249

SPPIDINIT by (s) and later altogether in the CPU module to enable PID control. S(P).PIDINIT
EPerforming PID operation

Instruction symbol Processing details Reference

S.PIDCONT Measures the sampling cycle and performs PID operation. Page 1252

SP.PIDCONT S(P).PIDCONT

EStopping/starting the operation of specified loop humber

Instruction symbol Processing details Reference
S.PIDSTOP Stops the PID operation of the loop number in the device specified by (s). Page 1255
SPPIDSTOP S(P).PIDSTOP
S.PIDRUN Starts the PID operation of the loop number in the device specified by (s). Page 1256
SP.PIDRUN S(P).PIDRUN
BEChanging the parameters of specified loop number
Instruction symbol Processing details Reference
S.PIDPRMW Changes the operation parameter of the loop number in the device specified by (s1) to the PID Page 1257
SP.PIDPRMW control data stored in the device number specified by (s2) and later. S(P).PIDPRMW

PID control instructions (exact differential)

HRegistering the PID control data to the CPU module

Instruction symbol

Processing details

Reference

PIDINIT

PIDINITP

Stores the PID control data by the number of loops used that is set in the device number specified
by (s) and later altogether in the CPU module to enable PID control.

Page 1261 PIDINIT(P)

HPerforming PID operation

Instruction symbol Processing details Reference

PIDCONT Measures the sampling cycle and performs PID operation. Page 1263

PIDCONTP PIDCONT(P)
EStopping/starting the operation of specified loop number

Instruction symbol Processing details Reference

PIDSTOP Stops the PID operation of the loop number in the device specified by (s). Page 1266

PIDSTOPP PIDSTOP(P)

PIDRUN Starts the PID operation of the loop number in the device specified by (s). Page 1267 PIDRUN(P)

PIDRUNP

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

125

EChanging the parameters of specified loop number

Instruction symbol Processing details Reference
PIDPRMW Changes the operation parameter of the loop number in the device specified by (s1) to the PID Page 1268
PIDPRMWP control data stored in the device number specified by (s2) and later. PIDPRMW(P)

1 26 2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

Process control instructions

For details on the process control instructions, refer to the following.

[T1 MELSEC iQ-R Programming Manual (Process Control Function Blocks/Instructions)
Point

When a process control program is created, using process control function blocks is recommended.
Process control function blocks have features as follows.

» A process control program can be easily created by placing and connecting FB elements.

« Since the initial value of the function block can be set in the "FB Property" window of the engineering tool,
the program for the initial value setting is not required.

» An operation constant can be input to a label indicating a tag name without being conscious of address of a
device.

» The operating status of a tag FB can be checked and controlled by accessing the tag data from the
faceplate of an engineering tool.

For details on the process control function blocks, refer to the following.

[T1 MELSEC iQ-R Programming Manual (Process Control Function Blocks/Instructions)

2 CPU MODULE INSTRUCTIONS 1 2
2.3 Application Instructions 7

Multiple CPU dedicated instructions

Reading device data from another CPU module

Instruction symbol Processing details Reference

D.DDRD Reads the data in the device of another CPU module specified by (n), and stores the data to the Page 1274

DP.DDRD read-source CPU module in a multiple CPU system. D(P).DDRD,
M(P).DDRD

M.DDRD

MP.DDRD

Writing device data to another CPU module

Instruction symbol Processing details Reference

D.DDWR Writes the data specified in the own CPU module to another CPU module specified by (n) in a Page 1277

DP.DDWR multiple CPU system. D(P).DDWR,
M(P).DDWR

M.DDWR

MP.DDWR

Motion CPU dedicated instructions

For available Motion CPU dedicated instructions, refer to the following.
[T1 MELSEC iQ-R Motion Controller Programming Manual (Program Design)

1 28 2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

SFC program

instructions

SFC control instructions

BChecking the status of a step

Instruction symbol

Processing details

Reference

LD [SO/BLO\SO]

Outputs the status (active or inactive) of the specified step as the operation result. (Normally open
contact instruction)

Page 1280 LD, LDI,
AND, ANI, OR, ORI

LDI [SO/BLO\SO] Outputs the status (active or inactive) of the specified step as the operation result. (Normally closed (SO/BLONSOY)
contact instruction)
AND [SO/BLO\SO] Performs an AND operation between the status (active or inactive) of the specified step and the
previous operation result(s), and output the operation result. (Normally open contact series
connection instruction)
ANI [SO/BLO\SO] Performs an AND operation between the status (active or inactive) of the specified step and the
previous operation result(s), and output the operation result. (Normally closed contact series
connection instruction)
OR [SO/BLO\SO] Performs an OR operation between the status (active or inactive) of the specified step and the
previous operation result(s), and output the operation result. (Single normally open contact parallel
connection instruction)
ORI [SO/BLO\SO] Performs an OR operation between the status (active or inactive) of the specified step and the
previous operation result(s), and output the operation result. (Single normally closed contact
parallel connection instruction)
EChecking the status of a block
Instruction symbol Processing details Reference

LD [BLO] Outputs the status (active or inactive) of the specified block as the operation result. (Normally open | Page 1283 LD, LDI,
contact instruction) AND, ANI, OR, ORI
LDI [BLO] Outputs the status (active or inactive) of the specified block as the operation result. (Normally (BLO]
closed contact instruction)
AND [BLO] Performs an AND operation between the status (active or inactive) of the specified block and the
previous operation result(s), and output the operation result. (Normally open contact series
connection instruction)
ANI [BLO] Performs an AND operation between the status (active or inactive) of the specified block and the
previous operation result(s), and output the operation result. (Normally closed contact series
connection instruction)
OR [BLO] Performs an OR operation between the status (active or inactive) of the specified block and the
previous operation result(s), and output the operation result. (Single normally open contact parallel
connection instruction)
ORI [BLO] Performs an OR operation between the status (active or inactive) of the specified block and the
previous operation result(s), and output the operation result. (Single normally closed contact
parallel connection instruction)
EBatch-reading the status of steps
Instruction symbol Processing details Reference

MOV [K4SO/BLO\K4SO] Batch-reads (in units of 16-bit binary data) the status (active or inactive) of steps in the specified Page 1285 MOV(P)
MOVP [K4SO/BLOK4SO] block, and stores the read data in the specified device. [K4SO/BLO\K4SO]
DMOV [K8SO/BLO\K8SO] Batch-reads (in units of 32-bit binary data) the status (active or inactive) of steps in the specified Page 1288 DMOV(P)
DMOVP [K8SOI/BLO\KSSO] block, and stores the read data in the specified device. [K8SO/BLO\K8SO]
BMOV [K4SO/BLO\K4SO] Batch-reads (in units of the specified number of words starting from the specified step) the status Page 1291 BMOV(P)
BMOVP [K4SC/BLOK4SO] (active or inactive) of steps in the specified block. [K4SO/BLO\K4SO]
EStarting a block
Instruction symbol Processing details Reference

SET [BLO]

Activates the specified block, and executes a step sequence starting from an initial step.

Page 1294 SET [BLO]

HEnding a block

Instruction symbol

Processing details

Reference

RST [BLO]

Deactivates the specified block.

Page 1296 RST [BLOJ]

2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

129

EPausing a block

PAUSE [BLO] Temporarily stops the step sequence in the specified block. Page 1298 PAUSE
[BLO]

ERestarting a block

RSTART [BLO] Releases the temporary stop, and restarts the sequence from the step where the sequence was Page 1300 RSTART
stopped in the specified block. [BLO]

BActivating a step

SET [SO/BLO\SO] Activates the specified step. Page 1302 SET [SO/
BLO\SO]

EDeactivating a step

RST [SO/BLO\SO] Deactivates the specified step. Page 1304 RST [SO/
BLO\SO]

BSwitching a target block

BRSET Specifies an SFC control instruction target block No. Page 1306 BRSET

ECreating a dummy transition condition

TRAN A dummy output which satisfies a transition condition Page 1308 TRAN

1 30 2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

Redundant system instructions

System switching

Instruction symbol Processing details Reference
SP.CONTSW Switches the systems (control system and standby system) during END processing of the scan Page 1309
where the instruction is executed. SP.CONTSW

Disabling/enabling system switching

Instruction symbol Processing details Reference

DCONTSW Disables manual system switching. Page 1313

ECONTSW Enables manual system switching. DCONTSW,
ECONTSW

Writing data from the standby system to the control system

Instruction symbol Processing details Reference
CONTWR Writes data from the standby system to the control system in a program executed in both systems. | Page 1315
CONTWRP CONTWR(P)

2 CPU MODULE INSTRUCTIONS 1 1
2.3 Application Instructions 3

Safety system instructions

Reading safety data identify check information

Instruction symbol Processing details Reference

SP.SIDRD Reads the identifier for the safety data identify check file from the specified file. Page 1320 SP.SIDRD

1 32 2 CPU MODULE INSTRUCTIONS
2.3 Application Instructions

MEMO

2 CPU MODULE INSTRUCTIONS 1 33
2.3 Application Instructions

3 MODULE DEDICATED INSTRUCTIONS

For details on the module dedicated instructions, refer to the following.
L1 MELSEC iQ-R Programming Manual (Module Dedicated Instructions)

1 34 3 MODULE DEDICATED INSTRUCTIONS

MEMO

3 MODULE DEDICATED INSTRUCTIONS 1 35

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

How to read the list is shown below.

Item

Description

Function symbol and function block symbol

A function and function block name are shown.

Processing details

An overview of the functions and function blocks is explained.

Reference

Indicates the reference of detailed information.

136

4.1 Standard Functions

Type conversion functions

HEConverting BOOL to WORD/DWORD
Function symbol Processing details Reference
BOOL_TO_WORD Converts a value from BOOL data type to WORD data type. Page 1328

BOOL_TO_WORD_E

BOOL_TO_WORD(_E)

BOOL_TO_DWORD

Converts a value from BOOL data type to DWORD data type.

BOOL_TO_DWORD_E

Page 1330
BOOL_TO_DWORD(_
E)

EConverting BOOL to INT/DINT
Function symbol Processing details Reference
BOOL_TO_INT Converts a value from BOOL data type to INT data type. Page 1331
BOOL _TO_INT_E BOOL_TO_INT(_E)
BOOL_TO_DINT Converts a value from BOOL data type to DINT data type. Page 1332

BOOL_TO_DINT_E

BOOL_TO_DINT(_E)

EConverting BOOL to TIME
Function symbol Processing details Reference
BOOL_TO_TIME Converts a value from BOOL data type to TIME data type. Page 1333

BOOL_TO_TIME_E

BOOL_TO_TIME(_E)

EConverting BOOL to STRING
Function symbol Processing details Reference
BOOL_TO_STRING Converts a value from BOOL data type to STRING data type. Page 1334

BOOL_TO_STRING_E

BOOL_TO_STRING(_
E)

EConverting WORD to BOOL

Function symbol

Processing details

Reference

WORD_TO_BOOL

WORD_TO_BOOL_E

Converts a value from WORD data type to BOOL data type.

Page 1335
WORD_TO_BOOL(_E)

HEConverting WORD to DWORD

Function symbol

Processing details

Reference

WORD_TO_DWORD

WORD_TO_DWORD_E

Converts a value from WORD data type to DWORD data type.

Page 1336
WORD_TO_DWORD(
_E)

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions

HEConverting WORD to INT/DINT

Function symbol

Processing details

Reference

WORD_TO_INT

WORD_TO_INT_E

Converts a value from WORD data type to INT data type.

Page 1337
WORD_TO_INT(_E)

WORD_TO_DINT

WORD_TO_DINT_E

Converts a value from WORD data type to DINT data type.

Page 1338
WORD_TO_DINT(_E)

EConverting WORD to TIME

Function symbol

Processing details

Reference

WORD_TO_TIME

WORD_TO_TIME_E

Converts a value from WORD data type to TIME data type.

Page 1340
WORD_TO_TIME(_E)

EConverting WORD to STRING

Function symbol Processing details Reference

WORD_TO_STRING Converts a value from WORD data type to STRING data type. Page 1341

WORD_TO_STRING_E ‘é\’)ORD—TO—STR'NG(—
EConverting DWORD to BOOL

Function symbol Processing details Reference

DWORD_TO_BOOL Converts a value from DWORD data type to BOOL data type. Page 1342

DWORD_TO_BOOL_E E;’VORD—TO—BOO'-(—
EConverting DWORD to WORD

Function symbol Processing details Reference

DWORD_TO_WORD Converts a value from DWORD data type to WORD data type. Page 1343

DWORD_TO_WORD_E DI‘E’\)’ORD—TO—WORD(
HEConverting DWORD to INT/DINT

Function symbol Processing details Reference

DWORD_TO_INT Converts a value from DWORD data type to INT data type. Page 1345

DWORD_TO_INT_E

DWORD_TO_INT(_E)

DWORD_TO_DINT

DWORD_TO_DINT_E

Converts a value from DWORD data type to DINT data type.

Page 1347
DWORD_TO_DINT(_E
)

EConverting DWORD to TIME

Function symbol

Processing details

Reference

DWORD_TO_TIME

DWORD_TO_TIME_E

Converts a value from DWORD data type to TIME data type.

Page 1348
DWORD_TO_TIME(_E
)

HEConverting DWORD to STRING

Function symbol

Processing details

Reference

DWORD_TO_STRING

DWORD_TO_STRING_E

Converts a value from DWORD data type to STRING data type.

Page 1349
DWORD_TO_STRING

(_E)

EConverting INT to BOOL
Function symbol Processing details Reference
INT_TO_BOOL Converts a value from INT data type to BOOL data type. Page 1350

INT_TO_BOOL_E

INT_TO_BOOL(_E)

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions 1 37

138

HEConverting INT to WORD/DWORD
Function symbol Processing details Reference
INT_TO_WORD Converts a value from INT data type to WORD data type. Page 1351

INT_TO_WORD_E

INT_TO_WORD(_E)

INT_TO_DWORD

Converts a value from INT data type to DWORD data type.

INT_TO_DWORD_E

Page 1352
INT_TO_DWORD(_E)

EConverting INT to DINT
Function symbol Processing details Reference
INT_TO_DINT Converts a value from INT data type to DINT data type. Page 1354
INT_TO_DINT_E INT_TO_DINT(_E)

EConverting INT to

BCD

Function symbol Processing details Reference
INT_TO_BCD Converts a value from INT data type to BCD data type. Page 1355
INT_TO_BCD_E INT_TO_BCD(_E)
HConverting INT to REAL/LREAL
Function symbol Processing details Reference
INT_TO_REAL Converts a value from INT data type to REAL data type. Page 1357
INT_TO_REAL_E INT_TO_REAL(_E)
INT_TO_LREAL Converts a value from INT data type to LREAL data type. Page 1358

INT_TO_LREAL_E

INT_TO_LREAL(_E)

EConverting INT to TIME
Function symbol Processing details Reference
INT_TO_TIME Converts a value from INT data type to TIME data type. Page 1359
INT_TO_TIME_E INT_TO_TIME(_E)
HEConverting INT to STRING
Function symbol Processing details Reference
INT_TO_STRING Converts a value from INT data type to STRING data type. Page 1360

INT_TO_STRING_E

INT_TO_STRING(_E)

EConverting DINT to BOOL

Function symbol

Processing details

Reference

DINT_TO_BOOL

Converts a value from DINT data type to BOOL data type.

DINT_TO_BOOL_E

Page 1362
DINT_TO_BOOL(_E)

EConverting DINT to WORD/DWORD

Function symbol

Processing details

Reference

DINT_TO_WORD

Converts a value from DINT data type to WORD data type.

DINT_TO_WORD_E

Page 1363
DINT_TO_WORD(_E)

DINT_TO_DWORD

Converts a value from DINT data type to DWORD data type.

DINT_TO_DWORD_E

Page 1365
DINT_TO_DWORD(_E

)

EConverting DINT to INT

Function symbol Processing details Reference
DINT_TO_INT Converts a value from DINT data type to INT data type. Page 1366
DINT_TO_INT_E DINT_TO_INTCE)

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions

EConverting DINT to BCD

Function symbol

Processing details

Reference

DINT_TO_BCD

DINT_TO_BCD_E

Converts a value from DINT data type to BCD data type.

Page 1367
DINT_TO_BCD(_E)

EConverting DINT to REAL/LREAL

Function symbol

Processing details

Reference

DINT_TO_REAL

DINT_TO_REAL E

Converts a value from DINT data type to REAL data type.

Page 1369
DINT_TO_REAL(_E)

DINT_TO_LREAL

DINT_TO_LREAL_E

Converts a value from DINT data type to LREAL data type.

Page 1370
DINT_TO_LREAL(_E)

EConverting DINT to TIME

Function symbol

Processing details

Reference

DINT_TO_TIME

DINT_TO_TIME_E

Converts a value from DINT data type to TIME data type.

Page 1371
DINT_TO_TIME(_E)

EConverting DINT to STRING

Function symbol

Processing details

Reference

DINT_TO_STRING

DINT_TO_STRING_E

Converts a value from DINT data type to STRING data type.

Page 1372
DINT_TO_STRING(_E

)

EConverting BCD to INT/DINT

Function symbol Processing details Reference
BCD_TO_INT Converts a value from BCD data type to INT data type. Page 1374
BCD_TO_INT_E BCD_TO_INT(_E)
BCD_TO_DINT Converts a value from BCD data type to DINT data type. Page 1376

BCD_TO_DINT_E

BCD_TO_DINT(_E)

EConverting BCD to STRING

Function symbol

Processing details

Reference

BCD_TO_STRING

BCD_TO_STRING_E

Converts a value from BCD data type to STRING data type.

Page 1379
BCD_TO_STRING(_E)

EConverting REAL to INT/DINT

Function symbol Processing details Reference
REAL_TO_INT Converts a value from REAL data type to INT data type. Page 1381
REAL_TO_INT_E REAL_TO_INT(_E)
REAL_TO_DINT Converts a value from REAL data type to DINT data type. Page 1383

REAL_TO DINT_E

REAL_TO_DINT(_E)

EConverting REAL to LREAL

Function symbol

Processing details

Reference

REAL_TO_LREAL

REAL_TO_LREAL_E

Converts a value from REAL data type to LREAL data type.

Page 1385
REAL_TO_LREAL(_E)

HEConverting REAL to STRING

Function symbol Processing details Reference
REAL_TO_STRING Converts a REAL data type value to STRING data type (exponential form). Page 1387
REAL_TO_STRING E :;EA'-—TO—STR'NG(—

4 STANDARD FUNCTIONS/FUNCTION BLOCKS 1 39

4.1 Standard Functions

EConverting LREAL to INT/DINT

Function symbol

Processing details

Reference

LREAL_TO_INT

LREAL_TO_INT_E

Converts a value from LREAL data type to INT data type.

Page 1390
LREAL_TO_INT(_E)

LREAL_TO_DINT

LREAL_TO DINT_E

Converts a value from LREAL data type to DINT data type.

Page 1392
LREAL_TO_DINT(_E)

EConverting LREAL to REAL

Function symbol

Processing details

Reference

LREAL_TO_REAL

LREAL_TO_REAL_E

Converts a value from LREAL data type to REAL data type.

Page 1394
LREAL_TO_REAL(_E)

EConverting TIME to BOOL

Function symbol

Processing details

Reference

TIME_TO_BOOL

TIME_TO_BOOL_E

Converts a value from TIME data type to BOOL data type.

Page 1396
TIME_TO_BOOL(_E)

EConverting TIME to WORD/DWORD

Function symbol

Processing details

Reference

TIME_TO_WORD

TIME_TO_WORD_E

Converts a value from TIME data type to WORD data type.

Page 1397
TIME_TO_WORD(_E)

TIME_TO_DWORD

TIME_TO_DWORD_E

Converts a value from TIME data type to DWORD data type.

Page 1398
TIME_TO_DWORD(_E
)

EConverting TIME to INT/DINT

Function symbol Processing details Reference
TIME_TO_INT Converts a value from TIME data type to INT data type. Page 1399
TIME_TO_INT_E TIME_TO_INT(_E)
TIME_TO_DINT Converts a value from TIME data type to DINT data type. Page 1400

TIME_TO_DINT_E

TIME_TO_DINT(_E)

EConverting TIME to STRING

Function symbol

Processing details

Reference

TIME_TO_STRING

TIME_TO_STRING_E

Converts a value from TIME data type to STRING data type.

Page 1401
TIME_TO_STRING(_E
)

EConverting STRING to BOOL

Function symbol

Processing details

Reference

STRING_TO_BOOL

STRING_TO_BOOL_E

Converts a value from STRING data type to BOOL data type.

Page 1403
STRING_TO_BOOL(_
E)

EConverting STRING to WORD/DWORD

Function symbol

Processing details

Reference

STRING_TO_WORD

STRING_TO_WORD_E

Converts a value from STRING data type to WORD data type.

Page 1404
STRING_TO_WORD(_
E)

STRING_TO_DWORD

STRING_TO_DWORD_E

Converts a value from STRING data type to DWORD data type.

Page 1405
STRING_TO_DWORD

(E)

140 4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

EConverting STRING to INT/DINT

Function symbol

Processing details

Reference

STRING_TO_INT

STRING_TO_INT_E

Converts a value from STRING data type to INT data type.

Page 1406
STRING_TO_INT(_E)

STRING_TO_DINT

STRING_TO_DINT_E

Converts a value from STRING data type to DINT data type.

Page 1408
STRING_TO_DINT(_E
)

EConverting STRING to BCD

Function symbol

Processing details

Reference

STRING_TO_BCD

STRING_TO_BCD_E

Converts a value from STRING data type to BCD data type.

Page 1410
STRING_TO_BCD(_E)

HConverting STRING to REAL

Function symbol Processing details Reference

STRING_TO_REAL Converts a value from STRING data type to REAL data type. Page 1412

STRING_TO_REAL E E)TR'NG—TO—REA'-(—
HConverting STRING to TIME

Function symbol Processing details Reference

STRING_TO_TIME Converts a value from STRING data type to TIME data type. Page 1415

STRING_TO_TIME_E

STRING_TO_TIME(_E
)

EConverting bit array to INT/DINT

Function symbol

Processing details

Reference

BITARR_TO_INT

BITARR_TO_INT_E

Converts the specified number of bits in a bit array to an INT data type value.

Page 1417
BITARR_TO_INT(_E)

BITARR_TO_DINT

BITARR_TO_DINT_E

Converts the specified number of bits in a bit array to a DINT data type value.

Page 1418
BITARR_TO_DINT(_E)

EConverting INT/DINT to bit array

Function symbol

Processing details

Reference

INT_TO_BITARR

INT_TO_BITARR_E

Outputs the lower n bits of the INT data type value to the bit array.

Page 1419
INT_TO_BITARR(_E)

DINT_TO_BITARR

DINT_TO_BITARR_E

Outputs the lower n bits of the DINT data type value to the bit array.

Page 1420
DINT_TO_BITARR(_E)

ECopying the bit array

Function symbol Processing details Reference
CPY_BITARR Copies the bit array by the specified number of bits. Page 1421
CPY_BITARR_E CPY_BITARR(_E)

HReading/writing/copying the specified bit of the word label

Function symbol

Processing details

Reference

GET_BIT_OF_INT

GET_BIT_OF_INT_E

Reads a value from the specified bit of a word label.

Page 1422
GET_BIT_OF_INT(_E)

SET_BIT_OF_INT

SET BIT_OF INT_E

Writes a value to the specified bit of a word label.

Page 1424
SET_BIT_OF_INT(_E)

CPY_BIT_OF_INT

CPY_BIT_OF_INT_E

Copies the specified bit of the word label to the specified bit of another word label.

Page 1426
CPY_BIT_OF_INT(_E)

4 STANDARD FUNCTIONS/FUNCTION BLOCKS 141

4.1 Standard Functions

EGetting the start data

Function symbol

Processing details

Reference

GET_BOOL_ADDR
GET_INT_ADDR
GET_WORD_ADDR

Outputs the top data of the specified data as the BOOL, INT, or WORD type data.

Page 1428
GET_BOOL_ADDR,
GET_INT_ADDR,
GET_WORD_ADDR

Single variable functions

ECalculating the absolute value

Function symbol

Processing details

Reference

ABS
ABS_E

Outputs the absolute value of an input value.

Page 1429 ABS(_E)

ECalculating the sq

uare root

Function symbol

Processing details

Reference

SQRT

Calculates the square root of an input value.

SQRT_E

Page 1431 SQRT(_E)

HCalculating the natural logarithm

Function symbol

Processing details

Reference

LN

Outputs the natural logarithm (logarithm with base e) of an input value.

LN_E

Page 1432 LN(_E)

ECalculating the co

mmon logarithm

Function symbol

Processing details

Reference

LOG

Outputs the common logarithm (logarithm with base 10) of an input value.

LOG_E

Page 1433 LOG(_E)

HCalculating the exponent

Function symbol

Processing details

Reference

EXP

Outputs the exponent of an input value.

EXP_E

Page 1435 EXP(_E)

HCalculating the sine/cosine/tangent

Function symbol

Processing details

Reference

SIN Outputs the sine of an input value. Page 1436 SIN(_E)
SIN_E

CcOos Outputs the cosine of an input value. Page 1437 COS(_E)
COS_E

TAN Outputs the tangent of an input value. Page 1438 TAN(_E)
TAN_E

HCalculating the arc sine/arc cosine/arc tangent

Function symbol

Processing details

Reference

ASIN Outputs the arc sine (SIN'1) of an input value. Page 1439 ASIN(_E)

ASIN_E

ACOS Outputs the arc cosine (COS™) of an input value. Page 1440 ACOS(_E)
ACOS_E

ATAN Outputs the arc tangent (TAN'1) of an input value. Page 1441 ATAN(_E)
ATAN_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

1 42 4.1 Standard Function

S

HAddition

ADD Outputs the sum of input values ((s1)+(s2)+--+(s28)). Page 1442 ADD(_E)

ADD_E

EMultiplication

MUL Outputs the product of input values ((s1)x(s2)x-+-x(s28)). Page 1445 MUL(_E)

MUL_E

ESubtraction

SuUB Outputs the difference between input values ((s1)-(s2)). Page 1447 SUB(_E)

SUB_E

EDivision

DIV Outputs the quotient of input values ((s1)+(s2)). Page 1450 DIV(_E)

DIV_E

HERemainder

MOD Outputs the remainder of input values ((s1)+(s2)). Page 1452 MOD(_E)
MOD_E

EExponentiation
EXPT Outputs the exponentiation of an input value. Page 1454 EXPT(_E)
EXPT_E

HAssignment (move operation)

MOVE Outputs the assignment value of an input value. Page 1455 MOVE(_E)

MOVE_E

BShifting data to the left/right by n bit(s)

SHL Shifts the input value to the left by (n) bit(s), and outputs the operation result. Page 1457 SHL(_E)
SHL_E
SHR Shifts the input value to the right by (n) bit(s), and outputs the operation result. Page 1459 SHR(_E)
SHR_E

HRotating data to the left/right by n bit(s)

ROL Rotates the input value to the left by (n) bit(s), and outputs the operation result. Page 1461 ROL(_E)
ROL_E
ROR Rotates the input value to the right by (n) bit(s), and outputs the operation result. Page 1463 ROR(_E)
ROR_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions 1 43

BAND operation, OR operation, XOR operation

AND_E

Outputs the logical product of input values.

OR

OR_E

Outputs the logical sum of input values.

XOR

XOR_E

Outputs the exclusive logical sum of input values.

Page 1465 AND(_E),
OR(_E), XOR(_E)

ENOT operation

NOT

NOT_E

Outputs the logical NOT of input values.

Page 1468 NOT(_E)

ESelecting a value

SEL

SEL E

Outputs the selected input value.

Page 1469 SEL(_E)

ESelecting the maximum/minimum value

MAX Outputs the maximum input value.
MAX_E
MIN Outputs the minimum input value.
MIN_E

Page 1471 MAX(_E),
MIN(_E)

EControlling the upper/lower limit

LIMIT

LIMIT_E

Outputs an input value that has been controlled in terms of the upper and lower limits.

Page 1473 LIMIT(_E)

EMultiplexer

MUX

MUX_E

Outputs one of the input values.

Page 1476 MUX(_E)

144 4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Comparison functions

EComparing data

Function symbol

Processing details

Reference

GT

GT E

GE

GE E

EQ

EQE

LE

LE E

LT

LT _E

NE

NE_E

Outputs the comparison result of input values.

Page 1478 GT(_E),
GE(_E), EQ(_E),
LE(_E), LT(_E)

Page 1480 NE(_E)

String functions

HDetecting a string length

Function symbol

Processing details

Reference

LEN

LEN_E

Detects and outputs the length of the string input.

Page 1482 LEN(_E)

BMExtracting string data from the left/right

Function symbol Processing details Reference
LEFT Extracts and outputs the specified number of characters, starting from the left end of the string Page 1484 LEFT(_E),
LEFT E input. RIGHT(_E)
RIGHT Extracts and outputs the specified number of characters, starting from the right end of the string
RIGHT E input.
BExtracting string data
Function symbol Processing details Reference

MID

MID_E

Extracts and outputs the specified number of characters, starting from the specified position of the
string input.

Page 1486 MID(_E)

EConcatenating string data

Function symbol Processing details Reference

CONCAT Concatenates character strings, and outputs the operation result. Page 1488

CONCAT E CONCAT(_E)
Hinserting string data

Function symbol Processing details Reference

INSERT Inserts a character string into another string, and outputs the operation result. Page 1490

INSERT_E INSERT(_E)
HDeleting string data

Function symbol Processing details Reference

DELETE Deletes the specified range in a character string, and outputs the operation result. Page 1492

DELETE_E DELETE(_E)

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions

145

HReplacing string data

REPLACE Replaces the specified range in a character string, and outputs the operation result. Page 1494

REPLACE_E REPLACE(_E)

BSearching string data

FIND Searches a character string, and outputs the operation result. Page 1497 FIND(_E)
FIND_E
EAddition
ADD_TIME Outputs the sum ((s1)+(s2)) of the TIME data type input values. Page 1499
ADD_TIME_E ADD_TIME(_E)
BSubtraction
SUB_TIME Outputs the difference ((s1)-(s2)) between the TIME data type input values. Page 1501
SUB_TIME_E SUB_TIME(_E)
EMultiplication
MUL_TIME Outputs the product ((s1)x(s2)) of the TIME data type input values. Page 1503
MUL_TIME_E MUL_TIME(_E)
EDivision
DIV_TIME Outputs the quotient ((s1)+(s2))of the TIME data type input values. Page 1505
DIV_TIME_E DIV_TIME(_E)

146 4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions

4.2 Standard Function Blocks

Bistable function blocks

EBistable function block (set-dominant)

Function block symbol

Processing details

Reference

SR

SR _E

Discriminates between two input values, and outputs1 (TRUE) or 0 (FALSE).

Page 1508 SR(_E)

EBistable function block (reset-dominant)

Function block symbol

Processing details

Reference

RS

RS E

Discriminates between two input values, and outputs1 (TRUE) or 0 (FALSE).

Page 1510 RS(_E)

Edge detection function blocks

EDetecting a rising edge

Function block symbol Processing details Reference
R_TRIG Detects a signal rising edge, and outputs the pulse signal. Page 1512
R_TRIG_E R_TRIG(_E)
HDetecting a falling edge
Function block symbol Processing details Reference
F_TRIG Detects a signal falling edge, and outputs the pulse signal. Page 1514
F_TRIG_E F_TRIG(E)
Counter function blocks
HEUp counter
Function block symbol Processing details Reference

CTU

CTU E

Counts up the number of rising edges of a signal.

Page 1516 CTU(_E)

HEDown counter

Function block symbol

Processing details

Reference

CTD

CTD_E

Counts down the number of rising edges of a signal.

Page 1518 CTD(_E)

EUp/down counter

Function block symbol

Processing details

Reference

CTUD

CTUD_E

Counts up or down the number of rising edges of a signal.

Page 1520 CTUD(_E)

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.2 Standard Function Blocks 1 47

HECounter function block

COUNTER_FB_M Starts counting up when the execution condition is satisfied. Page 1523

COUNTER_FB_M

HEPulse timer

TP Keeps the signal on for the specified period of time. Page 1525 TP(_E)

TP E

HOnN delay timer

TON Turns on a signal after the specified period of time. Page 1528 TON(_E)
TON_E

HOff delay timer
TOF Turns off a signal after the specified period of time. Page 1531 TOF(_E)
TOF_E

HETimer function block

TIMER_10_FB_M Starts counting a timer when the execution condition is satisfied, and continues counting until the Page 1533
TIMER_100_FB_M timer reaches the set value. TIMER_O_M

TIMER_HIGH_FB_M
TIMER_LOW_FB_M
TIMER_CONT_FB_M
TIMER_CONTHFB_M

148 4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.2 Standard Function Blocks

PART 3 SEQUENCE
INSTRUCTIONS

This part consists of the following chapters.

5 SEQUENCE INSTRUCTIONS

PART 3

149

5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions

Operation start, series connection, parallel connection

LD, LDI, AND, ANI, OR, ORI

* LD: Normally open contact operation start, LDI: Normally closed contact operation start

These instructions output the on/off information of the specified device as the operation result.

* AND: Normally open contact series connection, ANI: Normally closed contact series connection

These instructions perform an AND operation between the on/off information of the specified device and the previous
operation result, and output the operation result.

* OR: Single normally open contact parallel connection, ORI: Single normally closed contact parallel connection

These instructions perform an OR operation between the on/off information of the specified device and the previous operation
result, and output the operation result.

Ladder ST

- Not supported

s
LD }Ji
Mo |

e
AND | | i_}L
e |
ANI £ I_/I/'_.

OR !_5)
ORI o)

FBD/LD

Not supported

HEExecution condition

Instruction Execution condition

LD Every scan
LDI
AND
ANI
OR
ORI

150 5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s) Device used as a contact — Bit ANY_BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |JO\O | T,ST,C,D, W, SD, | UDNGO,JO\O, | Z | LT,LST, | Lz | Specification [\« 'y g [¢ | (DX)
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EC\(H)GO LC

(s) o o o o —lo —lo — |=]-]o

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand | Bit Word Constant
SA\X, SAY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H
(s) O O —

Processing details
ELD, LDI

» LD is a normally open contact operation start instruction and LDl is a normally closed contact operation start instruction.
These instructions read the on/off information ™! of the specified bit device, and output it as the operation result.
*1 When a bit of a word device is specified, the instruction outputs on or off according to the status (1 or 0) of the specified bit.

BMAND, ANI

+ AND is a normally open contact series connection instruction and ANl is a normally closed contact series connection
instruction. These instructions read the on/off information™! of the specified bit device, perform an AND operation with the
previous operation result, and output the operation result.

*1 When a bit of a word device is specified, the instruction outputs on or off according to the status (1 or 0) of the specified bit.

* Note the following when creating or displaying a program using the engineering tool (in ladder edit mode).

« Write mode: When the AND and ANI instructions are connected in series, a ladder with up to 24 steps can be created.

* Read mode: When the AND and ANl instructions are connected in series, a ladder with up to 24 steps can be displayed. If there are more than 24 steps, up
to 24 steps are displayed.

HOR, ORI

* OR is a single normally open contact parallel connection instruction and ORI is a single normally open contact parallel
connection instruction. These instructions read the on/off information”" of the specified bit device, perform an OR operation
with the previous operation result, and output the operation result.

*1 When a bit of a word device is specified, the instruction outputs on or off according to the status (1 or 0) of the specified bit.

* Note the following when creating or displaying a program using the engineering tool (in ladder edit mode).

« Write mode: Up to 23 OR and ORI instructions can be connected consecutively.

» Read mode: Up to 23 OR and ORI instructions connected consecutively can be displayed. A ladder with more than 23 instructions cannot be displayed
correctly.

HMOperation using LD, LDI, AND, ANI, OR, and ORI combined

An example of operation using LD, AND, and OR combined is shown below. The same operation is performed by using LDI,
ANI, and ORI instead.

5 SEQUENCE INSTRUCTIONS 1 1
5.1 Contact Instructions 5

Point/®

« Specify a bit in a word device in hexadecimal. (For example, specify "D0.0B" for b11 in DO.)

Operation.error

There is no operation error.

152 5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

Pulse operation start, pulse series connection, pulse parallel
connection

LDP, LDF, ANDP, ANDF, ORP, ORF

RnPCPU | RnPCPU JRnPSFCPURRnPSFCPUJf RnSFCPU lf RnSFCPU
RnCPUQRnENCPU (Redundant) l(Standard)l (Safety) M(Standard)R (Safety)

» LDP: Rising edge pulse operation start

This instruction turns on only at the rising edge (off to on) of the specified bit device.

» LDF: Falling edge pulse operation start

This instruction turns on only at the falling edge (on to off) of the specified bit device.

* ANDP: Rising edge pulse series connection, ANDF: Falling edge pulse series connection
These instructions perform an AND operation with the previous operation result.

* ORP: Rising edge pulse parallel connection, ORF: Falling edge pulse parallel connection
These instructions perform an OR operation with the previous operation result.

Ladder ST
—— ENO:=LDP(EN,s);
AN ENO:=LDF(EN,s);
LDP A ENO:=ANDP(EN,s);
OR ENO:=ANDF(EN.s);
LDF ! ENO:=ORP(EN,s);
v ENO:=ORF(EN,s);
M
ANDP |—|

ANDF ——| A

ORP !_ (s)
ORF M)

FBD/LD

Co—1

HExecution condition

Instruction Execution condition

LDP Every scan
LDF
ANDP
ANDF
ORP
ORF

5 SEQUENCE INSTRUCTIONS 1
5.1 Contact Instructions 53

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) Device used as a contact — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |JO\O | T,ST,C,D, W, SD, | um\GO,JO\D, | Z | LT,LsT, | Lz | specification ['y T g T | (DX)
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC

(s) O O O O — O — | O — —|—| O

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand | Bit Word Constant
SA\X, SAYY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H
(s) O O _

Processing details
ELDP, LDF

« LDP is a rising edge pulse operation start instruction, and turns on only at the rising edge (off to on) of the specified bit
device. When a bit-specified word device is used, this instruction turns on only when the specified bit changes from 0 to 1.
In cases where there is an LDP instruction only, it acts identically to instructions for conversion to pulses that are executed
during on (OP).

The following figure shows an example when a ladder using the LDP instruction is replaced with a ladder not using the LDP

instruction.

X0 X0
t——{ mov [Ko DO }—{I:> F—{mMovp] ko | Do)—{

MO
it O I —> }—<X

LDF is a falling edge pulse operation start instruction and turns on only at the falling edge (on to off) of the specified bit

device. When a bit-specified word device is used, this instruction turns on only when the specified bit changes from 1 to 0.

« If the LDP instruction is used in the program written in ST language or FBD/LD, ENO turns on at the rising edge (off to on)
of the specified bit device (s).

« If the LDF instruction is used in the program written in ST language or FBD/LD, ENO turns on at the falling edge (on to off)

of the specified bit device (s).

« If the LDP or LDF instruction is used in the program written in ST language, set EN to be always on.
* If the LDP or LDF instruction is used in the program written in FBD/LD, use a left rail or a variable/constant which is always
on for EN.

154 5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

BANDP, ANDF

« ANDP is a rising edge pulse series connection instruction and ANDF is a falling edge pulse series connection instruction.
These instructions perform an AND operation with the previous operation result, and output the operation result. The
following table lists the on/off information used by the ANDP and ANDF instructions.

Device specified by ANDP or ANDF ANDP status ANDF status
Bit device Bit-specified word device

Off>0n 01 On Off

Off 0 Off Off

On 1 Off Off

On—Off 1-0 Off On

« If the ANDP instruction is used in the program written in ST or FBD/LD language, ENO turns on when the result of AND
operation between EN and the rising edge of the specified bit device (s) is on. EN will not be an execution condition.

+ If the ANDF instruction is used in the program written in ST or FBD/LD language, ENO turns on when the result of AND
operation between EN and the falling edge of the specified bit device (s) is on. EN will not be an execution condition.

HORP, ORF

* ORP is a rising edge pulse parallel connection instruction and ORF is a falling edge pulse parallel connection instruction.
These instructions perform an OR operation with the previous operation result, and output the operation result. The
following table lists the on/off information used by the ORP and ORF instructions.

Device specified by ORP or ORF ORP status ORF status
Bit device Bit-specified word device

Off>On 01 On Off

Off 0 Off Off

On 1 Off Off

On—Off 1-0 Off On

« If the ORP instruction is used in the program written in ST or FBD/LD language, ENO turns when the result of OR operation
between EN and the rising edge of the specified bit device (s) is on. EN will not be an execution condition.

* If the ORF instruction is used in the program written in ST or FBD/LD language, ENO turns when the result of OR operation
between EN and the falling edge of the specified bit device (s) is on. EN will not be an execution condition.

HMOperation using LDP, LDF, ANDP, ANDF, ORP, and ORF combined
An example of operation using LDP, LDF, ANDP, ANDF, ORP, and ORF combined is same as that using LD, AND, and OR.
(==~ Page 150 LD, LDI, AND, ANI, OR, ORI)

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 1
5.1 Contact Instructions 55

Pulse NOT operation start, pulse NOT series connection, pulse
NOT parallel connection

LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI

« LDPI: Rising edge pulse NOT operation start

This instruction turns on when the specified device is off, on, or at the falling edge (on to off).

» LDFI: Falling edge pulse NOT operation start

This instruction turns on when the specified bit device is at the rising edge (off to on), off, or on.

» ANDPI: Rising edge pulse NOT series connection, ANDFI: Falling edge pulse NOT series connection
These instructions perform an AND operation with the previous operation result.

* ORPI: Rising edge pulse NOT parallel connection, ORFI: Falling edge pulse NOT parallel connection
These instructions perform an OR operation with the previous operation result.

Ladder ST

ENO:=LDPI(EN,s);

e
LDPI A'j(;u— ENO:=LDFI(EN,s);
-—— ENO:=ANDPI(EN,s);

T ENO:=ANDFI(ENs);
- | ENO:=ORPI(EN,s):
v ENO:=ORFI(EN,s);
O |
ANDPI | | i_}?‘.’_‘
M) |
ANDFI [——} A3
|
1
ORPI | (5
D
1
ORFI | (51
[|
L
FBD/LD
C.—/ 1
— EN ENO [—

-1 s

HEExecution condition

Instruction Execution condition

LDPI Every scan
LDFI
ANDPI
ANDFI
ORPI
ORFI

156 5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) Device used as a contact — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |JO\O | T,ST,C,D,W,SD, | UD\GO,JONO, | Z | LT,LST, | Lz | Specification [« 'y T e T | (DX)
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC

(s) O O O O — O — | O — —|—| O

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand | Bit Word Constant
SA\X, SAYY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H

(s) o

(@)

Processing details
ELDPI, LDFI

» LDFl is a rising edge pulse NOT operation start instruction, and turns on when the specified device is off, on, or at the falling

edge (on to off). When a bit-specified word device is used, this instruction turns on when the specified bit is 0 or 1 or when

the bit changes from 1 to 0.

« LDFl is a falling edge pulse NOT operation start instruction, and turns on when the specified bit device is at the rising edge

(off to on), off, or on. When a bit-specified word device is used, this instruction turns on when the specified bit is 0 or 1 or
when the bit changes from 0 to 1. The following table lists the on/off information used by the LDPI and LDFI instructions.

Device specified by LDPI or LDFI LDPI status LDFI status
Bit device Bit-specified word device

Off>0On 01 Off On

Off 0 On On

On 1 On On

On—Off 1-0 On Off

« If the LDPI instruction is used in the program written in ST language or FBD/LD, ENO turns on at the timing except the
rising edge (off to on) of the specified bit device (s).

« If the LDFI instruction is used in the program written in ST language or FBD/LD, ENO turns on at the timing except the
falling edge (on to off) of the specified bit device (s).

« If the LDPI or LDFI instruction is used in the program written in ST language, set EN to be always on.

« Ifthe LDPI or LDFl instruction is used in the program written in FBD/LD, use a left rail or a variable/constant which is always
on for EN.

5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

157

EANDPI, ANDFI

« ANDPI is a rising edge pulse NOT series connection instruction and ANDFlI is a falling edge pulse NOT series connection
instruction. These instructions perform an AND operation with the previous operation result, and output the operation result.
The following table lists the on/off information used by the ANDPI and ANDFI instructions.

Device specified by ANDPI or ANDFI ANDPI status ANDFI status
Bit device Bit-specified word device

Off>0n 01 Off On

Off 0 On On

On 1 On On

On—Off 1-0 On Off

« If the ANDPI instruction is used in the program written in ST or FBD/LD language, ENO turns on when the result of AND
operation between EN and the rising edge of the specified bit device (s) is not on. EN will not be an execution condition.
« If the ANDFI instruction is used in the program written in ST or FBD/LD language, ENO turns on when the result of AND
operation between EN and the falling edge of the specified bit device (s) is not on. EN will not be an execution condition.

HORPI, ORFI

* ORPI is a rising edge pulse NOT parallel connection instruction and ORFl is a falling edge pulse NOT parallel connection
instruction. These instructions perform an OR operation with the previous operation result, and output the operation result.
The following table lists the on/off information used by the ORPI and ORFI instructions.

Device specified by ORPI or ORFI ORPI status ORFI status
Bit device Bit-specified word device

Off>On 01 Off On

Off 0 On On

On 1 On On

On—Off 1-0 On Off

« If the ORPI instruction is used in the program written in ST or FBD/LD language, ENO turns when the result of OR
operation between EN and the rising edge of the specified bit device (s) is not on. EN will not be an execution condition.

« If the ORFI instruction is used in the program written in ST or FBD/LD language, ENO turns when the result of OR
operation between EN and the falling edge of the specified bit device (s) is not on. EN will not be an execution condition.

EOperation using LDPI, LDFI, ANDPI, ANDFI, ORPI, and ORFI combined
An example of operation using LDPI, LDFI, ANDPI, ANDFI, ORPI, and ORFI combined is same as that using LD, AND, and
OR. (=== Page 150 LD, LDI, AND, ANI, OR, ORI)

Operation.error

There is no operation error.

158 5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

5.2 Association Instructions

Ladder block series/parallel connection

ANB, ORB

RnPCPU § RnPCPU JRPSFCPURRnPSFCPUR RnSFCPURNSFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

* ANB: Ladder block series connection

This instruction performs an AND operation between block A and block B.
* ORB: Ladder block parallel connection
This instruction performs an OR operation between block A and block B.

Ladder ST

A B Not supported

ANB

ORB

A: A block
B: B block

FBD/LD

Not supported

HEExecution condition

Instruction Execution condition
ANB Every scan
ORB

Processing details
EANB

« This instruction performs an AND operation between block A and block B, and outputs the operation result.
» The symbol of the ANB instruction is not a contact but a connection.

HORB

« This instruction performs an OR operation between block A and block B, and outputs the operation result.

+ Ladder blocks, each having two or more contacts, are connected in parallel. Use the OR or ORI instruction for connection
of blocks, each having only one contact. The ORB instruction is not required in this case.

» The symbol of the ORB instruction is not a contact but a connection.

Operation. error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 1
5.2 Association Instructions 59

Storing/reading/clearing the operation resulit

MPS, MRD, MPP

* MPS: Storing the operation result

This instruction stores the operation result (on/off) immediately before the MPS instruction.
* MRD: Reading the operation result

This instruction reads the operation result stored by using the MPS instruction.

* MPP: Clearing the operation result

This instruction clears the operation result stored by using the MPS instruction.

Ladder ST
ENO:=MPS(EN);

MPS ENO:=MRD(EN);
ENO:=MPP(EN);

MRD

MPP

(In the ladder display, these instructions are hidden.)

FBD/LD

Co—1

— EN ENO —

HExecution condition

Instruction Execution condition
MPS Every scan

MRD

MPP

Processing. details
EMPS

« This instruction stores the operation result (on/off) immediately before the MPS instruction.
» Up to 16 MPS instructions can be used consecutively. If the MPP instruction is used in the middle of the program, the
number of MPS instructions used is decremented by one.

EMRD
« This instruction reads the operation result stored by using the MPS instruction, and performs operations from the next step
based on the operation result.

EMPP

« This instruction reads the operation result stored by using the MPS instruction, and performs operations from the next step
based on the operation result.

* This instruction clears the operation result stored by using the MPS instruction.

« This instruction decrements the number of MPS instructions used in the program by one.

1 60 5 SEQUENCE INSTRUCTIONS
5.2 Association Instructions

Operation.error

There is no operation error.

Pointp

 The following are the ladder program examples.
[Ladder program using the MPS, MRD, and MPP instructions]

X0 X1 X2 Y10
| M)

| N\

X3 X4 Y11

X5 Y12

| M

| |\

[Ladder program not using the MPS, MRD, or MPP instruction]

X0 X1 X2 Y10

| M)
[)

X0 X1 X3 X4 Y11
H H HH —0—
X0 X1 X5 Y12

| M)
| N\

» Use the same number of MPS instructions as that of MPP instructions. If the numbers of MPS and MPP
instructions are different, the ladder is not displayed correctly on the engineering tool (ladder mode).

5 SEQUENCE INSTRUCTIONS 1 1
5.2 Association Instructions 6

Inverting the operation result

INV

RnPCPU | RnPCPU JRnPSFCPURnPSFCPUJf RnSFCPU lf RnSFCPU
RnCPURRnENCPU (Redundant) l(Standard)l (Safety) M(Standard)R (Safety)

This instruction inverts the operation result up to just before the INV instruction.

Ladder ST

| —_—— ENO:=INV(EN);
| : |

T

FBD/LD
C.—1

— EN ENO |—

HEExecution condition

Instruction Execution condition

INV Every scan

Processing details

* This instruction inverts the operation result up to just before the INV instruction.

Operation result up to just before the INV instruction

Operation result after execution of the INV instruction

Off

On

On

Off

Operation.error

There is no operation error.

Point}3

» The INV instruction operates based on the results of calculation made until the INV instruction is given.
Accordingly, use it in the same position as that of the AND (=~ Page 150 Operation start, series
connection, parallel connection). The INV instruction cannot be used at the LD and OR (==~ Page 150

Operation start, series connection, parallel connection) positions.
» When a ladder block is used, the operation result is inverted within the range of the ladder block. When the
INV instruction and the ANB instruction are used together in the same ladder, pay attention to the inversion

range.

................

Broken line part: Inversion range

Y10 |
O

For details on the ANB instruction, refer to the following.

(=5~ Page 159 ANB, ORB

1 62 5 SEQUENCE INSTRUCTIONS
5.2 Association Instructions

Converting the operation result into a pulse

MEP, MEF

RnPCPU | RnPCPU JRnPSFCPURnPSFCPUJf RnSFCPU lf RnSFCPU
RnCPURRnENCPU (Redundant) l(Standard)l (Safety) M(Standard)R (Safety)

* MEP: Converting the operation result into a pulse (rising edge)

This instruction turns on at the rising edge (off to on) of the operation result up to the MEP instruction.
* MEP: Converting the operation result into a pulse (falling edge)
This instruction turns on at the falling edge (on to off) of the operation result up to the MEF instruction.

Ladder ST
[ENO:=MEP(EN);

mep | |_'$I ENO:=MEF(EN);

wer ||]

FBD/LD

Co—1

— EN ENO —

HExecution condition

Instruction Execution condition
MEP Every scan
MEF

Processing details
EMEP

* This instruction turns on (continuity state) at the rising edge (off to on) of the operation result up to the MEP instruction. The
instruction turns off (non-continuity state) when the operation result is in another state (not rising edge).
» Use of the MEP instruction eases pulse conversion processing when multiple contacts are connected in series.

EMEF

* This instruction turns on (continuity state) at the falling edge (on to off) of the operation result up to the MEF instruction. The
instruction turns off (non-continuity state) when the operation result is in another state (not falling edge).
» Use of the MEF instruction eases pulse conversion processing when multiple contacts are connected in series.

Operation.error

There is no operation error.

Pointp

» The MEP or MEF instruction may not operate correctly if pulse conversion is performed for an index-
modified contact in the subroutine program or in the area between the FOR and NEXT instructions. To
perform pulse conversion for an index-modified contact in the subroutine program or in the area between
the FOR and NEXT instructions, refer to the following.

(=" Page 164 EGP, EGF

» The MEP or MEF instruction operates based on the result of operation performed from the LD instruction
immediately before the MEP or MEF instruction until the MEP or MEF instruction is given. Therefore, use
them at the same position as that of the AND (==~ Page 150 Operation start, series connection, parallel
connection). The MEP or MEF instruction cannot be used at the LD and OR (=5~ Page 150 Operation start,
series connection, parallel connection) positions.

5 SEQUENCE INSTRUCTIONS 1
5.2 Association Instructions 63

Converting the edge relay operation result into a pulse

EGP, EGF

» EGP: Converting the edge relay operation result into a pulse (rising edge)
This instruction stores the operation result up to the EGP instruction in the edge relay (V). The instruction turns on at the rising

edge (off to on) of the operation result.

» EGF: Converting the edge relay operation result into a pulse (falling edge)
This instruction stores the operation result up to the EGF instruction in the edge relay (V). The instruction turns on at the

falling edge (on to off) of the operation result.

Ladder ST
@] Nocor (e

EGP —| | = ' o
G |

EGF —] ,

FBD/LD

C.—/ 1
— EN ENO |—

d +—

HEExecution condition

Instruction Execution condition
EGP _I—
EGF —L

Setting data

EDescription, range, data type

Operand | Description Range Data type Data type (label)
(d) Edge relay number for storing operation result — Bit ANY_BOOL"
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
*1 Only bit type labels assigned to the device (V) can be used.
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |JO\O | T,ST,C,D,W,SD, | UD\GO,JO\O, | Z | LT,LsT, | Lz | specification [« \y T Tg | (V)
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC
(d) — — — — —|— — |- —|—]0

164

5 SEQUENCE INSTRUCTIONS
5.2 Association Instructions

Processing details
HEGP

« This instruction stores the operation result up to the EGP instruction in the edge relay (V).

» The instruction turns on (continuity state) at the rising edge (off to on) of the operation result up to the EGP instruction. The
instruction turns off (non-continuity state) when the operation result is in another state (staying on, falling edge (on to off), or
staying off).

» The instruction is used to perform pulse conversion for index-modified programs in the subroutine program or in the area
between the FOR and NEXT instructions.

» The instruction can be used in the same way as the AND instruction.

» The following figure shows the operation performed when the instruction is used in the subroutine program.

SM400 END @ O o 0 o e o e o e
[L

0 on L Dol o L

cAlL] PO R xo oFf f T TUUITNOFF - e

1 il il 1 ' ' 1 1 i i

1 OFF e L [L

[2) i ! : :) T T T T

CALL| PO_] :Q\N : I el 'ON | Lo

VO OFF fx T I . .

1 1 1 1 N) I 1 h 0

FEND L) ! iON L . L

PO | X0Z0 V0zO V1 OFF ' ' ' f ' ' 0 0 0 0

A bozo — L o Co

' ' ' ! ' ' ! ' ' '

DO X1 ' ! j j X2 ' '

RET [T — [T

[eno D1 ' ' 1 0

(1) The device turns on at the rising edge of X0.
(2) The device turns off at the falling edge of X0.
(3) The device turns on at the rising edge of X1.

BEGF

« This instruction stores the operation result up to the EGF instruction in the edge relay (V).

» The instruction turns on (continuity state) at the falling edge (on to off) of the operation result up to the EGF instruction. The
instruction turns off (non-continuity state) when the operation result is in another state (staying on, rising edge (off to on), or
staying off).

» The instruction is used to perform pulse conversion for index-modified programs in the subroutine program or in the area
between the FOR and NEXT instructions.

» The instruction can be used in the same way as the AND instruction.

Operation.error

There is no operation error.

Point ;>

» The EGP or EGF instruction operates based on the result of operation performed from the LD instruction
immediately before the EGP or EGF instruction until the EGP or EGF instruction is given. Therefore, use
them at the same position as that of the AND (==~ Page 150 Operation start, series connection, parallel
connection). The EGP or EGF instruction cannot be used at the LD and OR (=5~ Page 150 Operation start,
series connection, parallel connection) positions.

» The instructions cannot be used at the ladder block position shown below.

X0

-

5 SEQUENCE INSTRUCTIONS 1
5.2 Association Instructions 65

5.3 Output Instructions

Out (excluding the timer, counter, and annunciator)

ouT

RnPCPU § RnPCPU JRPSFCPURRnPSFCPUR RnSFCPURNSFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

This instruction outputs the operation result to the specified device.

Ladder ST
ENO:=OUT(EN,d);
—=< () >—{
FBD/LD
C.—1
— EN ENO (—

d —

HEExecution condition

Instruction Execution condition

ouT Every scan

Setting data

EDescription, range, data type

Operand | Description Range Data type Data type (label)
(d) On/off target device number — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |JO\O | T,ST,C,D,W,SD, | UDNGO,JON\O, | Z | LT,LST, | Lz | Specification |\« 'y e [¢ | (DY)
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC

(d) on e 0" ¢ —| = — |0 — —|—]0

*1 When F is used, refer to the following.
==~ Page 178 OUT F
*2 When T or ST is used, refer to the following.
=" Page 168 OUT T, OUTH T, OUT ST, OUTH ST
When C is used, refer to the following.
[Page 174 OUT C

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand | Bit Word Constant
SA\X, SAlY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H
(d) o o —

*3 When SA\T and SA\ST is used, refer to the following.
==~ Page 168 OUT T, OUTH T, OUT ST, OUTH ST
When SA\C is used, refer to the following.
==~ Page 174 OUT C

1 66 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Processing details

* This instruction outputs the operation result up to the OUT instruction to the specified device.

Condition Operation result Coil/Specified bit
When a bit device is used Off Off

On On
When a bit-specified word device is used Off 0

On 1

» When indirect specification is used, specify the bit as shown below.

(1) The operation result is output to bit 0 of the indirect address stored in DO.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 1
5.3 Output Instructions 67

Timer

OUT T, OUTH T, OUT ST, OUTH ST

RnPCPU |l RnPCPU RnPSFCPURRnPSFCPURRnSFCPU lf RnSFCPU
RnCPUJRnENCPU (Standard)}l (Safety) (Safety)
* [Process CPU (redundant mode) and SIL2 Process CPU] If these instructions are used in a program executed in both systems, there are restrictions on their
operation when the systems are switched. (L1 MELSEC iQ-R CPU Module User's Manual (Application))

Point/©

When the safety timer is used in safety programs executed by the SIL2 Process CPU and the Safety CPU,
unless otherwise specified, replace some words as follows:

* "Timer" — "Safety timer"

« "Retentive timer" — "Safety retentive timer"

« "T" > "SA\T", "ST" — "SA\ST", "M0" — "SA\MO0"

» "Scan" — "Safety cycle processing"

 "Scan time" — "Safety cycle time"

* OUT T: Low-speed timer instruction

* OUTH T: High-speed timer instruction

» OUT ST: Low-speed retentive timer instruction

* OUTH ST: High-speed retentive timer instruction

These instructions start time measurement when the operation result up to the OUT instruction is on. When time is up, the

normally open contact turns on (continuity state) and the normally closed contact turns off (non-continuity state).
Ladder ST

ENO:=OUT_T(EN,Coil,Value);

| C—] | d | Value }{ ENO:=OUTH(EN,Coil,Value);

Value: Set value

FBD/LD

C— 1
— EN ENO —
— Caoll

—1 Value

Value: Set value
(O is to be replaced by either of the following: OUT_T, OUTH.)

HEExecution condition

Instruction Execution condition
OuTT Every scan

OQUTHT

OUT ST

OUTH ST

1 68 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(d) Timer device or timer type label — Bit ANY_BOOL

Coil

Value Value set for the timer 0to 32767 16-bit unsigned binary”! | ANY16"

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 If the program is written in ST language or FBD/LD, the data type will be ANY_INT.
* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types

described in the table can be used.

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |JO\O | T,ST,C,D, W, SD, | UDNGO,JO\O, | Z | LT,LST, | Lz | Specification ['y e [¢ | (DY)
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC

@ - - |o" - —|- — |- - [=|=]=

Caoil

Value — — o (@) —|— i o8 |—|—|—

*1 Only T and ST can be used.

*2 T, ST, and C cannot be used.

*3 Only K (decimal constant) can be used.

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand | Bit Word Constant
SA\X, SAYY, SA\M, SA\SM, SA\B SAI\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H
(d) - o™ —
Coil
Value — o' o

*4 Only SA\T and SA\ST can be used.
*5 SA\T, SA\ST, and SA\C cannot be used.
*6 Only K (decimal constant) can be used.

Processing details

» These instructions start time measurement, triggered by the coil specified by (d) (in SD language or FBD/LD, displayed as
Coil), when the operation result up to the OUT instruction is on. When time is up (current value > set value), the normally
open contact turns on (continuity state) and the normally closed contact turns off (non-continuity state).

» When the operation result up to the OUT instruction turns off, the contact responds as shown below.

Type Timer coil Current value | Before time is up After time is up
Normally open Normally closed | Normally open Normally closed
contact contact contact contact
Low-speed timer Off 0 Non-continuity Continuity Non-continuity Continuity
High-speed timer
Low-speed retentive timer | Off Current value Non-continuity Continuity Continuity Non-continuity
High-speed retentive timer retained

« To clear the current value of the retentive timer and turn off the contact after time is up, use the RST instruction.

* When the timer set value is 0, the time will be up at execution of the OUT instruction.

» The following operations are performed at execution of the OUT instruction.
* The coil used as a trigger of the OUT T, OUTH T, OUT ST, or OUTH ST instruction turns on or off.
» The contact used as a trigger of the OUT T, OUTH T, OUT ST, or OUTH ST instruction turns on or off.
* The current value of the OUT T, OUTH T, OUT ST, or OUTH ST instruction is changed.

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

169

« If the OUT T instruction is skipped by using such as the JMP instruction while the OUT T, OUTH T, OUT ST, or OUTH ST
instruction is on, the current value is not updated or the contact is not turned on or off.

* If the same OUT T, OUTH T, OUT ST, or OUTH ST instruction is executed two times or more in a single scan, the current
value is updated by the number of times the instruction is executed.

Point}s3

* The timer limit value is set in parameter using the engineering tool.

Low-speed timer/low-speed retentive timer: 1 to 1000ms (in increments of 1ms) (Default: 100ms)
High-speed timer/high-speed retentive timer: 0.01 to 100.0ms (in increments of 0.01ms) (Default: 10.0ms)
« For the counting method, refer to the following.

L1 MELSEC iQ-R CPU Module User's Manual (Application)

Precautions

To create a program in which the operation of a timer contact triggers the operation of another timer, program the timers in
order from the one that operates last.

In the following cases, if a program is created in order of timer measurements, all timers turn on in the same scan.

* The set value is smaller than the scan time.

* The set value is 1.

[Ex]

When timers TO to T2 are programmed in order from the one that measures last
(1) Timer T2 starts measurement from the next scan after the contact of timer

T T1 turns on.
_{ ™ (2) Timer T1 starts measurement from the next scan after the contact of timer
TO turns on.

(3) Timer TO starts measurement when X0 turns on.

TO
- @

o

[Ex]

When timers TO to T2 are programmed in order of measurement
(1) Timer TO starts measurement when X0 turns on.
(2) When the contact of timer TO turns on, the contacts of timers T1 and T2

Q) also turn on.

(2)

Operation.error

There is no operation error.

1 70 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Long timer

OUT LT, OUT LST

A A
* [Process CPU (redundant mode) and SIL2 Process CPU] If these instructions are used in a program executed in both systems, they do not operate in the
standby system when the redundant system is in backup mode. (L1 MELSEC iQ-R CPU Module User's Manual (Application))
« OUT LT: Low-speed long timer instruction
» OUT LST: Low-speed long retentive timer instruction
These instructions start time measurement when the operation result up to the OUT instruction is on. When time is up, the
normally open contact turns on (continuity state) and the normally closed contact turns off (non-continuity state).

Ladder ST

—C 0] @[vawe }_{

Value: Set value

ENO:=OUT_T(EN,Coil,Value);

FBD/LD
L
— EN ENO [—
— Caoll
—1 Value

Value: Set value
(Ois to be replaced by OUT_T.)

HEExecution condition

Instruction Execution condition
OUTLT Every scan
OUTLST

Setting data

EDescription, range, data type

Operand | Description Range Data type Data type (label)
(d) Long timer device or long timer type label — Bit ANY_BOOL
Coil
Value Value set for the long timer 0 to 4294967295 32-bit unsigned ANY32"
binary*1
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 If the program is written in ST language or FBD/LD, the data type will be ANY_INT.
HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |JO\O | T,ST,C,D,W,SD, | UDNGO,JON\O, | Z | LT,LST, | Lz | Specification [\« = T [g
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC H
@ - - |- - —lot |- [~ - |=[=|-
Caoil
Value — — o (@) —|— i o8 |—|—|—

*1 Only LT and LST can be used.
*2 T, ST, and C cannot be used.
*3 Only K (decimal constant) can be used.

5 SEQUENCE INSTRUCTIONS 1 1
5.3 Output Instructions 7

172

Processing details

» These instructions start time measurement, triggered by the coil specified by (d) (in SD language or FBD/LD, displayed as

Coil), when the operation result up to the OUT instruction is on. When time is up (current value > set value), the normally

open contact turns on (continuity state) and the normally closed contact turns off (non-continuity state).

» When the operation result up to the OUT instruction turns off, the contact responds as shown below.

Type Timer coil Current value Before time is up After time is up
Normally open Normally closed | Normally open Normally closed
contact contact contact contact

Long timer Off 0 Non-continuity Continuity Non-continuity Continuity

Long retentive timer | Off Current value retained | Non-continuity Continuity Continuity Non-continuity

* To clear the current value of the long retentive timer and turn off the contact after time is up, use the RST instruction.

* When the timer set value is 0, the time will be up at execution of the OUT instruction.

» The following operations are performed at execution of the OUT instruction.
* The coil used as a trigger of the OUT LT or OUT LST instruction turns on or off.

» The contact used as a trigger of the OUT LT or OUT LST instruction turns on or off.
» The current value of the OUT LT or OUT LST instruction is changed.

« If the OUT LT instruction is skipped by using such as the JMP instruction while the OUT LT or OUT LST instruction is on,
the current value is not updated or the contact is not turned on or off.

* If the same OUT LT or OUT LST instruction is executed two times or more in a single scan, the current value is updated by

the number of times the instruction is executed.

Point

» The timer limit value is set in parameter using the engineering tool.

Long timer/long retentive timer: 0.001 to 1000ms (in increments of 0.001ms) (Default: 0.001ms)

« For the counting method, refer to the following.
1 MELSEC iQ-R CPU Module User's Manual (Application)

Precautions

To create a program in which the operation of a long timer contact triggers the operation of another long timer, program the

long timers in order from the one that operates last.

In the following cases, if a program is created in order of timer measurements, all timers turn on in the same scan.

* The set value is smaller than the scan time.

* The set value is 1.

[Ex]

When timers LTO to LT2 are programmed in order from the one that measures last
(1) Long timer LT2 starts measurement from the next scan after the contact of
long timer LT1 turns on.
(2) Long timer LT1 starts measurement from the next scan after the contact of
long timer LTO turns on.
(3) Long timer LTO starts measurement when X0 turns on.

LT1
—
LTO

(1)

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

[Ex]

When long timers LTO to LT2 are programmed in order of measurement

X (1) Long timer LTO starts measurement when X0 turns on.
(2) When the contact of timer LTO turns on, the contacts of timers LT1 and LT2
_| M also turn on.
LTO
—
2
LT1

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 1
5.3 Output Instructions 73

Counter

ouTC

RnPCPU | RnPCPU
rncpufaricy

Point;3

RnPSFCPURRnPSFCPUN RnSFCPU

RnSFCPU
edundant) ll(Standard)ll (Safety) M(Standard)ll (Safety)

When the safety counter is used in safety programs executed by the SIL2 Process CPU and the Safety CPU,

unless otherwise specified, replace a word as follows:
« "OUT C" — "OUT SA\C"

This instruction increments the current counter value (count value) by one when the operation result up to the OUT instruction

turns on. When the count value reaches the set value, the normally open contact of the counter turns on (continuity state) and

the normally closed contact turns off (non-continuity state).

Ladder

ST

— = O] @[vawe }_{

Value: Set value

ENO:=OUT_C(EN,Coil,Value);

FBD/LD
C_— 1
— EN ENO —
— Caoll
—1 Value

Value: Set value

HExecution condition

Instruction

Execution condition

ouTcC

Every scan

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(d) Counter number — Bit ANY_BOOL"™
Coil
Value Value set for the counter 0 to 65535 16-bit unsigned ANY 162
binary*2
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 Only counter type labels can be used.

*2 If the program is written in ST language or FBD/LD, the data type will be ANY_INT.

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types

described in the table can be used.

1 74 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |JO\O | T,ST,C,D,W,SD, | UD\GO,JO\O, | Z | LT,LST, | Lz | SPecification ['y g [g
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC
(d) - - o™ - —|— e - ol Bl
Coil
Value — — 0" O —|— — | = o8 | —|—|—

*1 Only C can be used.

*2 T, ST, and C cannot be used.

*3 Only K (decimal constant) can be used.

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand | Bit Word Constant
SA\X, SAlY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H
(d) _ 0 —
Coil |
Value — o o'

*4 Only SA\C can be used.
*5 SA\T, SA\ST, and SA\C cannot be used.
*6 Only K (decimal constant) can be used.

Processing details

« This instruction increments the current counter value (count value) in the device specified by (d) (in SD language or FBD/
LD, displayed as Coil) by one on the rising edge (off to on) of the operation result up to the OUT instruction. When the count
value reaches the set value (current value > set value), the normally open contact turns on (continuity state) and the
normally closed contact turns off (non-continuity state).

» Counting is disabled while the operation result remains on. (Count input does not need to be converted into pulses.)

« After counting-up, the count value and contact status remain unchanged until the RST instruction is executed.

* When the set value is 0, the same processing is performed as when it is set to 1.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 1
5.3 Output Instructions 75

Long counter

OUTLC

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

This instruction increments the current long counter value (count value) by one on the rising edge (off to on) of the operation

result up to the OUT instruction. When the count value reaches the set value, the normally open contact of the long counter

turns on (continuity state) and the normally closed contact turns off (non-continuity state).

Ladder

ST

—C 0] @] vaiue }_{

Value: Set value

ENO:=OUT_C(EN,Coil,Value);

FBD/LD
C—
— EN ENO —
— Coil
—1 Value

Value: Set value
(O is to be replaced by OUT_C.)

HEExecution condition

Instruction Execution condition

OuTLC Every scan

Setting data

EDescription, range, data type

Operand | Description Range Data type Data type (label)
(d) Long counter number — Bit ANY_BOOL'1
Coil
Value Set value for the long counter 0 to 4294967295 32-bit unsigned ANY322
binary*2
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
*1 Only long counter type labels can be used.
*2 If the program is written in ST language or FBD/LD, the data type will be ANY_INT.
HApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |JO\O |T,ST,C,D,W,SD, | UO\GO,JO\D, | Z | LT, LST, | Lz | Specification [y [F [g
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC
(d) - - - - —|o" i — ||~
Coil
Value — — 0" O —|— — | = o% | —|—|—

*1 Only LC can be used.
*2 T, ST, and C cannot be used.
*3 Only K (decimal constant) can be used.

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

176

Processing details

* This instruction increments the current long counter value (count value) in the device specified by (d) (in SD language or
FBD/LD, displayed as Coil) by one on the rising edge (off to on) of the operation result up to the OUT instruction. When the
count value reaches the set value (current value > set value), the normally open contact turns on (continuity state) and the
normally closed contact turns off (non-continuity state).

» Counting is disabled while the operation result remains on. (Count input does not need to be converted into pulses.)

« After counting-up, the count value and contact status remain unchanged until the RST instruction is executed.

* When the set value is 0, the same processing is performed as when it is set to 1.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 1
5.3 Output Instructions 77

Annunciator

OUTF

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

This instruction outputs the operation result up to the OUT F instruction to the specified annunciator.

Ladder ST
ENO:=OUT(EN,d);
—=< () >—{
FBD/LD
C. 1
— EN ENO |—

d —

(O is to be replaced by OUT.)

HEExecution condition

Instruction Execution condition

OUTF Every scan

Setting data

EDescription, range, data type

Operand | Description Range Data type Data type (label)
(d) Target annunciator number — Bit ANY_BOOL"

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 Only labels assigned to the annunciator can be used.

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |JO\O | T,ST,C,D, W, SD, | UD\GO,JON\O, | Z | LT,LST, | Lz | Specification [« 'y TE ['g
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC

@ o'l - |- - —|- — |- - [=]=]=

*1 Only F can be used.

Processing details

* This instruction outputs the operation result up to the OUT F instruction to the specified annunciator.

» When the annunciator (F) is turned on by this instruction, the following are performed.
» The USER LED of the CPU module turns on.

* The annunciator number (F number) to be turned on is stored in the special register (SD64 to SD79).

* The value in SD63 is incremented by one.

If the value in SD63 is 16 (meaning 16 annunciators are already on), the annunciator number will not be stored in the
special register (SD64 to SD79) even when a new annunciator turns on.

* When the annunciator (F) is turned off by this instruction, the following are performed.
* The coil turns off, but the USER LED status and the data in SD63 to SD79 remain unchanged.
« To turn off the USER LED or delete the annunciator number that has been turned off by this instruction from SD63 to SD79, use the RST F instruction.

Operation.error

There is no operation error.

1 78 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Setting devices (excluding annunciator)

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

This instruction turns on the specified bit.

ENO:=SET(EN,d);

HExecution condition

EDescription, range, data type

Set target bit device number or bit specification of word ANY_BOOL
device

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

*1 When F is used, refer to the following.
=5~ Page 183 SET F
+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.

(d) O — —

5 SEQUENCE INSTRUCTIONS 1
5.3 Output Instructions 79

180

Processing details

* This instruction changes the device status as follows when the execution command turns on.
Device

Status
Bit device

Turns on the coil or contact.
Bit-specified word device

Sets the specified bit to 1.

* The device that has been turned on remains on even after the execution command turns off. The device that has been
turned on can be turned off by using the RST instruction.

ON
X5

F———— ser | v X5 OFF

Ll

ON

F——— RrsT | v10 X7 OFF l

)
T

* When the execution command is off, the device status does not change.

Operation. error

There is no operation error.

Pointp

When X is used, specify a device number that is not used in actual input. If the number that is used in actual
input is specified, the data of actual input is written over the input device (X) specified by the SET instruction

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Resetting devices (excluding annunciator)

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

This instruction turns off the specified device. For the timer and counter, the instruction clears the current value to 0 and turns

off the contact or coil.

ENO:=RST(EN,d);

I)
C.— 1
— EN ENO |—

HEExecution condition

EDescription, range, data type

Reset target bit device number, bit specification of word Bit/Word/Double word | ANY_ELEMENTARY
device, or reset target word device number

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

*1 When F is used, refer to the following.
[Z= Page 185 RST F
+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.

5 SEQUENCE INSTRUCTIONS 1 81
5.3 Output Instructions

Processing details

* This instruction changes the device status as follows when the execution command turns on.

Device Status

Bit device Turns off the coil or contact.

Timer, counter Clears the current value to 0 and turns off the coil or contact.

Bit-specified word device Sets the specified bit to 0.

Word device other than timer and counter Clears the data to 0.

* When the execution command is off, the device status does not change.
« The RST instruction specifying a word device operates in the same way as the following ladder.

X10

X10
}—H—{ RSTDso}—{::> F—{ mov [ko [Dpso

Operation.error

There is no operation error.

1 82 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Setting annunciator

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

This instruction turns on the specified annunciator.

ENO:=SET(EN,d);

.1

— EN ENO |—

d —

(O is to be replaced by SET.)

HEExecution condition

SETF
1t

|

EDescription, range, data type

(d) Set target annunciator number (F number) — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL
BMApplicable devices

*1 Only F can be used.

5 SEQUENCE INSTRUCTIONS 1
5.3 Output Instructions 83

Processing details

« This instruction turns on the annunciator specified by (d) when the execution command turns on.

* When the annunciator (F) is turned on, the following are performed.

» The USER LED turns on.

« The annunciator number (F number) turned on is stored in the special register (SD64 to SD79).
* The value in SD63 is incremented by one.

« If the value in SD63 is 16 (meaning 16 annunciators are already on), the annunciator number will not be stored in the
special register (SD64 to SD79) even when a new annunciator turns on.

~

SD63 16 SD63 16

SD64 233 SD64 233

SD65 9 F30 ON SD65 9

SD66 700 |:> SD66 700 = (1)
%3 %

sD78 145 sD78 145

SD79 1027 SD79 1027

(1) The data remain the same.

Operation.error

There is no operation error.

1 84 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Resetting annunciator

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

This instruction turns off the specified annunciator.

ENO:=RST(EN,d);

.1

— EN ENO |—

d —

(O'is to be replaced by RST.)

HEExecution condition

RSTF
1t

|

EDescription, range, data type

(d) Reset target annunciator number (F number) — Bit"! ANY_BOOL"
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 If the program is written in ST language or FBD/LD, the data type will be ANY_ELEMENTARY.

HApplicable devices

*1 Only F can be used.

5 SEQUENCE INSTRUCTIONS 1
5.3 Output Instructions 85

Processing details

* This instruction turns off the annunciator specified by (d) when the execution command turns on.

» The annunciator number (F number) turned off is deleted from the special register (SD64 to SD79), and the value in SD63
is decremented by one.

« If the value in SD63 is 16, the corresponding annunciator number is deleted from SD64 to SD79 by the RST instruction. If
an annunciator with a number not registered in SD64 to SD79 has been turned on, the number is newly registered. If all
annunciator numbers in SD64 to SD79 are reset (turned off), the USER LED of the CPU module turns off.

[Ex]

When the value in SD63 is 16 and there is an annunciator number that is not registered

SD63 16 SD63 16
SD64 233 SD64 233
SD65 90 (1) SD65 700 — (2)
SD66 700 |::> SD66 28
SD67 28 —
— sD77 145
SD78 145 SD78 1027
SD79 1027 SD79 +— (3)

(1) Reset F90.
(2) The F number in SD66 is shifted to this area.
(3) New F number is stored.

Operation.error

There is no operation error.

1 86 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Rising edge output

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)
4

' When this instruction is used in safety programs executed by the SIL2 Process CPU and the Safety CPU,
unless otherwise specified, replace some words as follows:
« "X0" — "SA\X0", "X5" — "SAX5", "M0" — "SA\MO"
» "Scan" — "Safety cycle processing"

This instruction turns on the specified device for one scan on the rising edge (off to on) of the execution command.

ENO:=PLS(EN,d);

HEExecution condition

PLS

T

|

EDescription, range, data type

(d) Pulse conversion target device number — Bit ANY_BOOL
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

BApplicable devices

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

5 SEQUENCE INSTRUCTIONS
187

5.3 Output Instructions

Processing details

« This instruction turns on the specified device on the rising edge (off to on) of the execution command. When the execution
command is in another state (staying on, falling edge (on to off), or staying off), the instruction turns off the specified device.
If only one PLS instruction in the device specified by (d) is executed in a single scan, the specified device turns on for one
scan. For the operation to be performed if more than one PLS instruction is executed during one scan, refer to the
following.

[=5~ Page 58 Operations arising when the OUT, SET/RST, and PLS/PLF instructions of the same device are used

ON

X5 OFF —T u

= #
e s

» Once after execution of the PLS instruction, even if the switch of the CPU module is moved to the STOP position and then
the RUN position again, the PLS instruction is not executed.

}—{XO|—{ PLS ‘ MO }{

4)

LD X0 (3) LD X0 (3) LD X0
f PLS M‘(/ l f PLS MO l / f PLS MO
ENDO VY END v y END 0 v

Sc: 1 scan

»
>

I
)T

ON ‘ @

X0 OFF 4 ‘ ON , ‘
MO OFF Q |

() ‘

I EE—

(1) MO turns on for one scan.

(2) The CPU module operation stops.

(3) Change the RUN/STOP/RESET switch of the CPU module from RUN to STOP.
(4) Change the RUN/STOP/RESET switch of the CPU module from STOP to RUN.

« If the latch relay (L) is specified as the execution command and the system is powered on while the latch relay is on, the
execution command turns on in the first scan, triggering execution of the PLS instruction and turning on the specified
device. The device that has been turned on in the first scan after power-on can be turned off by the next PLS instruction.

» The PLS instruction performs OFF processing at the execution of the next instruction after the instruction execution.
However, in safety programs executed by the SIL2 Process CPU and the Safety CPU, the PLS instruction turns on one
safety cycle processing for the specified device/label until the safety program of next safety cycle processing starts and the
instruction is executed. If the standard/safety shared label is used in the argument of the PLS instruction, the instruction
may fail to detect the ON state of the standard/safety shared label or may detect the ON state for plural periods in the safety
program or standard program that uses the corresponding standard/safety shared label depending on the timing to interrupt
the safety cycle processing.

Point

* Note that if the PLS instruction is jumped by using the CJ instruction or the executed subroutine program is
not called by using the CALL(P) instruction, the device specified by (d) may be on for more than one scan.

Operation.error

There is no operation error.

1 88 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Falling edge output

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)
4

' When this instruction is used in safety programs executed by the SIL2 Process CPU and the Safety CPU,
unless otherwise specified, replace some words as follows:
* "X5" — "SA\X5"
» "Scan" — "Safety cycle processing"

This instruction turns on the specified device for one scan on the falling edge (on to off) of the execution command.

ENO:=PLF(EN,d);

HEExecution condition

PLF

b

|

EDescription, range, data type

(d) Pulse conversion target device number — Bit ANY_BOOL
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

5 SEQUENCE INSTRUCTIONS
189

5.3 Output Instructions

Processing details

« This instruction turns on the specified device on the falling edge (on to off) of the execution command. When the execution
command is in another state (staying off, rising edge (off to on), or staying on), the instruction turns off the specified device.
If only one PLF instruction in the device specified by (d) is executed during one scan, the specified device turns on for one
scan. For the operation to be performed if more than one PLF instruction is executed during one scan, refer to the following.
[Z=~ Page 58 Operations arising when the OUT, SET/RST, and PLS/PLF instructions of the same device are used

ON
X5 OFF 4, 1\ ‘—l\

}—{XT—{ PLF ‘ MO }—{

ON /

MO OFF j:L l
Sc Sc

Sc: 1 scan

» Once after execution of the PLF instruction, even if the switch of the CPU module is moved to the STOP position and then
the RUN position again, the PLF instruction is not executed.

» The PLF instruction performs OFF processing at the execution of the next instruction after the instruction execution.
However, in safety programs executed by the SIL2 Process CPU and the Safety CPU, the PLF instruction turns on one
safety cycle processing for the specified device/label until the safety program of next safety cycle processing starts and the
instruction is executed. If the standard/safety shared label is used in the argument of the PLF instruction, the instruction
may fail to detect the ON state of the standard/safety shared label or may detect the ON state for plural periods in the safety
program or standard program that uses the corresponding standard/safety shared label depending on the timing to interrupt
the safety cycle processing.

Point

* Note that if the PLF instruction is jumped by using the CJ instruction or the executed subroutine program is
not called by using the CALL(P) instruction, the device specified by (d) may be on for more than one scan.

Operation.error

There is no operation error.

1 90 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Inverting the bit device output

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

This instruction inverts the status of the specified device.

ENO:=FF(EN,d);

.1

— EN ENO |—

HExecution condition

FF

T

|

EDescription, range, data type

(d) Inversion target device number — Bit ANY_BOOL
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(d) O @) —

5 SEQUENCE INSTRUCTIONS 1 91
5.3 Output Instructions

Processing detail

« This instruction inverts the status of the device specified by (d) on the rising edge of the execution command.

Bit device Off On
On Off
Bit-specified word device 0 1
1 0

- Operation error

There is no operation error.

192 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Converting the direct access output into a pulse

RnPCPU) RnPCPU RnPSFCPU RnPSFCPU RnSFCPU RnSFCPU
D 5D) (R

These instructions convert the specified direct access output (DY) into pulse output.

ENO:=DELTA(EN,d);
ENO:=DELTAP(EN,d);

L] @
1
— EN ENO (—

HEExecution condition

T e
DELTA J_|_
—

DELTAP

f

EDescription, range, data type

Pulse conversion target device number ANY_| BOOL™
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 Only labels assigned to the device (DY) can be used.

HApplicable devices

5 SEQUENCE INSTRUCTIONS 1
5.3 Output Instructions 93

Processing details

» These instructions convert the direct access output (DY) specified by (d) into pulse output. If DYO is specified by (d), the
program operates in the same way as the one that uses the SET and RST instructions.

The following figure shows an example when a ladder using the DELTA instruction is replaced with a ladder using the SET/

RST instructions.

X100 X100

} DELTA — |

The following figure shows the operation of the instruction.

END

/ / DELTA DY‘O/ DELTA DYO
ON ! l
X100 OFF | |
ON ON
DYo OFF I M
Precautions

These instructions are used as an execution command (rising edge execution) for intelligent function modules.
These instructions cannot be used as an actual output command for output modules.

Operation.error

There is no operation error.

Point}3

The DELTA(P) instruction is used to set a preset value of the high-speed counter module.

[Example]

A program that presets the CH1 of the high-speed counter module (RD62P2) mounted in slot 0 of the base
unit when X20 turns on

X20

— F————1 obmovp | ko [uoco Q)
| DELTAP | DY1 2)
[END

(1) Store the preset value (0) in the buffer memory areas 0 and 1 of the RD62P2.
(2) Output the preset command.

194 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

5.4 shift Instructions
Shifting bit devices

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPUN RnSFCPURNSFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

These instructions shift the on/off state of the device area just before the one specified to the specified device area, and turn

off the shift source device.

ENO:=SFT(EN,d);
ENO:=SFTP(EN,d);

I)

.1

— EN ENO |—

HExecution condition

EET s
SFT I_I
—

SFTP

f

EDescription, range, data type

Shift target device ANY_BOOL
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions 195

Processing details
HBit device

» These instructions shift the on/off state of the device area just before the one specified by (d) to the device area specified
by (d). After the data is shifted, the data of the shift source device area is turned off.

When the SFTP instruction that specifies M11 is executed, it shifts the on/off state of M10 to M11, and turns off M10.
» Turn on the shift target start device by using the SET instruction.
* When the SFT(P) instruction is used consecutively, program devices in descending order of the device numbers.

<) ,

Mo M15 M14 M13 M12 M11 M10 M9 M8
—F—— sfp | w4 4 wfoJolofofol[r][1]0]

Y A)
@[ofofofof1]o]1]0]

—— sFP | w1z Y A =
@lofloJo[r[ofof[1]o]
———{ sk | w2 H o o@|ofolol1 o1 [1]0]

2 2 & 2 a0
@loflol1]of1]of1]0]

1 srrp [w1 Y A =
ool o r o el o]

X2 Y A
L e TwH oo e o]

(1) X02 ON

(2) After the 1st shift input
(3) After the 2nd shift input
(4) X02 ON

(5) After the 3rd shift input
(6) After the 4th shift input
(7) After the 5th shift input
(8) Shift target start device
(9) Shift range

EBit-specified word device
» These instructions shift the 1/0 state of the bit just before the one specified by (d) to the bit specified by (d). After the data is
shifted, the data of the shift source bit is set to 0.

The SFT(P) instruction that specifies D0.5 (b5 in DO) is executed, it shifts the 1/0 state of b4 in DO to b5, and sets b4 to 0.

b15 bSb4 - b0
() [o] ool oJe [T+ o] o[a]o]
DO 0

@ [o]1]o]o]1]o]o]o[1]1]1]0[0]0]0]1]
(1) Before shifting the bit
(2) After shifting the bit

Operation.error

There is no operation error.

1 96 5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions

5.5 Master Control Instructions

Setting/resetting a master control

MC, MCR
RnPCPU § RnPCPU JRPSFCPURRnPSFCPUR RnSFCPURNSFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)
Pointp

When these instructions are used in safety programs executed by the SIL2 Process CPU and the Safety CPU,
unless otherwise specified, replace some words as follows:

* "Timer" — "Safety timer"

« "Retentive timer" — "Safety retentive timer"

« "Counter" — "Safety counter"

» Add "SA\" to the devices "X" and "M" in Figures. (Example: "X0" — "SA\X0", "M0" — "SA\MO0")

 "Scan time" — "Safety cycle time"

* MC: This instruction starts a master control.
* MCR: This instruction ends a master control.

Ladder ST

ENO:=MC(EN,N,d);

M _| |_| C— | N | @ l_ ENO:=MCR(EN,N);

MCR Co1m

(1) Master control ladder

FBD/LD
MC MCR
L1 L1
— EN ENO (— — EN ENO (—
— N d [— — N

HEExecution condition

Instruction Execution condition
MC Every scan
MCR

Setting data

EDescription, range, data type

Operand | Description Range Data type Data type (label)
(N) Nesting NO to N14 Device name ANY16_S™"

(d) Number of the device to be turned on — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 Only labels assigned to the device (N) or to which constants are assigned can be used.
* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

5 SEQUENCE INSTRUCTIONS 1
5.5 Master Control Instructions 97

198

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |JO\O | T,ST,C,D,W,SD, | UD\GO,JO\O, | Z | LT,LsT, | Lz | specification [« 'y [e [g | N[DY
F, B, SB, FX, FY SW, FD, R, ZR, RD | U3EO\(H)GO LC

(N) — — — — o - | = - |=|=]0|—

(d) O O O - —|— — |0 - |=|—=]—|0

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand | Bit Word Indirect Constant | Others
SAIX, SALY, SA\M, SA\SM, SA\B SAT, SA\ST, SA\C, SA\D, SAW, SA\sD | SPecification [y '\ N
(N) — — — — o)
(d) o o o — —

Processing details

These instructions are used to create an efficient ladder switching program by opening and closing the common rails of the

ladder.

The following is the program example using the master control instructions.

(Left: Display on the engineering tool, Right: Actual operation)

X0
N wmc [~n [wmo H
N1—— M0
X1 X3 M7 va7
| e
| Y
M5 Y4F
B 5
X6 X4
| mcr | N1
XOF Y40
] 5

(1) Executed only when X0 is on.

EMC

X0
i{ F— wmc | ~n | wmo }¢
N1Z= MO
X1 X3 M7 Y47
| M
|)
M5 Y4F
] 5
X6 X4
| mcr | N1 |4
| xoF Y40
& 5

()

« If the execution command of the MC instruction is on when a master control starts, the operation result between the MC

and MCR instructions will be the one as programmed. If the execution command is off, the operation result between the MC

and MCR instructions will be as follows.

Device

Status

High-speed timer
Low-speed timer

The count value is set to 0, and both the coil and contact are turned off.

High-speed retentive timer
Low-speed retentive timer
Counter

The coil is turned off, but both the count value and contact maintain the current status.

Device used by the OUT instruction

Forcibly turned off.

Device used by the SET and RST instructions
Device used by the SFT(P) instruction

Device used by basic instructions and application
instructions

Maintains the current status.

* Even if the MC instruction is off, the instructions between the MC and MCR instructions are executed and therefore the

scan time is not shortened.

5 SEQUENCE INSTRUCTIONS
5.5 Master Control Instructions

f%m&j

* When a ladder performing a master control includes an instruction which does not require a contact
instruction (such as the FOR to NEXT instruction), the CPU module executes the instruction regardless of
the execution command of the MC instruction.

« To create an easy-to-understand program, use the MC and MCR instructions within a single program block.

» The MC instruction can use the same nesting (N) number as many times as needed by specifying different devices in (d).
* When the MC instruction is on, the coil of the device specified by (d) turns on. Using the same device for the OUT
instruction causes double coils. Do not use the device specified by (d) in other instructions.

EMCR

« This instruction is a master control reset instruction which indicates the end of the master control area.

» Do not place any contact instruction before the MCR instruction.

» Use the MC and MCR instructions with the same nesting number as a set. Note that if the MCR instructions are nested in
one place, all master controls can be terminated by specifying the lowest nesting (N) number. (Refer to "Precautions".)

Operation.error

There is no operation error.

Point}°
The master control instructions can be nested. Individual master control areas are distinguished by nesting
(N) numbers. Nesting can be set from NO to N14.
Using the nesting structure enables the creation of a ladder which can sequentially constrain the program
execution conditions.
The following figure shows a ladder program example using the nesting structure.
(Left: Display on the engineering tool, Right: Actual operation)
A A
i Tt
NO ==M15 NO=~M15
—1 O— : O— } (1)
B B
— Mc [N1 [M16 [MC| N1 [M16
N1 —M16 N1==M16
—1 O— [O— } @
C —
i |
N2 ==M17 N2=M17
— O— : O— } (3)
[
— O— p—1 O— } ©)
MCR MCR
— O— +— 1| O— } M
it O— | O— } (4)

(1) Executed when A'is on.

(2) Executed when A and B are on.

(3) Executed when A, B, and C are on.
(

4) Executed regardless of the status of A, B, and C

5 SEQUENCE INSTRUCTIONS 1
5.5 Master Control Instructions 99

Precautions

* Up to 15 nests (NO to N14) are allowed. When nesting is performed, the MC instruction should use nesting (N) numbers in
order from lower numbers and the MCR instruction should use them in order from higher numbers.
« If the MCR instructions are nested in one place, all master controls can be terminated by specifying the lowest nesting (N)

number.
X1 X1
B |
NO =M15 NO==M15
! O— : O—
X2 X2
Y j
N1=-M16 N1=-M16
i O— | O—
X3 :> X3
— MC| N2 [M17 } MC [N2 [M17
N2==M17 N2 =M17
— O— : O—
| - O—
I McR] NO |
i O—

200 5 SEQUENCE INSTRUCTIONS
5.5 Master Control Instructions

5.6 Phase Processing Instructions

Overview

Phase processing instructions are used when sequential processing is performed according to the process (phase) in the

ladder program.
A program is executed for each process.

RUN
OFF Start switch
[¢——< Start switch —| I M1 >_
ON
Phase 1 execution condition
Phase 1 PHASE | M1 {— Phase 1 processin I—v—'
Process 1 - H Phase 1 termination Cly - Direction of transition to

AN

| (condition | Phase 2
PHASECHG | M2
| (v - ;

'
'
\

Phase processing

Process 2 ! H
Phase 2 PHASE | M2 Phase 2 processin I—v—
- 1 (Phase 2 termination P 9 ,_{ Direction of transition to
. condition . | Phase 3
\—{ | PHASECHG -1 ;

g Phase processing /'\ ___

Point}3

» An example of a program expression that performs sequential processing according to the process is an
SFC program. Since SFC programs allow a series of control operations to be divided into multiple steps with
step transitions, and the execution order and execution conditions of the programs can be clearly
expressed, the use of SFC programs is recommended when controlling complex processes.

« Since the PHASE instruction adds two steps, when using a function”" that specifies the step number in the
ladder program after the PHASE instruction, it is necessary to specify a step number that takes into account
the two steps that are added (for a total of 15 steps).

*1 Functions that specify the step number include the following.
- Realtime monitor function
- Device test function with execution conditions
- Data logging function

Engineering tool setting
To use phase processing instructions, "Use Phase Processing Instructions" must be set to "Yes" in the engineering tool
options. An error will occur if a program for which phase processing instructions are input is converted without this setting.

2O [Tool] = [Options] = [Convert] = [Basic Setting] = [Operational Setting]

Precautions
The following precautions apply in common to phase processing instructions.

» They can be used only in ladder programs. They cannot be used in SFC programs, ST programs, and FBD/LD.

» They can be used only in scan execution type programs. They cannot be used in initial execution type programs, fixed scan
execution type programs, event execution type programs, and standby type programs. Note that a program for which
phase processing instructions are input should not be changed to any other program execution type except the scan
execution type program after it is converted by the engineering tool.

* They can be used only in main routine programs. They cannot be used in subroutine programs and interrupt programs.

* They can be used only within program blocks. They cannot be used in a function (FUN) or function block (FB).

5 SEQUENCE INSTRUCTIONS 2 1
5.6 Phase Processing Instructions 0

202

Starting the phase processing

PHASE

RPc>P‘$ RPc>P‘u< RPsF>c‘P<u RPSFCxPU RSF2?<U RSF??&
n n {l ni n n
RnCPURRnENCPUR (process) ll Redundant) | (Standard)l| (Safety) M(Standard)l| (Safety)

» The ROOCPU, R0O1CPU, and RO2CPU with firmware version "24" or later, and RnCPU (excluding the ROOCPU, RO1CPU, and R0O2CPU) and RnENCPU with
firmware version "57" or later support this instruction. Use an engineering tool with version "1.075D" or later.

This instruction starts phase processing.

Ladder

ST

C._1 e

Not supported

FBD/LD

Not supported

HEExecution condition

Instruction Execution condition

PHASE Every scan

Setting data

EDescription, range, data type

Operand Description

Range

Data type Data type (label)

(s) Device for starting the phase processing

Bit ANY_BOOL"™

*1 For array labels, labels or devices cannot be used for the array index.

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JOo | T,sT,c,p,w, |uO\GO,JO\O, |z | LT,LST, | Lz | specification [y " e Tg
SM, F, B, SB, SD, SW, FD, R, | U3EC\(H)GOI LC
FX, FY ZR, RD

(S) O’1’3 _ O’2’3 — — | — — — — _ — | —

*1 F cannot be used.
*2 T, ST, C, R, and ZR cannot be used.
*3 Index modification is not available.

Processing details

« If the device specified by (s) is turned off and on or stayed on, the operation result of the connected phase processing will

be the one as programmed.

« If the device specified by (s) is turned on and off, the operation result of the connected phase processing will be as follows.

Device used for operation

Operation result (device status)

High-speed timer
Low-speed timer

The count value is set to 0, and both the coil and contact are turned off.

High-speed retentive timer
Low-speed retentive timer
Counter

The caoil is turned off, but both the count value and contact maintain the
current status.

Device used by the OUT instruction

All turned off.

Device used by the SET/RST instructions
Device used by the SFT instruction
Device used by the basic/application instruction

Maintains the current status.

« If the device specified by (s) is stayed off, the connected phase processing is not performed.

5 SEQUENCE INSTRUCTIONS
5.6 Phase Processing Instructions

Precautions

» The PHASE instruction can only be used for direct connection to a rail. Also, connection in parallel with other instructions is
not possible.

€ -
.

* When connecting FB/FUN to the PHASE instruction, FB/FUN can be connected only to EN.

L -

FbPou ‘ FbPou

PHA @ s) EN ENO I I EN ENO

| I I IN1 ouT PHAS (s) l— IN1 ouT

» When using control statements (IF statement, CASE statement, FOR statement, WHILE statement, REPEAT statement) in

inline ST connected to the PHASE instruction, the number of levels must be within 127 levels.
(1) Within phase processing, up to 127 levels are supported for
/ inline ST control statements.

PHASE (s) IF <Conditional expression> THEN

IF <Conditional expression> THEN

N

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 2
5.6 Phase Processing Instructions 03

Changing the execution phase

PHASECHG

RPc>P‘$ RPc>P‘u< RPsF>c‘P<u RPSFCxPU RSF2?<U RSF??&
n n {l ni n n
RnCPURRnENCPUR (process) ll Redundant) | (Standard)l| (Safety) M(Standard)l| (Safety)

» The ROOCPU, R0O1CPU, and RO2CPU with firmware version "24" or later, and RnCPU (excluding the ROOCPU, RO1CPU, and R0O2CPU) and RnENCPU with
firmware version "57" or later support this instruction. Use an engineering tool with version "1.075D" or later.

This instruction ends the phase currently being executed and shifts to the specified phase.

Ladder ST
Not supported
C_—_J| @
FBD/LD
Not supported
HEExecution condition
Instruction Execution condition
PHASECHG ﬂ
Setting data
EDescription, range, data type
Operand Description Range Data type Data type (label)
(d) Transition destination phase device — Bit ANY_BOOL"
*1 For array labels, labels or devices cannot be used for the array index.
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO\NO |T,ST,C,D,W, |UDO\GO,JO\O, |Z |LT,LST, | Lz |specification | g [g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD
(d) O*1*3 _ O*2*3 _ | — J— — —_ — | — | =

*1 F cannot be used.

*2 T, ST, C,R, and ZR cannot be used.

*3 Index modification is not available.

Processing details

* This instruction ends the phase currently being executed (turns off the device specified in the previous PHASE
instruction“) and shifts to the phase specified in (d) (turns on the specified device).

*1 The non-execution processing of the phase processing connected to the PHASE instruction is performed at the next scan after the

execution of this instruction.

5 SEQUENCE INSTRUCTIONS

204

5.6 Phase Processing Instructions

Precautions

» Execute the PHASECHG instruction within the phase processing. If it is executed outside the phase processing, the
specified device of the PHASE instruction that was last turned on is turned off . (Phase transition (turning on the specified
device) is performed.)

*1 This excludes cases where ladder block change during RUN between the ON execution of the PHASE instruction and the execution of

the PHASECHG instruction, or writing to the running sequencer (writing any of sequence program, FB file, or global label setting file), is
executed.

» Do not specify in (d) the same device as the device specified in the previous PHASE instruction. Otherwise, the phase
currently being executed will not end and the phase will not shift.

1 (1) Specify the same device in the PHASECHG as that
specified in the PHASE instruction.

H

PHASE PHASECH
/N
PHASE PHASEEND

» Do not specify in (d) a device that is not used in the PHASE instruction. Otherwise, the phase currently being executed will
end but the phase will not shift. (The device specified is turned on.)

1 (1) Specify a device that is not used in the PHASE instruction.

PREE))]
/N *
e

* When X is used, specify a device number that is not used in actual input. If the number that is used in actual input is
specified, the data of actual input is written over the input device (X) specified by the PHASECHG instruction.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 2
5.6 Phase Processing Instructions 05

Terminating the execution phase

PHASEEND

RPc>P‘$ RPc>P‘u< RPsF>c‘P<u RPSFCxPU RSF2?<U RSF??&
n n {l ni n n
RnCPURRnENCPUR (process) ll Redundant) | (Standard)l| (Safety) M(Standard)l| (Safety)

» The ROOCPU, R0O1CPU, and RO2CPU with firmware version "24" or later, and RnCPU (excluding the ROOCPU, RO1CPU, and R0O2CPU) and RnENCPU with
firmware version "57" or later support this instruction. Use an engineering tool with version "1.075D" or later.

This instruction ends the phase currently being executed.
Ladder

ST

Not supported

FBD/LD
Not supported

HEExecution condition

Instruction Execution condition

PHASEEND
T

Processing details

* This instruction ends the phase currently being executed (turns off the device specified in the previous PHASE
instruction”).

*1 The non-execution processing of the phase processing connected to the PHASE instruction is performed at the next scan after the

execution of this instruction.

Precautions

» Execute the PHASEEND instruction within the phase processing. If it is executed outside the phase processing, the
specified device of the PHASE instruction that was last turned on is turned off .
*1 This excludes cases where ladder block change during RUN between the ON execution of the PHASE instruction and the execution of

the PHASEEND instruction, or writing to the running sequencer (writing any of sequence program, FB file, or global label setting file), is
executed.

Operation.error

There is no operation error.

206 5 SEQUENCE INSTRUCTIONS
5.6 Phase Processing Instructions

5.7 Termination Instructions

Ending the main routine program

FEND

RnPCPU § RnPCPU JRPSFCPURRnPSFCPUR RnSFCPURNSFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

This instruction is used to separate the main routine program from subroutine programs and interrupt programs in a program

file.
Ladder ST
Not supported
FBD/LD
Not supported

HExecution condition

Instruction Execution condition

FEND Every scan

Processing details

« This instruction is used to divide sequence program operations by using a program branch instruction such as the CJ
instruction or to separate the main routine program from subroutine programs and interrupt programs specified by the
interrupt pointer (1).

* When the instruction is executed, the CPU module terminates the running program.

» Sequence programs following the FEND instruction can be displayed on the engineering tool (ladder mode).

When the CJ instruction is used When there are subroutine and interrupt programs
0 — CALL
A A
| @) A
— e H|
(1) 3) FEND
M A b "
P
B
FEND
o
pr c
A
[EnD |
END
FEND L—
END
A: Main routine program
B: Subroutine program
C: Interrupt program
(1) Operation performed when the CJ instruction is not executed
(2) Jump caused by the CJ instruction
(3) Operation performed when the CJ instruction is executed
Operation.error
Error code | Description
(SDO)
3340H After execution of the FOR instruction, the FEND instruction is executed before the NEXT instruction.
3381H After execution of the CALL(P), FCALL(P), ECALL(P), or EFCALL(P) instruction, the FEND instruction is executed before the RET instruction.
33A1H Within the interrupt program specified by the interrupt pointer (1), the FEND instruction is executed before the IRET instruction.

5 SEQUENCE INSTRUCTIONS 2
5.7 Termination Instructions 07

Ending the sequence program

END

RnPCPU | RnPCPU JRnPSFCPURnPSFCPUJf RnSFCPU lf RnSFCPU
RnCPURRnENCPU (Redundant) l(Standard)l (Safety) M(Standard)R (Safety)

This instruction indicates the end of a program.

Ladder ST
Not supported
C— 1
FBD/LD
Not supported

HExecution condition

Instruction Execution condition

END Every scan

Processing details

* This instruction indicates the end of a program including a main routine program, subroutine programs, and interrupt
programs.
* When the instruction is executed, the CPU module terminates the running program.

0

Program

END

v

« If END processing is required in the middle of a program, use the FEND instruction.
« If the program is created using the engineering tool (in ladder edit mode), the END instruction is automatically input and
cannot be edited.

» The following figure shows how to use the termination instructions when a main routine program, subroutine program, and
interrupt program exist.

A

FEND > (1)
B D
c

END > @

A: Main routine program

B: Subroutine program

C: Interrupt program

D: Main sequence program area

(1): The FEND instruction is required.
(2): The END instruction is required.

208 5 SEQUENCE INSTRUCTIONS
5.7 Termination Instructions

Point/©

When a program is divided into multiple program blocks, the END instruction indicates the end of a program

block.
The END instruction within the program registered at the end of the program setting performs END

processing.

Operation.error

Error code | Description

(SDo)

3340H After execution of the FOR instruction, the END instruction is executed before the NEXT instruction.

3381H After execution of the CALL(P), FCALL(P), ECALL(P), or EFCALL(P) instruction, the END instruction is executed before the RET instruction.
33A1H Within the interrupt program specified by the interrupt pointer (1), the END instruction is executed before the IRET instruction.

5 SEQUENCE INSTRUCTIONS 2
5.7 Termination Instructions 09

5.8 Stop Instruction

Stopping the sequence program

STOP

RnPCPU J RnPCPU JRaPSFCPURRAPSFCPURRnSFCPUYR SF?$<U
This instruction stops the operation of the CPU module. (The operation of this instruction is the same as setting the switch of
the CPU module to the STOP position.)

Ladder ST

ENO:=STOP(EN);

C._— 1
FBD/LD
C._— 1
— &N ENO [—

HEExecution condition

Instruction Execution condition

STOP
T

Processing details

« This instruction resets the output (Y) and stops the operation of the CPU module when the execution command turns on.
(The operation of this instruction is the same as setting the switch of the CPU module to the STOP position.)

« To restart the operation of the CPU module after execution of the STOP instruction, set the switch back to STOP, and then
set it to RUN again.

Operation.error

Error code | Description

(SDo)

3340H After execution of the FOR instruction, the STOP instruction is executed before the NEXT instruction.

3381H After execution of the CALL(P), FCALL(P), ECALL(P), EFCALL(P), or XCALL instruction, the STOP instruction is executed before the RET
instruction.

33A1H Within the interrupt program specified by the interrupt pointer (1), the STOP instruction is executed before the IRET instruction.

33A3H The STOP instruction is executed within a fixed scan execution type program.

33A4H The STOP instruction is executed within an event execution type program.

21 0 5 SEQUENCE INSTRUCTIONS
5.8 Stop Instruction

5.9 No Operation Instruction

No operation (NOP)

NOP

RnPCPU § RnPCPU JRPSFCPURRnPSFCPUR RnSFCPURNSFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

This instruction is used to insert a space for debugging.

Ladder ST

— Not supported
FBD/LD

Not supported

HEExecution condition

Instruction Execution condition

NOP Every scan

Processing details

« This instruction is a no-operation instruction and has no impact on the previous operations.

* The instruction is used for the following purposes:

« To insert a space for debugging

« To delete an instruction without changing the number of steps (The relevant instruction is replaced with the NOP instruction.)
« To delete an instruction temporarily

Point/©

For inserting or deleting the NOP instruction, refer to the following.
L1 GX Works3 Operating Manual

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 21 1
5.9 No Operation Instruction

No operation (NOPLF)

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

This instruction is a no-operation instruction and has no impact on the previous operations.

Not supported

Not supported

HExecution condition

NOPLF Every scan

« This instruction is a no-operation instruction and has no impact on the previous operations.

- Operation error

There is no operation error.

21 2 5 SEQUENCE INSTRUCTIONS
5.9 No Operation Instruction

PART 4 BASIC INSTRUCTIONS

This part consists of the following chapters.

6 BASIC INSTRUCTIONS

PART 4

213

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Comparing 16-bit binary data

LDO(_U), ANDO(_U), ORO(_U)

RnPCPU § RnPCPU JRPSFCPURRnPSFCPUR RnSFCPU W RSFCPU
RnCPU JRnENCPU (Redundant)(Standard)f} (Safety) M(Standard)ll (Safety)

These instructions compare the two sets of 16-bit binary data specified. (Devices are used as normally open contacts.)

Ladder ST
ENO:=LD_[O(EN,s1,s2); ENO:=LD_[O_U(EN,s1,s2);
-— — ENO:=AND_[(EN,s1,s2); ENO:=AND_[O U(EN,s1,s2);
LD —| s1) | (s2 |7
— .. | 1) | (2 ENO:=OR_[(EN,s1,s2); ENO:=OR_[O_U(EN,s1,s2);

(O is replaced by any of the following: EQ, NE, GT, LE, LT, GE.)™

ANDC IO L. [en| 62—

OR[_ 7]

— L. O] 602

(O is to be replaced by any of the following: =(_U), <>(_U), >(_U), <=(_U),

<(_U), >=(_V),)
FBD/LD
C— 1
—{ EN ENO (—

— s1

— s2

(O'is to be replaced by combination of any of the following: LD_, AND_, OR_ and EQ(_U), NE(_U), GT(_U), LE(_U), LT(_U), GE(_U).)

*1 The engineering tool with version "1.035M" or later supports the ST.
*2 EQ indicates =, NE indicates <>, GT indicates >, LE indicates <=, LT indicates <, and GE indicates >=.

HEExecution condition

Instruction Execution condition

LDO(_U), ANDO(_U), ORO(_U) Every scan

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | LDO, ANDO, ORO | Comparison data or the device where -32768 to 32767 16-bit signed binary ANY16_S
LDO_U, ANDO_U, | comparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
ORO_U
(s2) | LDO, ANDO, ORO | Comparison data or the device where -32768 to 32767 16-bit signed binary ANY16_S
LDO_U, ANDO_U, | comparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
ORO_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

21 4 6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |umO\GO,Jo\d, |z |LT,LST, | Lz |Specification [g [g
SM, F, B, SB, SD, SW, FD, R, U3EO\H)GO LC
FX, FY ZR, RD

(s1) O O @] O Oo|— — | O O —|—|—

(s2) O O O O Oo|— — | O O —|—|—

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

Operand Bit Word Constant
SA\X, SAlY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H

(s1) O O O

(s2) O O O

Processing details

» These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the
16-bit binary data in the device specified by (s2). (Devices are used as normally open contacts.)
» The following table lists the comparison operation results of each instruction.

Instruction symbol (ladder, FBD/LD) Condition Result

=(_U), EQ(_U) (s1)=(s2) Continuity state (ENO is on.)
<>(_U), NE(_V) (s1)#(s2)

>(LU), GT(_U) (s1)>(s2)

<=(_V), LE(_V) (s1)(s2)

<(_U), LT(V) (s1)<(s2)

>=(_U), GE(_LU) (s1)=(s2)

=(_U), EQ(_V) (s1)#(s2) Non-continuity state (ENO is off.)
<>(_U), NE(_U) (s1)=(s2)

>(_U), GT(_U) (s1)(s2)

<=(_U), LE(_U) (s1)>(s2)

<(_U), LT(_V) (s1)x(s2)

>=(_U), GE(_V) (s1)<(s2)

» When hexadecimal constants are used for (s1) and (s2) and the numerical value (8 to F) whose most significant bit (b15) is
1 is specified as a constant, the value is considered as a negative binary value in comparison operation.

« If the LDO instruction is used in the program written in FBD/LD, use a left rail or a variable/constant which is always on for
EN.

« If the ORO instruction is used in the program written in FBD/LD and EN is set to TRUE, ENO turns on. EN will not be an
execution condition.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 21
6.1 Comparison Operation Instructions 5

Comparing 32-bit binary data

LDDLI(_U), ANDDLI(_U), ORDO(_U)

RnPCPU | RnPCPU JRnPSFCPURnPSFCPUJf RnSFCPU lf RnSFCPU
RnCPURRnENCPU (Redundant) l(Standard)l (Safety) M(Standard)R (Safety)

These instructions compare the two sets of 32-bit binary data specified. (Devices are used as normally open contacts.)

Ladder sT1
ENO:=LDD_[I(EN,s1,52); ENO:=LDD_[O_U(EN,s1,s2);
=]] |) | 2 ENO:=ANDD_LI(EN,s1,s2); ENO:=ANDD_[I_U(EN,s1,s2);
ENO:=ORD_O(EN,s1,52); ENO:=ORD_O_U(EN,s1,52);

(O 'is replaced by any of the following: EQ, NE, GT, LE, LT, GE.)"?

ANDC I 0 —{ L[| 62—

OR[C— 7]

— L0602

(O'is to be replaced by any of the following: D=(_U), D<>(_U), D>(_U),
D<=(_U), D<(_V), b>=(_V).)

FBD/LD

C— 1
— EN ENO —
— s1

— s2

(O is to be replaced by combination of any of the following: LDD_, ANDD_, ORD_ and EQ(_U), NE(_U), GT(_U), LE(_U), LT(_UV), GE(_U).)*2

*1 The engineering tool with version "1.035M" or later supports the ST.
*2 EQ indicates =, NE indicates <>, GT indicates >, LE indicates <=, LT indicates <, and GE indicates >=.

HEExecution condition

Instruction Execution condition
LDDO(_U), ANDDO(_U), Every scan
ORDO(_U)

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | LDDO, Comparison data or the start device where the -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
ANDDO, comparison data is stored
ORDO
LDDO_U, 0 to 4294967295 32-bit unsigned binary | ANY32_U
ANDDO_U,
ORDO_U
(s2) | LDDO, Comparison data or the start device where the -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
ANDDO, comparison data is stored
ORDO
LDDO_U, 0 to 4294967295 32-bit unsigned binary | ANY32_U
ANDDO_U,
ORDO_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

21 6 6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |umO\GO,Jo\d, |z |LT,LST, | Lz |Specification [g [g
SM, F, B, SB, SD, SW, FD, R, U3EO\H)GO LC
FX, FY ZR, RD
(s1) O O @] O [OA NG O | O O —|—|—
(s2) O O O O [OA NG O | O O —|—|—

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

Operand Bit Word Constant
SA\X, SAlY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H

(s1) O O O

(s2) O O O

Processing details

» These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the
32-bit binary data in the device specified by (s2). (Devices are used as normally open contacts.)
» The following table lists the comparison operation results of each instruction.

Instruction symbol (ladder, FBD/LD) Condition Result

D=(_U), EQ(_U) (s1)=(s2) Continuity state (ENO is on.)
D<>(_U), NE(_U) (s1)#(s2)

D>(_U), GT(_U) (s1)>(s2)

D<=(_U), LE(_V) (s1)(s2)

D<(_U), LT(_V) (s1)<(s2)

D>=(_U), GE(_U) (s1)=(s2)

D=(_U), EQ(_V) (s1)#(s2) Non-continuity state (ENO is off.)
D<>(_U), NE(_U) (s1)=(s2)

D>(_U), GT(_U) (s1)(s2)

D<=(_U), LE(_U) (s1)>(s2)

D<(_V), LT(_LV) (s1)=(s2)

D>=(_U), GE(_U) (s1)<(s2)

» When hexadecimal constants are specified for (s1) and (s2) and the numerical value (8 to F) whose most significant bit
(b31) is 1 is specified as a constant, the value is considered as a negative binary value in comparison operation.

+ To specify the compare target data, use an instruction which handles 32-bit data, such as the DMOV(P) instruction. If an
instruction which handles 16-bit data, such as the MOV(P) instruction, is used, comparison cannot be performed normally.

« If the LDDO instruction is used in the program written in FBD/LD, use a left rail or a variable/constant which is always on for
EN.

« If the ORDO instruction is used in the program written in FBD/LD and EN is set to TRUE, ENO turns on. EN will not be an
execution condition.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 21
6.1 Comparison Operation Instructions 7

Outputting a comparison result of 16-bit binary data

CMP(P)(_U)

2N 2N 2N 2N A A
RnPCPU |l RnPCPU RnPSFCPURnPSFCPUlf RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant) B(Standard)ll (Safety) J(Standard)}l (Safety)

* For the ROOCPU, RO1CPU, and RO2CPU, there are no restrictions on the version.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "17" or later support these instructions. Use an

engineering tool with version "1.020W" or later.

These instructions compare the 16-bit binary data specified by (s1) with the 16-bit binary data specified by (s2), and according

to the result (small, equal, or large), (d), (d)+1, or (d)+2 is turned on.

Ladder

ST

—C=d]en|ea] @

ENO:=CMP(EN,s1,s2,d);
ENO:=CMPP(EN,s1,s2,d);

ENO:=CMP_U(EN,s1,s2,d);
ENO:=CMPP_U(EN,s1,s2,d);

FBD/LD

L]
— EN ENO —
— s1 d |—
— s2

HExecution condition

Instruction Execution condition
CMP

CMP_U l_

CMPP

CMPP_U |

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | CMP(P) Comparison data or the device where the -32768 to 32767 16-bit signed binary ANY16_S

CMP(P)_U comparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | CMP(P) Comparison data or the device where the -32768 to 32767 16-bit signed binary ANY16_S

CMP(P)_U comparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) The start device where the comparison resultis | — Bit ANYBIT_ARRAY

stored (Number of elements: 3)

EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

218

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

HApplicable devices

(s1) o 6] ¢ 6] o|— — |0 @) — ==
(s2) o 6] ¢ 6] o|— — |0 @) — ==
(d) o) — 02 — —| = — |0 — | ===

*1 FXand FY cannot be used.
*2 T, ST, and C cannot be used.

» These instructions compare the 16-bit binary data specified by (s1) with the 16-bit binary data specified by (s2), and
according to the result (small, equal, or large), (d), (d)+1, or (d)+2 is turned on.

X0
X0

—i——— owp | 1) | 52 | @ H I

" —F— ! Tums on when (s1) > (s2) (s2)
, (d)+1 : @

' ——F— ' Turns on when (s1) = (s2)

o2 @
' —F— 1 Turns on when (s1) < (s2)

(d)+2

There is no operation error.

6 BASIC INSTRUCTIONS 21 9
6.1 Comparison Operation Instructions

Outputting a comparison result of 32-bit binary data

DCMP(P)(_U)

Cx Cx S>CA< S>CA< S| Cx S| Cx
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPU RRnENCPUR (process) ll Redundant) | (Standard)l| (Safety) N(Standard)l] (Safety)

* For the ROOCPU, RO1CPU, and RO2CPU, there are no restrictions on the version.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "17" or later support these instructions. Use an
engineering tool with version "1.020W" or later.

These instructions compare the 32-bit binary data specified by (s1) with the 32-bit binary data specified by (s2), and according

to the result (small, equal, or large), (d), (d)+1, or (d)+2 is turned on.

Ladder

ST

—{C=O]en|ea] @ }—{

ENO:=DCMP(EN,s1,s2,d);

ENO:=DCMPP(EN,s1,s2,d);

ENO:=DCMP_U(EN,s1,s2,d);
ENO:=DCMPP_U(EN,s1,s2,d);

FBD/LD

L]
— EN
— s1

— s2

ENO

d

HExecution condition

Instruction Execution condition
DCMP

DCMP_U

DCMPP

DCMPP_U |

Setting data

EDescription, range, data type

220

Operand Description Range Data type Data type (label)
(s1) | DCMP(P) Comparison data or the device where the -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
DCMP(P)_U comparison data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DCMP(P) Comparison data or the device where the -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
DCMP(P)_U comparison data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) The start device where the comparison resultis | — Bit ANYBIT_ARRAY
stored (Number of elements: 3)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO{O |T,sT,c,D,w, |umO\cO,Jog, LT,LST, | Lz | Specification [« '\ [F ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD
(s1) o ¢ @) e @) O |o @) — ==
(s2) oM e} ¢} O O o |0o o |—|—|-
(d) o — 02 — — — |0 - ===

*1 FXand FY cannot be used.

*2 T, ST, and C cannot be used.

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Processing details

» These instructions compare the 32-bit binary data specified by (s1) with the 32-bit binary data specified by (s2), and

according to the result (small, equal, or large), (d), (d)+1, or (d)+2 is turned on.

X0
———

—oewr|) [62 [@ H

——F— ! Turns on when [(s1), (s1)+1] > [(s2), (s2)+1]
i Turns on when [(s1), (s1)+1] = [(s2), (s2)+1]

Turns on when [(s1), (s1)+1] < [(s2), (s2)+1]

Operation.error

There is no operation error.

X0

_F M

L

: 50 :
' t :
48 G
: L
Held : i
Held E
e
;
had

Held

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

221

222

Outputting a band comparison result of 16-bit binary data

ZCP(P)(_V)

RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPURRnENCPUR (process) ll Redundant) | (Standard)ll (Safety) M(Standard)}] (Safety)

* For the ROOCPU, RO1CPU, and RO2CPU, there are no restrictions on the version.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "17" or later support these instructions. Use an
engineering tool with version "1.020W" or later.

These instructions compare the band between the 16-bit binary data specified by lower limit value (s1) and the 16-bit binary
data specified by upper limit value (s2) with the 16-bit binary data in the device specified by comparison data (s3). According
to the comparison result (below, within zone, or above), (d), (d)+1, or (d)+2 is turned on.

Ladder

ST

— =]y [ea] 6] @

ENO:=ZCP(EN,s1,s2,53,d);
ENO:=ZCPP(EN,s1,s2,s3,d);

ENO:=ZCP_U(EN,s1,s2,s3,d);
ENO:=ZCPP_U(EN,s1,s2,s3,d);

FBD/LD

1
— EN ENO —
— s d —
— s2
— s3

HExecution condition

Instruction Execution condition
ZCP

ZCP_U l_

ZCPP

ZCPP_U |

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s1) | ZCP(P) Lower limit value or the start device for storing | -32768 to 32767 16-bit signed binary ANY16_S
ZCP(P)_U the lower limit value 0 to 65535 16-bit unsigned binary | ANY16_U

(s2) | ZCP(P) Upper limit value or the start device for storing | -32768 to 32767 16-bit signed binary ANY16_S
ZCP(P)_U the upper limit value 0 to 65535 16-bit unsigned binary | ANY16_U

(s3) | ZCP(P) Comparison data or the start device for storing | -32768 to 32767 16-bit signed binary ANY16_S
ZCP(P)_U the comparison data 0 to 65535 16-bit unsigned binary | ANY16_U

(d) The start device where the comparison resultis | — Bit ANYBIT_ARRAY

stored (Number of elements: 3)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y, M, L, JO\O |T,ST,C,D,W, |uOh\GO,JO\O, |z | LT,LST, | Lz | Specification |y [E [g
SM, F, B, SB, SD, SW, FD, R, | USEO\(H)GO LC
FX, FY ZR, RD
(s1) o 6] o) 6] o|— — |0 @) — ==
(s2) o @) @) @) o|— — |0 @) e el
(s3) o ¢ @) e o|— — |0 @) — ==
(d) e) — 02 — —| = — |0 — | ===

*1 FXand FY cannot be used.
*2 T, ST, and C cannot be used.

Processing details

» These instructions compare the band between the 16-bit binary data specified by lower limit value (s1) and the 16-bit binary
data specified by upper limit value (s2) with the 16-bit binary data in the device specified by comparison data (s3).
According to the comparison result (below, within zone, or above), (d), (d)+1, or (d)+2 is turned on.

X0
—i—— zce | 1) | 2 | 63 | © H

@

\ —+— \ Turns on when (s1) > (s3)

@

! b—F— ! Turns on when (s1) < (s3) < (s2)
AR

' ——— ! Turns on when (s3) > (s2)

Precautions

» Set (s1) to a value less than (s2). If (s1) is set to a value greater than (s2), (s2) is treated as the same value as (s1).

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

223

Outputting a band comparison result of 32-bit binary data

DZCP(P)(_U)

RnCPU RnENCPU

* For the ROOCPU, RO1CPU, and RO2CPU, there are no restrictions on the version.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "17" or later support these instructions. Use an
engineering tool with version "1.020W" or later.

These instructions compare the band between the 32-bit binary data specified by lower limit value (s1) and the 32-bit binary

data specified by upper limit value (s2) with the 32-bit binary data in the device specified by comparison data (s3). According

to the comparison result (below, within zone, or above), (d), (d)+1, or (d)+2 is turned on.

Ladder

ST

— =]y [ea] 6] @

ENO:=DZCP(EN,s1,s2,53,d);
ENO:=DZCPP(EN,s1,s2,s3,d);

ENO:=DZCP_U(EN,s1,52,s3,d);
ENO:=DZCPP_U(EN,s1,52,s3,d);

FBD/LD

1
— EN ENO —
— s d —
— s2
— s3

HExecution condition

Instruction Execution condition
DzCP

DZCP_U

DZCPP

DZCPP_U |

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s1) | DZCP(P) Lower limit value or the start device for storing | -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
DZCP(P)_U the lower limit value 0 to 4294967295 32-bit unsigned binary | ANY32_U

(s2) | DZCP(P) Upper limit value or the start device for storing | -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
DZCP(P)_U the upper limit value 0 to 4294967295 32-bit unsigned binary | ANY32_U

(s3) | DZCP(P) Comparison data or the start device for storing | -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
DZCP(P)_U the comparison data 0 to 4294967295 32-bit unsigned binary | ANY32_U

(d) The start device where the comparison resultis | — Bit ANYBIT_ARRAY

stored (Number of elements: 3)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

224

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y, M, L, JO\O |T,ST,C,D,W, |uOh\GO,JO\O, |z | LT,LST, | Lz | Specification |y [E [g
SM, F, B, SB, SD, SW, FD, R, | USEO\(H)GO LC
FX, FY ZR, RD
(s1) o 6] o) 6] o0 O |0 @) — ==
(s2) o @) @) @) Oo|o O |O O — ==
(s3) o ¢ @) e o|o O |o @) — ==
(d) e) — 02 — —| = — |0 — | ===

*1 FXand FY cannot be used.
*2 T, ST, and C cannot be used.

Processing details

» These instructions compare the band between the 32-bit binary data specified by lower limit value (s1) and the 32-bit binary
data specified by upper limit value (s2) with the 32-bit binary data in the device specified by comparison data (s3).
According to the comparison result (below, within zone, or above), (d), (d)+1, or (d)+2 is turned on.

X0
—i—— bzcP | 1) | 2 | 3 | © H
I
! ——F— Turns on when [(s1), (s1)+1] > [(s3), (s3)+1]
NG
! ———— ! Turns on when [(s1), (s1)+1] < [(s3), (s3)+1] £ [(s2), (s2)+1]
@2
! ——F— :Turns on when [(s3), (s3)+1] > [(s2), (s2)+1]
Precautions

» Set (s1) to a value less than (s2). If (s1) is set to a value greater than (s2), (s2) is treated as the same value as (s1).

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 22
6.1 Comparison Operation Instructions 5

Comparing 16-bit binary block data

BKCMPL(P)(_U)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions compare the two sets of 16-bit binary block data specified.

Ladder

st

— = d]en|ea] @ | m

(O is replaced by any of the following: BKCMP=(P)(_U), BKCMP<>(P)(_U),
BKCMP>(P)(_U), BKCMP<=(P)(_U), BKCMP<(P)(_U), BKCMP>=(P)(_U).)

ENO:=BKCMP_O(EN,s1,s2,n,d);
ENO:=BKCMP_OP(EN,s1,s2,n,d);

ENO:=BKCMP_O_U(EN,s1,s2,n,d);
ENO:=BKCMP_OP_U(EN,s1,s2,n,d);

(O is replaced by any of the following:

EQ, NE, GT, LE, LT, GE.)

FBD/LD

1
— EN ENO —
— s d —
— s2
h— n

O is to be replaced by combination of any of the following: BKCMP_ and EQ(P)(_U), NE(P)(_U), GT(P)(_U), LE(P)(_U), LT(P)(_U), GE(P)(_U).)*2

*1 The engineering tool with version "1.035M" or later supports the ST.
*2 EQ indicates =, NE indicates <>, GT indicates >, LE indicates <=, LT indicates <, and GE indicates >=.

HExecution condition

Instruction Execution condition
BKCMPLOI(_U) _,_|_
BKCMPOP(_U) r

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s1) | BKCMPO(P) Comparison data or the start device where the | -32768 to 32767 16-bit signed binary ANY16_S*1
BKCMPO(P)_U | Somparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U"

(s2) | BKCMPO(P) Start device where the comparison data is — 16-bit signed binary ANY16_S™
BKCMPO(P)_U | Stored 16-bit unsigned binary | ANY16_U"

(d) Start device for storing the comparison — Bit ANY_BOOL*1

operation result

(n) Number of data points to be compared 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

226

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |umO\GO,Jo\d, |z |LT,LST, | Lz |Specification [g [g
SM, F, B, SB, SD, SW, FD, R, U3EO\H)GO LC
FX, FY ZR, RD
(s1) - - O - —|— — |0 o |—|—|-
(s2) — — O — —|— — |0 — —| ==
(d) O - O - —| = — |0 e e el
(n) O O O O O|— — | O O — ==

Processing details

» These instructions compare the (n) points of 16-bit binary data from the device specified by (s1) with the (n) points of 16-bit

binary data from the device specified by (s2), and stores the operation result in the device specified by (d) and later.

« If the comparison condition is satisfied, the relevant device specified by (d) turns on; otherwise, the device turns off.

(s1) 1234 (BIN) (s2) 5321 (BIN) (d) OFF (0)

(s1)+1 5678 (BIN) (s2)+1 3399 (BIN) (d)+1 ON 1)

(s1)+2 5000 BIN (s2)+2 5678 (BIN) (d)+2 OFF (0)

(s1)+(n)-2 | 7777 (BIN) (s2)+(n)-2 | 6543 (BIN) (d)*(n)-2 | ON (1)

(s1)+(n)-1 | 4321 (BIN) (s2)+(n)-1 | 1200 (BIN) (d)*+(n)-1 | ON 1)

+ Specify data in units of 16 bits.

+ A constant can be specified for (s1).
(s2) 32000 (BIN) (d) ON 1)
(s2)+1 4321 (BIN) (d)+1 OFF (0)
(s2)+2 32000 (BIN (d)+2 ON 1

(s1) 32000 @IN)| | = | | é ") |:> | Q_/—(/))
(s2)y+(n)-2 | 1234 (BIN) (d)+(n)-2 | OFF (0)
(s2)+(n)-1 | 5678 (BIN) (d)+(n)-1 | OFF 0)

» The following table lists the comparison operation results of each instruction.

Instruction symbol (ladder, FBD/LD) Condition Result

BKCMP=(P)(_U), BKCMP_EQ(P)(_U) (s1)=(s2) On (1)

BKCMP<>(P)(_U), BKCMP_NE(P)(_U) (s1)#(s2)

BKCMP>(P)(_U), BKCMP_GT(P)(_U) (s1)>(s2)

BKCMP<=(P)(_U), BKCMP_LE(P)(_U) (s1)<(s2)

BKCMP<(P)(_U), BKCMP_LT(P)(_U) (s1)<(s2)

BKCMP>=(P)(_U), BKCMP_GE(P)(_U) (s1)>(s2)

BKCMP=(P)(_U), BKCMP_EQ(P)(_U) (s1)%(s2) Off (0)

BKCMP<>(P)(_U), BKCMP_NE(P)(_U) (s1)=(s2)

BKCMP>(P)(_U), BKCMP_GT(P)(_U) (s1)<(s2)

BKCMP<=(P)(_U), BKCMP_LE(P)(_U) (s1)>(s2)

BKCMP<(P)(_U), BKCMP_LT(P)(_U) (s1)>(s2)

BKCMP>=(P)(_U), BKCMP_GE(P)(_U) (s1)<(s2)

» When the comparison operation results stored in (n) points from the device specified by (d) are all on (1), SM704 turns on.

Operation.error

Error code Description

(SD0)

2821H The device ranges starting from the ones specified by (s1) and (d) are overlapping.
The device ranges starting from the ones specified by (s2) and (d) are overlapping.

6 BASIC INSTRUCTIONS 22
6.1 Comparison Operation Instructions 7

Comparing 32-bit binary block data

DBKCMPL(P)(_U)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions compare the two sets of 32-bit binary block data specified.

Ladder

sT™

_|

C:—d|en]e2] @] m

(O is replaced by any of the following: DBKCMP=(P)(_U),
DBKCMP<>(P)(_U), DBKCMP>(P)(_U), DBKCMP<=(P)(_U),
DBKCMP<(P)(_U), DBKCMP>=(P)(_U).)

ENO:=DBKCMP_LI(EN,s1,52,n,d);
ENO:=DBKCMP_OP(EN,s1,52,n,d);

ENO:=DBKCMP_O_U(EN,s1,s2,n,d);
ENO:=DBKCMP_[IP_U(EN,s1,s2,n,d);

(O is replaced by any of the following: EQ, NE, GT, LE, LT, GE.)"?

FBD/LD

C— 1
— EN ENO —
— s d —
— s2
— n

O is to be replaced by combination of any of the following: DBKCMP_ and EQ(P)(_U), NE(P)(_U), GT(P)(_U), LE(P)(_U), LT(P)(_U), GE(P)(_U).)"?

*1 The engineering tool with version "1.035M" or later supports the ST.

*2

HEExecution condition

EQ indicates =, NE indicates <>, GT indicates >, LE indicates <=, LT indicates <, and GE indicates >=.

Instruction

Execution condition

DBKCMPO(_U)

DBKCMPOP(_U)

L
T

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s1) | DBKCMPO(P) Comparison data or the start device where the | -2147483648 to 2147483647 | 32-bit signed binary ANY32_S"
DBKCMPLI(P)_U | comparison data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U™!

(s2) | DBKCMPO(P) Start device where the comparison data is — 32-bit signed binary ANY32_S'1
pBKCMPO(P)_U | Stored 32-bit unsigned binary | ANY32_U"!

(d) Start device for storing the comparison — Bit ANY_BOOL"

operation result

(n) Number of data points to be compared 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

228

label.

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |UO\GO,JONO, |z |LT,LST, | Lz | SPecification [T [g
SM, F, B, SB, SD, SW, FD, R, U3EO\H)GO LC
FX, FY ZR, RD

(s1) - - O — —|— — |0 O - ==

(s2) — — O — —|— — |0 — —| ==

(d) O - O — —| = — |0 - - ==

(n) O O O O O|— — | O O — ==

Processing details

» These instructions compare the (n) points of 32-bit binary data from the device specified by (s1) with the (n) points of 32-bit
binary data from the device specified by (s2), and stores the operation result in the device specified by (d) and later.
« If the comparison condition is satisfied, the relevant device specified by (d) turns on; otherwise, the device turns off.

b31 -+ b0 b31 - b0

s+, (s1) 1090 (BIN) (s2)+1, (s2) 1000 (BIN)) OFF)
(s1)+3, (s1)+2 2080 (BIN) T (s2)+3, (s2)+2 2000 (BIN) (d)+1 OFF (0) T
(s1)+5, (s1)+4 5060 (BIN) (n)| = | (s2)+5, (s2)+4 5060 (BIN) | (n) |:> (d)+2 ON M|
: ; T ; : T ; T
(s1)+2(n)-1, (s1)+2(n)-2 | 1106 (BIN) AL (s2)+2(n)-1, (s2)+2(n)-2 | 1106 (BIN) AL (d)+(n)-1 | ON (1) AL

» Comparison operation is performed in units of 32 bits.
+ A constant can be specified for (s1).

b31 - b0
(s2)+1, (s2) 32700 (BIN) (d) ON)
b31 -~ b0 (s2)+3, (s2)+2 40000 (BIN) T (d)+1 OFF (0) T
(S1)+1,(S1)|32800 (BIN)| | >= | (s2)+5, (s2)+4 32800 (BIN) | (n) |::> (d)+2 ON M| m
; ; T : T
(s2)+2(n)-1, (s2)+2(n)-2 | 2147400 (BIN) AL (d)+(n)-1 | OFF (0) AL

» Specify (d) outside the device ranges for (n) points from the device specified by (s1) and those from the device specified by
(s2).
» The following table lists the comparison operation results of each instruction.

Instruction symbol (ladder, FBD/LD) Condition Result
DBKCMP=(P)(_U), DBKCMP_EQ(P)(_U) (s1)=(s2) on (1)
DBKCMP<>(P)(_U), DBKCMP_NE(P)(_U) (s1)#(s2)

DBKCMP>(P)(_U), DBKCMP_GT(P)(_U) (s1)>(s2)

DBKCMP<=(P)(_U), DBKCMP_LE(P)(_U) (s1)<(s2)

DBKCMP<(P)(_U), DBKCMP_LT(P)(_U) (s1)<(s2)

DBKCMP>=(P)(_U), DBKCMP_GE(P)(_U) (s1)>(s2)

DBKCMP=(P)(_U), DBKCMP_EQ(P)(_U) (s1)%(s2) Off (0)
DBKCMP<>(P)(_U), DBKCMP_NE(P)(_U) (s1)=(s2)

DBKCMP>(P)(_U), DBKCMP_GT(P)(_U) (s1)(s2)

DBKCMP<=(P)(_U), DBKCMP_LE(P)(_U) (s1)>(s2)

DBKCMP<(P)(_U), DBKCMP_LT(P)(_U) (s1)=(s2)

DBKCMP>=(P)(_U), DBKCMP_GE(P)(_U) (s1)<(s2)

* When the comparison operation results stored in (n) points from the device specified by (d) are all on (1), SM704 turns on.
« If (n) is 0, no processing is performed.

6 BASIC INSTRUCTIONS 22
6.1 Comparison Operation Instructions 9

2821H The device ranges starting from the ones specified by (s1) and (d) are overlapping.

The device ranges starting from the ones specified by (s2) and (d) are overlapping.

When bits of a word device are specified, the bits other than the specified ones for storing the operation result
do not change.

D10.F D10.0
otottioftititii[1i0i0oi1][1i0i0to0

D10.F D10.0
otoi1iof[1i1[oiofoioit|1][1i0i0l0

230 6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

6.2

Arithmetic Operation Instructions

Adding 16-bit binary data

+(P)(_U) [when two operands are set]

RnPCPU § RnPCPU JRPSFCPURRnPSFCPUR RnSFCPURNSFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

These instructions add the two sets of 16-bit binary data specified.

Ladder

ST

—C=0le e }—{

Not supported
(==~ Page 233 +(P)(_U) [when three operands are set])

FBD/LD

Not supported

(==~ Page 233 +(P)(_U) [when three operands are set])

HExecution condition

Instruction Execution condition
+

+ U _| l_

+P

+P_U |

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) +(P) Second addend data or the device where the -32768 to 32767 16-bit signed binary ANY16_S

+(P)_U second addend data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) +(P) Device where the first addend data is stored -32768 to 32767 16-bit signed binary ANY16_S

+(P)_U 0 to 65535 16-bit unsigned binary | ANY16_U

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types

described in the table can be used.

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |UD\GO,JO\O, |z |LT,LST, | Lz | sPecification [\« g [g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

(s) O O O O O|— — | O O — ==

(d) O O O O Oo|— — | O — —|—|—

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand Bit Word Constant
SA\X, SAlY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H
(s) @) @) @)
(d) O O _

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

231

Processing details

» These instructions add the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device specified
by (s), and store the operation result in the device specified by (d).

(d) (s) (d)

N

b0

5
6912 (BIN) |

b15 - b0 b15 - b0 b
[sers@N) | + [234Ny [T

« If an overflow occurs in the result, the carry bit is ignored. In this case, SM700 does not turn on.
[+(P) instruction]

(d) (s) (d)

A A AL N
b15 - bo b15 - bo b15 - bo
| 123a5(8IN) | + | -23456(BIN) | > [-3033BIN) |

(d) (s) (d)
/—/% A A
b15 - bo b15 - b0 b15 - bo
| 123a5@IN) | + [23456 BIN) | T>[3034(BIN) |

[+(P)_U instruction]

(d) (s) (d)

b15 - bo b15 - bo b15 - bo
| sersoIN) | + | 123458IN) | > 3599(BIN) |

Operation.error

There is no operation error.

232 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

+(P)(_U) [when three operands are set]

RnPCPU l§ RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions add the two sets of 16-bit binary data specified.

Ladder ST

ENO:=PLUS(EN,s1,s2,d);

| C— | s |) | @ }{ ENO:=PLUSP(EN,s1,s2,d);

ENO:=PLUS_U(EN,s1,s2,d);
ENO:=PLUSP_U(EN,s1,52,d);

FBD/LD

o1
— EN ENO —
— s1 d —
— s2

(O is to be replaced by any of the following: PLUS, PLUSP, PLUS_U, PLUSP_U.)

HEExecution condition

Instruction Execution condition
+

+ U _

+P

+P_U l

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | +(P) First addend data or the device where the first | -32768 to 32767 16-bit signed binary ANY16_S
+P)_U addend data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | +(P) Second addend data or the device where the -32768 to 32767 16-bit signed binary ANY16_S
+(P)_U second addend data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) +(P) Device for storing the operation result — 16-bit signed binary ANY16_S
+(P)_U 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 33

HApplicable devices

(s1) ¢} ¢}) ¢} @) @)

(s2) ¢} o}) ¢} @) @)

(d)) 0 o 0 o o

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.

(s1) o @) e

(s2) @) o) ¢

(d) O ¢ —

» These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).

(s1) (s2) (d)

A N s = Al - Al
b15 .- bO b15 - b0 b15 .- bo
[sers@N) | + [123a@IN) || e912BIN)]

« If an overflow occurs in the result, the carry bit is ignored. In this case, SM700 does not turn on.
[+(P) instruction]

(s1) (s2) @
b5 b0 b15 bo bis b0
| -12345(@IN) | + | -23456(BIN) |c=>| 29735(BIN) |

) (2 @

b5 b0 b15 - b0 bis b0
| 12345@IN) | + | 23456(BIN) | =>| -20735(BIN) |

[+(P)_U instruction]

(s1) (s2) (d)

r h) r h) r h)

b15 bo b15 - bo b15 - bo
| serso@IN) | + | 12345BIN) | =>| 3s08(BIN) |

- Operation error

There is no operation error.

234 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Subtracting 16-bit binary data

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions perform subtraction between the two sets of 16-bit binary data specified.

Not supported
| C— |) | @ }{ (== Page 237 -(P)(_U) [when three operands are set])

Not supported
(== Page 237 -(P)(_U) [when three operands are set])

HEExecution condition

EDescription, range, data type

(s) -(P) Subtrahend data or the device where -32768 to 32767 16-bit signed binary ANY16_S
«P)_U subtrahend data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) -(P) Device where minuend data is stored -32768 to 32767 16-bit signed binary ANY16_S
-(P)_U 0 to 65535 16-bit unsigned binary | ANY16_U

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

BMApplicable devices

(s) ¢} ¢}) ¢} o|— — |0 o |—|—|-

(d) O O O O o|— — |0 — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) o @) e

(d) O e —

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 35

Processing details

» These instructions subtract the 16-bit binary data in the device specified by (s) from the 16-bit binary data in the device
specified by (d), and store the operation result in the device specified by (d).

(d) (s) (d)

N

b0

5
4444 BIN) |

b15 .- b0 b15 .- b0 b
[sereN) | - [123N ||

« If an underflow occurs in the result, the borrow bit is ignored. In this case, SM700 does not turn on.
[-(P) instruction]

(d) (s) (d)

A A AL N
b15 - bo b15 - b0 b15 - bo
| 123a5(8IN) | - | 23456 BIN) | > [-3033BIN) |

(d) (s) (d)
/—/% A A
b15 - bo b15 - b0 b15 - bo
| 123a5@IN) | - | 23456 (BIN) | > [3034(BIN) |

[-(P)_U instruction]
(d) (s) (d)

A A

b15 - bO b15 - bo b15 - bo
| serso@N) | - | -1235@®IN) | > 3509 (BIN)]

Operation.error

There is no operation error.

236 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

-(P)(_VU) [when three operands are set]

RnPCPU l§ RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions perform subtraction between the two sets of 16-bit binary data specified.

Ladder ST
ENO:=MINUS(EN,s1,52,d);
— ENO:=MINUSP(EN,s1,52,d);
[| (s | (s2) |) }—{ ENO:=MINUS_U(EN,s1,52,d);
ENO:=MINUSP_U(EN,s1,52,d);
FBD/LD
C.—/3
—1 EN ENO |—
— s1 d —
— s2

(O is to be replaced by any of the following: MINUS, MINUSP, MINUS_U, MINUSP_U.)

HEExecution condition

Instruction Execution condition
-u _

-P

-P U l

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | -(P) Minuend data or the device where minuend -32768 to 32767 16-bit signed binary ANY16_S
«P)_U data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | -(P) Subtrahend data or the device where -32768 to 32767 16-bit signed binary ANY16_S
“P)U subtrahend data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) -(P) Device for storing the operation result — 16-bit signed binary ANY16_S
-(P)_U 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 37

HApplicable devices

(s1) ¢} ¢}) ¢} @) @)

(s2) ¢} o}) ¢} @) @)

(d)) 0 o 0 o o

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.

(s1)) e

(s2) @) @)

(d) o ¢

238

» These instructions subtract the 16-bit binary data in the device specified by (s2) from the 16-bit binary data in the device
specified by (s1), and store the operation result in the device specified by (d).

(s1) (s2) (d)

A N s = Al - Al
b15 .- bO b15 - b0 b15 .- bo
[sers@iN) | - | 1234BN) | T=>| 4444 (BN) |

« If an underflow occurs in the result, the borrow bit is ignored. In this case, SM700 does not turn on.
[-(P) instruction]

5D s2) @
r N\ r N\ r N\
b15 bo b15 - bo b15 - bo
| -123458IN) | - | 23456 (BIN) | =>| 20735@BIN) |
(s1) (s2) (d)
r N\ r N\ r N\
b15 - bo b15 - bo b15 - bo
| 123458IN) | - | -23456(BIN) | =>| -20735(BIN) |
[-(P)_U instruction]
(s1) (2) (@)
r N\ r N\ r N\
b15 - bo b15 - bo b15 - bo
| se789BIN) | - | 56790(BIN) | =>| 65535(BIN) |

- Operation error

There is no operation error.

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Adding 32-bit binary data

D+(P)(U) [when two operands are sef
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions add the two sets of 32-bit binary data specified.

Not supported
C— |) | @ }_{ (==~ Page 241 D+(P)(_U) [when three operands are set])

Not supported
(==~ Page 241 D+(P)(_U) [when three operands are set])

HEExecution condition

D+P
D+P_U

o+ U
—

|

EDescription, range, data type

(s) D+(P) Second addend data or the start device where | -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D+(P)_U the second addend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D+(P) Start device where the first addend data is -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D+(P)_U stored 0 to 4294967295 32-bit unsigned binary | ANY32_U

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

BMApplicable devices

(s) O O O O [ORRE) o | O ©) — ==

(d) (@] O O (@) (OR NO) o |0 — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) ¢ O [e)
(d) O @) —

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 39

Processing details

» These instructions add the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device specified
by (s), and store the operation result in the device specified by (d).

(d)+1 (d) (s)+1 (s) (d)+1 (d)
/_)Hf_)% /_)H/_)% e \
b31 - b16 b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
| sersoo@IN) | + | 123456 BIN) | > | 691346 (BIN) |

« If an overflow occurs in the result, the carry bit is ignored. In this case, SM700 does not turn on.
[D+(P) instruction]

(d)+1 (d) (s)+1 (s) (d)+1 (d
— — —

b31 - b16 b15 - b0 b31 - b16 b15 - b0 b31 - b16 b15 ~ b
[1234567890 (BIN) | + | 987654321 (BIN) | "> | 74738564 (BIN) |

(d)+1 (d) (s)+1 (s) (d)+1 (d)

b31 - b16 b15 - b0 b31 - b16 b15 - b0 b31 - b16 b15 ~ b
[-1234567890 (BIN)| + | -987654321 (BIN) | > | -74738563 (BIN) |

[D+(P)_U instruction]
(d)+1 (d) (s)+1 (s) (d)+1 (d)
— — " —

b31 ~ b16b15 = b0 b31 - b16b15 b0 b31 - b16b15 = b0
[3456789012 (BIN) | + | 1234567890 (BIN) | > | 396389607 (BIN) |

Operation.error

There is no operation error.

240 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

D+(P)(_U) [when three operands are set]

RnPCPU l§ RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions add the two sets of 32-bit binary data specified.

Ladder ST

ENO:=DPLUS(EN,s1,52,d);
— ENO:=DPLUSP(EN,s1,52,d);
—| 1 | 2 | d
I | N2] @ ENO:=DPLUS_U(EN,s1,52,d);
ENO:=DPLUSP_U(EN,s1,52,d);

FBD/LD

o1
— EN ENO —
— s1 d —
— s2

(O is to be replaced by any of the following: DPLUS, DPLUSP, DPLUS_U, DPLUSP_U.)

HEExecution condition

Instruction Execution condition
D+

D+_U

D+P

D+P_U l

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | D+(P) First addend data or the start device where the | -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D+(P)_U first addend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | D+(P) Second addend data or the start device where | -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D+(P)_U the second addend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D+(P) Start device for storing the operation result — 32-bit signed binary ANY32_S
D+(P)_U 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

6 BASIC INSTRUCTIONS 241
6.2 Arithmetic Operation Instructions

HApplicable devices

(s1) O O O O [ORRE) o | O
(s2) O O O O o]0 o | O
(d) (@] (@] O (@) o0 o |0

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s1) o o
(s2) o o)
(d) o o)

242

» These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

b31 -+ b16 b15 -+ b0
[se7s00BIN) | + |

b31 - b16 b15 -+ b0 b31 - b16 b15 == b0
123456 (BIN) | (—> | 691346 (BIN) |

« If an overflow occurs in the result, the carry bit is ignored. In this case, SM700 does not turn on.
[D+(P) instruction]

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— " — "

b31 - b16 b15 b0 b31 -~ b16b15 - b0 b31 - b16b15 b0
[1234567890 (BIN) | + | 987654321 (BIN) | => |-2072745085 (BIN) |

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— " — "

b31 - b16 b15 - b0 b31 - b16b15 -+ bO b31 =+ b16 b15 - b0
[-1234567890 (BIN)| + | -987654321 (BIN) | ==> | 2072745085 (BIN) |

[D+(P)_U instruction]
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— " — "

b31 - b16 b15 - b0 b31 - b16 b15 - b0 b31 - b16 b15 - b0
| 3456780012 (BIN) | + | 1234567890 (BIN)| =>> | 396389606 (BIN) |

- Operation error

There is no operation error.

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Subtracting 32-bit binary data

et]

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions perform subtraction between the two sets of 32-bit binary data specified.

Not supported
| C— |) | @ }{ (=5~ Page 245 D-(P)(_U) [when three operands are set])

Not supported
(== Page 245 D-(P)(_U) [when three operands are set])

HEExecution condition

o
—

EDescription, range, data type

(s) D-(P) Subtrahend data or the start device where -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D-(P)_U subtrahend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D-(P) Start device where minuend data is stored -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D-(P)_U 0 to 4294967295 32-bit unsigned binary | ANY32_U

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

BMApplicable devices

(s) ¢} ¢}) ¢} ol|0o o |0 o |—|—|-

(d) O O O O o0 o |0 — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) o @) e

(d) O e —

6 BASIC INSTRUCTIONS 24
6.2 Arithmetic Operation Instructions 3

Processing details

» These instructions subtract the 32-bit binary data in the device specified by (s) from the 32-bit binary data in the device
specified by (d) and, and store the operation result in the device specified by (d).
(d)+1 (d) (s)+1 (s) (d)+1 (d)

b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
[sersoo@IN) | - | 123456 (BIN) | > | 444434 BIN) |

« If an underflow occurs in the result, the carry bit is ignored. In this case, SM700 does not turn on.
[D-(P) instruction]

(d)+1 (d) (s)*1 (s) (d)+1 (d)
— — —

b31 - b16 b15 = b0 b31 - b16 b15 = b0 b31 - b16 b15 = b0
[1234567890 (BIN) | - | -987654321 (BIN) | > | 74738564 (BIN) |

(d)+1 (d) (s)+1 (s) (d)+1 (d)

b31 - b16b15 - b0 b31 - b16 b15 - b0 b31 - b16 b15 -~ b0
[-1234567890 (BIN)| - | 987654321 (BIN) | > | -74738563 (BIN) |

[D-(P)_U instruction]

(d)+1 (d) (s)+1 (s) (d)+1 (d)

b31 - b16 b15 - b0 b31 -+ b16 b15 - b0 b31 - b16 b15 - b0
[3456789012 (BIN) | - [-1234567890 (BIN) | > | 396389607 (BIN) |

Operation.error

There is no operation error.

244 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

D-(P)(_U) [when three operands are set]

RnPCPU l§ RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions perform subtraction between the two sets of 32-bit binary data specified.

Ladder ST
ENO:=DMINUS(EN,s1,52,d);
— ENO:=DMINUSP(EN,s1,52,d);
[| (s1) | (s2) | () }—{ ENO:=DMINUS_U(EN,s1,s2,d);
ENO:=DMINUSP_U(EN, s1,52,d);
FBD/LD
C.—/3
— EN ENO |—

s1

s2

d

(O is to be replaced by any of the following: DMINUS, DMINUSP, DMINUS_U, DMINUSP_U.)

HEExecution condition

Instruction Execution condition

D-

D- U

D-P

D-P_U |

Setting data
EDescription, range, data type

Operand Description Range Data type Data type (label)

(s1) | D-(P) Minuend data or the start device where -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D-(P)_U minuend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U

(s2) | D-(P) Subtrahend data or the start device where -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D-(P)_U subtrahend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U

(d) D-(P) Start device for storing the operation result — 32-bit signed binary ANY32_S
D-(P)_U 32-bit unsigned binary | ANY32_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

245

HApplicable devices

(s1) ¢} ¢})) ol 0 O |0

(s2) ¢} o})) ol 0O O | O

(d) O O O O o0 o |0

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.

(s1)) e

(s2) @) @)

(d) o ¢

246

» These instructions subtracts the 32-bit binary data in the device specified by (s2) from the 32-bit binary data in the device
specified by (s1), and store the operation result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

b31 -+ b16 b15 -+ b0
[se7s00BIN) | - |

b31 - b16 b15 -+ b0 b31 - b16 b15 == b0
123456 (BIN) | (°> | 444434 BIN) |

« If an underflow occurs in the result, the carry bit is ignored. In this case, SM700 does not turn on.
[D-(P) instruction]

(S1)+1 (81) (32)+1 (32) (d)+1 (d)
— " — "

b31 =+ b16 b15 == b0
| 1234567890 (BIN) |

b31 =+ b16 b15 = b0 b31 - b16 b15 =+ b0
| -987654321 (BIN) | => |-2072745085 (BIN) |

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— " — "

b31 - b16 b15 - b0
[1234567890 (BIN) |

b31 - b16 b15 = b0 b31 - b16 b15 = b0
| 987654321 (BIN) | => | 2072745085 (BIN) |

[D-(P)_U instruction]

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— " — "
b31 - b16b15 = bo b31 - b16b15 = bo b31 - b16b15 = bo

| 3456789012 (BIN) |

- Operation error

There is no operation error.

[3060399406 (BIN) | => | 396389606 (BIN) |

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Multiplying 16-bit binary data

*(P)(_Y)

RnPCPU | RnPCPU JRnPSFCPURnPSFCPUJf RnSFCPU lf RnSFCPU
RnCPURRnENCPU (Redundant) l(Standard)l (Safety) M(Standard)R (Safety)

These instructions multiply the two sets of 16-bit binary data specified.

Ladder

sT1

— . a[en|ea] @ }—{

ENO:=MULTI(EN,s1,52,d);
ENO:=MULTIP(EN,s1,s2,d);

ENO:=MULTI_U(EN,s1,s2,d);
ENO:=MULTIP_U(EN,s1,s2,d);

FBD/LD

L
— EN ENO —
— s1 d —
— s2

(O is to be replaced by any of the following: MULTI, MULTIP, MULTI_U, MULTIP_U.)

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

Instruction Execution condition
* U J l_

P

*P_U I

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | *(P) Multiplicand data or the device where -32768 to 32767 16-bit signed binary ANY16_S
“(P)_U multiplicand data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | *(P) Multiplier data or the device where multiplier -32768 to 32767 16-bit signed binary ANY16_S
*(P)_U data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) *(P) Start device for storing the operation result — 32-bit signed binary ANY32_S
*(P)_U 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

247

HApplicable devices

(s1) O O O O O|— — | O
(s2) O O O O O|— — | O
(d) (@) O O O o0 o |0

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.

(s1)

O

(s2)

O

(d)

O

Processing,dea

» These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).

s (s2)

b15

~

p
b0 b15 b0

b31 - b16 b15 -

5678 (BIN) | x |

1234 (BIN)

| =>| 7006652 (BIN) |

* When (d) is a bit device, data should be specified in order from lower bits.

[Ex]

Operation result when (d) is a bit device

» K1--Lower 4 bits (b0 to b3)
* K4---Lower 16 bits (b0 to b15)
» K8:--Lower 32 bits (b0 to b31)

- Operation error

There is no operation error.

248

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Dividing 16-bit binary data

I(P)(_U)

RnPCPU | RnPCPU JRnPSFCPURnPSFCPUJf RnSFCPU lf RnSFCPU
RnCPURRnENCPU (Redundant) l(Standard)l (Safety) M(Standard)R (Safety)

These instructions perform division between the two sets of 16-bit binary data specified.

Ladder

sT1

— . a[en|ea] @ }—{

ENO:=DIVISION(EN,s1,52,d);
ENO:=DIVISIONP(EN,s1,52,d);

ENO:=DIVISION_U(EN,s1,s2,d);
ENO:=DIVISIONP_U(EN,s1,s2,d);

FBD/LD

L
— EN ENO —
— s1 d —
— s2

(O is to be replaced by any of the following: DIVISION, DIVISIONP, DIVISION_U, DIVISIONP_U.)

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

Instruction Execution condition
/

/_U J l_

/P

/P_U I

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | /(P) Dividend data or the device where dividend -32768 to 32767 16-bit signed binary ANY16_S
(P)_U data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | /(P) Divisor data or the device where divisor data is | -32768 to 32767 16-bit signed binary ANY16_S
I(P)_U stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) 1(P) Start device for storing the operation result — 32-bit signed binary ANY16_S_ARRAY
(Number of elements: 2)
/(P)_U 32-bit unsigned binary | ANY16_U_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

249

HApplicable devices

(s1) O O O O o|— — | O
(s2) O O O O Oo|— — | O
(d) O O (@) (@) [ORNE) o |O

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
(s1) @) O o
(s2) O @) O
(d) O O _

» These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).

(s1) (s2)) (d)+1

A A} s - R} e N/ \
b15 - b0 b15 - b0 b15 - b0 b15 = bo
| sers@IN) | = | 1234BIN) | T=>[4@N) | [742 BIN)
(d): Quotient

(d)+1: Remainder
+ As the operation result, the quotient and remainder are stored in 32 bits. When a bit device is specified, the number of digit-

specified bits is used to store the quotient and remainder.
* Quotient:--Stored in lower 16 bits.
* Remainder--Stored in upper 16 bits.

- Operation error

3400H The value (divisor) in the device specified by (s2) is 0.

250 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Multiplying 32-bit binary data

D*(P)(_V)

RnPCPU | RnPCPU JRnPSFCPURnPSFCPUJf RnSFCPU lf RnSFCPU
RnCPURRnENCPU (Redundant) l(Standard)l (Safety) M(Standard)R (Safety)

These instructions multiply the two sets of 32-bit binary data specified.

Ladder

sT1

— . a[en|ea] @

ENO:=DMULTI(EN,s1,s2,d);

ENO:=DMULTIP(EN,s1,52,d);

ENO:=DMULTI_U(EN,s1,52,d);
ENO:=DMULTIP_U(EN,s1,s2,d);

FBD/LD

L
— EN ENO —
— s1 d —
— s2

(O is to be replaced by any of the following: DMULTI, DMULTIP, DMULTI_U, DMULTIP_U.)

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

Instruction Execution condition
D*

D*_ U l_

D*P

D*P_U I

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | D*(P) Multiplicand data or the start device where -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D*(P)_U multiplicand data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | D*(P) Multiplier data or the start device where -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
D*(P)_U multiplier data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D*(P) Start device for storing the operation result — 64-bit signed binary ANY32_S_ARRAY
(Number of elements: 2)
D*(P)_U 64-bit unsigned binary | ANY32_U_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

251

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |umO\GO,Jo\d, |z |LT,LST, | Lz |Specification [g [g
SM, F, B, SB, SD, SW, FD, R, U3EO\H)GO LC
FX, FY ZR, RD
(s1) O O @] O [OA NG O | O O —|—|—
(s2) O O O O [OA NG O | O O —|—|—
(d) O - O - —10 — |0 e e el

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand Bit Word Constant
SA\X, SAlY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H
(s1) O O o)
(s2) o @) e}
(d) @) @) —

Processing details

» These instructions multiply the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d+3 (@2 (d)+1 (d)

b31 - b16 b15 - b0 b31 - b16 b15 - b0 b63 - b48 b47 -~ b32b31 - b16 b15 b0
[se7s00BIN) | x | 123456 BIN) | > | 70109427840 (BIN) |

* When (d) is a bit device, only the lower 32 bits of the operation result are stored. If the upper 32 bits of the operation result
are required, temporarily store the result in a word device, and transfer the data stored in (d)+2 and (d)+3 to the specified
bit devices.

[Ex]

Operation result when (d) is a bit device
* K1---Lower 4 bits (b0 to b3)
* K4.--Lower 16 bits (b0 to b15)
» K8:--Lower 32 bits (b0 to b31)

Operation.error

There is no operation error.

252 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Dividing 32-bit binary data

D/(P)(_U)

RnPCPU | RnPCPU JRnPSFCPURnPSFCPUJf RnSFCPU lf RnSFCPU
RnCPURRnENCPU (Redundant) l(Standard)l (Safety) M(Standard)R (Safety)

These instructions perform division between the two sets of 32-bit binary data specified.

Ladder

sT1

ENO:=DDIVISION(EN,s1,s2,d);

ENO:=DDIVISIONP(EN,s1,s2,d);

ENO:=DDIVISION_U(EN,s1,s2,d);
ENO:=DDIVISIONP_U(EN,s1,s2,d);

— . a[en|ea] @

FBD/LD

L
— EN ENO —
— s1 d —
— s2

(O is to be replaced by any of the following: DDIVISION, DDIVISIONP, DDIVISION_U, DDIVISIONP_U.)

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

Instruction Execution condition
D/

D/_U J l_

D/P

D/P_U I

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) | D/(P) Dividend data or the start device where -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
DI(P)_U dividend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | D/(P) Divisor data or the start device where divisor -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
DI(P)_U data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D/(P) Start device for storing the operation result — 64-bit signed binary ANY32_S_ARRAY
(Number of elements: 2)
D/(P)_U 64-bit unsigned binary | ANY32_U_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types

described in the table can be used.

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

253

HApplicable devices

(s1) o o o o
(s2) o o o o
(d) o o) o o

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
(s1) O O e}
(s2) O O O
(d) O e} _

» These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).
(s1)+1 (s1) (s2+1 (s2) (d)+1 (d) (dy+3 (d)+2

b31 - b16 b15 = b b31 - b16b15 = b0 b31 - b16b15 ~~ b0 b31 -~ b16b15 == b0
| sersoo@IN) | =+ | 123456 BIN) | > | 4 (BIN) | [74066 BIN) |

« As the operation result when a word device is specified, the quotient and remainder are stored in 64 bits. The quotient is
stored in lower 32 bits, and the remainder is stored in upper 32 bits. When a bit device is specified, only quotient is stored in
32 bits.

- Operation error

3400H The value (divisor) in the device specified by (s2) is 0.

254 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Adding BCD 4-digit data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions add the two sets of BCD 4-digit data specified.

Not supported
C— | ®) | d }_{ (==~ Page 256 B+(P) [when three operands are set])

Not supported
(==~ Page 256 B+(P) [when three operands are set])

HEExecution condition

B+P

B+ |_|
I

|

EDescription, range, data type

(s) Second addend data or the device where the second 0 to 9999 BCD 4-digit ANY16
addend data is stored
(d) Device where the first addend data is stored 0 to 9999 BCD 4-digit ANY 16

HMApplicable devices

F

» These instructions add the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified
by (s), and store the operation result in the device specified by (d).

(d) (s) (d)
—_— A A

“ R} “ R}
[sfef7zlaf]«[r1]2]afafc>]e]of1]2]

« If the result exceeds 9999, the carry bit is ignored. In this case, SM700 does not turn on.

le[afsl2]«[a]s]ef[afr>[o]of[1]5]

|f

3405H The BCD data in the device specified by (s) is out of the range, 0 to 9999.
The BCD data in the device specified by (d) is out of the range, 0 to 9999.

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 55

A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPUJRnSFCPURRASFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

These instructions add the two sets of BCD 4-digit data specified.

ENO:=BPLUS(EN,s1,s2,d);
pp— ENO:=BPLUSP(EN,s1,s2,d);
—Jc=a]en[e] @ }—{ (EN stz

C— 1
— EN ENO [—

— s d —

— s2

(O'is to be replaced by either of the following: BPLUS, BPLUSP.)

HEExecution condition

B+P

" L
—

|

EDescription, range, data type

(s1) First addend data or the device where the first addend data | 0 to 9999 BCD 4-digit ANY16
is stored

(s2) Second addend data or the device where the second 0 to 9999 BCD 4-digit ANY16
addend data is stored

(d) Device for storing the operation result — BCD 4-digit ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HMApplicable devices

(s1) (@] O (@] O o|— — |0 (@] — ==
(s2) (@] @) O O o|— — |0 (@] — ==
(d) O O O O O|— — | O — —| ==

6 BASIC INSTRUCTIONS
256

6.2 Arithmetic Operation Instructions

Processing details
» These instructions add the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device specified

by (s2), and store the operation result in the device specified by (d).

(s1) (s2) (d)
/—J% A A
lslef7[8] + [1]2]3]4]c>[6]o]1]2]
« If the result exceeds 9999, the carry bit is ignored. In this case, SM700 does not turn on.

[6 [afalo]« [3[s][s[a]c>[ofo]1]5]

Operation.error
Error code Description
(SDO)
3405H The BCD data in the device specified by (s1) is out of the range, 0 to 9999.

The BCD data in the device specified by (s2) is out of the range, 0 to 9999.

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 57

Subtracting BCD 4-digit data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions perform subtraction between the two sets of BCD 4-digit data specified.

Not supported
C— | ®) | d }_{ (==~ Page 259 B-(P) [when three operands are set])

Not supported
(==~ Page 259 B-(P) [when three operands are set])

HEExecution condition

B-P

i I
—

|

EDescription, range, data type

(s) Subtrahend data or the device where subtrahend data is 0 to 9999 BCD 4-digit ANY16
stored
(d) Device where minuend data is stored 0 to 9999 BCD 4-digit ANY16

HMApplicable devices

F

» These instructions subtract the BCD 4-digit data in the device specified by (s) from the 32-bit binary data in the device
specified by (d), and store the operation result in the device specified by (d).

(d) () (d)
f—% “ A R} “ A R}
lofJef7zl8] - [ofa]afafc>o]afal4]

» Filled with Os.

« If an underflow occurs, the result will be as follows. In this case, SM700 does not turn on.

l[ofJoJol1] - [ofoJofafr>[olofo]s]

|f

3405H The BCD data in the device specified by (s) is out of the range, 0 to 9999.
The BCD data in the device specified by (d) is out of the range, 0 to 9999.

258 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPUJRnSFCPURRASFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

These instructions perform subtraction between the two sets of BCD 4-digit data specified.

ENO:=BMINUS(EN,s1,s2,d);
pp— ENO:=BMINUSP(EN,s1,s2,d);
—Jc=a]en[e] @ }—{ (ENeTe2)

C— 1
— EN ENO [—

— s d —

— s2

(O'is to be replaced by either of the following: BMINUS, BMINUSP.)

HEExecution condition

B-P

T L
=

|

EDescription, range, data type

(s1) Minuend data or the device where minuend data is stored | 0 to 9999 BCD 4-digit ANY16

(s2) Subtrahend data or the device where subtrahend data is 0 to 9999 BCD 4-digit ANY16
stored

(d) Device for storing the operation result — BCD 4-digit ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(s1) (@] (@] O (@) o|— — |0 (@] — ==
(s2) O O O O O|— — | O ©) — | ==
(d) O O O O Oo|— — | O — — | ==

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 59

Processing details
» These instructions subtract the BCD 4-digit data in the device specified by (s2) from the BCD 4-digit data in the device

specified by (s1), and store the operation result in the device specified by (d).

(s1) (s2) (i)

/—/%

AL
lofef7[8] - [ofafala|c>[o]alaf4]

» Filled with Os.
« |f an underflow occurs, the result will be as follows. In this case, SM700 does not turn on.

[ofoJo[+] - [ofofJof[s]c>[eoofo]s]
Operation.error
Error code Description
(SDO)
3405H The BCD data in the device specified by (s1) is out of the range, 0 to 9999.

The BCD data in the device specified by (s2) is out of the range, 0 to 9999.

260 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Adding BCD 8-digit data

DB+(P) [when two operands are set]

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions add the two sets of BCD 8-digit data specified.

Ladder ST
Not supported
_| C— 1 | (s) | (d) }—{ (K==~ Page 263 DB+(P) [when three operands are set])
FBD/LD
Not supported

(==~ Page 263 DB+(P) [when three operands are set])

HEExecution condition

Instruction Execution condition
DB+ J_L
DB+P _t—

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s) Second addend data or the start device where the second | 0 to 99999999 BCD 8-digit ANY32
addend data is stored

(d) Start device where the first addend data is stored 0 to 99999999 BCD 8-digit ANY32

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y, M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z |LT,LST, | Lz | Specification ey TE ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

(s) o o o o olo o |o o |—|—=|—-

d) o o o o olo o |o — | =1=1=

Processing details

» These instructions add the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified
by (s), and store the operation result in the device specified by (d).

(d)+1 () (s)+1 (s) (d)+1 (d)
K—H—%

K—H—% K—H—%
[o[s[e]7[1[o[e[8] + [o[o[3]2]3]4]s[6] => [1]o[1]o]4]5]2]4]

| | » Filled with Os.
(d)+1, (s)+1: Upper 4 digits
(d), (s): Lower 4 digits

* If the result exceeds 99999999, the carry bit is ignored. In this case, SM700 does not turn on.

[e[s]ofo[o[o[o]o] + [o[1]6]s5]4]3]2[1] => [o]o[6[5]4]3]2]1]

6 BASIC INSTRUCTIONS 2 1
6.2 Arithmetic Operation Instructions 6

- Operation error

3405H The BCD data in the device specified by (s) is out of the range, 0 to 99999999.
The BCD data in the device specified by (d) is out of the range, 0 to 99999999.

262 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

t

A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPUJRnSFCPURRASFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

These instructions add the two sets of BCD 8-digit data specified.

ENO:=DBPLUS(EN,s1,s2,d);
ENO:=DBPLUSP(EN,s1,s2,d);

— = d]en|ea] @

C— 1
— EN ENO [—

— s d —

— s2

(O'is to be replaced by either of the following: DBPLUS, DBPLUSP.)

HEExecution condition

DB+

DB+P

L
=

|

EDescription, range, data type

(s1) First addend data or the start device where the first addend | 0 to 99999999 BCD 8-digit ANY32
data is stored

(s2) Second addend data or the start device where the second | 0 to 99999999 BCD 8-digit ANY32
addend data is stored

(d) Start device for storing the operation result — BCD 8-digit ANY32

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HMApplicable devices

(s1) (@] (@] O (@) o0 o |0 (@] — ==
(s2) (@] (@] @) (@) o0 o |0 (@] — ==
(d) O O O O [ORRE) o |0 — — ==

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 63

Processing details

» These instructions add the BCD 8-digit data in the device specified by (s1) and the BCD 8-digit data in the device specified
by (s2), and store the operation result in the device specified by (d).

s+ (s1) (241 (s2) (d)+1 (d)
[sle]7[s]o[1]2]3] + [o]r]2[s[4]s]6[7] > [s]8[o]2]3[6]e]0]

Filled with 0.

(d)+1, (s1)+1, (s2)+1: Upper 4 digits
(d), (s1), (s2): Lower 4 digits

« If the result exceeds 99999999, the carry bit is ignored. In this case, SM700 does not turn on.

[s]o]o[o[o]ofo[o] + [o]1]6]s[4[3[2]1] > [o]o]6]s5]4]3[2]1]

Operation.error

Error code Description
(SDo)
3405H The BCD data in the device specified by (s1) is out of the range, 0 to 99999999.

The BCD data in the device specified by (s2) is out of the range, 0 to 99999999.

264 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Subtracting BCD 8-digit data

DB-(P) [when two operands are set]

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions perform subtraction between the two sets of BCD 8-digit data specified.

Ladder ST
Not supported
_| C— 1 | (s) | (d) }—{ (K==~ Page 267 DB-(P) [when three operands are set])
FBD/LD
Not supported

(==~ Page 267 DB-(P) [when three operands are set])

HEExecution condition

Instruction Execution condition
> L
DB-P _t_

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) Subtrahend data or the start device where subtrahend data | 0 to 99999999 BCD 8-digit ANY32
is stored
(d) Minuend data or the start device where minuend data is 0 to 99999999 BCD 8-digit ANY32
stored
BApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO\MO |T,ST,C,D,W, |UDO\GO,JO\O, |Z | LT,LST, | Lz |Specification [g [g
SM, F, B, SB, SD, SW, FD, R, | U3EO\H)GO LC
FX, FY ZR, RD
(s) o) o) e) o) oo O |o o) — ==
(d) O O O O [OA NG O | O — —| ==

Processing details

» These instructions subtract the BCD 8-digit data in the device specified by (s) from the BCD 8-digit data in the device
specified by (d), and store the operation result in the device specified by (d).

(d)+1 (d) (s)+1 (s) (d)+1 (d)
— "

[olo[e[7[1]o[e[8] - [o]o]s]2[3[4]5]6] > [o]s[5]4]7]6[1]2]

| | » Filled with Os.
(d)+1, (s)+1: Upper 4 digits
(d), (s): Lower 4 digits

« If an underflow occurs, the result will be as follows. In this case, SM700 does not turn on.

[1]2]s[4]s[e[7]8] - [1]2]3]4]s]e[7[o] > [o]s[o]e]s[o]e]s]

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

265

- Operation error

3405H The BCD data in the device specified by (s) is out of the range, 0 to 99999999.
The BCD data in the device specified by (d) is out of the range, 0 to 99999999.

266 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPUJRnSFCPURRASFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

These instructions perform subtraction between the two sets of BCD 8-digit data specified.

ENO:=DBMINUS(EN,s1,s2,d);
pp— ENO:=DBMINUSP(EN,s1,s2,d);
—Jc=a]en[e] @ }—{ (ENeTe2)

C— 1
— EN ENO |—
— s d —

— s2

(O'is to be replaced by either of the following: DBMINUS, DBMINUSP.)

HEExecution condition

DB-

DB-P

L
=

|

EDescription, range, data type

(s1) Minuend data or the start device where minuend data is 0 to 99999999 BCD 8-digit ANY32
stored

(s2) Subtrahend data or the start device where subtrahend data | 0 to 99999999 BCD 8-digit ANY32
is stored

(d) Start device for storing the operation result — BCD 8-digit ANY32

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HMApplicable devices

(s1) (@] (@] O (@) o0 o |0 (@] — ==
(s2) (@] (@] @) (@) o0 o |0 (@] — ==
(d) O O O O [ORRE) o |0 — — ==

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 67

Processing details

» These instructions subtract the BCD 8-digit data in the device specified by (s2) from the BCD 8-digit data in the device
specified by (s1), and store the operation result in the device specified by (d).

s+ (s1) 241 (s2) (d)+1 (d)
[sle]7[8[o]1]2[s] - [o]1]2]3]4]s[6]7] > [s]s[5]5]4]s]5]6]
Filled with 0.

(d)+1, (s1)+1, (s2)+1: Upper 4 digits
(d), (s1), (s2): Lower 4 digits

« If an underflow occurs, the result will be as follows. In this case, SM700 does not turn on.

[1]2]s[4]s[e[7]8] - [1]2]3]4]s]e[7[o] > [o]s[0]e]s[o]e]s]

Operation. error

Error code Description
(SDO)
3405H The BCD data in the device specified by (s1) is out of the range, 0 to 99999999.

The BCD data in the device specified by (s2) is out of the range, 0 to 99999999.

268 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Multiplying BCD 4-digit data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions multiply the two sets of BCD 4-digit data specified.

Not supported

— = d]en|ea] @ }—{

L
— EN ENO |—
— s d —

— s2

(O is to be replaced by either of the following: BMULTI, BMULTIP.)

HEExecution condition

B'P

. L
—

|

EDescription, range, data type

(s1) Multiplicand data or the device where multiplicand data is 0 to 9999 BCD 4-digit ANY16
stored

(s2) Multiplier data or the device where multiplier data is stored | 0 to 9999 BCD 4-digit ANY16

(d) Start device for storing the operation result — BCD 8-digit ANY32

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(s1) (@] (@] O (@) o|— — |0 (@] — | ==
(s2) (@] (@] @) (@) o|— — |0 (@] — | ==
(d) O O O O [ORRE) o |0 — —| ==

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 69

Processing details

» These instructions multiply the BCD 4-digit data in the device specified by (s1) by the BCD 4-digit data in the device
specified by (s2), and store the operation result in the device specified by (d). ((d)+1: Upper 4 digits, (d): Lower 4 digits)

(s1) (s2) (@)1 @
N AL AL -
[s[e]7[8] «~[ofs[7[e]c>[ofafof7]|[s8]0[2]8]
Filled with 0.

Operation.error

Error code Description

(SDo)

3405H The BCD data in the device specified by (s1) is out of the range, 0 to 9999.
The BCD data in the device specified by (s2) is out of the range, 0 to 9999.

270 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Dividing BCD 4-digit data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions perform division between the two sets of BCD 4-digit data specified.

Not supported

— = d]en|ea] @ }—{

1
— EN ENO |—
— s d —
— s2

(O is to be replaced by either of the following: BDIVISION, BDIVISIONP.)

HEExecution condition

B/P

B L
—

|

EDescription, range, data type

(s1) Dividend data or the device where dividend data is stored | 0 to 9999 BCD 4-digit ANY16

(s2) Divisor data or the device where divisor data is stored 0 to 9999 BCD 4-digit ANY 16

(d) Start device for storing the operation result — BCD 8-digit ANY16_ARRAY
(Number of elements:
2)

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HMApplicable devices

(s1) O O O O Oo|— — | O O — ==
(s2) (@] O (@) O o|— — |0 (@) — | ==
(d) (@] O (@) O Oo|0 o |0 — — ==

6 BASIC INSTRUCTIONS 2 1
6.2 Arithmetic Operation Instructions 7

Processing details

» These instructions divide the BCD 4-digit data in the device specified by (s1) by the BCD 4-digit data in the device specified
by (s2), and store the operation result in the device specified by (d).
(s1) (s2) (d) (d)+1
/—% N O
[s[el7]8]+[ofs[7[e]c>[0fofofe][o]4]2]2]
Filled with 0.

(d): Quotient
(d)+1: Remainder
* As the operation result, the quotient and remainder are stored in 32 bits.

* Quotient (BCD 4 digits)---Stored in lower 16 bits.
* Remainder (BCD 4 digits)---Stored in upper 16 bits.

Operation.error

Error code Description

(SDo)

3400H The value (divisor) in the device specified by (s2) is 0.

3405H The BCD data in the device specified by (s1) is out of the range, 0 to 9999.
The BCD data in the device specified by (s2) is out of the range, 0 to 9999.

272 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Multiplying BCD 8-digit data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions multiply the two sets of BCD 8-digit data specified.

Not supported

— = d]en|ea] @ }—{

L
— EN ENO |—
— s d —

— s2

(O is to be replaced by either of the following: DBMULTI, DBMULTIP.)

HEExecution condition

DB*P

> L
=

|

EDescription, range, data type

(s1) Multiplicand data or the start device where multiplicand data | 0 to 99999999 BCD 8-digit ANY32
is stored
(s2) Multiplier data or the start device where multiplier data is 0 to 99999999 BCD 8-digit ANY32
stored
(d) Start device for storing the operation result — BCD 16-digit ANY32_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HApplicable devices

(s1) 0 o o o olo o |o o |—|—|—-
(s2) o o o o olo o |o o |—|—-]-
() 0 — o - —|o - |o - ===

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 73

Processing details

» These instructions multiply the BCD 8-digit data in the device specified by (s1) by the BCD 8-digit data in the device
specified by (s2), and store the operation result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2)

A A

s N\ N\
[olofolof[ofofolof «~[o]ofolof[ofofo]o]

(d)+3 (d)+2 (d)+1 (d)

-

- - -

c>lolofofof[ofofolsf[ofofofof[ofoo]n]

* When (d) is a bit device, only the lower 8 digits (lower 32 bits) of the operation result are stored.

[Ex]

Operation result when (d) is a bit device
» K1--Lower 1 digit (b0 to b3)
* K4.--Lower 4 digits (b0 to b15)
« K8---Lower 8 digits (b0 to b31)

Operation.error

Error code Description
(SDO)
3405H The BCD data in the device specified by (s1) is out of the range, 0 to 99999999.

The BCD data in the device specified by (s2) is out of the range, 0 to 99999999.

274 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Dividing BCD 8-digit data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions perform division between the two sets of BCD 8-digit data specified.

Not supported

— = d]en|ea] @ }—{

L
— EN ENO |—
— s d —

— s2

(O is to be replaced by either of the following: DBDIVISION, DBDIVISIONP.)

HEExecution condition

DB/P

DB/ J_I_
I

|

EDescription, range, data type

(s1) Dividend data or the start device where dividend data is 0 to 99999999 BCD 8-digit ANY32
stored
(s2) Divisor data or the start device where divisor data is stored | 0 to 99999999 BCD 8-digit ANY32
(d) Start device for storing the operation result — BCD 16-digit ANY32_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(s1) 0 o o o olo o |o o |—|—-]—-
(s2) S S o o olo o |o o |—-|—-]-
) 0 — o - —|o - |o - ===

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 75

Processing details

» These instructions divide the BCD 8-digit data in the device specified by (s1) by the BCD 8-digit data in the device specified
by (s2), and store the operation result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2)
A A s A N\ A N\
[s[el7r[ef[ofr1[afs]+[ofr1[ofs][afs[6]7]
Filled with 0.
Quotient (d)+1 (d) Remainder (d)+3 (d)+2
“ - - s
m>lolofofof[ofo[a]s] lof1]2[3f[3]eofs]

(d)+1, (d)+3: Upper 4 digits
(d), (d)+2: Lower 4 digits

« As the operation result, the quotient and remainder are stored in 64 bits.
* Quotient (BCD 8 digits)---Stored in lower 32 bits.
« Remainder (BCD 8 digits)---Stored in upper 32 bits.

* When (d) is a bit device, the remainder is not stored.

Operation.error

Error code Description

(SDo)

3400H The value (divisor) in the device specified by (s2) is 0.

3405H The BCD data in the device specified by (s1) is out of the range, 0 to 99999999.
The BCD data in the device specified by (s2) is out of the range, 0 to 99999999.

276 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Adding 16-bit binary block data

BK+(P)(_U)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions add the two 16-bit binary data blocks specified.

Ladder

sT™

— = d]en|ea] @ | m }—{

ENO:=BKPLUS(EN,s1,s2,n,d);
ENO:=BKPLUSP(EN,s1,s2,n,d);

ENO:=BKPLUS_U(EN,s1,s2,n,d);
ENO:=BKPLUSP_U(EN,s1,52,n,d);

FBD/LD

L.
— EN ENO [—
— s1 d —

— s2

— n

(O is to be replaced by any of the following: BKPLUS, BKPLUSP, BKPLUS_U, BKPLUSP_U.)

*1 The engineering tool with version "1.035M" or later supports the ST.

HEExecution condition

Instruction Execution condition
BK+

BK+_U

BK+P

BK+P_U I

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s1) | BK+(P) First addend data or the start device where the -32768 to 32767 16-bit signed binary ANY16_S""
BK+(P)_U first addend data is stored 0 to 65535 16-bit unsigned binary | ANY16_U""

(s2) | BK+(P) Second addend data or the start device where -32768 to 32767 16-bit signed binary ANY16_S*1
BK+(P)_U the second addend data is stored 0 to 65535 16-bit unsigned binary | ANY16_U""

(d) BK+(P) Start device for storing the operation result — 16-bit signed binary ANY16_S™"
BK+(P)_U 16-bit unsigned binary | ANY16_U""

(n) Number of data points 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y, M, L, JOO | T,ST,C,D,W, |umO\GO,JoO\O, |z |LT,LsT, | Lz | specification [T Tg
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR,RD
(s1) — — o — —= —|o — | =]=]=
(s2) — — o — —= —|o —=1=
(d) — — o — —| = — |0 o e e
(n) o o o o ol — — |o — ==

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

277

Processing details

» These instructions add the (n) points of 16-bit binary data from the device specified by (s1) and the (n) points of 16-bit
binary data from the device specified by (s2) or the constant, and store the operation result in the device specified by (d)
and later.

» Specify data in units of 16 bits.

[Ex]

When a device is specified by (s2) (signed value specification)

b15 - b0 b15 - b0 b15 - b0
(s1) 1234 (BIN) (s2) 4000 (BIN) (d) 5234 (BIN)
(s1)+1 4567 (BIN) (s2)+1 1234 (BIN) (d)+1 5801 (BIN)
(s1)+2 2000 (BIN)) . (s2)+2 -1234 (BIN) ") I::} (d)+2 -3234 (BIN)
1 S — : — : —
(s1)+(n)-2 |-1234 (BIN) (s2)+(n)-2 | 5000 (BIN) (d)+(n)-2 | 3766 (BIN)
(s1)+(n)-1| 4000 (BIN) l (s2)+(n)-1| 4321 (BIN) (d)+(n)}-1 | 8321 (BIN)

When a constant is specified by (s2) (signed value specification)

b15 - b0 b15 - b0
(s1) 1234 (BIN) (d) 5555 (BIN)
(s1)+1 4567 (BIN) b15 - bo (d)+1 8888 (BIN)
(s1)+2 -2000 (BIN) (d)+2 2321 (BIN)
(n) + (s2) | 4321 (BIN))

: —
; — — : —
(s1)+(n)-2 [-1234 (BIN) (d)+(n)-2 | 3087 (BIN)
(s1)*+(n)-1 | 4000 (BIN) (d)+(n)-1 | 8321 (BIN)

« If an overflow occurs, the result will be as follows. In this case, SM700 does not turn on.

When a signed value is specified When an unsigned value is specified
K32767 K2 K-32767 K65535 K1 KO
(H7FFF) © (H0002) => (H8001) (HFFFF) © (Ho001) => (H0000)
K-32767 K-2 K32767

(H8001) * (HFFFE) => (H7FFF)

Operation. error

Error code Description
(SD0)
2821H The device ranges starting from the ones specified by (s1) and (d) are overlapping (except when the same device is specified for (s1) and

(d))-

The device ranges starting from the ones specified by (s2) and (d) are overlapping (except when the same device is specified for (s2) and

(d))-

278 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Subtracting 16-bit binary block data

BK-(P)(_U)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions perform subtraction between the two 16-bit binary data blocks specified.

Ladder st
ENO:=BKMINUS(EN,s1,s2,n,d); ENO:=BKMINUS_U(EN,s1,s2,n,d);
pp— ENO:=BKMINUSP(EN,s1,s2,n,d); ENO:=BKMINUSP_U(EN,s1,s2,n,d);
— = d]en|ea] @ | m
FBD/LD
L
— EN ENO —
— s1 d —

— s2

— n

(O is to be replaced by any of the following: BKMINUS, BKMINUSP, BKMINUS_U, BKMINUSP_U.)

*1 The engineering tool with version "1.035M" or later supports the ST.

HEExecution condition

Instruction Execution condition
BK-

BK-_U

BK-P

BK-P_U I

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s1) | BK~(P) Minuend data or the start device where -32768 to 32767 16-bit signed binary ANY16_S™
BK-(P)_U minuend data is stored 0 to 65535 16-bit unsigned binary | ANY16_U""

(s2) | BK-(P) Subtrahend data or the start device where -32768 to 32767 16-bit signed binary ANY16_S*1
BK-(P)_U subtrahend data is stored 0 to 65535 16-bit unsigned binary | ANY16_U"

(d) BK-(P) Start device for storing the operation result — 16-bit signed binary ANY16_S™
BK-(P)_U 16-bit unsigned binary | ANY16_U"1

(n) Number of data points 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array
label.

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z |LT,LST, | Lz | Specification e 'y TE ['g
SM, F, B, SB, SD, SW, FD,R, | U3EO\(H)GO LC
FX, FY ZR,RD
(s1) — — o — —= —|o — | =]=]=
(s2) — — o — —= —|o o |=|]=]=
(d) — — o — — = — |0 o e e
(n) o o o o o|— — |o o |—[—-]—

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 79

Processing details

» These instructions subtract the (n) points of 16-bit binary data from the device specified by (s2) or the constant from the (n)
points of 16-bit binary data from the device specified by (s1), and store the operation result in the device specified by (d)
and later.

 Specify data in units of 16 bits.

[Ex]

When a device is specified by (s2)

b15 b0 b15 b0 b15 b0
(s1) 8765 (BIN) (s2) 1234 (BIN) (d) 7531 (BIN)
(s1)+1 8888 (BIN) (s2)+1 5678 (BIN) (d)+1 3210 (BIN)
(s1)+2 9325 (BIN)) (s2)+2 9876 (BIN)) I::} (d)+2 -551 (BIN))
: e — : e — e —
(s1)+(n)-2| 5000 (BIN) (s2)+(n)-2 | 4321 (BIN) (d)+(n)}-2 | 679 (BIN)
(s1)*(n)-1| 4352 (BIN) (s2)+(n)-1 {4000 (BIN) (d)+(n)-1 | 352 (BIN)
When a constant is specified by (s2)

b15 b0 b15 b0
(s1) 8765 (BIN) (d) -115 (BIN)
(s1)+1 8888 (BIN) b15 bo (d)+1 8 (BIN)
(s1)+2 9325 (BIN) s 2 [380 @N) I::} (d)+2 445 (BIN))
: e — : S —
(s1)+(n)-2| 5000 (BIN) (d)+(n)-2 |-3880 (BIN)
(s1)*(n)-1| 4352 (BIN) (d)+(n)-1 |-4528 (BIN)

« If an overflow occurs, the result will be as follows. In this case, SM700 does not turn on.

When a signed value is specified When an unsigned value is specified

K-32768 K2 K32766 KO K1 K65535
(H8000) (Hoooz) TP (frFrE) (H0000) (Ho001) T (HFFFR)
K32767 K-2 K-32767
(H7FFF) (HFFFE) l,: (H8001)

Operation. error

Error code
(SDO0)

2821H

Description

The device ranges starting from the ones specified by (s1) and (d) are overlapping (except when the same device is specified for (s1) and

(d))-

The device ranges starting from the ones specified by (s2) and (d) are overlapping (except when the same device is specified for (s2) and

(d))-

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

280

Adding 32-bit binary block data

DBK+(P)(_U)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions add the two 32-bit binary data blocks specified.

Ladder st
ENO:=DBKPLUS(EN,s1,s2,n,d); ENO:=DBKPLUS_U(EN,s1,s2,n,d);
pp— ENO:=DBKPLUSP(EN,s1,s2,n,d); ENO:=DBKPLUSP_U(EN,s1,s2,n,d);
— = d]en|ea] @ | m
FBD/LD
L]
— EN ENO —
— si d |—

— s2

— n

(O is to be replaced by any of the following: DBKPLUS, DBKPLUSP, DBKPLUS_U, DBKPLUSP_U.)

*1 The engineering tool with version "1.035M" or later supports the ST.

HEExecution condition

Instruction Execution condition
DBK+

DBK+_U

DBK+P

DBK+P_U I

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s1) | DBK+(P) First addend data or the start device where the | -2147483648 to 2147483647 | 32-bit signed binary ANY32_S™
DBK+(P)_U first addend data is stared 0 to 4294967295 32-bit unsigned binary | ANY32_U™!

(s2) | DBK+(P) Second addend data or the start device where | -2147483648 to 2147483647 | 32-bit signed binary ANY32_S*1
DBK+(P)_U the second addend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U""

(d) DBK+(P) Start device for storing the operation result — 32-bit signed binary ANY32_S™
DBK+(P)_U 32-bit unsigned binary | ANY32_U""

(n) Number of data points 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array
label.

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z |LT,LST, | Lz | Specification e 'y TE ['g
SM, F, B, SB, SD, SW, FD,R, | U3EO\(H)GO LC
FX, FY ZR,RD
(s1) — — o — —= —|o — | =]=]=
(s2) — — o — —= —|o o |=|]=]=
(d) — — o — — = — |0 o e e
(n) o o o o o|— — |o o |—[—-]—

6 BASIC INSTRUCTIONS 2 1
6.2 Arithmetic Operation Instructions 8

Processing details

» These instructions add the (n) points of 32-bit binary data from the device specified by (s1) and the (n) points of 32-bit
binary data from the device specified by (s2) or the constant, and store the operation result in the device specified by (d)
and later.

» Specify data in units of 32 bits.

[Ex]

When a device is specified by (s2) (signed value specification)

b31 - b0 b31 - b0 b31 - b0
(s1)+1, (s1) -30000 (BIN) (s2)+1, (s2) 50000 (BIN) (d)+1, (d) 20000 (BIN)
(s1)+3, (s1)+2 40000 (BIN) T (s2)+3, (s2)+2 20000 (BIN) T (d)+3, (dy+2 60000 (BIN) T
(s1)+5, (s1)+4 -50000 (BIN)| (n) + (s2)+5, (s2)+4 -10000 (BIN) | (n) |:> (d)+5, (d)+4 -60000 (BIN) | (n)
: : —— ; : T : :
(s1)+2(n)-1, (s1)+2(n)-2 | 60000 (BIN) AL (s2)+2(n)-1, (s2)+2(n)-2 | -20000 (BIN) (d)+2(n)-1, (d)+2(n)-2 | 40000 (BIN) AL
When a constant is specified by (s2) (signed value specification)

b31 - b0 b31 - b0
(s1)+1, (s1) -30000 (BIN) (d)+1, (d) 20000 (BIN)
(s1)+3, (s1)+2 40000 (BIN) b31 - b0 (d)+3, (d)+2 90000 (BIN) T
(s1)+5, (s1)+4 -50000 (BIN)| (n) + (s2)*1,(s2) |::> (d)+5, (d)+4 0 (BIN)| (n)
. . — : : ~
(s1)+2(n)-1, (s1)+2(n)-2 | 60000 (BIN) (d)+2(n)-1, (d)+2(n)-2 | 110000 (BIN) AL

» Operation is possible when the same device is specified by (s1) or (s2) and (d). However, if the device range of (n) points
from (s1) or (s2) and the device range of (n) points from (d) are partly overlapped, an error results.

[Ex]

When the four points of device from that specified by (s2) and (d) exactly match

b31 =+ b0 b31 =+ b0 b31 - b0
W1, WO D1, DO
W3, W2 D3, D2)
W5, W4 D5, D4
W7, W6 D7, D6

(1) Operation is possible because they exactly match.

When four points of device from that specified by (s2) and (d) are partly overlapped

b31 - b0 b31 - b0
W1, WO D1, DO b31 - b0
W3, W2 D3, D2
W5, W4 D5, D4 (1)
W7, W6 D7, D6
D9, D8

(1) An operation error results because they partly match.
* If (n) is 0, no processing is performed.
« |If an overflow occurs, the result will be as follows. In this case, SM700 does not turn on.

When a signed value is specified When an unsigned value is specified
K2147483647 K-2147483647 K4294967295 |:,‘>
(H7FFFFFFF) (HOOOOOOOZ) ':1'> (H80000001) (HFFFFFFFF) (H00000001) HOOOOOOOO)

K-2147483647 K2147483647
(H80000001) (HFFFFFFFE) => (HTFFFFFFF)

282 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

- Operation error

2821H The device ranges starting from the ones specified by (s1) and (d) are overlapping (except when the same device is specified for (s1) and

(d)).

The device ranges starting from the ones specified by (s2) and (d) are overlapping (except when the same device is specified for (s2) and

(d)).

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 83

Subtracting 32-bit binary block data

DBK-(P)(_U)

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions perform subtraction between the two 32-bit binary data blocks specified.

Ladder st
ENO:=DBKMINUS(EN,s1,s2,n,d); ENO:=DBKMINUS_U(EN,s1,s2,n,d);
pp— ENO:=DBKMINUSP(EN,s1,s2,n,d); | ENO:=DBKMINUSP_U(EN,s1,s2,n,d);
— = d]en|ea] @ | m
FBD/LD
L
— EN ENO —
— s1 d —

— s2

— n

(O is to be replaced by any of the following: DBKMINUS, DBKMINUSP, DBKMINUS_U, DBKMINUSP_U.)

*1 The engineering tool with version "1.035M" or later supports the ST.

HEExecution condition

Instruction Execution condition
DBK-

DBK-_U

DBK-P

DBK-P_U I

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s1) | DBK-(P) Minuend data or the start device where -2147483648 to 2147483647 | 32-bit signed binary ANY32_S™
DBK-(P)_U minuend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U™!

(s2) | DBK-(P) Subtrahend data or the start device where -2147483648 to 2147483647 | 32-bit signed binary ANY32_S*1
DBK-(P)_U subtrahend data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U"

(d) DBK-(P) Start device for storing the operation result — 32-bit signed binary ANY32_S™
DBK-(P)_U 32-bit unsigned binary | ANY32_U""

(n) Number of data points 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array
label.

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z |LT,LST, | Lz | Specification e 'y TE ['g
SM, F, B, SB, SD, SW, FD,R, | U3EO\(H)GO LC
FX, FY ZR,RD

(s1) — — o — —= —|o — | =]=]=

(s2) — — o — —= —|o o |=|]=]=

(d) — — o — — = — |0 o e e

(n) o o o o o|— — |o o |—[—-]—

284 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Processing details

» These instructions subtract the (n) points of 32-bit binary data from the device specified by (s2) or the constant from the (n)
points of 32-bit binary data from the device specified by (s1), and store the operation result in the device specified by (d)

and later.
 Specify data in units of 32 bits.

[Ex]

When a device is specified by (s2) (signed value specification)

b31 b0 b31 b0 b31 b0
(s1)+1, (s1) -55555 (BIN) (s2)+1, (s2) 44445 (BIN) (d)+1, (d) -1000000 (BIN)
(s1)+3, (s1)+2 33333 (BIN) T (s2)+3, (s2)+2 3333 (BIN) T (d)+3, (d)+2 30000 (BIN)
(s1)+5, (s1)+4 44444 (BIN)| (n) - (s2)+5, (s2)+4 -10000 (BIN) | (n) |:> (d)+5, (d)+4 54444 (BIN)
: : T~ : : T~ — : : T~
(s1)+2(n)-1, (s1)+2(n)-2 | 13579 (BIN) AL (s2)+2(n)-1, (s2)+2(n)-2 | 12345 (BIN) (d)+2(n)-1, (d)+2(n)-2 1234 (BIN)
When a constant is specified by (s2) (signed value specification)

b31 b0 b31 b0
(s1)+1, (s1) -99999 (BIN) (d)+1, (d) -109998 (BIN)
(s1)+3, (s1)+2 99999 (BIN) T b31 -~ b0 (d)+3, (d)+2 90000 (BIN)
(s1)+5, (s1)+4 -59999 (BIN)| (n) - (s2)+1, (s2) |:> (d)+5, (d)+4 69998 (BIN)
: : — : : T~ —
(s1)+2(n)-1, (s1)+2(n)-2 | 79999 (BIN) (d)+2(n)-1, (d)*+2(n)-2 | 70000 (BIN)

» Operation is possible when the same device is specified by (s1) or (s2) and (d). However, if the device range of (n) points
from (s1) or (s2) and the device range of (n) points from (d) are partly overlapped, an error results.

[Ex]

When the four points of device from that specified by (s2) and (d) exactly match

(1M

b31 b0 b31 b0 b31 b0
W1, WO D1, DO
W3, W2 D3, D2
W5, W4 D5, D4
W7, W6 D7, D6

(1) Operation is possible because they exactly match.

When four points of device from that specified by (s2) and (d) are partly overlapped

(M

b31 b0 b31 b0
W1, WO D1, DO b31 b0
W3, W2 D3, D2
W5, W4 D5, D4
W7, W6 D7, D6
D9, D8

(1) An operation error results because they partly match.

* If (n) is 0, no processing is performed.

« If an overflow occurs, the result will be as follows. In this case, SM700 does not turn on.

When a signed value is specified

When an unsigned value is specified

K2147483647 K-2 K-2147483647
(HTFFFFFFF) (HFFFFFFFE) => (H80000001)
K-2147483647 K2 K2147483647
(H80000001) (H00000002) (H7FFFFFFF)

KO
(H00000000)

K1
(HO0000001

K4294967295
(HFFFFFFFF)

) =

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

285

- Operation error

2821H The device ranges starting from the ones specified by (s1) and (d) are overlapping (except when the same device is specified for (s1) and

(d)).

The device ranges starting from the ones specified by (s2) and (d) are overlapping (except when the same device is specified for (s2) and

(d)).

286 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Incrementing 16-bit binary data

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions increment the specified 16-bit binary data by one.

ENO:=INC(EN,d); ENO:=INC_U(EN,d);
— ENO:=INCP(EN,d); ENO:=INCP_U(EN,d);
[
C. 1
—1 EN ENO |—

HExecution condition

T
NGy]
—

INCP
INCP_U

i

EDescription, range, data type

INC(P) Increment target device -32768 to 32767 16-bit signed binary ANY16_S

INC(P)_U 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 87

Processing details

» These instructions increment the 16-bit binary data in the device specified by (d) by one.

(d) (d)
/—)% /—J%
b15 b0

b15 b0
aes
* When the INC(P) instruction is executed while the data in the device specified by (d) is 32767, -32768 is stored in the
device specified by (d). (When a signed value is specified)
* When the INC(P)_U instruction is executed while the data in the device specified by (d) is 65535, 0 is stored in the device
specified by (d). (When an unsigned value is specified)

Operation.error

There is no operation error.

288 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Decrementing 16-bit binary data

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions decrement the specified 16-bit binary data by one.

ENO:=DEC(EN,d); ENO:=DEC_U(EN,d);
— ENO:=DECP(EN,d); ENO:=DECP_U(EN,d);
[
C. 1
—1 EN ENO |—

HExecution condition

DEC
DEC_U _| |_
1

DECP
DECP_U

i

EDescription, range, data type

DEC(P) Decrement target device -32768 to 32767 16-bit signed binary ANY16_S

DEC(P)_U 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 89

Processing details

» These instructions decrement the 16-bit binary data in the device specified by (d) by one.

(d) (d)
/—)% /—J%
b15 b0

b15 b0
=S
* When the DEC(P) instruction is executed while the data in the device specified by (d) is -32768, 32767 is stored in the
device specified by (d). (When a signed value is specified)
» When the DEC(P)_U instruction is executed while the data in the device specified by (d) is 0, 65535 is stored in the device
specified by (d). (When an unsigned value is specified)

Operation.error

There is no operation error.

290 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Incrementing 32-bit binary data

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions increment the specified 32-bit binary data by one.

ENO:=DINC(EN, d); ENO:=DINC_U(EN,d);
— ENO:=DINCP(EN,d); ENO:=DINCP_U(EN,d);
C” @
C. 1
—1 EN ENO |—

HExecution condition

DINC
DINC_U _| |_
1

DINCP
DINCP_U

i

EDescription, range, data type

DINC(P) Increment target start device -2147483648 to 2147483647 | 32-bit signed binary ANY32_S

DINC(P)_U 0 to 4294967295 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

6 BASIC INSTRUCTIONS 2 1
6.2 Arithmetic Operation Instructions 9

Processing details

» These instructions increment the 32-bit binary data in the device specified by (d) by one.
(d)+1 (d) (d)+1 (d)

b31 -+ b16 b15 -+ b0 b31 -+ b16 b15 == b0

PSS

* When the DINC(P) instruction is executed while the data in the device specified by (d) is 2147483647, -2147483648 is
stored in the device specified by (d). (When a signed value is specified)

» When the DINC(P)_U instruction is executed while the data in the device specified by (d) is 4294967295, 0 is stored in the
device specified by (d). (When an unsigned value is specified)

Operation.error

There is no operation error.

292 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Decrementing 32-bit binary data

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions decrement the specified 32-bit binary data by one.

ENO:=DDEC(EN,d); ENO:=DDEC_U(EN,d);
— ENO:=DDECP(EN,d); ENO:=DDECP_U(EN,d);
C” @
C. 1
—1 EN ENO |—

HExecution condition

DDEC
DDEC_U _| |_
1

DDECP
DDECP_U

i

EDescription, range, data type

DDEC(P) Decrement target start device -2147483648 to 2147483647 | 32-bit signed binary ANY32_S

DDEC(P)_U 0 to 4294967295 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 93

Processing details

» These instructions decrement the 32-bit binary data in the device specified by (d) by one.
(d)+1 (d) (d)+1 (d)

b31 - b16 b15 -+ b0 b31 -+ b16 b15 == b0

RS

* When the DDEC(P) instruction is executed while the data in the device specified by (d) is -2147483648, 2147483647 is
stored in the device specified by (d). (When a signed value is specified)

* When the DDEC(P) instruction is executed while the data in the device specified by (d) is 0, -1 is stored in the device
specified by (d). (When a signed value is specified)

* When the DDEC(P)_U instruction is executed while the data in the device specified by (d) is 0, 4294967295 is stored in the
device specified by (d). (When an unsigned value is specified)

Operation.error

There is no operation error.

294 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

6.3

Logical Operation Instructions

Performing an AND operation on 16-bit data

WAND(P) [when two operands are set]

RnPCPU § RnPCPU JRPSFCPURRnPSFCPUR RnSFCPURNSFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

These instructions perform an AND operation on the two sets of 16-bit binary data specified.

Ladder

ST

—C=0le e }—{

Not supported
(I==" Page 297 WAND(P) [when three operands are set])

FBD/LD

Not supported

(==~ Page 297 WAND(P) [when three operands are set])

HExecution condition

Instruction Execution condition
WAND —,_|_
WANDP _I_

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) Logical AND data or the device where logical AND data is | -32768 to 32767 16-bit signed binary ANY16

stored
(d) Device for storing the operation result -32768 to 32767 16-bit signed binary ANY16

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types

described in the table can be used.

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |um\GO,Jo\d, |z |LT,LST, | Lz |Specification [g [g
SM, F, B, SB, SD, SW, FD, R, U3EO\H)GO LC
FX, FY ZR, RD

(s) O O O O O|— — | O O — ==

(d) O O O O Oo|— — | O — —|—|—

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
Operand Bit Word Constant
SA\X, SAlY, SA\M, SA\SM, SA\B SA\T, SA\ST, SA\C, SA\D, SA\W, SA\SD K, H
(s) O O O
(d) O @) —

6 BASIC INSTRUCTIONS 2
6.3 Logical Operation Instructions 95

Processing details

» These instructions perform an AND operation (bit-by-bit) on the 16-bit binary data in the device specified by (d) and the 16-
bit binary data in the device specified by (s), and store the operation result in the device specified by (d).

b15 b8 b7 b0

@[171,1,1]1717101]07000,0[1,111.1]
AND

b15 b8 b7 b0

¢){ojo;o0i1]oj011,0[0l0;1,1]0, 1,0, 0]

b15 b8 b7 b0

@ |o;o0;0;1[0;0;170[0;0/0;0]/0;1,0/0]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-

specified points are 0.

Operation.error

There is no operation error.

296 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

WAND(P) [when three operands are set]
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURRSFCPURSFCPU
RnCPURRnENCPU (Redundant) | (Standard)| (Safety) M(Standard)}] (Safety)

These instructions perform an AND operation on the two sets of 16-bit binary data specified.

ENO:=WAND(EN,s1,s2,d);
pp— ENO:=WANDP(EN,s1,s2,d);
—Jc=a]en[e] @ }—{ (EN&T.52.9)

o1

— EN ENO |—

HEExecution condition

WANDP

WAND J_I_
_t—

|

EDescription, range, data type

(s1) Logical AND data or the device where logical AND data is | -32768 to 32767 16-bit signed binary ANY16
stored

(s2) Logical AND data or the device where logical AND data is -32768 to 32767 16-bit signed binary ANY16
stored

(d) Device for storing the operation result — 16-bit signed binary ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

(s1) (@] (@] O (@) o|— — |0 (@] — | ==
(s2) O O O O O|— — | O ©) — | ==
(d) O O O O Oo|— — | O — — | ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s1) O O [e)
(s2) O O @)
(d) O @) —

6 BASIC INSTRUCTIONS 297
6.3 Logical Operation Instructions

Processing details

» These instructions perform an AND operation (bit-by-bit) on the 16-bit binary data in the device specified by (s1) and the
16-bit binary data in the device specified by (s2), and store the operation result in the device specified by (d).

b15 b8 b7 b0

D[11101,1]/ 1171110101001, 111.1]
AND

b15 b8 b7 b0

s2)[0;070;1]/0,0;110][0j0/1,1]0,1,0,0]

b15 b8 b7 b0

@[o;0;0;1/0;0/1;0[0;0;0;0[0;1,0,0]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

298 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

Performing an AND operation on 32-bit data

et]

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions perform an AND operation on the two sets of 32-bit binary data specified.

Not supported
C— |) | @ }_{ (==~ Page 301 DAND(P) [when three operands are set])

Not supported
(==~ Page 301 DAND(P) [when three operands are set])

HEExecution condition

DANDP

DAND J_I_
I

|

EDescription, range, data type

(s) Logical AND data or the start device where logical AND -2147483648 to 2147483647 | 32-bit signed binary ANY32
data is stored
(d) Start device for storing the operation result -2147483648 to 2147483647 | 32-bit signed binary ANY32

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

(s) (@] (@) O (@) (OR NO) o |0 O —|—|—

(d) (@] (@] O (@) (ORNO) o |0 — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) O o @)
(d) O le) _

6 BASIC INSTRUCTIONS 299
6.3 Logical Operation Instructions

Processing details

» These instructions perform an AND operation (bit-by-bit) on the 32-bit binary data in the device specified by (d) and the 32-
bit binary data in the device specified by (s), and store the operation result in the device specified by (d).

(d)+1 (d)
b31 b16 b15 b0
@[11 1 [V 1t0loto 0\ 11 101]
AND
(s)+1 (s)
b31 b16 b15 b0

) [oj170 1] 1707017010000, 1

(d)+1 (d)
b31 b16 b15 b0

@f{or1i0 1] 17010[0; 070000 0] 1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
300 6.3 Logical Operation Instructions

DAND(P) [when three operands are sef]
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURRSFCPURSFCPU
RnCPURRnENCPU (Redundant) | (Standard)| (Safety) M(Standard)}] (Safety)

These instructions perform an AND operation on the two sets of 32-bit binary data specified.

ENO:=DAND(EN,s1,s2,d);

| C | s1) | s2) | @ }{ ENO:=DANDP(EN,s1,s2,d);

o1

— EN ENO |—

HEExecution condition

DANDP

DAND J_I_
_t—

|

EDescription, range, data type

(s1) Logical AND data or the start device where logical AND -2147483648 to 2147483647 | 32-bit signed binary ANY32
data is stored

(s2) Logical AND data or the start device where logical AND -2147483648 to 2147483647 32-bit signed binary ANY32
data is stored

(d) Start device for storing the operation result — 32-bit signed binary ANY32

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

(s1) (@] (@] (@) (@) o| 0 o |O (@] — | ==
(s2) O O O O (O RE) o |O ©) — ==
(d) O O O O (O NE) o |O — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s1) O O [e)
(s2) O O @)
(d) O @) —

6 BASIC INSTRUCTIONS 301
6.3 Logical Operation Instructions

Processing details

» These instructions perform an AND operation (bit-by-bit) on the 32-bit binary data in the device specified by (s1) and the
32-bit binary data in the device specified by (s2), and store the operation result in the device specified by (d).

(s1)+1 (s1)
b31 b16 b15 b0
O 1118 a1 0lo o0 W01
AND
(s2)+1 (s2)
b31 b16 b15 bo

s2[0;1 70 1[0 1707017071 ({Jojo 01

(d)+1 (d)

b31 b16 b15 b0

@lo; 17011V 17070010700]0o;0)0;1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

2 6 BASIC INSTRUCTIONS
30 6.3 Logical Operation Instructions

Performing an AND operation on 16-bit block data

BKAND(P)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions perform an AND operation on the two 16-bit binary data blocks specified.

Ladder

ST

— = d]en|ea] @ | m }—{

ENO:=BKAND(EN,s1,s2,n,d);
ENO:=BKANDP(EN,s1,s2,n,d);

FBD/LD

L.
— EN ENO [—
— s1 d —

— s2

— n

HEExecution condition

Instruction Execution condition
BKAND _,_|_
BKANDP _I—

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) Logical AND data or the start device where logical AND — 16-bit signed binary ANY16"™
data is stored
(s2) Logical AND data or the start device where logical AND -32768 to 32767 16-bit signed binary ANY16™!
data is stored
(d) Start device for storing the operation result — 16-bit signed binary ANY16™!
(n) Number of data points 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z | LT,LST, | Lz | specification '\« TE [g
SM, F, B, SB, SD, SW, FD,R, | U3EO\(H)GO LC
FX, FY ZR, RD
(s1)" — — o — —| = — |0 - | —=|—]-
(s2)" — — o — —| = — |0 o |—|—|-
(@ — — o — el — |0 - | ===
(n) o o o o o= — |o o |—-|=]=

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

303

Processing details

» These instructions perform an AND operation on the (n) points of data from the device specified by (s1) and the (n) points
of data from the device specified by (s2), and store the operation result in the device specified by (d) and later.

b15 b8b7 b0 b15 b8b7 b0
(s1) [o0i0i1i1]oi0i1:1[0l0111]0i0!111] (20 [oi0i1:1]111i0i0]0l01:1]1i11000|
(s1)+1 [1:11111]oi0:0:0[0l0l00[1:1:111] s2¢1 [111:111]1111111]0l0}0:0]0}00/0]
(s1#2 [0:0/0i0/0:0:0:0[11111!1[1111111] (s2#2 [oi0i0i0[1111111[1111101[1111111]
(n) AND (n)
(s1)+(n)-2[0:1/011]0i1:0:1]0!110!1]01i0!1] (s2)+m)-2[1111 1[0
(s1)+(n)>1[1:1:111]0i0/00[1:111!1]0:0:010] (s2)+(n)-1[111:1:1/1111111]0l0l0:0]0i0!0/0)|
b15 b8b7 b0
@ [oioi1i1]ol0i0l0]oi0i111]0l000]

(@+1 [11111:1]0i0l0i0]0}0!0!0]0!0/0!0]
(@+2 |oiojoiofoi0i0i0[1i111:1]1111111] o
n

(d)+(n)-2[0!1:0:1[0:11011]0i1i01]0i11011]
(@+(n)-1[11111:1]0:0l00]0}0!0/0]0!0/0!0]
» A constant from -32768 to 32767 (16-bit signed binary) can be specified for (s2).

b15 - b8b7 - b0 b15 - b87 - b0
(1) [oloi1i1]oi0i111]ol0i1i1]0i0i111] (s2) [1:11111]1111111]ol0i0l0[1111111
(s*1 [1111111]oi0i0l0]0l0i0i0[1:11111]
(s1)+2 |0:0:0:0\0:0:0:0\1:1:1:1\1:1:1:1|()
n

AND

(s1»+(n)2[010/1]011i011]0/1:011[0{1]0/1
(s1)*+n)>1[1111111]0i0/010[1:1:111]0l0!0:0]

U

b15 - b87 -~ b0
@ [oloi111]oi0i1i1]oi0l0i0/0i0111]
@+1 [111:111[oi0l0i0]0i0l0i0[1:11111]
(@+2 |oloi0i0[0i00i0]0i0l0i0/1:1:111] o
n

(d)+(n)2[0!1:0!1]0:1;0!1]0:00/0]0!1:0!1|
(@+(n)-1[111:11]0l0/0/0]00l00/0/0}010]

Operation.error

Error code Description
(SDo)
2821H The device ranges starting from the ones specified by (s1) and (d) are partially overlapping (except when the same device is specified for

(s1) and (d)).

The device ranges starting from the ones specified by (s2) and (d) are partially overlapping (except when the same device is specified for
(s2) and (d)).

4 6 BASIC INSTRUCTIONS
30 6.3 Logical Operation Instructions

Performing an OR operation on 16-bit data

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions perform an OR operation on the two sets of 16-bit binary data specified.

Not supported
C— |) | @ }_{ (==~ Page 307 WOR(P) [when three operands are set])

Not supported
(==~ Page 307 WOR(P) [when three operands are set])

HEExecution condition

WORP

WOR J_I_
I

|

EDescription, range, data type

(s) Logical OR data or the device where logical OR data is -32768 to 32767 16-bit signed binary ANY16
stored
(d) Device for storing the operation result -32768 to 32767 16-bit signed binary ANY 16

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

(s) (@] (@] O O o|— — |10 ©} —|—|—

(d) (@] (@] @) O o|— — |10 — —|—|—

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) O o @)
(d) O le) _

6 BASIC INSTRUCTIONS 30
6.3 Logical Operation Instructions 5

Processing details

» These instructions perform an OR operation (bit-by-bit) on the 16-bit binary data in the device specified by (d) and the 16-
bit binary data in the device specified by (s), and store the operation result in the device specified by (d).

b15 b8 b7 b0

@[o 17011/ 111,1,1]0,0,0,0]010,1,1]
OR

b15 b8 b7 b0

1700117170 0]1/1,0,0[1,1,0,0]

b15 b8 b7 b0

@11 7001011017117 1700001 1,1, 1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
306 6.3 Logical Operation Instructions

et]

RnPCPU § RnPCPU JRPSFCPURRnPSFCPURRSFCPURSFCPU
RnCPURRnENCPU (Redundant) | (Standard)| (Safety) M(Standard)}] (Safety)

These instructions perform an OR operation on the two sets of 16-bit binary data specified.

ENO:=WOR(EN,s1,s2,d);

| E:::] | 1) | s2) | @ }{ ENO:=WORP(EN,s1,s2,d);

o1

— EN ENO |—

HEExecution condition

WORP

WOR J_I_
_t—

|

EDescription, range, data type

(s1) Logical OR data or the device where logical OR data is -32768 to 32767 16-bit signed binary ANY16
stored

(s2) Logical OR data or the device where logical OR data is -32768 to 32767 16-bit signed binary ANY16
stored

(d) Device for storing the operation result — 16-bit signed binary ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

(s1) (@] (@] O (@) o|— — |0 (@] — | ==
(s2) O O O O O|— — | O ©) — | ==
(d) O O O O Oo|— — | O — — | ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s1) O O [e)
(s2) O O @)
(d) O @) —

6 BASIC INSTRUCTIONS 307
6.3 Logical Operation Instructions

Processing details

» These instructions perform an OR operation (bit-by-bit) on the 16-bit binary data in the device specified by (s1) and the 16-
bit binary data in the device specified by (s2), and store the operation result in the device specified by (d).

b15 b8 b7 b0

(sD[1,1,010]0;010;0[1/1,111]/0,010,0]
OR

b15 b8 b7 b0

2[00 ,0,0[17170;0[1/1,0/0]0,0,1,1]

b15 b8 b7 b0

@ 1717000l 1;17070[1,1,1,1][0;0)1;1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-

specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
308 6.3 Logical Operation Instructions

Performing an OR operation on 32-bit data

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions perform an OR operation on the two sets of 32-bit binary data specified.

Not supported
C— |) | @ }_{ (==~ Page 311 DOR(P) [when three operands are set])

Not supported
(==~ Page 311 DOR(P) [when three operands are set])

HEExecution condition

DORP

DOR J_I_
I

|

EDescription, range, data type

(s) Logical OR data or the start device where logical OR data | -2147483648 to 2147483647 | 32-bit signed binary ANY32
is stored
(d) Start device for storing the operation result -2147483648 to 2147483647 | 32-bit signed binary ANY32

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

(s) O O (@) (@) o0 o |O O —| ==

(d) O O (@) (@) o| O o |O — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) O o @)
(d) O le) _

6 BASIC INSTRUCTIONS 309
6.3 Logical Operation Instructions

Processing details

» These instructions perform an OR operation (bit-by-bit) on the 32-bit binary data in the device specified by (d) and the 32-
bit binary data in the device specified by (s), and store the operation result in the device specified by (d).

(d)+1 (d)
b31 - b16 b15 - b
@[17171,1[0 070]or010. 0o 0171
OR
(s)+1 (s)
b31 - b16 b15 - b

@[170707 1] o0 0171717 (Joj0] 1)1
(d)+1 (d)
b31 b16 b15 b0

@11 101 0001017180001 1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

1 6 BASIC INSTRUCTIONS
3 0 6.3 Logical Operation Instructions

et]

RnPCPU § RnPCPU JRPSFCPURRnPSFCPURRSFCPURSFCPU
RnCPURRnENCPU (Redundant) | (Standard)| (Safety) M(Standard)}] (Safety)

These instructions perform an OR operation on the two sets of 32-bit binary data specified.

ENO:=DOR(EN,s1,s2,d);

| E:::] | 1) | s2) | @ }{ ENO:=DORP(EN,s1,s2,d);

o1

— EN ENO |—

HEExecution condition

DORP

DOR J_I_
_t—

|

EDescription, range, data type

(s1) Logical OR data or the start device where logical OR data | -2147483648 to 2147483647 | 32-bit signed binary ANY32
is stored

(s2) Logical OR data or the start device where logical OR data | -2147483648 to 2147483647 | 32-bit signed binary ANY32
is stored

(d) Start device for storing the operation result — 32-bit signed binary ANY32

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

(s1) (@] (@] O (@) o0 o |0 (@] — | ==
(s2) O O O O o]0 o | O ©) — ==
(d) O O O O o]0 o | O — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s1) O O [e)
(s2) O O @)
(d) O @) —

6 BASIC INSTRUCTIONS 311
6.3 Logical Operation Instructions

Processing details

» These instructions perform an OR operation (bit-by-bit) on the 32-bit binary data in the device specified by (s1) and the 32-
bit binary data in the device specified by (s2), and store the operation result in the device specified by (d).

(s1)+1 (s1)
b31 b16 b15 b0
sH{oror1 1001117010011 1010]
OR
(s2)+1 (s2)
b31 b16 b15 bo

2[00 1 00 11700070 ({1117

(d)+1 (d)

b31 b16 b15 b0

@ [or o1 [e a1 00011101

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

12 6 BASIC INSTRUCTIONS
3 6.3 Logical Operation Instructions

Performing an OR operation on 16-bit block data

BKOR(P)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions perform an OR operation on the two 16-bit binary data blocks specified.

Ladder

ST

— = d]en|ea] @ | m }—{

ENO:=BKOR(EN,s1,s2,n,d);
ENO:=BKORP(EN,s1,s2,n,d);

FBD/LD

— EN

— s1

— s2

— n

1

ENO —

d —

HEExecution condition

Instruction Execution condition
BKOR _,—|_
BKORP _t—

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) Logical OR data or the start device where logical OR data | — 16-bit signed binary ANY16"™
is stored
(s2) Logical OR data or the start device where logical OR data | -32768 to 32767 16-bit signed binary ANY16™!
is stored
(d) Start device for storing the operation result — 16-bit signed binary ANY16™!
(n) Number of data points 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z | LT,LST, | Lz | specification '\« TE [g
SM, F, B, SB, SD, SW, FD,R, | U3EO\(H)GO LC
FX, FY ZR, RD
(s1)" — — o — —| = — |0 - | —=|—]-
(s2)" — — o — —| = — |0 o |—|—|-
(@ — — o — el — |0 - | ===
(n) o o o o o= — |o o |—-|=]=

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

313

Processing details

» These instructions perform an OR operation on the (n) points of data from the device specified by (s1) and the (n) points of
data from the device specified by (s2), and store the operation result in the device specified by (d) and later.

b15 b8b7 b0 b15 b8b7 b0
1) [oi0i00[1111111]0i0i0i0]111111] (s2) |oi0i0i0[1i11111]111:0/0]0/01111]
(s1)+1 [1:10i0[1:1i0/0[1:1:0/0[1!1:0/0| (s2+1 [1:10i0[1:10/0[0:0:1!1]0}0:1:1|
(s1#2 [o0:0:0]0l00l0[111:1:1/1111111] (s2+2 |00:0:0[1!11111]1i1:1:1]0l0i0!0]
() _ ()
(s1)*(n)-2[0:0:0:0[1!11111]111:1:1]0l0}010] (s2)+(n)-2|0:0:1:1]0l0!1!1]0i0:1:1]0l0111]
(s1)+(n)>1[1:11111]1:11111]0:0:0/0]0}0:0/0| (s2)+(n)-1[0:0:1:1[1!110l0]0i0/00]111:111]
b15 b8b7 b0
@ [oi0ioio]1i1i111]1i15000[1:1:111]

@+ [1110/0[1i1:000[1111111]11111}1]
@+2 [oi0i0i0[1i1i111]111111] 1010111
(n)

(@+m»2[0:0i111]1111111]1:11111]0i0:111]
(@+n)-1{1:11111]11111:1]ol0i0l0[1111111]

» A constant from -32768 to 32767 (16-bit signed binary) can be specified for (s2).
b15 - b8b7 = b0 b15 = b8b7 - b
(s1) [oloi1i1]1:1:00[11110/0]0i0:111] (s2) [0i0i010[1:1:1:1]1111111[0l0/0!0]
(s1)+1 |oi0i0i0[1:0i1i0]1:0/1:0[1/0!110]
(s1¥2 [1l011i0]1:0:110[1i0i1i0[1i0!1}0]
(n)

OR

(s1)+(n)2[00:00[1:1:1:1]0:0:010[111:1:1]
(s1)+n)>1[1:1:0i0]0i0!1:1]1:1:0/0]0l0:1:1]

U

b15 - b87 - b0
(d) [oioi111[1111111]1111111]0l01111]

@+1 [oioioio[1:11111]1:11111]1:0:100|
@+2 [1i0i1i0[1:11111][1:11111100:100|
(n)

(@+(m)2[0i0i0i0[1:11111]1:11111] 1010111
(@+n)-1[111:0/0[1:11111]11111:1]0l01111]

Operation.error

Error code Description
(SDo)
2821H The device ranges starting from the ones specified by (s1) and (d) are partially overlapping (except when the same device is specified for

(s1) and (d)).

The device ranges starting from the ones specified by (s2) and (d) are partially overlapping (except when the same device is specified for
(s2) and (d)).

14 6 BASIC INSTRUCTIONS
3 6.3 Logical Operation Instructions

Performing an XOR operation on 16-bit data

et]

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions perform an XOR operation on the two sets of 16-bit binary data specified.

Not supported
C— |) | @ }_{ (==~ Page 317 WXOR(P) [when three operands are set])

Not supported
(==~ Page 317 WXOR(P) [when three operands are set])

HEExecution condition

WXORP

WXOR J_I_
I

|

EDescription, range, data type

(s) Exclusive OR data or the device where exclusive OR data | -32768 to 32767 16-bit signed binary ANY16
is stored
(d) Device for storing the operation result -32768 to 32767 16-bit signed binary ANY 16

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

(s) (@] (@) O (@) Oo|— — |0 ©} — ==

(d) (@] (@] O (@) o|— — |0 — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) O o @)
(d) O le) _

6 BASIC INSTRUCTIONS 31
6.3 Logical Operation Instructions 5

Processing details

» These instructions perform an XOR operation (bit-by-bit) on the 16-bit binary data in the device specified by (d) and the 16-
bit binary data in the device specified by (s), and store the operation result in the device specified by (d).

b15 b8 b7 bo

@[1,0,170/110;1,0/1,0,1,0[110,1,0]
XOR

b15 b8 b7 b0

®|ojo o 11701171171 ,1,1]0,010,0]

b15 b8 b7 b0
@[1,0;1;1/0;070;1][0;1;0,1]1,0,1,0]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

1 6 BASIC INSTRUCTIONS
3 6 6.3 Logical Operation Instructions

WXOR(P) [when three operands are set]
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURRSFCPURSFCPU
RnCPURRnENCPU (Redundant) | (Standard)| (Safety) M(Standard)}] (Safety)

These instructions perform an XOR operation on the two sets of 16-bit binary data specified.

ENO:=WXOR(EN,s1,s2,d);
pp— ENO:=WXORP(EN,s1,s2,d);
— . a]en]|ea] @ }—{ (EN s o2

o1

— EN ENO |—

HEExecution condition

WXORP

WXOR J_I_
_t—

|

EDescription, range, data type

(s1) Exclusive OR data or the device where exclusive OR data | -32768 to 32767 16-bit signed binary ANY16
is stored

(s2) Exclusive OR data or the device where exclusive OR data | -32768 to 32767 16-bit signed binary ANY16
is stored

(d) Device for storing the operation result — 16-bit signed binary ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

(s1) (@] (@] O (@) o|— — |0 (@] — | ==
(s2) O O O O O|— — | O ©) — | ==
(d) O O O O Oo|— — | O — — | ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s1) O O [e)
(s2) O O @)
(d) O @) —

6 BASIC INSTRUCTIONS 31 7
6.3 Logical Operation Instructions

Processing details

» These instructions perform an XOR operation (bit-by-bit) on the 16-bit binary data in the device specified by (s1) and the
16-bit binary data in the device specified by (s2), and store the operation result in the device specified by (d).

b15 b8 b7 b0

(sH{ojo0t0 ;011711111111 ,1]/0,0,0.0]
XOR

b15 b8 b7 b0

20717010 ;1;0/1]0;1170 1[0, 1,0,1]

b15 b8 b7 b0

@ o170 11701 70[1;0/1,0]0;1,0]1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

1 6 BASIC INSTRUCTIONS
3 8 6.3 Logical Operation Instructions

Performing an XOR operation on 32-bit data

et]

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions perform an XOR operation on the two sets of 32-bit binary data specified.

Not supported
C— |) | @ }_{ (=5~ Page 321 DXOR(P) [when three operands are set])

Not supported
(==~ Page 321 DXOR(P) [when three operands are set])

HEExecution condition

DXORP

DXOR J_I_
I

|

EDescription, range, data type

(s) Exclusive OR data or the start device where exclusive OR | -2147483648 to 2147483647 | 32-bit signed binary ANY32
data is stored
(d) Start device for storing the operation result -2147483648 to 2147483647 | 32-bit signed binary ANY32

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

(s) (@] (@) O (@) (OR NO) o |0 O —|—|—

(d) (@] (@] O (@) (ORNO) o |0 — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) O o @)
(d) O le) _

6 BASIC INSTRUCTIONS 31 9
6.3 Logical Operation Instructions

Processing details

» These instructions perform an XOR operation (bit-by-bit) on the 32-bit binary data in the device specified by (d) and the 32-
bit binary data in the device specified by (s), and store the operation result in the device specified by (d).

(d)+1 (d)
b31 b16 b15 bo
| I 1 I] [}] 1 1 1 1
@[o 170 1] o101 10 1 Jor17011]
XOR
(s)+1 (s)
b3 b16 b15 bo

@[or 11700 1 1o 10 Jo 17170
U

(d)+1 (d)

b31 b16 b15 b0

@loror 1 1V 0o 011 1718001 1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

2 6 BASIC INSTRUCTIONS
3 0 6.3 Logical Operation Instructions

DXOR(P) [when three operands are set]
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURRSFCPURSFCPU
RnCPURRnENCPU (Redundant) | (Standard)| (Safety) M(Standard)}] (Safety)

These instructions perform an XOR operation on the two sets of 32-bit binary data specified.

ENO:=DXOR(EN,s1,s2,d);
pp— ENO:=DXORP(EN,s1,s2,d);
— . a]en]|ea] @ }—{ (EN S92

o1

— EN ENO |—

HEExecution condition

DXORP

DXOR J_|_
_t—

|

EDescription, range, data type

(s1) Exclusive OR data or the start device where exclusive OR | -2147483648 to 2147483647 | 32-bit signed binary ANY32
data is stored

(s2) Exclusive OR data or the start device where exclusive OR | -2147483648 to 2147483647 | 32-bit signed binary ANY32
data is stored

(d) Start device for storing the operation result — 32-bit signed binary ANY32

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

(s1) (@] (@] O (@) o0 o |0 (@] — | ==
(s2) O O O O o]0 o | O ©) — ==
(d) O O O O o]0 o | O — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s1) O O [e)
(s2) O O @)
(d) O @) —

6 BASIC INSTRUCTIONS 321
6.3 Logical Operation Instructions

Processing details

» These instructions perform an XOR operation (bit-by-bit) on the 32-bit binary data in the device specified by (s1) and the
32-bit binary data in the device specified by (s2), and store the operation result in the device specified by (d).

(s1)+1 (s1)
b31 b16 b15 b0
D111 100100000 01110 1]
XOR
(s2)+1 (s2)
b31 b16 b15 bo

171 1 1o oo ({17100

(d)+1 (d)

b31 b16 b15 b0

@ o 070 0 1701017080001 1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

22 6 BASIC INSTRUCTIONS
3 6.3 Logical Operation Instructions

Performing an XOR operation on 16-bit block data

BKXOR(P)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions perform an XOR operation on the two 16-bit binary data blocks specified.

Ladder

ST

— = d]en|ea] @ | m }—{

ENO:=BKXOR(EN,s1,s2,n,d);
ENO:=BKXORP(EN,s1,s2,n,d);

FBD/LD

— EN

— s1

— s2

— n

1

ENO

d —

HEExecution condition

Instruction Execution condition
BKXOR _,—|_
BKXORP _I—

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) Start device where the logical operation data is stored — 16-bit signed binary ANY16"™

(s2) Logical operation data or the start device where the logical | -32768 to 32767 16-bit signed binary ANY16"™

operation data is stored

(d) Start device for storing the operation result — 16-bit signed binary ANY16"™

(n) Number of data points 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |umO\GO,Jo\d, |z |LT,LST, | Lz |Specification [g [g
SM, F, B, SB, SD, SW, FD, R, U3EO\H)GO LC
FX, FY ZR, RD
(s — — O — —|— — |0 — e el
(s2)" — — o — el — |0 o |—|—|-
(@ — — @) — —|— — |0 — — ==
(n) @) @) @) @) o|— — |0 @) — ==

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

323

Processing details

» These instructions perform an XOR operation on the (n) points of data from the device specified by (s1) and the (n) points
of data from the device specified by (s2), and store the operation result in the device specified by (d) and later.

b15 b8b7 b0 b15 b8b7 b0
(s1) [oioi1:1[oloi1i1]0i0l0i0[0i0111] (s2) [oi0i1:11[1i10i0]0i0:1:1/11 1010
(s1)+1 [111:00[1!10i0[111i0i0[1:1}010] (s2+1 [o0:1:1[1110/0]0i0:0/0]1/1}010]
s1#2 [111:1:1]0lol0i0]11111:1]0/0i010] (22 [o0:0:0:0[0i0010[1i1:1:1]1111111]
(n) XOR (n)
(s1)+(n)-2[0}0:0:0[0l0l0i0[11111:1]1:11111] (s2)+(n)-2[1:1:1:1[1111111]0l0/0i0/1111111]
(s1)+(n)-1[00l0:0[1:11111[1!111:1]0l0}0i0| (s2y+(n)-1 [0i0l0i0[1111111111111 1111114
b15 b8b7 b0
(d) [oi0i0i0[11111:1]0l01111]1111111]

@+ [1111111]oi0l0i0]1:1i0/0]00}0i0]

@#+2 [1111111]0i0:0:0[0l00l0[1:111i1]
(n)

(@+n)2 [111:11:1]1111111]1111111]0l00010]
(d)+(n)-1 [0/00!0]0:0/0:0]0:0/0}0[1!111:1]
» A constant from -32768 to 32767 (16-bit signed binary) can be specified for (s2).

b15 b8b7 b0 b15 b8b7 b0
(s1) [11111:1[1111111]0i0l0:0[00l0i0] (s2) [1:0:110[1!0!1:0[1:011:0]1/0i1!0]
(s+1 [olooio]1:1:111[1111111]0l0i0i0]

(s1)+2 [0i0:00]0i0/010[1:1:111[111:1:1]
(n)

XOR

(sh+m)y2[111:111]1111111]0i0010[111:111]
(s1)+(n)-1]0l11011]0i1:011]0!110!1]01i011]

U

b15 b8b7 b0

@ [oi1i011[oi1i0i1]1i011:0/110110]

@+1 [1i0i1i0[0i10i1]0i1i0i1/110110]
@+2 [1i0i1i0[1i0/1i0]0i1i0i1/0!1i011] o
n

(d)+(m)2[0!1:011]0:11011]1:01110]0!1:0!1
@111 10|

Operation.error

Error code Description
(SDo)
2821H The device ranges starting from the ones specified by (s1) and (d) are partially overlapping (except when the same device is specified for

(s1) and (d)).

The device ranges starting from the ones specified by (s2) and (d) are partially overlapping (except when the same device is specified for
(s2) and (d)).

24 6 BASIC INSTRUCTIONS
3 6.3 Logical Operation Instructions

Performing an XNOR operation on 16-bit data

et]

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions perform an XNOR operation on the two sets of 16-bit binary data specified.

Not supported
C— |) | @ }_{ (I==" Page 327 WXNR(P) [when three operands are set])

Not supported
(==~ Page 327 WXNR(P) [when three operands are set])

HEExecution condition

WXNRP

WXNR J_I_
I

|

EDescription, range, data type

(s) Exclusive NOR data or the device where exclusive NOR -32768 to 32767 16-bit signed binary ANY16
data is stored
(d) Device for storing the operation result -32768 to 32767 16-bit signed binary ANY 16

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

(s) O (@) (@) O o|— — |0 O — ==

(d) O O (@) O o|— — |0 — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) O o @)
(d) O le) _

6 BASIC INSTRUCTIONS 32
6.3 Logical Operation Instructions 5

Processing details

» These instructions perform an XNOR operation on the 16-bit binary data in the device specified by (d) and the 16-bit binary
data in the device specified by (s), and store the operation result in the device specified by (d).

b15 b8 b7 bo

@[1,0;1/0/110;1,0/1,0,1,0[110,0,1]
XNR

b15 b8 b7 b0

®[171,1171]0j010;0]0j0;0,0]0;1,1,0]

b15 b8 b7 b0

@[1,0;170l0;170;1]/0/1;0,1]0,0,0,0]|

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

2 6 BASIC INSTRUCTIONS
3 6 6.3 Logical Operation Instructions

WXNR(P) [when three operands are set]
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURRSFCPURSFCPU
RnCPURRnENCPU (Redundant) | (Standard)| (Safety) M(Standard)}] (Safety)

These instructions perform an XNOR operation on the two sets of 16-bit binary data specified.

ENO:=WXNR(EN,s1,s2,d);
pp— ENO:=WXNRP(EN,s1,s2,d);
—Jc=a]en[e] @ }—{ (EN&T.52.)

Co—1

— EN ENO [—

HEExecution condition

WXNRP

WXNR J_I_
_t—

|

EDescription, range, data type

(s1), (s2) Exclusive NOR data or the device where exclusive NOR -32768 to 32767 16-bit signed binary ANY16
data is stored

(d) Device for storing the operation result — 16-bit signed binary ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

(s1) (@] (@] O (@) o|— — |0 (@] — | ==
(s2) O O O O O|— — | O ©) — | ==
(d) O O O O Oo|— — | O — — | ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s1) ¢ O [e)
(s2) O O @)
(d) O @) —

6 BASIC INSTRUCTIONS 327
6.3 Logical Operation Instructions

Processing details

» These instructions perform an exclusive NOR operation on the 16-bit binary data in the device specified by (s1) and the 16-
bit binary data in the device specified by (s2), and store the operation result in the device specified by (d).

b15 b8 b7 b0

sH[11111,1]/0/0;010]/11111,1]/0,0,0.0]
XNR

b15 b8 b7 b0

2)[0j011,1][1,1;010]0;0/1;1]0,01,1]

b15 b8 b7 b0

@[ojo;171]0o;0/1;1][0;0;1;1][1,1,0,0]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

2 6 BASIC INSTRUCTIONS
3 8 6.3 Logical Operation Instructions

Performing an XNOR operation on 32-bit data

et]

RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPURRnENCPU (Redundant)(Standard)l| (Safety) M(Standard)ll (Safety)

These instructions perform an XNOR operation on the two sets of 32-bit binary data specified.

Not supported
C— |) | @ }_{ (==~ Page 331 DXNR(P) [when three operands are set])

Not supported
(==~ Page 331 DXNR(P) [when three operands are set])

HEExecution condition

DXNRP

DXNR J_I_
I

|

EDescription, range, data type

(s) Exclusive NOR data or the start device where exclusive -2147483648 to 2147483647 | 32-bit signed binary ANY32
NOR data is stored
(d) Start device for storing the operation result -2147483648 to 2147483647 | 32-bit signed binary ANY32

* In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HMApplicable devices

(s) (@] (@) O (@) (OR NO) o |0 O —|—|—

(d) (@] (@] O (@) (ORNO) o |0 — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants
can be used.

(s) O o @)
(d) O le) _

6 BASIC INSTRUCTIONS 329
6.3 Logical Operation Instructions

Processing details

» These instructions perform an XNOR operation on the 32-bit binary data in the device specified by (d) and the 32-bit binary
data in the device specified by (s), and store the operation result in the device specified by (d).

(d)+1 (d)
b31 b16 b15 b0
@[17170 0]V lol070]lolo0l0 {Jolo 1]1]
XNR
(s)+1 (s)
b31 b16 b15 b

@171 171100 0o 11 W17 17070
U

b31 b16 b15 b0

@[1i1000[8 0 117117070000 0, 0]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
330 6.3 Logical Operation Instructions

et]

RnPCPU § RnPCPU JRPSFCPURRnPSFCPURRSFCPURSFCPU
RnCPURRnENCPU (Redundant) | (Standard)| (Safety) M(Standard)}] (Safety)

These instructions perform an XNOR operation on the two sets of 32-bit binary data specified.

ENO:=DXNR(EN,s1,s2,d);
pp— ENO:=DXNRP(EN,s1,s2,d);
—Jc=a]en[e] @ }—{ (EN e 52:4)

o1

— EN ENO |—

HEExecution condition

DXNRP

DXNR J_I_
_t—

|

EDescription, range, data type

(s1), (s2) Exclusive NOR data or the start device where exclusive -2147483648 to 2147483647 | 32-bit signed binary ANY32
NOR data is stored

(d) Start device for storing the operation result — 32-bit signed binary ANY32
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

« In safety programs executed by the SIL2 Process CPU and Safety CPU, only safety devices and safety labels of data types
described in the table can be used.

HApplicable devices

(s1) (@] (@] O (@) o0 o |0 (@] — | ==
(s2) O O O O o]0 o | O ©) — ==
(d) O O O O o]0 o | O — — ==

+ In safety programs executed by the SIL2 Process CPU and Safety CPU, only the following safety devices and constants

can be used.
(s1) O O e}
(s2) O O e}
(d) O e} _

6 BASIC INSTRUCTIONS 331
6.3 Logical Operation Instructions

Processing details

» These instructions perform an XNOR operation on the 32-bit binary data in the device specified by (s1) and the 32-bit
binary data in the device specified by (s2), and store the operation result in the device specified by (d).

(s1)+1 (s1)
b31 b16 b15 b0
sH{oror1 100 111 1o 010 1]
XNR
(s2)+1 (s2)
b31 b16 b15 bo

[0 ;170 1[0 o 17017071 ((Jo 1 01

(d)+1 (d)

b31 b16 b15 b0

@[1707001 [V 170701700100 17000; 1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

2 6 BASIC INSTRUCTIONS
33 6.3 Logical Operation Instructions

Performing an XNOR operation on 16-bit block data

BKXNR(P)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions perform an XNOR operation on the two 16-bit binary data blocks specified.

Ladder

ST

— = d]en|ea] @ | m }—{

ENO:=BKXNR(EN,s1,s2,n,d);
ENO:=BKXNRP(EN,s1,s2,n,d);

FBD/LD

— EN

— s1

— s2

— n

1

ENO

d —

HEExecution condition

Instruction Execution condition
BKXNR _,_|_
BKXNRP _I—

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s1) Start device where the logical operation data is stored — 16-bit signed binary ANY16"™

(s2) Logical operation data or the start device where the logical | -32768 to 32767 16-bit signed binary ANY16"™

operation data is stored

(d) Start device for storing the operation result — 16-bit signed binary ANY16"™

(n) Number of data points 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |umO\GO,Jo\d, |z |LT,LST, | Lz |Specification [g [g
SM, F, B, SB, SD, SW, FD, R, U3EO\H)GO LC
FX, FY ZR, RD
(s — — O — —|— — |0 — e el
(s2)" — — o — el — |0 o |—|—|-
(@ — — @) — —|— — |0 — — ==
(n) @) @) @) @) o|— — |0 @) — ==

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

333

Processing details

» These instructions perform an exclusive NOR operation on the (n) points of data from the device specified by (s1) and the
(n) points of data from the device specified by (s2), and store the operation result in the device specified by (d) and later.

b15 b8b7 b0 b15 b8b7 b0
1) [oioi0i0[1111111]1i111:1]0i0}010] (s2) |oi0i0:0]0i00l0]1i1:1:1/0l0i010]
(s1+1 [1111111]0:0010[1:11111]0i00/0| (s2+1 [0:00i0[1:11111[1:1:111]0l00/0|
(s1#2 [10:1:0[1i011i0[1i0/1:0/1:0110] (s2#2 [1:1:111]1111111]0i0/0i0/0!0}010]
(n) XNR ' (n)
(s1)+(n)-2[0}0:0:0[0l0l0i0[11111:1]1:11111] (s2)+(n)-2[1:1:111[1111111]111:1:1]0l0l 01 0]
(s1)+(n)-1[1:1111:1]1:11111]0l0l0:0[0l0}0i0| (s2+(n)y-1[1:011:0[1:01110[1i01:0[1:0!1i0]
b15 b8b7 b0
@ [t1i]oloioio/1i1i1[1i11111]

@+1 |oi0i0i0]0i0}0i0[1:1111]1:1:111]
(d)+2 |1101110\1101110\011:o:1\o:1:o:1|()
n

(d)+(n)2[0:0/0/0]0!0}0!0[1:1111]0:0:0!0|
(d)+(n)-1[1:0:1:0[1:01110]0!110!1]0!11011]
» A constant from -32768 to 32767 (16-bit signed binary) can be specified for (s2).

b15 - b8b7 - b0 b15 - b87 - b0
1) [ololoio[1i1i1i[1i111[1i10114] (s2) [1:11111]0:0:0:0]11111:1]0!0/0!0]
(s+1 [olooio]1:1:111[1111111]0l0i0i0]
(s1)+2 |1:1:0:0\1:1:0:0\0:0:1:1\0:0:1:1|()
n

XNR

(s1)+(n)-2[11110:0[1:110/0[1:1]0:0[111010
(s1)+n)>1[0i0:0i0]1:111:1]1:1:111]0l00:0]

U

b15 - b87 -~ b0
@ [oloioofoioioio]1i1i1:1/0/0i010]
@+1 |ooi0iofoi0i0i0]1i111i1/1111111]
(d)+2 |1:1:o:o\o:o:1:1\0:0:1:1\1:1:o:o|()
n

(d+(n)-2[111:0/0[0i01111]11110i0/0/0111]
(d)+(n)y-1]0i0:0/0[0l0i0:0[1:111:1]111111]

Operation.error

Error code Description
(SDo)
2821H The device ranges starting from the ones specified by (s1) and (d) are partially overlapping (except when the same device is specified for

(s1) and (d)).

The device ranges starting from the ones specified by (s2) and (d) are partially overlapping (except when the same device is specified for
(s2) and (d)).

4 6 BASIC INSTRUCTIONS
33 6.3 Logical Operation Instructions

6.4 Bit Processing Instructions

Setting a bit in the word device

A A
RnPCPU | RnPCPU JRnPSFCPURRnPSFCPURf RnSFCPU RnSFCPU
RnCPU JRnENCPU (Redundant)l(Standard)| (Safety) R(Standard)}| (Safety)

These instructions set the 'n'th bit in the specified word device to 1.

ENO:=BSET(EN,n,d);

| |:::::I| @ | " }{ ENO:=BSETP(EN,n,d);

1

— EN ENO |—

HExecution condition

BSET

BSETP

iE

|

EDescription, range, data type

(d) Set target device — 16-bit signed binary ANY16
(n) Set target bit position 0to 15 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(d) O O O O O|— — | O — — | ==

(n) O O O O O|— — | O ©) — | ==

6 BASIC INSTRUCTIONS
6.4 Bit Processing Instructions 335

Processing details

» These instructions set the 'n'th bit in the word device specified by (d) to 1.

}—H—| BSETP | D10 | Ke }—{

b b6 - bib0
D10 [1/1.00[1/0/11]0:01:1]1:0{1!1]

b b6 - b1b0
D10 [111:0/0[1:0:111]0111111[11011]

(1

(1) Set b6 of D10 to 1.
« If (n) exceeds 15, the instruction sets lower 4 bits of data.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
336 6.4 Bit Processing Instructions

Resetting a bit in the word device

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions reset the 'n'th bit in the specified word device to 0.

ENO:=BRST(EN,n,d);

| E::::|| @ | ™ }{ ENO:=BRSTP(EN,n,d);

1

— EN ENO [—

HEExecution condition

BRSTP

BRST J_I_
t

|

EDescription, range, data type

(d) Reset target device — 16-bit signed binary ANY16
(n) Reset target bit position 0to 15 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

(d) (@] (@] O (@) o|— — |0 — — ==

(n) (@] (@] @) (@) o|— — |0 O — ==

6 BASIC INSTRUCTIONS
6.4 Bit Processing Instructions 337

Processing details

» These instructions reset the 'n'th bit in the word device specified by (d) to 0.

}—H—| BRSTP | D10 | Ki1 }—{

b15 b1 b1b0
D10 [1!1;0/0[1:0:111]00!111[1i01:1]

U

b15 --- b11 b1b0
D10 [1:1:0/0[0/011!1]0i0:1:1/1101111]

(1

(1) Reset the b11 of D10 to 0.
* If (n) exceeds 15, the instruction sets lower 4 bits of data.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
338 6.4 Bit Processing Instructions

Performing a 16-bit test

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions extract the 'n'th bit in the specified word device.

ENO:=TEST(EN,s1,s2,d);
pp— ENO:=TESTP(EN,s1,s2,d);
—Jc=a]en[e] @ }—{ (ENe52.4)

1

— EN ENO |—

HEExecution condition

TESTP

TEST J_I_
_t—

|

EDescription, range, data type

(s1) Device where the extract target bit data is stored — 16-bit signed binary ANY16
(s2) Extract target bit position 0to 15 16-bit unsigned binary | ANY16
(d) Device for storing the extracted bit data — Bit ANY_BOOL
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(s1) o o o o o|— —|o — ===
(s2) o o o o ol— —|o o |—|—-]—-
() 0 o o o —|- - |o - ===

6 BASIC INSTRUCTIONS
6.4 Bit Processing Instructions 339

Processing details

» These instructions extract the bit data at the position specified by (s2) of the word device specified by (s1), and write it to
the bit device specified by (d).

(1)

|

b15 b5 -+ b0
S

(d)

(1) (s2) bit (When (s2)=5)

» The bit device specified by (d) turns off when the extracted bit data is 0 and turns on when the bit data is 1.

+ Specify the bit position (0 to 15) of the word data in (s2). When 16 or a greater value is specified in (s2), the remainder of
(s2)+16 becomes the bit position.

When (s2)=18: The remainder of 18+16 is 2, and therefore the data in bit 2 will be extracted.

Operation. error

There is no operation error.

4 6 BASIC INSTRUCTIONS
3 0 6.4 Bit Processing Instructions

Performing a 32-bit test

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions extract the 'n'th bit in the specified double-word device.

ENO:=DTEST(EN,s1,s2,d);
pp— ENO:=DTESTP(EN,s1,s2,d);
—Jc=a]en[e] @ }—{ (ENeT52:)

1

— EN ENO |—

HEExecution condition

DTESTP

DTEST J_I_
_t—

|

EDescription, range, data type

(s1) Device where the extract target bit data is stored — 32-bit signed binary ANY32
(s2) Extract target bit position 0to 31 16-bit unsigned binary | ANY16
(d) Device for storing the extracted bit data — Bit ANY_BOOL
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(s1) — o o o olo o |o — ===
(s2) — o o o ol— —|o o |—|—-]-
() 0 o o o —|- - |o - ===

6 BASIC INSTRUCTIONS 41
6.4 Bit Processing Instructions 3

Processing details

» These instructions extract the bit data at the position specified by (s2) of the double-word device specified by (s1), and write
it to the bit device specified by (d).

(1

|

|b31 ‘ ‘ b21 ‘ b16‘b1 ‘ ‘ ‘ b0|

(s1)+1 (s1) (d)

(1) (s2) bit (When (s2)=21)
» The bit device specified by (d) turns off when the extracted bit data is 0 and turns on when the bit data is 1.
» Specify the bit position (0 to 31) of the double-word data in (s2). When 32 or a greater value is specified in (s2), the

remainder of (s2)+32 becomes the bit position.
When (s2)=34: The remainder of 34+32 is 2, and therefore the data in bit 2 will be extracted.

Operation.error

There is no operation error.

42 6 BASIC INSTRUCTIONS
3 6.4 Bit Processing Instructions

Batch-resetting bit devices

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions reset the (n) points of bit devices starting from the bit device specified.

ENO:=BKRST(EN,n,d);

| |:..:|| @ | ™ }_{ ENO:=BKRSTP(EN,n,d);

1

— EN ENO [—

HEExecution condition

BKRSTP

BKRST J_I_
t

|

EDescription, range, data type

(d) Start device to be reset — Bit ANY_BOOL
(n) Number of reset target devices 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

BApplicable devices

(d) 0 — o - —|o - |o - ===

(n) (@] (@] @) (@) o|— — |0 O — ==

6 BASIC INSTRUCTIONS
6.4 Bit Processing Instructions 343

344

Processing details

» These instructions reset the (n) points of bit devices starting from the bit device specified by (d).
» The following table lists the reset status of the bit devices.

Device

Status

Annunciator (F)

 The (n) points of data starting from the annunciator (F) number in the device specified by (d) turn off.

« The annunciator numbers that turned off are deleted from SD64 to SD79, and the remaining data are
compressed forward.

« The number of annunciators stored in SD64 to SD79 is stored in SD63.

Timer (T), retentive timer (ST), counter
(C), long timer (LT), long retentive timer
(LST), long counter (LC)

« The (n) points, starting from the timer (T), retentive timer (ST), counter (C), long timer (LT), long retentive timer

(LST), or long counter (LC) number in the device specified by (d), of current values are reset to 0, and the (n)
points of coils and contacts are turned off.

Bit devices other than the above

* The (n) points, starting from the device specified by (d), of coils and contacts are turned off.

* When the specified device is off, the device status does not change.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.4 Bit Processing Instructions

6.5 Shift Instructions
Shifting 16-bit binary data to the right by n bit(s)

RnPCPU lf RnPCPU JRnPSFCPURIR PSF&’U RnSFCPU R SFC?U
These instructions shift the 16-bit binary data in the specified device to the right by (n) bit(s). In the empty area after the shift,
0 is stored.

ENO:=SFR(EN,n,d);

—| C— 1 | (d) | (n) }_{ ENO:=SFRP(EN,n,d);

1

— EN ENO |—

HExecution condition

SFR

SFRP

Qe

|

EDescription, range, data type

(d) Shift target device — 16-bit signed binary ANY16
(n) Number of shifts 0to15 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BMApplicable devices

(d) o 6] ¢ 6] o|— — |0 — — ==

(n) oM (@] O (@) o|— — |0 ©} — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 345

346

Processing details

» These instructions shift the 16-bit binary data in the device specified by (d) to the right by (n) bit(s).
» The (n) bit(s) from the most significant bit is/are filled with 0(s).
* In SM700, a value in a bit to the right of the shift target area is stored.

[Ex]

When (n)=6

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b0
@1 171701111701 10101017170

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
I |

(SM700)
@ lolortojofolo 11101 1170717 1]

0

* When (d) is a bit device, bits are shifted to the right within the device range specified by digit specification.

[Ex]

When (n)=4

Y1B - Y18Y17 -+ Y14Y13 -~ Y10
[1,0;1/0[170,1,0][1,0 10

T

Y1B - Y18Y17 -~ Y14Y13 -~ Y10
[oj0;0/0[1,0,1,0[1,0 1,0]
%{—J

(SM700)

0

« The number of bits actually to be shifted is the remainder of (n)+(specified number of bits). For example, when (n) is 15 and
the specified number of bits is 8, 7 bits are shifted because 15 divided by 8 equals 1 with a remainder of 7.

» Specify any value between 0 and 15 for (n). If a value 16 or bigger is specified, bits are shifted by the remainder value of
n+16. For example, when (n) is 18, 2 bits are shifted to the right because 18 divided by 16 equals 1 with a remainder of 2.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting 16-bit binary data to the left by n bit(s)

RnPCPU § RnPCPU JRnPSFCPUR PSF&’U RnSFCPUR SFC?U
These instructions shift the 16-bit binary data in the specified device to the left by (n) bit(s). In the empty area after the shift, 0
is stored.

ENO:=SFL(EN,n,d);
_| |:__.:|| @ | ™ }_{ ENO:=SFLP(EN,n,d);

o1

— EN ENO |—

HEExecution condition

SFL

SFLP

iE

|

EDescription, range, data type

(d) Shift target device — 16-bit signed binary ANY16
(n) Number of shifts 0to 15 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

(d) o™ 6] ¢ ¢ o|— — |0 — — ==
(n) o™ 6] ¢ ¢ o|— — |0 @) — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 347

Processing details

* This instruction shifts the 16-bit binary data in the device specified by (d) to the left by (n) bit(s).
» The (n) bit(s) from the least significant bit is/are filled with 0(s).
* In SM700, a value in a bit to the left of the shift target area is stored.

[Ex]

When (n)=8

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

[111 11 1]o o 1 1]Jojo0j0 01, 1,1, 1] @

/

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

[ojoj0/0[1/1;1;1]0;0,0,0[0/0 ;0 0]

(SM700)

0

* When (d) is a bit device, bits are shifted to the left within the device range specified by digit specification.

[Ex]

When (n)=5
X17 - X14X13 - X10
[oj0,1/1][0 ;01,1
—
(SM700) X17 - X14X13X12 - X10
[170/0,1[170]0]0]
%—/

0

» The number of bits actually to be shifted is the remainder of (n)+(specified number of bits). For example, when (n) is 15 and
the specified number of bits is 8, 7 bits are shifted because 15 divided by 8 equals 1 with a remainder of 7.

+ Specify any value between 0 and 15 for (n). If a value 16 or larger is specified, the value is shifted by the remainder value of
n+16 to the left. For example, when (n) is 18, 2 bits are shifted to the left because 18 divided by 16 equals 1 with a
remainder of 2.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
348

6.5 Shift Instructions

Shifting n-bit data to the right by one bit

RnPCPU § RnPCPU JRnPSFCPUR PSF&’U RnSFCPUR SFC?U
These instructions shift the (n) points of data starting from the specified device to the right by one bit. In the empty area after
the shift, 0 is stored.

ENO:=BSFR(EN,n,d);
_| |:__.:|| @ | ™ }_{ ENO:=BSFRP(EN,n,d);

o1

— EN ENO |—

HEExecution condition

BSFRP

BSFR J_I_
I

|

EDescription, range, data type

(d) Shift target device — Bit ANY_BOOL
(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

(d) o - o - —|- —|o - ===

(n) 0" 6] 6] 6] o|— — |0 @) — ==

*1 T, C, and ST cannot be used.
*2 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 349

Processing details

» These instructions shift the (n) points of data starting from the device specified by (d) to the right by one bit.
» The most significant bit is filled with O.
* In SM700, a value in a bit to the right of the shift target area is stored.

[« () >
(d)+(n) -1 +(n) -2 (d +(n) 3 (d)+2 (d)+1 (d)
(d)+(n d)+(n)-2 (d)+(n)}-3 - (d)+2 (d)+1 (SM700)

|0|1|1|SS|0|0|1|

« If the value specified by (n) is 0, the instruction will be not processed.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS

350 6.5 Shift Instructions

Shifting n-bit data to the left by one bit

RnPCPU § RnPCPU JRnPSFCPUR PSF&’U RnSFCPUR SFC?U
These instructions shift the (n) points of data starting from the specified device to the left by one bit. In the empty area after the
shift, O is stored.

ENO:=BSFL(EN,n,d);
_| |:__.:|| @ | ™ }_{ ENO:=BSFLP(EN,n,d),

o1

— EN ENO |—

HEExecution condition

BSFLP

BSFL J_I_
I

|

EDescription, range, data type

(d) Shift target device — Bit ANY_BOOL
(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

BApplicable devices

(d) o™ — e — —| = —|o — | ===
(n) 02 6] ¢ 6] o|— — |0 @) — ==

*1 T, C, and ST cannot be used.
*2 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 351

Processing details

» These instructions shift the (n) points of data starting from the device specified by (d) to the left by one bit.
» The least significant bit is filled with 0.
* In SM700, a value in a bit to the left of the shift target area is stored.

(n)

(d)+(n)- ()+(n)2 (d+(n)-3 -~ (d)+2 (d)+1 (d)

) |

o TXT o
// . //

(SM700) (d)+1
1 0 0 ISSI 1 1] o

* If the value speC|f|ed by (n) is 0, the instruction will be not processed.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS

352 6.5 Shift Instructions

Shifting n-word data to the right by one word

RnPCPU § RnPCPU JRnPSFCPUR PSF&’U RnSFCPUR SFC?U
These instructions shift the (n) points of data starting from the specified device to the right by one word. In the empty area
after the shift, O is stored.

ENO:=DSFR(EN,n,d);
_| |:__.:|| @ | ™ }_{ ENO:=DSFRP(EN,n,d);

o1

— EN ENO |—

HEExecution condition

DSFRP

DSFR J_I_
I

|

EDescription, range, data type

(d) Shift target device — Word ANY16
(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

(d) — — [e) — —| = —|o e e e
(n) o 6] ¢ 6] o|— — |0 @) — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
353

6.5 Shift Instructions

Processing details
» These instructions shift the (n) points of data starting from the device specified by (d) to the right by one word.

» One word from the most significant bit is filled with O.

¢) N
< gl
(d)+(n)1 (d)+() ()+(n)3 (d)*'2 (d)+1 (d)
(d)+(n)-1 (d)+ d)+(n)-3 (d)+(n)}-4 - (d)+1

[o 555 | 212 | 325 | § | 100 | 50

« If the value specified by (n) is 0, the instruction will be not processed.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS

354 6.5 Shift Instructions

Shifting n-word data to the left by one word

RnPCPU § RnPCPU JRnPSFCPUR PSF&’U RnSFCPUR SFC?U
These instructions shift the (n) points of data starting from the specified device to the left by one word. In the empty area after
the shift, 0 is stored.

ENO:=DSFL(EN,n,d);
_| |:__.:|| @ | ™ }_{ ENO:=DSFLP(EN,n,d);

o1

— EN ENO |—

HEExecution condition

DSFLP

DSFL J_I_
I

|

EDescription, range, data type

(d) Shift target device — Word ANY16
(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

(d) — — o — - - — |0 - |=|—|-

(n) o 6] ¢ 6] o|— — |0 @) — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
355

6.5 Shift Instructions

Processing details
» These instructions shift the (n) points of data starting from the device specified by (d) to the left by one word.

» One word from the least significant bit is filled with 0.

e (n) N
< >

(d)+(n) 1 (d)+(n) 2 (d)+(n) 3 (d)+2 (d)+1 (d)
(d)+ 1 (d)+(n - d)+3 (d)+2 (d)+1
120 325 100 50 40 0

Operation.error

There is no operation error.

356 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n double word(s) of data to the right by one double word

DDSFR(P)

B T2) s ol el
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPU RRnENCPUR (process) ll Redundant) | (Standard)l| (Safety) N(Standard)l] (Safety)

* The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R0O1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift the (n) double word(s) of data starting from the specified device to the right by one double word. In the

empty area after the shift, 0 is stored.

Ladder ST
ENO:=DDSFR(EN,n,d);

| I:.:||) |) }_{ ENO:=DDSFRP(EN,n,d);

FBD/LD
.1

— EN ENO —

—_— n d —

HExecution condition

Instruction Execution condition
DDSFR _,_|—
DDSFRP _t_

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(d) Shift target start device — Double word ANY32
(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y, M, L, JO\O | T,ST,C,D,W, |umd\GO,JONO, |z | LT,LST, | Lz | specification [y T g g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

(d) — — o — —= —|o — |=l=1=

(n) o™ 6] o) o) o|— — |0 o) —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 357

Processing details

» These instructions shift the (n) double word(s) of data starting from the device specified by (d) to the right by one double
word.

» One double word from the most significant bit is filled with 0.
* If (n) is 0, no processing is performed.

le () »!
= 1

(d)+11, (d)+10 (d)+9, (d)+8 (d)+7, (d)+6 (d)+5, (d)+4 (d)+3, (d)+2 (d)+1, (d)
| 555555 | 212121 | 325476 | 100000 | 50000 | 400000 |

DN R

(d)+11, (d)+10 (d)+9, (d)+8 (d)+7,(d)+6 (d)+5, (d)+4 (d)+3, (d)+2 (d)+1, (d)
[o | 585555 | 212121 | 325476 | 100000 | 50000 |

Operation.error

There is no operation error.

358 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n double word(s) of data to the left by one double word

DDSFL(P)

2N 2N 2N 2N A A
RnPCPU |l RnPCPU RnPSFCPURnPSFCPUlf RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant) B(Standard)ll (Safety) J(Standard)}l (Safety)

* The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R0O1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift the (n) double word(s) of data starting from the specified device to the left by one double word. In the
empty area after the shift, 0 is stored.

Ladder ST
ENO:=DDSFL(EN,n,d);

| I:.:||) |) }_{ ENO:=DDSFLP(EN,n,d);

FBD/LD

1
— EN ENO —
—_— n d —

HExecution condition

Instruction Execution condition

DDSFL _,—|—
t

DDSFLP

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(d) Shift target start device — Double word ANY32
(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y, M, L, JOo | T,ST,C,D,W, |um\GO,JONO, |z | LT,LST, | Lz | specification [y« TE g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

(d) — — o — —[= —|o — |=1=1=

(n) o o) o) o) o|— — |0 o) —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS

6.5 Shift Instructions 359

Processing details

» These instructions shift the (n) double word(s) of data starting from the device specified by (d) to the left by one double
word.

» One double word from the least significant bit is filled with 0.

* If (n) is 0, no processing is performed.

(n) N

™ =1
(d)+11, (d)+10 (d)+9, (d)+8 (d)+7, (d)+6 (d)+5, (d)+4 (d)+3, (d)+2 (d)+1, (d)
| 555555 | 212121 | 325476 | 100000 | 50000 | 400000 |

(d)H11, (@)+10 ()49, (@8 ()47, (d)+6 ()5, (d)+4 ()3, ()2 (d)*1, (d)
| 212121 | 325476 | 100000 | 50000 | 400000 | o |

Operation.error

There is no operation error.

360 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n point(s) of single-precision real number data to the
right by one point

ESFR(P)

Cx Cx S>CA< S>CA< S| Cx S| Cx
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPURRnENCPUR (process) ll Redundant) | (Standard)ll (Safety) N(Standard)}] (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift the (n) points of single-precision real number data starting from the specified device to the right by one
point. In the empty area after the shift, 0 is stored.

Ladder ST

ENO:=ESFR(EN,n,d);

| I:.:-:||) |) }{ ENO:=ESFRP(EN,n,d);

FBD/LD

1
— EN ENO —
—_— n d —

HExecution condition

Instruction Execution condition

ESFR _,—|—
_t—

ESFRP

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(d) Shift target start device — Single-precision real ANYREAL_32
number

(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z |LT,LST, | Lz | Specification e 'y TE ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

(d) — — o — — |- — |0 - |—|—-|-

(n) o ¢ @) e o|— — |0 @) — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 361

Processing details

» These instructions shift the (n) points of single-precision real number data starting from the device specified by (d) to the
right by one point.

» One point of single-precision real number data from the most significant bit is filled with 0.
* If (n) is 0, no processing is performed.

[Ex]

When (n)=6

Y

(n) X
gl
d)+11, (d)+10 (d)+9, (d)+8 (d)+7, (d)+6 (d)+5, (d)+4 (d)+3, (d)+2 (d)+1, (d)

| 12345 | 12345678 | -1.234567 | -12.3456 [-123456789| 12345 |

(A1, (@10 ()49, (@8 ()47, [d)+6 ()5, (d)+4 ()3, ()2 (d)*1, (d)
| o | 12345 | 12345678 | -1.234567 | -12.3456 |-123.456789

Operation.error

There is no operation error.

362 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n point(s) of single-precision real number data to the left
by one point

ESFL(P)

Cx Cx S>CA< S>CA< S| Cx S| Cx
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPURRnENCPUR (process) ll Redundant) | (Standard)ll (Safety) N(Standard)}] (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift the (n) points of single-precision real number data starting from the specified device to the left by one
point. In the empty area after the shift, O is stored.

Ladder ST
ENO:=ESFL(EN,n,d);

| I:.:-:||) |) }{ ENO:=ESFLP(EN,n,d);

FBD/LD

.1
— EN ENO —
—_— n d —

HExecution condition

Instruction Execution condition

ESFL _,—|—
_t—

ESFLP

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(d) Shift target start device — Single-precision real ANYREAL_32
number

(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z |LT,LST, | Lz | Specification e 'y TE ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

(d) — — o — — |- — |0 - |—|—-|-

(n) o ¢ @) e o|— — |0 @) — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 363

Processing details

» These instructions shift the (n) points of single-precision real number data starting from the device specified by (d) to the left
by one point.

* One point of single-precision real number data from the least significant bit is filled with 0.

* If (n) is 0, no processing is performed.

(n) N

™ =1
(d)+11, (d)+10 (d)+9, (d)+8 (d)+7, (d)+6 (d)+5, (d)+4 (d)+3, (d)+2 (d)+1, (d)
| 12345 | 12345678 | -1.234567 | -12.3456 [-123456789| 12345 |

(A1, (@)+10 ()49, ()8 (A)+7, (d)+6 ()5, (d)+4 ()3, ()2 (d)*1, (d)
| 12345678 | -1.234567 | -12.3456 |-123.456789| 12345 | o |

Operation.error

There is no operation error.

364 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n point(s) of double-precision real number data to the
right by one point

EDSFR(P)

Cx Cx S>CA< S>CA< S| Cx S| Cx
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPURRnENCPUR (process) ll Redundant) | (Standard)ll (Safety) N(Standard)}] (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift the (n) points of double-precision real number data starting from the specified device to the right by

one point. In the empty area after the shift, 0 is stored.

Ladder ST
ENO:=EDSFR(EN,n,d);

| I:.:||) |) }_{ ENO:=EDSFRP(EN,n,d);

FBD/LD
.1

— EN ENO —

—_— n d —

HExecution condition

Instruction Execution condition
EDSFR _,_|—
EDSFRP _t—

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(d) Shift target start device — Double-precision real ANYREAL_64
number

(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z |LT,LST, | Lz | Specification e 'y TE ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

(d) — — o — — |- — |0 - |—|—-|-

(n) o ¢ @) e o|— — |0 @) — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 365

Processing details

» These instructions shift the (n) points of double-precision real number data starting from the device specified by (d) to the
right by one point.

* One point of double-precision real number data from the most significant bit is filled with 0.

* If (n) is 0, no processing is performed.

[Ex]

When (n)=6

| (n) »l

™ =1
(#2310 (d)+20 (d)+19t0 (@)+16 (d)+15to (d)+12 (d)y+11 to (d)+8 (d)+7 to (d)+4 (d)+3 to (d)

| 1.23456789012345 | 12345678901 | -1.23456789012345 | -12.3456789 | -123.456789012 | 12.34567890123 |
(d)*23t0 (d)*20 (d)+19t0 (d)+16 (d)*15 to (d)+12 (d)y+11 to (d)+8 (d)+7 to (d)+4 (d)+3 to (d)

| 0 | 1.23456789012345 | 12345678901 | -1.23456789012345 | -12.3456789 | -123.456789012 |

Operation.error

There is no operation error.

366 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n point(s) of double-precision real number data to the left
by one point

EDSFL(P)

Cx Cx S>CA< S>CA< S| Cx S| Cx
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPURRnENCPUR (process) ll Redundant) | (Standard)ll (Safety) N(Standard)}] (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift the (n) points of double-precision real number data starting from the specified device to the left by one
point. In the empty area after the shift, O is stored.

Ladder ST
ENO:=EDSFL(EN,n,d);

| I:.:||) |) }_{ ENO:=EDSFLP(EN,n,d);

FBD/LD

.1
— EN ENO —
—_— n d —

HExecution condition

Instruction Execution condition

EDSFL _,—|—
_t—

EDSFLP

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(d) Shift target start device — Double-precision real ANYREAL_64
number

(n) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z |LT,LST, | Lz | Specification e 'y TE ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

(d) — — o — — |- — |0 - |—|—-|-

(n) o ¢ @) e o|— — |0 @) — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS

6.5 Shift Instructions 367

Processing details

» These instructions shift the (n) points of double-precision real number data starting from the device specified by (d) to the
left by one point.

» One point of double-precision real number data from the least significant bit is filled with 0.

* If (n) is 0, no processing is performed.

[Ex]

When (n)=6
: - 8
(d#2310 (d)¥20 ()+19to ()+16 (d)*15to (d)+12 (d)+11 to (d)+8 (d)+7 to (d)+4 (d)+3 to (d)
| 1.23456789012345 | 12345678901 | -1.23456789012345 | -12.3456789 | -123.456789012 | 12.34567890123 |
(d)*2310 ()+20 (d)*19to (d)+16 (d)+15to (d)+12 (d)+11 to (d)+8 (d)+7 to (d)+4 (d)+3 to (d)
| 12345678901 | -1.23456789012345 | -12.3456789 | -123.456789012 | 12.34567890123 | 0 |

Operation.error

There is no operation error.

368 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n-bit data to the right by n bit(s)

These instructions shift the bit data to the right by (n2) bit(s) within (n1) bits starting from the specified device. In the empty
area after the shift, O is stored.

ENO:=SFTBR(EN,n1,n2,d);
pp— ENO:=SFTBRP(EN,n1,n2,d);
—Jc=a] @[] (nZ)}—{ (ENn2d)

o1
— EN ENO —
— nt d —
— n2

HExecution condition

SFTBRP

SFTBR J_|_
t

|

EDescription, range, data type

(d) Shift target device — Bit ANY_BOOL
(n1) Amount of data to be shifted 0to 64 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(d) o™ — e — —| = —|o — ===
(n1) 0" o) @) o) o|— — |0 @) — ==
(n2) 0" o) @) o) o|— — |0 @) — ==

*1 T, C, and ST cannot be used.
*2 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 369

370

Processing details

» These instructions shift bit data to the right by the (n2) bit(s) within the (n1) bits of data area starting from the device
specified by (d).

* In SM700, a value in a bit to the right of the shift target area is stored.

When (n1)=10 and (n2)=4

5 (n1)

I

[+ (@8 (7 (A6 (A5 (@4 T (A3 (A2 @1 (d)
[+ T+ 7T+ T o[¢+ 7T 1+ [1+ 7T 1+ [o o]

N

(A0 (@8 (@7 (d)6 T ()5 ()4 (@3 (d)r2 (d)+
Lo [o [o o + [1+ [1+ [o 1] 1]

Y

0

(SM700)

Specify (n1) and (n2) so that the following condition is satisfied: (n1)>(n2). In the case of (n1)<(n2), data is shifted by the

value of the remainder of (n2)+(n1). However, if the remainder value is 0, no processing is performed.
+ Specify (n1) within the range of 1 to 64.

The (n2) bit(s) from the most significant bit is/are filled with 0(s). In the case of (n1)<(n2), the bits are filled with Os by the
value of the remainder of (n2)+(n1).

If (n1) or (n2) is 0, no processing is performed.

Operation.error

Error code Description
(SDO)
3405H The value specified by (n1) is out of the range, 0 to 64.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7 N\ 7 N\ 2N 7N
RnPCPU J RnPCPU JRnPSFCPURRPSFCPUNRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l} (Safety)

« For the ROOCPU, R01CPU, and RO2CPU, there are no restrictions on the version.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "17" or later support these instructions. Use an
engineering tool with version "1.020W" or later.

These instructions shift bit data to the right by the n2 bit(s) within the (n1) bits of data area starting from the specified device.

In the empty area after the shift, specified data is stored.

— = de ||| m

ENO:=SFTR(EN,s,n1,n2,d);
ENO:=SFTRP(EN,s,n1,n2,d);

.1

ENO —

HEExecution condition

SFTR

SFTRP

L
=

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — Bit ANY_BOOL
(d) Shift target start device — Bit ANY_BOOL
(n1)*1 Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 Set values so that (n2)<(n1).

HMApplicable devices

(s) o} — o — |0 o2 |—|—|—
(d) O - o™ — |0 - | =|—]-
(n1) [eX ¢)) — |0 o |—=|—|-
(n2) 0" o) — |0 o |—|—|-

*1 T, ST, C, and FD cannot be used.
*2 Only 0 or 1 can be used.
*3 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 371

Processing details

» These instructions shift bit data to the right by the (n2) bit(s) within the (n1) bits of data area starting from the device
specified by (d). In the empty area after the shift, (n2) point(s) of data starting from (s) is/are stored.

* When constant 0 is specified for (s), Os are stored in (n2) points from the most significant bit after the shift.

* When constant 1 is specified for (s), 1s are stored in (n2) points from the most significant bit after the shift.

* When (n2) is 0, the processing is not performed.

When (n1)=10 and (n2)=4

(n2)
A

T3 2 (1 (s)

C J

(n1)

(d+9 (d)+8 (d)+7 (d)+6 (d)+S (d)+4 (A3 (d)+2 (A1 (d)
L+ [« [« T o +] «+ [+] 1] o0of o]

%M%

T(Ar9 (@8 (@r7 (A6 (@5 (@4 (@3 (@2 @1 (d)

7 7T+ +] +] o f 1] 1]
@ Shift to the right by (n2)-bit
© Copy
Operation.error
Error code Description
(SDo)
2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.
3405H A constant other than 0 or 1 is specified when the constant (s) is specified.
The values specified in (n1) and (n2) are such that (n1)<(n2).

372 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n-bit data to the left by n bit(s)

RnPCPU § RnPCPU JRnPSFCPUR PSF&’U RnSFCPUR SFC?U
These instructions shift the bit data to the left by (n2) bit(s) within (n1) bits starting from the specified device. In the empty area
after the shift, O is stored.

ENO:=SFTBL(EN,n1,n2,d);
pp— ENO:=SFTBLP(EN,n1,n2,d);
—Jc=a] @[] (nZ)}—{ (EN 2 d)

o1
— EN ENO —
— nt d —
— n2

HExecution condition

SFTBLP

SFTBL J_|_
t

|

EDescription, range, data type

(d) Shift target device — Bit ANY_BOOL
(n1) Amount of data to be shifted 0to 64 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(d) o™ — e — —| = —|o — ===
(n1) 0" o) @) o) o|— — |0 @) — ==
(n2) 0" o) @) o) o|— — |0 @) — ==

*1 T, C, and ST cannot be used.
*2 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 373

Processing details

» These instructions shift bit data to the left by the (n2) bit(s) within the (n1) bits of data area starting from the device specified
by (d).
* In SM700, a value in a bit to the left of the shift target area is stored.

When (n1)=10 and (n2)=4

€ (n1) N
[« @ >
' (d)+9 (d)+8 (d)+7 (d)+6 (d)+5) (dy+4 (d)+3 (d)+2 (d)+1 (d)

Lo [«+ [1+ [o [+] 1+ [1+] 1] o 1]

(swoW
(d+9

(@8 (7 (@6 ()5 (4 (@3 (@2 (@ (d)
L+ T+ T+ 7T 1+ [o] 1+ [o] o o o]

N J
Y

0
Specify (n1) and (n2) so that the following condition is satisfied: (n1)>(n2). In the case of (n1)<(n2), data is shifted by the
value of the remainder of (n2)+(n1). However, if the remainder value is 0, no processing is performed.
» Specify (n1) within the range of 1 to 64.

The (n2) bit(s) from the least significant bit is/are filled with O(s). In the case of (n1)<(n2), the bits are filled with Os by the
value of the remainder of (n2)+(n1).

If (n1) or (n2) is 0, no processing is performed.

Operation.error

Error code Description
(SDO)
3405H The value specified by (n1) is out of the range, 0 to 64.

374 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7 N\ 7 N\ 2N 7N
RnPCPU J RnPCPU JRnPSFCPURRPSFCPUNRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l} (Safety)

« For the ROOCPU, R01CPU, and RO2CPU, there are no restrictions on the version.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "17" or later support these instructions. Use an
engineering tool with version "1.020W" or later.

These instructions shift bit data to the left by the (n2) bit(s) of area within the (n1) bits of data area starting from the specified
device. In the empty area after the shift, specified data is stored.

— = de ||| m

ENO:=SFTL(EN,s,n1,n2,d);
ENO:=SFTLP(EN,s,n1,n2,d);

.1

ENO —

HEExecution condition

SFTL

SFTLP

L
=

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — Bit ANY_BOOL
(d) Shift target start device — Bit ANY_BOOL
(n1)*1 Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 Set values so that (n2)<(n1).

HMApplicable devices

(s) O — o — |0 02 |—|—|—
(d) ¢ - o — |0 e e e
(n1) o" ¢}) — |0 o |—=|—|-
(n2) on e}) — |0 o |—|—|—

*1 T, ST, C, and FD cannot be used.
*2 Only 0 or 1 can be used.
*3 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 375

Processing details

» These instructions shift bit data to the left by the (n2) bit(s) within the (n1) bits of data area starting from the device specified
by (d). In the empty area after the shift, (n2) point(s) of data starting from (s) is/are stored.

* When constant 0 is specified for (s), Os are stored in (n2) points from the least significant bit after the shift.

* When constant 1 is specified for (s), 1s are stored in (n2) points from the least significant bit after the shift.

* When (n2) is 0, the processing is not performed.

When (n1)=10 and (n2)=4

(n2)
A

3 (2 (1 (s)

u J

r

(n1)

(d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
Lo [+ T4+ T o[4+ T 1+ 1+ T 1 T o [1]

@)+9 (A8 (A7 (A6 (d)+5 (d)yr4 (@3 ()2 @+ (d)

LT T + 7T 4+ T 1+ T o[1] [[[|
@ Shift to the left by (n2)-bit
© Copy

Operation.error

Error code Description
(SDo)
2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.
3405H A constant other than 0 or 1 is specified when the constant (s) is specified.
The values specified in (n1) and (n2) are such that (n1)<(n2).

6 BASIC INSTRUCTIONS

376 6.5 Shift Instructions

Shifting n-word data to the right by n word(s)

RnPCPU § RnPCPU JRnPSFCPUR PSF&’U RnSFCPUR SFC?U
These instructions shift the word data to the right by (n2) word(s) within (n1) words starting from the specified device. In the
empty area after the shift, O is stored.

ENO:=SFTWR(EN,n1,n2,d);
pp— ENO:=SFTWRP(EN,n1,n2,d);
—Jc=a] @[] (nZ)}—{ (ENn2d)

o1

— EN ENO |—

HExecution condition

SFTWRP

SFTWR J—|_
t

|

EDescription, range, data type

(d) Shift target device — Word ANY16
(n1) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(d) — — [¢) — —| = —|o — ===
(n1) o o) @) o) o|— — |0 @) — ==
(n2) o o) @) o) o|— — |0 @) — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
377

6.5 Shift Instructions

Processing details

These instructions shift word data to the right by the (n2) word(s) within the (n1) words of data area starting from the device
specified by (d).

The (n2) word(s) from the most significant bit is/are filled with OH(s).
If (n1) or (n2) is OH, no processing is performed.

In the case of (n1)<(n2), (n1) words of data starting from the device specified by (d) become all OHs.

[Ex]

When (n1)=9 and (n2)=4

L (n1)

»!
' (n2)
p A
(@d+8 (7 (A6 (S (@4 (3 ([d)F2 (d)+ (d)
[30FH | 1EH | 100H | oH [1FFH | 10H | 1FH [7FFH [2AH |
N

J
'

\

(@8 (@7 (@*6 (@5 (@4 (@3 (@2 (d)+ (d)
[oH] oH | oH [oH [3FH] 1EH | 100H | oH [1FFH |

N

Y

OH

Operation. error

There is no operation error.

378 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7 N\ 7 N\ 2N 7N
RnPCPU J RnPCPU JRnPSFCPURRPSFCPUNRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l} (Safety)

« For the ROOCPU, R01CPU, and RO2CPU, there are no restrictions on the version.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "17" or later support these instructions. Use an
engineering tool with version "1.020W" or later.

These instructions shift word data to the right by the (n2) word(s) within the (n1) words of data area starting from the specified
device. In the empty area after the shift, specified data is stored.

ENO:=WSFR(EN,s,n1,n2,d);
ENO:=WSFRP(EN,s,n1,n2,d);

— = de ||| m

1
— EN ENO —
J 4 —
— ni
— n2

HEExecution condition

WSFRP

WSFR J—|_
t

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — 16-bit unsigned binary | ANY16
(d) Shift target start device — Word ANY16
(n1)*1 Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 Set values so that (n2)<(n1).

HMApplicable devices

(s) oM — o} — |0 —| ==
(d) o" - O — |0 —|—=|—=
(n1) o™ o o — o ——=
(n2) o™ o 0 o N I

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

379

Processing details

» These instructions shift word data to the right by the (n2) word(s) within the (n1) words of data area starting from the device
specified by (d). In the empty area after the shift, (n2) point(s) of data starting from (s) is/are stored.

* When constant is specified for (s), the specified values are stored in (n2) points from the most significant bit after the shift.

* When (n2) is 0, the processing is not performed.

[Ex]

When (n1)=9 and (n2)=4
(n2)
A

T3 (2 (M (9)

AN J

Y

A

« (n1) R

(d)+8 (A7 (d)+6 (d)+5 (d)+4 (d)+¥3 (d)+2 (d)+1 (d)
[30FH | 1EH [100H | oH [1FFH | 10H | 1FH [7FFH | 2aAH |
u A J

2] 1) -
— —
! (d)+8 (d)+7 (d)+6 (d)+5 M (d)+4 (d)+3 (d)+2 (d)+1 (d) K
| | | | | 30FH | 1EH [100H | oH [1FFH |

@ Shift to the right by (n2)-word
O Copy

Operation.error

Error code Description

(SDO)

2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.

3405H The values specified in (n1) and (n2) are such that (n1)<(n2).
Precautions

When specifying number of digits of bit for (s) and (d), set the same number of digits both for (s) and (d).

380 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n-word data to the left by n word(s)

RnPCPU § RnPCPU JRnPSFCPUR PSF&’U RnSFCPUR SFC?U
These instructions shift the word data to the left by (n2) word(s) within (n1) words starting from the specified device. In the
empty area after the shift, O is stored.

ENO:=SFTWL(EN,n1,n2,d);
pp— ENO:=SFTWLP(EN,n1,n2,d);
—Jc=a] @[] (nZ)}—{ (ENtzd)

o1

— EN ENO |—

HExecution condition

SFTWLP

SFTWL J—|_
t

|

EDescription, range, data type

(d) Shift target device — Word ANY16
(n1) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(d) — — [¢) — —| = —|o — ===
(n1) o o) @) o) o|— — |0 @) — ==
(n2) o o) @) o) o|— — |0 @) — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 381

Processing details

These instructions shift word data to the left by the (n2) word(s) within the (n1) words of data area starting from the device
specified by (d).

» The (n2) word(s) from the least significant bit is/are filled with OH(s).
If (n1) or (n2) is OH, no processing is performed.

In the case of (n1)<(n2), (n1) words of data starting from the device specified by (d) become all OHs.

[Ex]

When (n1)=9 and (n2)=4

L (n1)
= (nAz) 1

r N\
(d+8 (d)+7 (d)+6 (A5 (d)y4 (d)+3 (d)+2 (d)+1 (d)
[1FFH] 10H | oH [7FFH [3AH | 1FH | 30H | oH [FFH |
u

Y

—

@8 @7 ()6 (A5 (d)r4 - (@d)F3 ()2 (d)H (d)
[3aH [tFH [30H [oH | FFH [oH [oH [oH [oH]

N

Y

OH

Operation.error

There is no operation error.

382 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7 N\ 7 N\ 2N 7N
RnPCPU J RnPCPU JRnPSFCPURRPSFCPUNRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l} (Safety)

« For the ROOCPU, R01CPU, and RO2CPU, there are no restrictions on the version.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "17" or later support these instructions. Use an
engineering tool with version "1.020W" or later.

These instructions shift word data to the left by the (n2) word(s) within the (n1) words of data area starting from the specified
device. In the empty area after the shift, specified data is stored.

ENO:=WSFL(EN,s,n1,n2,d);
ENO:=WSFLP(EN,s,n1,n2,d);

— = de ||| m

1
— EN ENO —
J 4 —
— ni
— n2

HEExecution condition

WSFLP

WSFL J—|_
t

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — 16-bit unsigned binary | ANY16
(d) Shift target start device — Word ANY16
(n1)*1 Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 Set values so that (n2)<(n1).

HMApplicable devices

(s) oM — o} — |0 —| ==
(d) o" - O — |0 —|—=|—=
(n1) o1 o o — o =
(n2) o O o} — |0 —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

383

Processing details

» These instructions shift word data to the left by the (n2) word(s) within the (n1) words of data area starting from the device
specified by (d). In the empty area after the shift, (n2) point(s) of data starting from (s) is/are stored.

* When constant is specified for (s), the specified values are stored in (n2) points from the least significant bit after the shift.

* When (n2) is 0, the processing is not performed.

[Ex]

When (n1)=9 and (n2)=4

(n2)
P A
(3 (2 1 ()
| | | | |

S J

| A

¢ (n1)

™~ gl
(d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
[1FFH | toH [oH [7FFH [3aH | 1FH | 30H [oH | FFH |

% e]
) S
@ @7 (@6 (@5 (@ (@8 (@2 (@ (@)
[3aH | 1FH [30H | oH [FFH] [[[|
@ Shift to the left by (n2)-word
@ Copy

Operation.error

Error code Description

(SDo)

2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.

3405H The values specified in (n1) and (n2) are such that (n1)<(n2).
Precautions

When specifying number of digits of bit for (s) and (d), set the same number of digits both for (s) and (d).

384 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n double word(s) of data to the right by n double word(s)

SFTDWR(P)

B T2) s ol el
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPU RRnENCPUR (process) ll Redundant) | (Standard)l| (Safety) N(Standard)l] (Safety)

* The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R0O1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift double word(s) of data to the right by the (n2) double word(s) within the (n1) double words of data area
starting from the specified device. In the empty area after the shift, 0 is stored.

Ladder ST
ENO:=SFTDWR(EN,n1,n2,d);
p— ENO:=SFTDWRP(EN,n1,n2,d);
—Jc=al e |(n1>|(n2)}—{ (ENnzd)
FBDI/LD
C._— 1
— EN ENO (—
— ni d —
— n2

HExecution condition

Instruction Execution condition
SFTDWR _,_|_
SFTDWRP r

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(d) Shift target start device — Double word ANY32
(n1) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16

BMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y, M, L, JOO | T,ST,C,D,W, |umO\GO,JO0\d, |z | LT,LST, | Lz | specification [y TE ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD
(d) - — @) - —|— — |0 — | ===
(n1) o @) O O o|— — | O @) —|——
(n2) o @) e ¢ o|— — |0 @) —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 385

Processing details

» These instructions shift double word(s) of data to the right by the (n2) double word(s) within the (n1) double words of data
area starting from the device specified by (d).

» The (n2) double word(s) from the most significant bit is/are filled with OH(s).
* If (n1) or (n2) is 0, no processing is performed.
* In the case of (n1)<(n2), (n1) double words of data starting from the device specified by (d) become all OHs.

[Ex]

When (n1)=9 and (n2)=4

L (n1)

<

»!
=1

(n2)

r N\
(dyH17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)H11(d)+10 (A9 ()8 (A7 (d)+6 (A5 (d)y+4 (A3 ()2 (A1 (d)
| 3oF1EH | 10000H | 30FtFFH | 1E100H | 1FFFFFH | 1020304H | 7FFFFH | 5101FH | 7FF2AH |

N

J

Y

A
r

N

(dYH17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)F11(d)+10 (A9 ()8 (A7 (d)+6 (A5 (d)y+d (A3 (d)y+2 (1 (d)
[ov | ov | od | on | 30FtEH | 10000H | 30F1FFH | 1E100H | 1FFFFFH |

u

J

Y

OH

Operation.error

There is no operation error.

386 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7N 7 N A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPURRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift double word(s) of data to the right by the (n2) double word(s) within the (n1) double words of data area
starting from the specified device. In the empty area after the shift, specified data is stored.

ENO:=DWSFTR(EN,s,n1,n2,d);
ENO:=DWSFTRP(EN,s,n1,n2,d);

— = de ||| m

1
— EN ENO —
J 4 —
— ni
— n2

HEExecution condition

DWSFTRP

DWSFTR
L
1t

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — Double word ANY32
(d) Shift target start device — Double word ANY32
(n1)" Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16

*1 Set values so that (n2)<(n1).

HApplicable devices

(s) o™ — @) — —|— —|o o |—|—|—
(d) o™ — [¢) — — = —|o — | ===
(n1) o O e} [¢) o|— — |0 @) — ==
(n2) o™ @) @) @) o|— — |0 o) —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 387

Processing details

» These instructions shift double word(s) of data to the right by the (n2) double word(s) within the (n1) double words of data
area starting from the device specified by (d). In the empty area after the shift, (n2) point(s) of data starting from (s) is/are
stored.

* When constant is specified for (s), the specified values are stored in (n2) points from the most significant bit after the shift.

* When (n2) is 0, the processing is not performed.

[Ex]

When (n1)=9 and (n2)=4

(n2)
4 A N\
(S)¥7 (s)+6 (s)+S (s)+4 (s)+3 (s)*+2 (s)*1 (s)
[11111111H | 22222222H | 33333333H | 44444444H |

u J

le (n1) »!
= 1

(d)+17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)+11(d)+10 (d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
| 30FFFFH | 1EEEEH 20000H OH 1FFFFH 10000H | 1EEEEH | 7FFFFH | 2AAAAH

o N@\,

N\

(d)+17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)+11()+10)¥9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)

N

r

[111111111 | 22222202H | 33333333H | 44444444H | 30FFFFH | 1EEEEH | 20000H | oH | 1FFFFH |
@ Shift to the right by (n2)-double word
@ Copy

Operation.error

Error code Description

(SDO)

2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.

3405H The values specified in (n1) and (n2) are such that (n1)<(n2).
Precautions

When specifying number of digits of bit for (s) and (d), set the same number of digits both for (s) and (d).

6 BASIC INSTRUCTIONS

388 6.5 Shift Instructions

Shifting n double word(s) of data to the left by n double word(s)

SFTDWL(P)

B T2) s ol el
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPU RRnENCPUR (process) ll Redundant) | (Standard)l| (Safety) N(Standard)l] (Safety)

* The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R0O1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift double word(s) of data to the left by the (n2) double word(s) within the (n1) double words of data area
starting from the specified device. In the empty area after the shift, 0 is stored.

Ladder

ST

— =3 @|m] (nz)}—{

ENO:=SFTDWL(EN,n1,n2,d);
ENO:=SFTDWLP(EN,n1,n2,d);

FBD/LD

— EN

— ni

— n2

.1

ENO —

d —

HExecution condition

Instruction Execution condition
SFTDWL _,_|_
SFTDWLP r
Setting data
EDescription, range, data type
Operand Description Range Data type Data type (label)
(d) Shift target start device — Double word ANY32
(n1) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16
BMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JOWO |T,ST,C,D,W, |um\cO,Jo\O, LT,LST, | Lz | specification [¢y T [¢
SM, F, B, SB, SD, SW, FD, R, | U3EO\H)GO LC
FX, FY ZR, RD
(d) — — O — — — |0 — — ==
(n1) o) o o) — — |0 @) — ==
(n2) o1 ¢ @) @) — — |0 e — ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

389

390

Processing details

These instructions shift double word(s) of data to the left by the (n2) double word(s) within the (n1) double words of data
area starting from the device specified by (d).

» The (n2) double word(s) from the least significant bit is/are filled with OH(s).
If (n1) or (n2) is 0, no processing is performed.
In the case of (n1)<(n2), (n1) double words of data starting from the device specified by (d) become all OHs.

[Ex]

When (n1)=9 and (n2)=4

L (n1)

,‘
(n2)

»|

r N\

(dyH17(d)+16 (d)+15(d)+14 (d)H13(d)+12 (d)H11(d)+10 (A9 ()8 (A7 (d)+6 (A5 (d)y+4 (d)¥3 ()2 ()1 (d)
| soFtEH | 10000H | 30FtFFH | 1E100H | 1FFFFFH | 1020304H | 7FFFFH | s510tFH | 7FF2AH |

N

J

Y

A
r

(d)+17(d)+16 (d)+15(d)+14 (A)+13(d)+12 (d)+11(d)+10 (d)*9 (A)+8 (d)+7 (d)+6 (d)+5 (d)+4 ()3 (d)+2 (d)+1 (d)
| 1FFFFFH | 1020304H | 7FFFFH | s101FH | 7FF2aH | oH | o [ov [on |

N J

Y

OH

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7N 7 N A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPURRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift double word(s) of data to the left by the (n2) double word(s) within the (n1) double words of data area
starting from the specified device. In the empty area after the shift, specified data is stored.

ENO:=DWSFTL(EN,s,n1,n2,d);
ENO:=DWSFTLP(EN,s,n1,n2,d);

— = de ||| m

1
— EN ENO —
J 4 —
— ni
— n2

HEExecution condition

DWSFTLP

DWSFTL
L
1t

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — Double word ANY32
(d) Shift target start device — Double word ANY32
(n1)" Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16

*1 Set values so that (n2)<(n1).

HApplicable devices

(s) o™ — @) — —|— — |o o |—|—|—
(d) o™ — @) — —| = —|o — ===
(n1) o @) e} 6] o|— — |0 @) — ==
(n2) o™ o) @) o) o|— — |0 o) —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 391

Processing details

» These instructions shift double word(s) of data to the left by the (n2) double word(s) within the (n1) double words of data
area starting from the device specified by (d). In the empty area after the shift, (n2) point(s) of data starting from (s) is/are
stored.

* When constant is specified for (s), the specified values are stored in (n2) points from the least significant bit after the shift.

* When (n2) is 0, the processing is not performed.

[Ex]

When (n1)=9 and (n2)=4

(n2)
r A N\
()7 (s)+6 (s)+S (s)*+4 (s)+3 (s)*+2 (s)*+1 (s)
[11111111H | 22222222H | 33333333H | 44444444H |

N J

le (n1) »!
= 1

(d)+17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)+‘|1(d)+10 (d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)

| 30FFFFH | 1EEEEH | 20000H | oH 1FFFFH 10000H | 1EEEEH | 7FFFFH | 2AAAAH |
J
/23/ e
r N\
(d)+17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)+11(d)+10 (d)+9 (d)+8 (d 7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
| 1FFFrH | 10000H | 1EEEEH | 7FFFFH | 2AAAAH | 11111111H | 22222022H | 33333333H | 44444444H |
@ Shift to the left by (n2)-double word
@ Copy

Operation.error

Error code Description

(SDO)

2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.

3405H The values specified in (n1) and (n2) are such that (n1)<(n2).
Precautions

When specifying number of digits of bit for (s) and (d), set the same number of digits both for (s) and (d).

392 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n point(s) of single-precision real number data to the
right by n point(s)

SFTER(P)

Cx Cx S>CA< S>CA< S| Cx S| Cx
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPURRnENCPUR (process) ll Redundant) | (Standard)ll (Safety) N(Standard)}] (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift point(s) of single-precision real number data to the right by the (n2) point(s) within the single-precision
real number (n1) point(s) of data area starting from the specified device. In the empty area after the shift, O is stored.

Ladder ST
ENO:=SFTER(EN,n1,n2,d);
p— ENO:=SFTERP(EN,n1,n2,d);
—Jc=al e |(n1>|(n2)}—{ (ENn2d)
FBDI/LD
C._— 1
— EN ENO (—
— ni d —
— n2

HExecution condition

Instruction Execution condition
SFTER _,_|_
SFTERP r

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(d) Shift target start device — Single-precision real ANYREAL_32
number
(n1) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO\0O |T,sT,c,D,w, |umO\cO,Jog, LT,LST, | Lz | Specification [« '\ [F ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD
(d) — — O — — — |0 —|—]—
(n1) oM e} ¢} O — — |0 — ==
(n2) o™) o @) — — |0 —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

393

394

Processing details

» These instructions shift point(s) of single-precision real number data to the right by the (n2) point(s) within the single-

precision real number (n1) point(s) of data area starting from the device specified by (d).
* The (n2) point(s) from the most significant bit is/are filled with 0(s).
* If (n1) or (n2) is 0, no processing is performed.

* In case of (n1)<(n2), (n1) points of data starting from the device specified by (d) become all 0.

[Ex]

When (n1)=9 and (n2)=4

L (n1)

<

»!
=1

(n2)

r N\
(d)+17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)+11(d)+10 (d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
| 12345 | 12345678 | -1.234567 | -12.3456 | -12345678 | 12.345 | 3456789 | 45678001 | 567.89 |

N

J

Y

A
r

N

(AH17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)F11(d)+10 (A9 ()8 (A7 (d)+6 (A5 (d)y+d (A3 (d)y+2 (A1 (d)
[o | o | o | o | 12345 | 12345678 | -1.234567 | -12.3456 | -123.45678 |

u

J

Y

0

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7N 7 N A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPURRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift point(s) of single-precision real number data to the right by the (n2) point(s) within the single-precision
real number (n1) point(s) of data area starting from the specified device. In the empty area after the shift, specified data is
stored.

ENO:=ESFTR(EN,s,n1,n2,d);
ENO:=ESFTRP(EN,s,n1,n2,d);

— =0 @ |on]n

C— 1
— EN ENO —
— s 4 —
— ni
— n2

HEExecution condition

ESFTRP

ESFTR J_I_
I

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — Single-precision real ANYREAL_32
number

(d) Shift target start device — Single-precision real ANYREAL_32
number

(n1)" Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16

*1 Set values so that (n2)<(n1).

HMApplicable devices

(s) — — le) — —| = — |0 — |o|—|—
(d) — — o — —| = — |0 — | —]—|-
(n1) o™ o)) e} ol|— — |0 o |—|—|—
(n2) o™ o)) e} ol|— — |0 o |—|—|—

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 395

Processing details

» These instructions shift point(s) of single-precision real number data to the right by the (n2) point(s) within the single-
precision real number (n1) point(s) of data area starting from the device specified by (d). In the empty area after the shift,
(n2) point(s) of data starting from (s) is/are stored.

* When constant is specified for (s), the specified values are stored in (n2) points from the most significant bit after the shift.

* When (n2) is 0, the processing is not performed.

[Ex]

When (n1)=9 and (n2)=4
(n2)
()7 (s)+6 (s)+5 (s)+4 (s)¥3 (s)*+2 (s)+1 (s)
[11 | 22 | 33 | 44 |

u J

| (n1) »
I 1
(d)+17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)+11(d)+10 (d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
| 12345 | 12345678 | -1.234567 | -12.3456 | -12345678 | 12345 | 3456789 | 45678901 | 567.89 |

N J\ J
Y Y

) l o M’

(A)H7(d)+16 (d)+15(d)+14 (@)+13(d)+12 (@+11(A)+10 (d)+0 (@8 (A7 ()+6 (@5 (d)y+4 (A3 (d)#2 (d)+1 ()
[11 | 22 | 33 | 44 | 12345 | 12345678 | -1.234567 | -12.3456 | -123.45678 |
@ Shift to the right by (n2)-point
@ Copy

Operation.error

Error code Description

(SDO)

2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.
3405H The values specified in (n1) and (n2) are such that (n1)<(n2).

6 BASIC INSTRUCTIONS

396 6.5 Shift Instructions

Shifting n point(s) of single-precision real number data to the left
by n point(s)

SFTEL(P)

B T2) s ol el
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPURRnENCPUR (process) ll Redundant) | (Standard)ll (Safety) N(Standard)}] (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift point(s) of single-precision real number data to the left by the (n2) point(s) within the single-precision
real number (n1) point(s) of data area starting from the specified device. In the empty area after the shift, O is stored.

Ladder ST
ENO:=SFTEL(EN,n1,n2,d);
p— ENO:=SFTELP(EN,n1,n2,d);
—Jc=al e |(n1>|(n2)}—{ (EN 2 d)
FBDI/LD
C._— 1
— EN ENO (—
— ni d —
— n2

HExecution condition

Instruction Execution condition
SFTEL _,_|_
SFTELP t_

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(d) Shift target start device — Single-precision real ANYREAL_32
number
(n1) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO\0O |T,sT,c,D,w, |umO\cO,Jog, LT,LST, | Lz | Specification [« '\ [F ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD
(d) — — O — — — |0 —|—]—
(n1) oM e} ¢} O — — |0 — ==
(n2) o™) o @) — — |0 —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

397

Processing details

» These instructions shift point(s) of single-precision real number data to the left by the (n2) point(s) within the single-
precision real number (n1) point(s) of data area starting from the device specified by (d).

» The (n2) point(s) from the least significant bit is/are filled with 0(s).

If (n1) or (n2) is 0, no processing is performed.

In case of (n1)<(n2), (n1) points of data starting from the device specified by (d) become all 0.

[Ex]

When (n1)=9 and (n2)=4

5 (n1)
<

(n2)

r N\

(AYH17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)+11(d)+10 (A9 ()8 (A7 (d)+6 (A5 (d)y+4 (d)¥3 ()2 ()1 (d)
| 12345 | 12345678 | -1.234567 | -12.3456 | -12345678 | 12345 | 3456780 | 45678001 | 567.89 |

N

Y

A

r N\

(d)+17(d)+16 (d)+15(d)+14 (A)+13(d)+12 (d)+11(d)+10 (d)*9 (A)+8 (A7 (d)+6 (d)+5 (d)+4 (A)+3 (A2 (A1 (d)
| -123.45678 | 12345 | 3456789 | 45678901 | s6789 | o | o | o | o |

N J
Y

0

Operation.error

There is no operation error.

398

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7N 7 N A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPURRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift point(s) of single-precision real number data to the left by the (n2) point(s) within the single-precision
real number (n1) point(s) of data area starting from the specified device. In the empty area after the shift, specified data is
stored.

ENO:=ESFTL(EN,s,n1,n2,d);
ENO:=ESFTLP(EN,s,n1,n2,d);

— =0 @ |on]n

C— 1
— EN ENO —
— s 4 —
— ni
— n2

HEExecution condition

ESFTLP

ESFTL J_I_
I

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — Single-precision real ANYREAL_32
number

(d) Shift target start device — Single-precision real ANYREAL_32
number

(n1)" Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16

*1 Set values so that (n2)<(n1).

HMApplicable devices

(s) — — le) — —| = — |0 — |o|—|—
(d) — — o — —| = — |0 — | —]—|-
(n1) o™ o)) e} ol|— — |0 o |—|—|—
(n2) o™ o)) e} ol|— — |0 o |—|—|—

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions 399

Processing details

» These instructions shift point(s) of single-precision real number data to the left by the (n2) point(s) within the single-
precision real number (n1) point(s) of data area starting from the device specified by (d). In the empty area after the shift,
(n2) point(s) of data starting from (s) is/are stored.

* When constant is specified for (s), the specified values are stored in (n2) points from the least significant bit after the shift.

* When (n2) is 0, the processing is not performed.

[Ex]

When (n1)=9 and (n2)=4

(n2)
()7 (s)+6 ()5 (s)+4 (s)+3 (s)+2 (s)+1 (s)
[11 | 22 | 33 | 44 |

le (n1) »!

I 1
(d)+17(d)+16 (d)+15(d)+14 (d)+13(d)+12 (d)+11(d)+10 (d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
| 12345 | 12345678 | -1.234567 | -12.3456 | -12345678 | 12345 | 3456789 | 45678001 | 567.89 |

N J\ J
Y Y

4/23/ o l °

(A)H7(A)+16 (d)H15(d)+14 (d)+13(d)+12 (@)+11(A)+10 (d)+0 (@8 (A7 ()+6 ()5 (d)y+4 (@43 (A2 (d)+1 ()
| 12345678 | 12345 | 3456789 | 45678901 | se789 | 11 | 22 | 33 | 44 |
@ Sshift to the left by (n2)-point
O Copy

Operation.error

Error code Description

(SDO)

2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.
3405H The values specified in (n1) and (n2) are such that (n1)<(n2).

400 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

Shifting n point(s) of double-precision real number data to the
right by n point(s)

SFTEDR(P)

Cx Cx S>CA< S>CA< S| Cx S| Cx
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPURRnENCPUR (process) ll Redundant) | (Standard)ll (Safety) N(Standard)}] (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift point(s) of double-precision real number data to the right by the (n2) point(s) within the double-
precision real number (n1) point(s) of data area starting from the specified device. In the empty area after the shift, 0 is stored.

Ladder ST
ENO:=SFTEDR(EN,n1,n2,d);
p— ENO:=SFTEDRP(EN,n1,n2,d);
—Jc=al e |(n1>|(n2)}—{ (ENn2d)
FBDI/LD
C._— 1
— EN ENO (—
— ni d —
— n2

HExecution condition

Instruction Execution condition
SFTEDR _,_|_
SFTEDRP r

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(d) Shift target start device — Double-precision real ANYREAL_64
number
(n1) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO\0O |T,sT,c,D,w, |umO\cO,Jog, LT,LST, | Lz | Specification [« '\ [F ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD
(d) — — O — — — |0 —|—]—
(n1) oM e} ¢} O — — |0 — ==
(n2) o™) o @) — — |0 —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

401

Processing details

» These instructions shift point(s) of double-precision real number data to the right by the (n2) point(s) within the double-
precision real number (n1) point(s) of data area starting from the device specified by (d).

* The (n2) point(s) from the most significant bit is/are filled with 0(s).

* If (n1) or (n2) is 0, no processing is performed.

* In case of (n1)<(n2), (n1) points of data starting from the device specified by (d) become all 0.

[Ex]

When (n1)=4 and (n2)=2

L (n1)

<

»!
=1

(n2)

r N\
(d)+15 to (d)+12 (d)+11 to (d)+8 (d)+7 to (d)+4 (d)+3 to (d)
| 123456780012345 | -123.456780012 | -12.3456789 | 1234567890123 |
u v J

r A N\
@*15 to (@12 @+ to (d)+8 (d)+7 to (d)y+4 (d)+3 to (d)
| 0 | 0 | 123456789012345 | 123456789012 |

u J

Y

0

Operation.error

There is no operation error.

402 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7N 7 N A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPURRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift point(s) of double-precision real number data to the right by the (n2) point(s) within the double-
precision real number (n1) point(s) of data area starting from the specified device. In the empty area after the shift, specified
data is stored.

ENO:=EDSFTR(EN,s,n1,n2,d);
ENO:=EDSFTRP(EN,s,n1,n2,d);

— =0 @ |on]n

C— 1
— EN ENO —
— s 4 —
— ni
— n2

HEExecution condition

EDSFTRP

EDSFTR
L
1t

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — Double-precision real ANYREAL_64
number

(d) Shift target start device — Double-precision real ANYREAL_64
number

(n1)" Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16

*1 Set values so that (n2)<(n1).

HMApplicable devices

(s) — — le) — —| = — |0 — |o|—|—
(d) — — o — —| = — |0 — | —]—|-
(n1) o™ o)) e} ol|— — |0 o |—|—|—
(n2) o™ o)) e} ol|— — |0 o |—|—|—

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

S

03

Processing details
» These instructions shift point(s) of double-precision real number data to the right by the (n2) point(s) within the double-
precision real number (n1) point(s) of data area starting from the device specified by (d). In the empty area after the shift,

(n2) point(s) of data starting from (s) is/are stored.
* When constant is specified for (s), the specified values are stored in (n2) points from the most significant bit after the shift.

* When (n2) is 0, the processing is not performed.

[Ex]

When (n1)=4 and (n2)=2

(n2)
4 A N\
(s)+7 to (s)+4 (s)+3 to (s)
| 9.87654321 | -9.87654321 |
u J
| (1) »
I 1
@+15 to (@12 @+11 to (d)+8 (d)+7 to (d)+4 (d)+3 to (d)
| 123456789012345 | 123456789012 | -12.34567890123 | 12.345678901234 |
u J\. J
Y Y
o 0 TR

l A

4 N\ N\
@+15 to (A2 @11 o (d)+8 (d)+7 o (d)+4 (d)+3 o (d)
| 9.87654321 | -9.87654321 | 123456780012345 | -123.456780012 |

@ Shift to the right by (n2)-point
0 Copy

Operation.error

Error code Description

(SDO)

2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.
3405H The values specified in (n1) and (n2) are such that (n1)<(n2).

6 BASIC INSTRUCTIONS

404 6.5 Shift Instructions

Shifting n point(s) of double-precision real number data to the left
by n point(s)

SFTEDL(P)

Cx Cx S>CA< S>CA< S| Cx S| Cx
RnPCPU lf RnPCPU BRnPSFCPURRnPSFCPUf RnSFCPU lf RnSFCPU
RnCPURRnENCPUR (process) ll Redundant) | (Standard)ll (Safety) N(Standard)}] (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, R01CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift point(s) of double-precision real number data to the left by the (n2) point(s) within the double-precision
real number (n1) point(s) of data area starting from the specified device. In the empty area after the shift, O is stored.

Ladder ST
ENO:=SFTEDL(EN,n1,n2,d);
p— ENO:=SFTEDLP(EN,n1,n2,d);
—Jc=a] @[] (nz)}—{ ‘)
FBDI/LD
C._— 1
— EN ENO (—
— ni d —
— n2

HExecution condition

Instruction Execution condition
SFTEDL _,_|_
SFTEDLP r

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(d) Shift target start device — Double-precision real ANYREAL_64
number
(n1) Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16
(n2) Number of shifts 0 to 65535 16-bit unsigned binary | ANY16
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO\0O |T,sT,c,D,w, |umO\cO,Jog, LT,LST, | Lz | Specification [« '\ [F ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD
(d) — — O — — — |0 —|—]—
(n1) oM e} ¢} O — — |0 — ==
(n2) o™) o @) — — |0 —| ==

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

405

Processing details

These instructions shift point(s) of double-precision real number data to the left by the (n2) point(s) within the double-
precision real number (n1) point(s) of data area starting from the device specified by (d).

» The (n2) point(s) from the least significant bit is/are filled with 0(s).

If (n1) or (n2) is 0, no processing is performed.

In case of (n1)<(n2), (n1) points of data starting from the device specified by (d) become all 0.

[Ex]

When (n1)=4 and (n2)=2

5 (n1)

< »
(n2)
4 A N\
@5 to (d*12 @11 to (d)+8 (d)+7 to (d)+4 (d)+3 to (d)
| 123456789012345 | -123456789012 | -12.3456789 | 1234567890123 |
N J
Y
4 A N\
@*15 to (@12 @+ to (d)+8 (d)+7 to (d)+4 (d)+3 to (d)
| -12.3456789 | 1234567890123 | 0 | 0 |
N J
Y
0

Operation.error

There is no operation error.

406 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

7N 7 N 7N 7 N A A
RnPCPU J RnPCPU JRnPSFCPURRPSFCPURRSFCPURTRSFCPU
RnCPU JRnENCPU (Redundant) }(Standard)f} (Safety) M(Standard)l (Safety)

» The ROOCPU, R01CPU, and RO2CPU with firmware version "06" or later support these instructions. Use an engineering tool with version "1.047Z" or later.
* The RnCPU (excluding the ROOCPU, RO1CPU, and R02CPU) and RnENCPU with firmware version "31" or later support these instructions. Use an
engineering tool with version "1.040S" or later.

These instructions shift point(s) of double-precision real number data to the left by the (n2) point(s) within the double-precision
real number (n1) point(s) of data area starting from the specified device. In the empty area after the shift, specified data is
stored.

ENO:=EDSFTL(EN,s,n1,n2,d);
ENO:=EDSFTLP(EN,s,n1,n2,d);

— =0 @ |on]n

C— 1
— EN ENO —
— s 4 —
— ni
— n2

HEExecution condition

EDSFTLP

EDSFTL
L
1t

|

EDescription, range, data type

(s) Start device stored in the empty area after the shift — Double-precision real ANYREAL_64
number

(d) Shift target start device — Double-precision real ANYREAL_64
number

(n1)" Amount of data to be shifted 0 to 65535 16-bit unsigned binary | ANY16

(n2)" Number of shifts 0 to 65535 16-bit unsigned binary | ANY16

*1 Set values so that (n2)<(n1).

HMApplicable devices

(s) — — le) — —| = — |0 — |o|—|—
(d) — — o — —| = — |0 — | —]—|-
(n1) o™ o)) e} ol|— — |0 o |—|—|—
(n2) o™ o)) e} ol|— — |0 o |—|—|—

*1 FXand FY cannot be used.

6 BASIC INSTRUCTIONS
6.5 Shift Instructions

S

07

Processing details

» These instructions shift point(s) of double-precision real number data to the left by the (n2) point(s) within the double-
precision real number (n1) point(s) of data area starting from the device specified by (d). In the empty area after the shift,
(n2) point(s) of data starting from (s) is/are stored.

* When constant is specified for (s), the specified values are stored in (n2) points from the least significant bit after the shift.
* When (n2) is 0, the processing is not performed.

[Ex]

When (n1)=4 and (n2)=2

(n2)
r A N\
(s)+7 to (s)+4 (s)+3 to (s)
| 9.87654321 | -0.87654321 |
N J
| (n1) »
I 1
@+15 to (@12 @+11 to (d)+8 (d)+7 o (d)+4 (d)+3 o (d)
| 123456789012345 | 123456789012 | -12.34567890123 | 12.345678901234 |
N J\. J
Y Y
A/g@/ . o

A l

@+15 to (@12 @ to (d)+8 (d)+7 0 (d)+4 (d)+3 o (d)
| 1234567890123 | 12.345678901234 | 9.87654321 | -0.87654321 |
@ Sshift to the left by (n2)-point
O Copy

Operation.error

Error code Description

(SDO)

2821H The range for (n2) points from (s) and that for (n1) points from (d) are overlapping.
3405H The values specified in (n1) and (n2) are such that (n1)<(n2).

408 6 BASIC INSTRUCTIONS
6.5 Shift Instructions

6.6 Data Conversion Instructions

Converting binary data to BCD 4-digit data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPUN RnSFCPURNSFCPU
RnCPU JRnENCPU (Redundant)}(Standard)f} (Safety) M(Standard)ll (Safety)

These instructions convert the specified 16-bit binary data to BCD 4-digit data.

ENO:=BCD(EN,s,d);
ENO:=BCDP(EN,s,d);

—C=0le e }—{

1

— EN ENO |—

HExecution condition

BCDP

BCD J—|_
t

|

EDescription, range, data type

(s) Binary data or the device where the binary data is stored 0 to 9999 16-bit signed binary ANY16
(d) Device for storing the converted BCD data — BCD 4-digit ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(d)

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

S

» These instructions convert the 16-bit binary data (0 to 9999) in the device specified by (s) to BCD 4-digit data, and store the
converted data in the device specified by (d).

215 214 213 212 211 210 29 928 27 926 25 24 23 22 21 20
)BIN9999 [oo [1[ofo[1[1]1]ofofofo1[1][1]1]

C (1) @ BCD

x103 %102 x101 %100

N

8 4 2 1 8 4
@Bcp99gg| 1 [ofo[1[1]ofJo[1[1]ofJo[1]1]o]o]1]

(1) Set Os.

- Operation error

3401H Data in the device specified by (s) is out of the range, 0 to 9999.

41 0 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting binary data to BCD 8-digit data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 32-bit binary data to BCD 8-digit data.

ENO:=DBCD(EN,s,d);

| E::::|| ©) | @ }{ ENO:=DBCDP(EN,s,d);

1

— EN ENO [—

HEExecution condition

DBCDP

DBCD J_I_
I

|

EDescription, range, data type

(s) Binary data or the start device where the binary data is 0 to 99999999 32-bit signed binary ANY32
stored

(d) Start device for storing the converted BCD data — BCD 8-digit ANY32

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HMApplicable devices

(s) O O O O [ORRE) o | O ©) — ==

(d) (@] O O (@) (OR NO) o |0 — — ==

6 BASIC INSTRUCTIONS 411
6.6 Data Conversion Instructions

Processing details

» These instructions convert the 32-bit binary data (0 to 99999999) in the device specified by (s) to BCD 8-digit data, and
store the converted data in the device specified by (d).

(s)*+1 (Upper 16 bits) (s) (Lower 16 bits)
e A v A
231 230 229 228 227 226 925 924 223922 221 220 219 218 217 216 215 214 213 212 211210 29 28 27 26 25 24 23 22 21 20

(s) BIN 99999999 |0‘0‘0‘0‘0‘1‘0‘1‘1‘1‘1‘1‘0‘1‘0‘1‘1‘1‘1‘0‘0‘0‘0‘0‘1‘1‘1‘1‘1‘1‘1‘1|

N\

%(—J
D
x107 x108 x10% x104 x103 x102 %101 x100
A A A A A A A A
Is Y Y Y Y Y Y Y N

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 21
tJolola [t]ofol1 |1 o]olt]1]ofo]t]1]o]o]1]t]ofo]1]1]o]o]r]1]0]0]

(d) BCD 99999999

“

A J
Y Y
(d)+1 (Upper 4 digits) (d) (Lower 4 digits)

(1) Set Os to the upper 5 bits.

Operation.error
Error code Description
(SDo)
3401H Data in the device specified by (s) is out of the range, 0 to 99999999.

412

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting BCD 4-digit data to 16-bit binary data

BIN(P)

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions convert the specified BCD 4-digit data to 16-bit binary data.

Ladder ST
ENO:=BIN(EN,s,d);

| C— | ®) | (d) }{ ENO:=BINP(EN,s,d);

FBD/LD

1
— EN ENO |—
—_— s d —

HEExecution condition

Instruction Execution condition
o L
BINP _t—

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) BCD data or the device where the BCD data is stored 0 to 9999 BCD 4-digit ANY16
(d) Device for storing the converted binary data — 16-bit signed binary ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, JO\O | T,ST,C,D,W, |uO\GO,JO\O, |z |LT,LST, | Lz | Specification e 'y TE ['g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

) o o o o o|— —|o o |—-|—-]—

d) o o o o = —|o — |=1=1=

Processing details

» These instructions convert the BCD 4-digit data (0 to 9999) in the device specified by (s) to 16-bit binary data, and store the
converted data in the device specified by (d).

x103 x102 x101 x100

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1
syBcpooge| 1 [ool 1[1JoJo[1[1]oJo[1][1]o0]o]1]
@Bm
215 214 213 212 211 210 29 28 27 926 925 24 23 22 21 20
@BNoe [ofof1]ofJol1]1[1]ofolofJol1]1]1]1]
S(U

(1) Filled with Os.

6 BASIC INSTRUCTIONS 41
6.6 Data Conversion Instructions 3

3401H Avalue other than 0 to 9 exists at any digit of the value in the device specified by (s).”!

*1 Turning on SM754 can prevent this error from being detected.
If the specified value is out of the valid range, the BIN(P) instruction is not executed regardless of the status (on/off) of SM754.
The BIN(P) instruction does not execute the next operation until the command (execution condition) is turned off and on regardless of
the presence of an error.

414 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting BCD 8-digit data to 32-bit binary data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified BCD 8-digit data to 32-bit binary data.

ENO:=DBIN(EN,s,d);

| E::::|| ©) | @ }{ ENO:=DBINP(EN,s,d);

1

— EN ENO [—

HEExecution condition

DBINP

DBIN J_I_
I

|

EDescription, range, data type

(s) BCD data or the start device where the BCD data is stored | 0 to 99999999 BCD 8-digit ANY32
(d) Start device for storing the converted binary data — 32-bit signed binary ANY32
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

(d) (@] (@] @) (@) o]0 o |0 — — ==

6 BASIC INSTRUCTIONS 41
6.6 Data Conversion Instructions 5

Processing details

» These instructions convert the BCD 8-digit data (0 to 99999999) in the device specified by (s) to 32-bit binary data, and
store the converted data in the device specified by (d).

(s)+1 (s)
4 A Y A N\
x107 x108 %105 x104 x103 x102 x101 x100
A A A A A A A A
Is Y g 2 2 Y Y Y N

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 21

(s) BCD 99999999 |1|0‘0|1|‘I‘0|0|1“I‘O‘O“I‘1|0|0‘1|1|0‘0‘1‘1‘0‘0|1|1‘0|0|1‘1‘0‘0‘1|

@ BIN

(d)+1 (d)

N A
4 Y N\

231 230 229 228 227 926 225 924 2923922 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

@ awssssssss [o]o]a]o]o] 1]o]1]1]1]]t o]t o]t]+]t]+]ole]o]e]o]s [+ [t [+ 1 [+ [+]1]

%(—/
(1)
(1) Filled with Os.

Operation. error

Error code Description
(SDO)
3401H A value other than 0 to 9 exists at any digit of the value in the device specified by (s).'1

416

*1 Turning on SM754 can prevent this error from being detected.

If the specified value is out of the valid range, the DBIN(P) instruction is not executed regardless of the status (on/off) of SM754.

The DBIN(P) instruction does not execute the next operation until the command (execution condition) is turned off and on regardless of
the presence of an error.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting single-precision real number to 16-bit signed binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified single-precision real number to 16-bit signed binary data.

ENO:=FLT2INT(EN,s,d);

| C—] | ©) | @ }{ ENO:=FLT2INTP(EN,s,d);

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

FLT2INTP

FLT2INT
I
1t

|

EDescription, range, data type

(s) Single-precision real number or the start device where the | -32768 to 32767 Single-precision real ANYREAL_32
single-precision real number is stored number

(d) Device for storing the converted binary data — 16-bit signed binary ANY16_S

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d) O O O O O|— — | O — — | ==

6 BASIC INSTRUCTIONS
417

6.6 Data Conversion Instructions

Processing details

» These instructions convert the single-precision real number in the device specified by (s) to 16-bit signed binary data, and
store the converted data in the device specified by (d).

« After conversion, the first digit after the decimal point of the single-precision real number is rounded off.

* When an input value is set using the engineering tool, a rounding error may occur. For the precautions on setting an input
value using the engineering tool, refer to the following.

[=5~ Page 48 Precautions

The following program example converts, when MO turns on, the single-precision real number stored in DO and D1 to 16-bit

signed binary data, and stores the converted data in D100.

SM402
| [
EMOVP | E-1234.5 DO
! ' | | (9 b31--b16 _ b15- b0 @ b15-b0
MO I (s) (d) D1,D0| C49AH | 5000H | |:(> D100 | FB2DH
| !
I | FLT2INT | Do | D190 (-1234.5) (-1235)
Operation.error
Error code Description
(SDO0)
3401H The single-precision real number in the device specified by (s) is out of the range, -32768 to 32767.
3402H An unusual number is set to (s).

* The single-precision real number set to (s) is not within the following range:
0, 2-1265|(S)|<2128
* The value set to a device or label is -0, a subnormal number, NaN (not a number), or +oo.

41 8 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting single-precision real number to 16-bit unsigned
binary data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified single-precision real number to 16-bit unsigned binary data.

ENO:=FLT2UINT(EN,s,d);
ENO:=FLT2UINTP(EN,s,d);

—C=ale e }—{

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

FLT2UINT

FLT2UINTP

I
—

|

EDescription, range, data type

(s) Single-precision real number or the start device where the | 0 to 65535 Single-precision real ANYREAL_32
single-precision real number is stored number

(d) Device for storing the converted binary data — 16-bit unsigned binary | ANY16_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d)

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

419

Processing details

» These instructions convert the single-precision real number in the device specified by (s) to 16-bit unsigned binary data,
and store the converted data in the device specified by (d).

« After conversion, the first digit after the decimal point of the single-precision real number is rounded off.

* When an input value is set using the engineering tool, a rounding error may occur. For the precautions on setting an input
value using the engineering tool, refer to the following.

[=5~ Page 48 Precautions

The following program example converts, when MO turns on, the single-precision real number stored in DO and D1 to 16-bit

unsigned binary data, and stores the converted data in D100.

SM402
| |

—| EMOVP | E1234.5 DO
! ' | | (9 b31--b16 _ b15- b0 @ b15- b0
MO I (s) (d) D1,D0| 449AH | 5000H |I:(>D100 04D3H
| ;

_| | IFLT2UINT| DO | D100 (1234.5) (1235)

Operation.error

Error code Description

(SDo)

3401H The single-precision real number in the device specified by (s) is out of the range, 0 to 65535.
3402H An unusual number is set to (s).

* The single-precision real number set to (s) is not within the following range:
0, 2-1265|(S)|<2128
* The value set to a device or label is -0, a subnormal number, NaN (not a number), or +oo.

420 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting single-precision real number to 32-bit signed binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified single-precision real number to 32-bit signed binary data.

ENO:=FLT2DINT(EN,s,d);

| |:..:|| o | @ }_{ ENO:=FLT2DINTP(EN,s,d);
C— 1
— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

FLT2DINTP

FLT2DINT
I
1t

|

EDescription, range, data type

(s) Single-precision real number or the start device where the | -2147483648 to 2147483647 | Single-precision real ANYREAL_32
single-precision real number is stored number

(d) Start device for storing the converted binary data — 32-bit signed binary ANY32_S

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d) O O O O o]0 o | O — —| ==

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

S

Processing details

» These instructions convert the single-precision real number in the device specified by (s) to 32-bit signed binary data, and

store the converted data in the device specified by (d).

« After conversion, the first digit after the decimal point of the single-precision real number is rounded off.
* When an input value is set using the engineering tool, a rounding error may occur. For the precautions on setting an input

value using the engineering tool, refer to the following.

[=5~ Page 48 Precautions

The following program example converts, when MO turns on, the single-precision real number stored in DO and D1 to 32-bit

signed binary data, and stores the converted data in D100 and D101.

SM402
I I EMOVP |E-123456.7|

b31--- b16 b15 --- b0

15 b0)
205AH ||:(> D101, D100

FFFEH | 1DBFH

MO (s)
I FLT2DINT | DO

| D100

Operation.error

(-123457)

Error code Description

(SDo)

3401H The single-precision real number in the device specified by (s) is out of the range, -2147483648 to 2147483647.
3402H An unusual number is set to (s).

0, 2-1265|(S)|<2128

* The single-precision real number set to (s) is not within the following range:

* The value set to a device or label is -0, a subnormal number, NaN (not a number), or +oo.

422 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting single-precision real number to 32-bit unsigned
binary data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified single-precision real number to 32-bit unsigned binary data.

ENO:=FLT2UDINT(EN,s,d);

| |:..:|| o | @ }_{ ENO:=FLT2UDINTP(EN,s,d);
C— 1
— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

FLT2UDINTP

FLT2UDINT
I
1t

|

EDescription, range, data type

(s) Single-precision real number or the start device where the | 0 to 4294967295 Single-precision real ANYREAL_32
single-precision real number is stored number

(d) Start device for storing the converted binary data — 32-bit unsigned binary | ANY32_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d) O O O O o]0 o | O — —| ==

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

S

Processing details

» These instructions convert the single-precision real number in the device specified by (s) to 32-bit unsigned binary data,

and store the converted data in

the device specified by (d).

« After conversion, the first digit after the decimal point of the single-precision real number is rounded off.
* When an input value is set using the engineering tool, a rounding error may occur. For the precautions on setting an input

value using the engineering tool, refer to the following.

[=5~ Page 48 Precautions

The following program example converts, when MO turns on, the single-precision real number stored in DO and D1 to 32-bit

unsigned binary data, and stores

the converted data in D100 and D101.

SM402
| i EMOVP |E123456.7| DO) bs1b16 b15- b0 @
MO (s) (d) D1,D0 | 47F1H 205AH |I:>D101,D100

' IFLT2UDINT| DO | D100 (1234'56'7)

b31--b16 _ b15-- b0

0001H | E241H

Operation. error

(123457)

Error code Description

(SDO)

3401H The single-precision real number in the device specified by (s) is out of the range, 0 to 4294967295.
3402H An unusual number is set to (s).

0, 27126<|(s)|<2128

« The single-precision real number set to (s) is not within the following range:

* The value set to a device or label is -0, a subnormal number, NaN (not a number), or +oo.

6 BASIC INSTRUCTIONS

424 6.6 Data Conversion Instructions

Converting double-precision real number to 16-bit signed binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified double-precision real number to 16-bit signed binary data.

ENO:=DBL2INT(EN,s,d);

| C—] | ©) | @ }{ ENO:=DBL2INTP(EN,s,d);

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

DBL2INTP

DBL2INT
I
1t

|

EDescription, range, data type

(s) Double-precision real number or the start device where the | -32768 to 32767 Double-precision real ANYREAL_64
double-precision real number is stored number

(d) Device for storing the converted binary data — 16-bit signed binary ANY16_S

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d) e - o - o|— —|o - |—|—|-

6 BASIC INSTRUCTIONS
425

6.6 Data Conversion Instructions

Processing details
» These instructions convert the double-precision real number in the device specified by (s) to 16-bit signed binary data, and

store the converted data in the device specified by (d).
« After conversion, the first digit after the decimal point of the double-precision real number is rounded off.

* When an input value is set using the engineering tool, a rounding error may occur. For the precautions on setting an input
value using the engineering tool, refer to the following.

[=5~ Page 48 Precautions
The following program example converts, when MO turns on, the double-precision real number stored in DO to D3 to 16-bit

signed binary data, and stores the converted data in D100.

SM402
@ p15--bo

| [
' [Eomove|ea321] b ©) b63--b49 _b48--b32 _b31--b16 _ b15--b0
MO | (©) (C) D3,D2,D1,D0] COBSH | 3819H | 9999H | 999AH |I:(> D100 EAC8H
|
pBL2NT| Do | D100 (-5432.1) (-5432)

Operation. error

Error code Description

(SDO)

3401H The double-precision real number in the device specified by (s) is out of the range, -32768 to 32767.
3402H An unusual number is set to (s).

» The double-precision real number set to (s) is not within the following range:

0, 2_1022S|(S)|<21024
* The value set to a device or label is -0, a subnormal number, NaN (not a number), or +oo.

426 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting double-precision real number to 16-bit unsigned
binary data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified double-precision real number to 16-bit unsigned binary data.

ENO:=DBL2UINT(EN,s,d);
ENO:=DBL2UINTP(EN,s,d);

—C=ale e }—{

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

DBL2UINT

DBL2UINTP

I
—

|

EDescription, range, data type

(s) Double-precision real number or the start device where the | 0 to 65535 Double-precision real ANYREAL_64
double-precision real number is stored number

(d) Device for storing the converted binary data — 16-bit unsigned binary | ANY16_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d)

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

427

Processing details
» These instructions convert the double-precision real number in the device specified by (s) to 16-bit unsigned binary data,

and store the converted data in the device specified by (d).
« After conversion, the first digit after the decimal point of the double-precision real number is rounded off.

* When an input value is set using the engineering tool, a rounding error may occur. For the precautions on setting an input
value using the engineering tool, refer to the following.

[=5~ Page 48 Precautions
The following program example converts, when MO turns on, the double-precision real number stored in DO to D3 to 16-bit

unsigned binary data, and stores the converted data in D100.

SM402 [
|
I |eomove | esa21 [oo) b63--b49 _b48--b32 _b31--b16 _b15--b0 @ p15--bo
Mo | ©) @ D3, D2, b1, D0| 40B5H 3819H | 9999H | 999AH | D100| 1538H
| [sLount] Do [D100 (5432.1) (5432)
Operation. error
Error code Description
(SDo)
3401H The double-precision real number in the device specified by (s) is out of the range, 0 to 65535.
3402H An unusual number is set to (s).

» The double-precision real number set to (s) is not within the following range:

0, 2_1022S|(S)|<21024
* The value set to a device or label is -0, a subnormal number, NaN (not a number), or +oo.

428 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting double-precision real number to 32-bit signed binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified double-precision real number to 32-bit signed binary data.

ENO:=DBL2DINT(EN,s,d);

| |:..:|| o | @ }_{ ENO:=DBL2DINTP(EN,s,d);
C— 1
— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

DBL2DINTP

DBL2DINT
I
1t

|

EDescription, range, data type

(s) Double-precision real number or the start device where the | -2147483648 to 2147483647 | Double-precision real ANYREAL_64
double-precision real number is stored number

(d) Start device for storing the converted binary data — 32-bit signed binary ANY32_S

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d) O — O — O] O o | O — —| ==

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

S

Processing details
» These instructions convert the double-precision real number in the device specified by (s) to 32-bit signed binary data, and

store the converted data in the device specified by (d).
« After conversion, the first digit after the decimal point of the double-precision real number is rounded off.

* When an input value is set using the engineering tool, a rounding error may occur. For the precautions on setting an input

value using the engineering tool, refer to the following.

[=5~ Page 48 Precautions
The following program example converts, when MO turns on, the double-precision real number stored in DO to D3 to 32-bit

signed binary data, and stores the converted data in D100 and D101.

SM402
| ! EDMOVP |E-785432.1| DO
! L ®) b63--b49 _bA8--b32 b31--b16 _b15-b0 @ p31-b16 _ b15-b0
Mo © @ D3,D2,D1,D0] C127H | 5BFOM | 3333H | 3333H |IZ(>D101,D100
| I DBL2DINT | DO | D100 (-765432.1) (-765432)

Operation. error

Error code Description

(SDO)

3401H The double-precision real number in the device specified by (s) is out of the range, -2147483648 to 2147483647.
3402H An unusual number is set to (s).

» The double-precision real number set to (s) is not within the following range:

0, 2_1022S|(S)|<21024
* The value set to a device or label is -0, a subnormal number, NaN (not a number), or +oo.

430 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting double-precision real number to 32-bit unsigned
binary data

DBL2UDINT(P)

ZN A
RnPCPU l§f RnPCPU JRnPSFCPURnPSFCPUlf RnSFCPU Jf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions convert the specified double-precision real number to 32-bit unsigned binary data.

Ladder sT™
ENO:=DBL2UDINT(EN,s,d);
| I:-—:l | s) | d) }{ ENO:=DBL2UDINTP(EN,s,d);
FBD/LD
C.—1
—{ EN ENO |—
pa— s d I—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

Instruction Execution condition
DBL2UDINT J_L
DBL2UDINTP _t_

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)

(s) Double-precision real number or the start device where the | 0 to 4294967295 Double-precision real ANYREAL_64
double-precision real number is stored number

(d) Start device for storing the converted binary data — 32-bit unsigned binary | ANY32_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
XY, M, L, JO\O |T,ST,C,D,W, |UD\GO,JONO, |z |LT,LST, | Lz | sPecification [y« y e [g
SM, F, B, SB, SD, SW, FD, R, | U3EO\(H)GO LC
FX, FY ZR, RD

(s) — - O - —|0 — |0 — |o|—|—

(d) O — O — [OA NG O | O — —|—|—

6 BASIC INSTRUCTIONS 4 1
6.6 Data Conversion Instructions 3

Processing details
» These instructions convert the double-precision real number in the device specified by (s) to 32-bit unsigned binary data,

and store the converted data in the device specified by (d).

« After conversion, the first digit after the decimal point of the double-precision real number is rounded off.

* When an input value is set using the engineering tool, a rounding error may occur. For the precautions on setting an input
value using the engineering tool, refer to the following.

[=5~ Page 48 Precautions
The following program example converts, when MO turns on, the double-precision real number stored in DO to D3 to 32-bit

unsigned binary data, and stores the converted data in D100 and D101.

SM402
(@ b31--b16 _b15-b0

| |
EDMOVP .
' | leresiszt| oo) b63--b49 b4B--b32 b31-b16 b15- b0
Mo ©) @ D3,D2,D1,D0| 4127H | 5BFOH | 3333H | 3333H ||:(>D101,D100 000BH | ADF8H
| Perouont] oo [pioo (765432.1) (765432)

Operation. error

Error code Description

(SDO)

3401H The double-precision real number in the device specified by (s) is out of the range, 0 to 4294967295.
3402H An unusual number is set to (s).

» The double-precision real number set to (s) is not within the following range:

0, 2_1022S|(S)|<21024
* The value set to a device or label is -0, a subnormal number, NaN (not a number), or +oo.

432 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 16-bit signed binary data to 16-bit unsigned binary

data

INT2UINT(P)

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions convert the specified 16-bit signed binary data to 16-bit unsigned binary data.

Ladder

sT™

—C=J]e e }—{

ENO:=INT2UINT(EN,s,d);
ENO:=INT2UINTP(EN,s,d);

FBD/LD

— EN

— S

1

ENO

d —

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

Instruction Execution condition
INT2UINT J_L
INT2UINTP _t_

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) Binary data or the label where the binary data is stored -32768 to 32767 16-bit signed binary ANY16_S
(d) Label for storing the converted binary data — 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JOWO |T,ST,C,D,W, |UDO\GO,JONO, |z |LT,LST, |Lz | Specification [y g g
SM, F, B, SB, SD, SW, FD, R, | USEO\(H)GO LC
FX, FY ZR, RD
(s) @) @) O O o|— — | O @) —| ==
(d) @) @) O O Oo|— — | O — — | ==
Point

The INT2UINT(P) instruction is used in programming using labels. The purpose of using this instruction is to

match the data type of the specified label with the data type that can be specified by the instruction operand.

In programming using devices, use of the INT2UINT(P) instruction is not required.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

433

434

Processing details

» These instructions convert the 16-bit signed binary data (ANY16_S) in the label specified by (s) to 16-bit unsigned binary
data (ANY16_U), and store the converted data in the label specified by (d).

 The following figure shows a program example using the INT2UINT(P) instruction.

[Ex]

The +_U instruction requires ANY16_U to be specified by the operand, and therefore, before the +_U instruction is executed,
the INT2UINT instruction is used to convert wLabel0 of ANY16_S to uLabel1 of ANY16_U.
The value in wLabelO is stored in uLabel1 as is.

INT2UNIT
bSwitchA (s) b15 - b0 (d) b15 - b0
I IINT2UINT| wLabel0 | uLabel1 wlLabel0 CO00H uLabel1 CO00H

It
i

—I +_U | uLabel0 | uLabell

(1)

bSwitchA: Bit
wLabel0: Word [signed]

uLabel0, uLabel1: Word [unsigned]/bit string [16 bits]
(1) The value is stored as is.

(2) The data type of the value is converted to the one of the operand in the +_U instruction, and the operation starts.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 16-bit signed binary data to 32-bit signed binary data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 16-bit signed binary data to 32-bit signed binary data.

—C=ale e }—{

ENO:=INT2DINT(EN,s,d);
ENO:=INT2DINTP(EN,s,d);

1

ENO |—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

INT2DINT

INT2DINTP

I
—

|

EDescription, range, data type

(s) Binary data or the device where the binary data is stored -32768 to 32767 16-bit signed binary ANY16_S
(d) Start device for storing the converted binary data — 32-bit signed binary ANY32_S
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(s)

(d)

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

NN

35

436

Processing details

» These instructions convert the 16-bit signed binary data in the device specified by (s) to 32-bit signed binary data, and store
the converted data in the device specified by (d).

The following program example converts, when MO turns on, the 16-bit signed binary data stored in DO to 32-bit signed binary
data, and stores the converted data in D100 and D101.

(s) (d)
SM402 15 - b0

I I MOVP | HOBOOOl DO DO | BOOOH |

MO (s) (d) (-20480) (-20480)

| {iNT2DINT] DO | D100 ‘—T—’ — /
(1 T

(1) The most significant bit of data before conversion is stored.
(2) Data before conversion is stored in the lower 16 bits.

b31 - b16 b15 - b0
D101, D100 FFFFH E BOOOH |

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 16-bit signed binary data to 32-bit unsigned binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 16-bit signed binary data to 32-bit unsigned binary data.

ENO:=INT2UDINT(EN,s,d);

| |:..:|| ©) | @ }_{ ENO:=INT2UDINTP(EN,s,d);

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

INT2UDINTP

INT2UDINT
I
1t

|

EDescription, range, data type

(s) Binary data or the device where the binary data is stored -32768 to 32767 16-bit signed binary ANY16_S
(d) Start device for storing the converted binary data — 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(s) O O O O O|— — | O @) — ==
(d) O O O O o]0 o | O — — ==

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

NN

37

438

Processing details

» These instructions convert the 16-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, and
store the converted data in the device specified by (d).

The following program example converts, when MO turns on, the 16-bit signed binary data stored in DO to 32-bit unsigned
binary data, and stores the converted data in D100 and D101.

(s) (d)

w0z b15 - b0 b31 b16 b15 - b0
f { move [Homooo | oo oo | AoooH | D101, D100 0000H | AooOH |
Mo © @ (-24576) (40960)
I IlNTZUDlNTl DO | D100 _T_/ $ v & /
Q)] T

)
(1) The value, 0, is stored.

(2) Data before conversion is stored in the lower 16 bits.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 16-bit unsigned binary data to 16-bit signed binary

data

UINT2INT(P)

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions convert the specified 16-bit unsigned binary data to 16-bit signed binary data.

Ladder sT™
ENO:=UINT2INT(EN,s,d);
| E.:l | ®) |) }_{ ENO:=UINT2INTP(EN,s,d);
FBD/LD
C.—1
—{ EN ENO |—
pa— s d I—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

Instruction Execution condition
UINT2INT J_L
UINT2INTP _t_

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) Binary data or the label where the binary data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) Label for storing the converted binary data — 16-bit signed binary ANY16_S
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JOO |T,sT,c,0,w, |uDeO, Jog, LT,LST, | Lz | Specification | ¢y [[g
SM, F, B, SB, SD, SW, FD, R, | U3EO\H)GO LC
FX, FY ZR, RD
(s) O O @) O — — | O @) —| ==
C) o) o o) 0 — —To — ==
Point

The UINT2INT(P) instruction is used in programming using labels. The purpose of using this instruction is to

match the data type of the specified label with the data type that can be specified by the instruction operand.

In programming using devices, use of the UINT2INT(P) instruction is not required.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

439

Processing details

» These instructions convert the 16-bit signed binary data (ANY16_U) in the label specified by (s) to 16-bit unsigned binary
data (ANY16_S), and store the converted data in the label specified by (d).

 The following figure shows a program example using the UINT2INT(P) instruction.

[Ex]

The + instruction requires ANY16_S to be specified by the operand, and therefore, before the + instruction is executed, the
UINT2INT instruction is used to convert uLabel0 of ANY16_U to wLabel1 of ANY16_S.
The value in uLabelO is stored in wLabel1 as is.

bSwitchA (s) b15 - b0 d b15 - b0
|

[IUINTZINT| uLabel0 | wLabel1 uLabel0 COO00H wLabel1 CO000H
| —
—I + | wLabel0 | wLal?eI1 T

It

(1)

bSwitchA: Bit

wLabel0, wLabel1: Word [signed]

uLabel0: Word [unsigned]/bit string [16 bits]
(1) The value is stored as is.

(2) The data type of the value is converted to the one of the operand in the + instruction, and the operation starts.

Operation.error

There is no operation error.

440 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 16-bit unsigned binary data to 32-bit signed binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 16-bit unsigned binary data to 32-bit signed binary data.

ENO:=UINT2DINT(EN,s,d);

| C—] | ©) | @ }{ ENO:=UINT2DINTP(EN,s,d);

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

UINT2DINTP

UINT2DINT
I
1t

|

EDescription, range, data type

(s) Binary data or the device where the binary data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) Start device for storing the converted binary data — 32-bit signed binary ANY32_S
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(s) O O O O O|— — | O @) — ==
(d) O O O O o]0 o | O — — ==

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

NN

41

442

Processing details

» These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 32-bit signed binary data, and
store the converted data in the device specified by (d).

The following program example converts, when MO turns on, the 16-bit unsigned binary data stored in DO to 32-bit signed
binary data, and stores the converted data in D100 and D101.

(s) (d)
Shaoe b15 - b0 b31 - b16_ b15 - b0
| [wove | Hooooo | po DO DOOOH D101,0100 | 0000H | DoooH |
Mo (s) C) (53248) (53248)
| |

L J U J
I |UINT2DINT| DO | D100 T A
(O] T

(1) The value, 0, is stored.

(2) Data before conversion is stored in the lower 16 bits.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 16-bit unsigned binary data to 32-bit unsigned binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 16-bit unsigned binary data to 32-bit unsigned binary data.

ENO:=UINT2UDINT(EN,s,d);

| C— | ©) | @ }{ ENO:=UINT2UDINTP(EN,s,d);

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

UINT2UDINTP

UINT2UDINT
I
1t

|

EDescription, range, data type

(s) Binary data or the device where the binary data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) Start device for storing the converted binary data — 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

(s) O O O O O|— — | O @) — ==
(d) O O O O o]0 o | O — — ==

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

NN

43

444

Processing details

» These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 32-bit unsigned binary data, and
store the converted data in the device specified by (d).

The following program example converts, when MO turns on, the 16-bit unsigned binary data stored in DO to 32-bit unsigned
binary data, and stores the converted data in D100 and D101.

) ()

caos b15 -~ b0
f { wove | rorooo [oo po [FoooH | D101, D100

MO (s) (d) (61440) (61440)
| |

\) \ J
I IdINT2UDINT| DO | D100 v
(1 T

@)

b31 - b16 b15 - b0
0000H | FOOOH |

(1) The value, 0, is stored.

(2) Data before conversion is stored in the lower 16 bits.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 32-bit signed binary data to 16-bit signed binary data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 32-bit signed binary data to 16-bit signed binary data.

—C=ale e }—{

ENO:=DINT2INT(EN,s,d);
ENO:=DINT2INTP(EN,s,d);

1

ENO |—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

DINT2INT

DINT2INTP

I
—

|

EDescription, range, data type

(s) Binary data or the start device where the binary data is -32768 to 32767 32-bit signed binary ANY32_S
stored

(d) Device for storing the converted binary data — 16-bit signed binary ANY16_S

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d)

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

NN

45

446

Processing details

» These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit signed binary data, and store
the converted data in the device specified by (d).

The following program example converts, when MO turns on, the 32-bit signed binary data stored in DO and D1 to 16-bit
signed binary data, and stores the converted data in D100.

SM402 (s) b31 - Db16 b15 - b0 (d) b15 - b0
I { omove |nrrrrosze] o DI,D0 | FFFFH | o9s7eH | D100 9876H

Mo © @ (-26506) (-26506)
| |

[| DINT2INT | DO | D100 \j’_/

(1) Data before conversion is stored in the lower 16 bits.

Q)

Operation.error

Error code Description
(SDo)
3401H The 32-bit signed binary data in the device specified by (s) is out of the range, -32768 to 32767.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 32-bit signed binary data to 16-bit unsigned binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 32-bit signed binary data to 16-bit unsigned binary data.

ENO:=DINT2UINT(EN,s,d);

| C—] | ©) | @ }{ ENO:=DINT2UINTP(EN,s,d);

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

DINT2UINTP

DINT2UINT
I
1t

|

EDescription, range, data type

(s) Binary data or the start device where the binary data is -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
stored

(d) Device for storing the converted binary data — 16-bit unsigned binary | ANY16_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d) O O O O O|— — | O — — | ==

6 BASIC INSTRUCTIONS
447

6.6 Data Conversion Instructions

448

Processing details

» These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, and
store the converted data in the device specified by (d).

The following program example converts, when MO turns on, the 32-bit signed binary data stored in DO and D1 to 16-bit
unsigned binary data, and stores the converted data in D100.

SM402 (s) b31 - Db16 b15 - b0 (d b5 -~ boO
I { omove [weresaszr] oo D100 | 87e5H | 4321H | D100 4321H
Mo © @ (-2023406815) (17185)
| [

I |DINT2UINT| DO | D100 ~_T_)

(1) Data before conversion is stored in the lower 16 bits.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 32-bit signed binary data to 32-bit unsigned binary

data

DINT2UDINT(P)

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions convert the specified 32-bit signed binary data to 32-bit unsigned binary data.

Ladder sT™
ENO:=DINT2UDINT(EN,s,d);
| I:-—:l | s) | d) }{ ENO:=DINT2UDINTP(EN,s,d);
FBD/LD
C.—1
—{ EN ENO |—
pa— s d I—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

Instruction Execution condition
DINT2UDINT J_L
DINT2UDINTP _t_

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) Binary data or the label where the binary data is stored -2147483648 to 2147483647 | 32-bit signed binary ANY32_S
(d) Label for storing the converted binary data — 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JOO |T,sT,c,0,w, |uDeO, Jog, LT,LST, | Lz | Specification | ¢y [[g
SM, F, B, SB, SD, SW, FD, R, | U3EO\H)GO LC
FX, FY ZR, RD
(s) O O @) O O O | O @) —| ==
(d) O O @) O O O |O — —| ==
Point

The DINT2UDINT(P) instruction is used in programming using labels. The purpose of using this instruction is

to match the data type of the specified label with the data type that can be specified by the instruction

operand.

In programming using devices, use of the DINT2UDINT(P) instruction is not required.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

449

Processing details

» These instructions convert the 32-bit signed binary data (ANY32_S) in the label specified by (s) to 32-bit unsigned binary
data (ANY32_U), and store the converted data in the label specified by (d).

+ The following figure shows a program example using the DINT2UDINT(P) instruction.

[Ex]

The D+_U instruction requires ANY32_U to be specified by the operand, and therefore, before the D+_U instruction is

executed, the DINT2UDINT instruction is used to convert dLabel0 of ANY32_S to udLabel1 of ANY32_U.
The value in dLabelO is stored in udLabel1 as is.

DINT2UDINT
bSwitchA (s) b31 - b16 b15 - b0 (d) b31 - b16 b15 - b0
DINT2UDINT| dLabelo | udLabelt dLabel0 8000H I o001 udLabel1 8000H I o001
8 J & ~ J
udLabel0 | udLabell T T
\ (1)

bSwitchA: Bit
dLabel0: Double word [signed]

udLabelO, udLabel1: Double word [unsigned]/bit string [32 bits]
(1) The value is stored as is.

(2) The data type of the value is converted to the one of the operand in the D+_U instruction, and the operation starts.

Operation.error

There is no operation error.

450 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 32-bit unsigned binary data to 16-bit signed binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 32-bit unsigned binary data to 16-bit signed binary data.

ENO:=UDINT2INT(EN,s,d);

| |:..:|| ©) | @ }_{ ENO:=UDINT2INTP(EN,s,d);

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

UDINT2INTP

UDINT2INT
I
1t

|

EDescription, range, data type

(s) Binary data or the start device where the binary data is 0 to 4294967295 32-bit unsigned binary | ANY32_U
stored

(d) Device for storing the converted binary data — 16-bit signed binary ANY16_S

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d) O O O O o|— — | O — —|——

6 BASIC INSTRUCTIONS
451

6.6 Data Conversion Instructions

452

Processing details

» These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit signed binary data, and
store the converted data in the device specified by (d).

The following program example converts, when MO turns on, the 32-bit unsigned binary data stored in DO and D1 to 16-bit

signed binary data, and stores the converted data in D100.

SM402 (s) b31 = b16 Db15 - b0 d b15 - b0
I { omove |sersensc] oo D1,00 | s678H | 9ABCH | D100 9ABCH
Mo ©) @ (1450744508) (-25924)

I |UDINT2|NT| DO | D100 T T

(1)

(1) Data before conversion is stored in the lower 16 bits.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 32-bit unsigned binary data to 16-bit unsigned binary
data

A A
RnPCPU § RnPCPU JRPSFCPURRnPSFCPURSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 32-bit unsigned binary data to 16-bit unsigned binary data.

ENO:=UDINT2UINT(EN,s,d);

| |:..:|| ©) | @ }_{ ENO:=UDINT2UINTP(EN,s,d);

1

— EN ENO [—

*1 The engineering tool with version "1.035M" or later supports the ST.

HExecution condition

UDINT2UINTP

UDINT2UINT
I
1t

|

EDescription, range, data type

(s) Binary data or the start device where the binary data is 0 to 4294967295 32-bit unsigned binary | ANY32_U
stored

(d) Device for storing the converted binary data — 16-bit unsigned binary | ANY16_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HApplicable devices

(d) O O O O O|— — | O — — | ==

6 BASIC INSTRUCTIONS
453

6.6 Data Conversion Instructions

454

Processing details

» These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit unsigned binary data, and
store the converted data in the device specified by (d).

The following program example converts, when MO turns on, the 32-bit unsigned binary data stored in DO and D1 to 16-bit

unsigned binary data, and stores the converted data in D100.

SM402 () b31 - b16 b15 - b0 (d) b15 - bO
| { owove [wsoresne| oo D100 4se7H | 89ABH | D100 89ABH
Mo © @ (1164413355) (35243)

f IUDINT2UINT| Do | D100 ~_‘[_’ _T_/

(1

(1) Data before conversion is stored in the lower 16 bits.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 32-bit unsigned binary data to 32-bit signed binary

data

UDINT2DINT(P)

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions convert the specified 32-bit unsigned binary data to 32-bit signed binary data.

Ladder sT™
ENO:=UDINT2DINT(EN,s,d);
| I:-—:|| s) | d) }{ ENO:=UDINT2DINTP(EN,s,d);
FBD/LD
C.—1
—{ EN ENO |—

— S

d —

*1 The engineering tool with version "1.035M" or later supports the ST.

HEExecution condition
Instruction Execution condition
UDINT2DINT ﬂ
UDINT2DINTP _t_

Setting data

EDescription, range, data type
Operand Description Range Data type Data type (label)
(s) Binary data or the label where the binary data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) Label for storing the converted binary data — 32-bit signed binary ANY32_S
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO\O |T,ST,C,D,W, |UO\GO,JO\O, |z |LT,LsT, |Lz |specification 'y ylF g
SM, F, B, SB, SD, SW, FD, R, | U3EO\H)GO LC
FX, FY ZR, RD
(s) O O O [OA NG O | O O —|—|—
(d) O O O [OA NG O | O — —|—|—
Point />

The UDINT2DINT(P) instruction is used in programming using labels. The purpose of using this instruction is

to match the data type of the specified label with the data type that can be specified by the instruction

operand.

In programming using devices, use of the UDINT2DINT(P) instruction is not required.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

455

Processing details

» These instructions convert the 32-bit signed binary data (ANY32_U) in the label specified by (s) to 32-bit unsigned binary
data (ANY32_S), and store the converted data in the label specified by (d).

+ The following figure shows a program example using the UDINT2DINT(P) instruction.

[Ex]

The D+ instruction requires ANY32_S to be specified by the operand, and therefore, before the D+ instruction is executed, the
UDINT2DINT instruction is used to convert udLabel0 of ANY32_U to dLabel1 of ANY32_S.
The value in udLabelO is stored in dLabel1 as is.

UDINT2DINT
bSwitchA (s) b31 - b16 b15 - b0 (d) b31 - b16 bi5 - bO
UDINT2DINT| udLabel0 | dLabel udLabel0 8000H l 0001H dLabel1 8000H l 0001H
C) C y)
dLabel0 | dLab?I1 T T
(1

bSwitchA: Bit

dLabel0, dLabel1: Double word [signed]

udLabel0: Double word [unsigned]/bit string [32 bits]
(1) The value is stored as is.

(2) The data type of the value is converted to the one of the operand in the D+ instruction, and the operation starts.

Operation.error

There is no operation error.

456 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 16-bit binary data to Gray code data

GRY(P)(_V)

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions convert the specified 16-bit binary data to 16-bit binary Gray code data.

Ladder ST
ENO:=GRY(EN,s,d); ENO:=GRY_U(EN,s,d);
| I:'':I| © | @ }_{ ENO:=GRYP(EN,s,d); ENO:=GRYP_U(EN,s,d);
FBD/LD
C. 1
—{ EN ENO |—
— s d —

HEExecution condition

Instruction Execution condition
GRY

GRY_U

GRYP

GRYP_U |

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) GRY(P) Binary data or the device where the binary data | 0 to 32767 16-bit signed binary ANY16_S
GRY(P)_U is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) GRY(P) Device for storing the converted Gray code — 16-bit signed binary ANY16_S
GRY(P)_U data 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
BMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO\O |T,ST,C,D,W, |UO\GO,JO\O, |z |LT,LsT, |Lz |specification 'y ylF g
SM, F, B, SB, SD, SW, FD, R, | U3EO\H)GO LC
FX, FY ZR, RD
(s) O O O O Oo|— — | O @) —|——
(d) O O O O Oo|— — | O — —|——

Processing details

» These instructions convert the 16-bit binary data in the device specified by (s) to 16-bit binary Gray code data, and store the

converted data in the device specified by (d).

b15

b0

)BIN 1234[ofoJoJofo]1]ofJo[1[1Jol1]o]o]1]0]

b15

U

b0

(d) 1234 0JofofoJol1[1]0

EIKIERERERIEREN

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

457

3401H When the GRY(P) instruction is used, the value in the device specified by (s) is out of the range, 0 to 32767.

458 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 32-bit binary data to Gray code data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 32-bit binary data to 32-bit binary Gray code data.

ENO:=DGRY(EN,s,d); ENO:=DGRY_U(EN,s,d);
— ENO:=DGRYP(EN,s,d); ENO:=DGRYP_U(EN,s,d);
—||:___:||(s>|(d)}—{ ENs.) UENSA)

1

— EN ENO [—

HEExecution condition

DGRYP
DGRYP_U

DGRY
DGRY_U _| |_
1

|

EDescription, range, data type

(s) DGRY(P) Binary data or the start device where the binary | 0 to 2147483647 32-bit signed binary ANY32_S
DGRY(P)_U data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) DGRY(P) Start device for storing the converted Gray — 32-bit signed binary ANY32_S
DGRY(P)_U code data 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BMApplicable devices

(s) O O O O [ORRE) o | O ©) — ==

(d) O O O O o]0 o | O — — ==

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

S

59

Processing details

» These instructions convert the 32-bit binary data in the device specified by (s) to 32-bit binary Gray code data, and store the
converted data in the device specified by (d).

(s)+1 (s)

(s)BIN 305419896 |0|o|0|1|0|0|1|0"|.0|o|1|1|o]1|0|0|0|1|o|1|o|1|1|6.|.o|1|1|1|1|0|0|o|

U

(d)+1 (d)

b31 b16b15 b0
d) 305419896 [0]o[0]1]1]o[1]1]o]o[1][o]1]1]1]o]o[1][1]1][1]1][o]1]o]1]o[o]o[1]0[o]
(s)+1: Upper 16 bits
(s): Lower 16 bits

Operation.error

Error code Description
(SDo)
3401H When the DGRY (P) instruction is used, the value in the device specified by (s) is out of the range, 0 to 2147483647.

460 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 16-bit binary Gray code data to 16-bit binary data

GBIN(P)(_U)

C C SFCI SCX SFC S| Cx
RnPCPU RnPCPU BRnPSFCPURRnPSFCPUN RnSFCPU lf RnSFCPU
RnCPU JRnENCPU (Redundant)(Standard)ll (Safety) M(Standard)}l (Safety)

These instructions convert the specified 16-bit binary Gray code data to 16-bit binary data.

Ladder ST
ENO:=GBIN(EN,s,d); ENO:=GBIN_U(EN,s,d);
| I:'':I| © | @ }_{ ENO:=GBINP(EN,s,d); ENO:=GBINP_U(EN,s,d);
FBD/LD
C. 1
—{ EN ENO |—
— s d —

HEExecution condition

Instruction Execution condition
GBIN

GBIN_U

GBINP

GBINP_U |

Setting data

EDescription, range, data type

Operand Description Range Data type Data type (label)
(s) GBIN(P) Gray code data or the device where the Gray 0 to 32767 16-bit signed binary ANY16_S
GBIN(P)_U code data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) GBIN(P) Device for storing the converted binary data — 16-bit signed binary ANY16_S
GBIN(P)_U 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
BMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L, |JO\O |T,sT,c,0,w, |uDeOJog, |z |LTLsT, |Lz |specification [y ylp [g
SM, F, B, SB, SD, SW, FD, R, | U3EO\H)GO LC
FX, FY ZR, RD
(s) (@) (@) (@] (@) Oo|— — | O @) — ==
(d) (@) (@) (@] (@) O|— — | O — — ==

Processing details
» These instructions convert the 16-bit binary Gray code data in the device specified by (s) to 16-bit binary data, and store the
converted data in the device specified by (d).

b15 bo
(s) 1234 0JoJofoJol1[1]o[1Jol1[1[1]o][1]1]

b15

@8N 1234 o[oJoJoJol1Jolo[1[1Jo[1]o]o]1]0]

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

461

3401H When the GBIN(P) instruction is used, the value in the device specified by (s) is out of the range, 0 to 32767.

462 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 32-bit binary Gray code data to 32-bit binary data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert the specified 32-bit binary Gray code data to 32-bit binary data.

ENO:=DGBIN(EN,s,d); ENO:=DGBIN_U(EN,s,d);
— ENO:=DGBINP(EN,s,d); ENO:=DGBINP_U(EN,s,d);
—||:___:||(s>|(d)}—{ (ENs9) UENSD

1

— EN ENO [—

HEExecution condition

DGBINP
DGBINP_U

DGBIN
DGBIN_U |_
1

|

EDescription, range, data type

(s) DGBIN(P) Gray code data or the start device where the 0 to 2147483647 32-bit signed binary ANY32_S
DGBIN(P)_U | Gray code datais stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) DGBIN(P) Start device for storing the converted binary — 32-bit signed binary ANY32_S
DGBIN(P)_U data 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BMApplicable devices

(s) O O O O [ORRE) o | O ©) — ==

(d) O O O O o]0 o | O — — ==

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

S

63

Processing details

» These instructions convert the 32-bit binary Gray code data in the device specified by (s) to 32-bit binary data, and store the
converted data in the device specified by (d).

(s)+1 (s)

b31 b16b15 b0
s) 305419896 [0]o]o]1]1]o]1]1]0]o[1]0]1]1]1]o]o[1]1]1]1][1]o[1]0]1]0[o]o]1]o]o]

U

(d)+1 (d)
b31 b16b15 b0
(d)BIN 305419896 |0]0]o]1]o[0]1]o]o[o[1]1]0]1]o]o[o]1]o[1]o[1]1]o]o[1]1]1]1]0[o]0]
(s)+1: Upper 16 bits
(s): Lower 16 bits

Operation.error

Error code Description
(SDo)
3401H When the DGBIN(P) instruction is used, the value in the device specified by (s) is out of the range, 0 to 2147483647.

464 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting 16-bit binary data block to BCD 4-digit data block

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert (n) points of binary data (0 to 9999) starting from the specified device to BCD data.

—C=dle|e|m }—{

ENO:=BKBCD(EN,s,n,d);
ENO:=BKBCDP(EN,s,n,d);

1

ENO |—

HEExecution condition

BKBCD

BKBCDP

L
—

|

EDescription, range, data type

(s) Start device where the binary data is stored — 16-bit signed binary ANY16™!
(d) Start device for storing the converted BCD data — BCD 4-digit ANY16™!
(n) Number of variables 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HMApplicable devices

(s) — — o - |o —=1=
(d) — — o — |0 ——]-
(n) @) ©) @) — |0 ==

6 BASIC INSTRUCTIONS 46
6.6 Data Conversion Instructions 5

Processing details

» These instructions convert the (n) points of 16-bit binary data (0 to 9999) starting from the device specified by (s) to BCD
data, and store the converted data in the device specified by (d) and later.

l 2838088z ao
OFTN-TONTOM—OF N~
(s) BIN 1234 [ol0loi0]ol11010[1717011[0i0/ 170
(s)+1 BIN 5678 [0101011]0111110]0101110[1111110
‘ 111110/0101010/ 110 011]

(s)+2 BIN 1545 [0101010/0!1

(s)+(n)}2 BIN4321 [0l0i011/0i01010[11111 oooo1|l

(s)*(n)-1 BIN5555 [0i0i0i1]or11011]1i01111][010111]

[oNoNoNo)

OO0 O0OO0O0COO

[ejolclololeololoNoNoloNoe]

TN~ OTNTOFTN O N —
(d) BCD 1234 [0i0i011]0i0110[0i01111[0 1100
(d)+1 BCD 5678 [0111011]0111110]0111111[110100

010'011o111011]0 11010/ 01 1011

(dy+2 BCD 1545 (010

n
(d+(n)-2 BCD 4321 [0i1100[0i0111[001110]010i 011] l

(dy+(n}-1 BCD 5555 [0111011/o111011[0111011]0111011]
(1) Set Os.

Operation.error

Error code Description

(SDo)

2821H The device ranges specified by (s) and (d) are overlapping.

3401H The (n) points of data starting from the device specified by (s) is out of the range, 0 to 9999.

466 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting BCD 4-digit block data to 16-bit binary block data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert (n) points of BCD data (0 to 9999) starting from the specified device to binary data.

—C=dle|e|m }—{

ENO:=BKBIN(EN,s,n,d);
ENO:=BKBINP(EN,s,n,d);

1

ENO |—

HEExecution condition

BKBIN

BKBINP

L
—

|

EDescription, range, data type

(s) Start device where the BCD data is stored — BCD 4-digit ANY16"
(d) Start device for storing the converted binary data — 16-bit signed binary ANY16™!
(n) Number of variables 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HMApplicable devices

(s) — — o - |o —=1=
(d) — — o — |0 ——]-
(n) @) ©) @) — |0 ==

6 BASIC INSTRUCTIONS 467
6.6 Data Conversion Instructions

Processing details

» These instructions convert the (n) points of BCD data (0 to 9999) starting from the device specified by (s) to 16-bit binary
data, and store the converted data in the device specified by (d) and later.

0111|0w1w0wo|
K 1w0w0wo|
0]

(s)+1 BCD 5678 |0/

o
o
3
(s) BCD 1234 |0
0
0

(s)+2 BCD 1545 [010!

n
(s)+(n)2 BCD 4321 |ow1wowo\o?o?1?1|owow1wo\owowow1|
(s)*(n)-1 BCD 5555 [0i1i011]oi11011]0i 1101101 11011]

-

N © o <

OO T ANNO©X

59888883800 s
) BIN 1234 [oi0i0i0]o110i0[1111011]001110]
(d)+1 BIN 5678 [0101011]0i11110[0101110[111! 10|

(d)+2 BIN 1545 |owo‘o‘o\o‘1‘1‘0|o‘0‘0‘o]1‘0‘0‘1|

(d)y+(n)-2 BIN 4321 |0w0w0w1|0w0w0w0| 11110[0r0011]

(d)y+(n)-1 BIN5555 [010/011[0111011]1101111]0l0l 111]

Operation.error

Error code Description

(SDO)

2821H The device ranges specified by (s) and (d) are overlapping.

3401H The (n) points of data starting from the device specified by (s) is out of the range, 0 to 9999.

468 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting decimal ASCII data to 16-bit binary data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert decimal ASCII data to 16-bit binary data.

ENO:=DABIN(EN,s,d); ENO:=DABIN_U(EN,s,d);
— ENO:=DABINP(EN,s,d); ENO:=DABINP_U(EN,s,d);
—||:___:||(s>|(d)}—{ (ENs.a) HUENSA)

1

— EN ENO [—

HEExecution condition

DABINP
DABINP_U

DABIN
DABIN_U _| |_
1

|

EDescription, range, data type

(s) ASCII data to be converted to binary data or — String ANYSTRING_SINGLE
the start device where the ASCII data is stored
(d) DABIN(P) Device for storing the converted binary data — 16-bit signed binary ANY16_S
DABIN(P)_U 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HApplicable devices

(d) (@] (@] @) (@) o|— — |0 — — ==

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

S

69

Processing details

» These instructions convert the decimal ASCII data in the device specified by (s) and later to 16-bit binary data, and store
the converted data in the device specified by (d).

» The setting method of the decimal ASCII data to be set in (s) depends on the status of SM705 (Number of conversion digits

selection).
Status of SM705"" Setting method of (s) Reference
OFF Set (s) with a fixed number of digits (a sign + 5 digits in | Page 470 Setting method of (s) for when SM705 (Number of
the numeric part). conversion digits selection) is off
ON Set (s) with a desired number of digits (maximum: a Page 471 Setting method of (s) for when SM705 (Number of
sign + 5 digits in the numeric part). conversion digits selection) is on

*1 For the firmware version of the CPU module supporting SM705, refer to the following.
L1 MELSEC iQ-R CPU Module User's Manual (Application)

A CPU module which does not support SM705 operates in the same way as SM705 is off even if it is turned on.

ESetting method of (s) for when SM705 (Number of conversion digits selection) is off
Set decimal ASCII data with the fixed number of digits in (s) to (s)+2.

b15 b8 b7 b0
(s) ASCII 10¢ | ASCII S b15 b0
(s)+1 ASCII 10? 1 ASCII 10° [— () |
(s)+2 ASCII 10° , ASCII 10!

BIN16
ASCII S: Sign data of ASCII code

ASCII 10*: Ten-thousands place of ASCII code

ASCII 10%: Thousands place of ASCII code

ASCII 102 Hundreds place of ASCII code

ASCII 10": Tens place of ASCII code

ASCII 10% Ones place of ASCII code

» The ASCII data in the device specified by (s) to (s)+2 is within the range from -32768 to 32767 for the DABIN(P) instruction,
and it is within the range from 0 to 65535 for the DABIN(P)_U instruction.

» The data of (s)+3 or later is ignored.

» As sign data, set 20H (space) when the ASCII data is positive, and set 2DH (-) when the data is negative. (If a value other
than 20H and 2DH is set, the data will be processed as positive data.)

» Avalue from 30H to 39H can be set in each place of ASCII code.

« If a value 20H or O0H is set in each place of ASCII code, the value will be processed as 30H.

"-25108" is set in (s) when the DABIN(P) instruction is used

b15 b8 b7 b0
(s) 32H (2) i 2DH (-) b15 b0
(s)+1 31H (1) ' 35H (5) |:>(d)| - 2 5 1 0 8
(s)+2 38H (8) ' 30H (0)

470 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

BSetting method of (s) for when SM705 (Number of conversion digits selection) is on
Set decimal ASCII data with a desired number of digits (including 00H (NULL code)) in (s). Note that 00H (NULL code) is not

required to be set if the integral part has the maximum number of digits (5 digits).

The following table lists the setting method of (s).

Value to be set
in (s)

Data of (s) to (s)+2

Value to be set in

(s)

Data of (s) to (s)+2

«0

« Positive value (1
digit in numeric
part)

« Set 00H in the upper byte of (s).
* The data of (s)+1 or later is ignored.

b15 b8 b7 b0

(s) 00H ASCII 10°

(s)+1

(s)+2

« Positive value (2
digits in numeric
part)

* Negative value (1
digit in numeric
part)

« Set 00H in the lower byte of (s)+1.
» The data of the upper byte of (s)+1 or later is

ignored.
b15 b8 b7 b0
(s) ASCII 10° : ASCII 10"/ 2DH (-)
(s)+1 : 00H
(s)+2

* Negative value (4
digits in numeric
part)

« Set 00H in the upper byte of (s)+2.

b15 b8 b7 b0
(s) ASCII 103 ' 2DH (-)

(s)+1 ASCII 10" 1 ASCII 102

(s)+2 00H | ASCII 10°

« Positive value (5
digits in numeric
part)

» The data of the upper byte of (s)+2 or later is
ignored. Since the number of digits is the
maximum, 00H is not required to be set.

b15 b8 b7)
(s) ASCII 10° ' AsCII 10
(s)+1 ASCII 10 ASCII 102
(s)+2] AsCII 10°

* Negative value (5
digits in numeric
part)

» The data of (s)+3 or later is ignored. Since the
number of digits is the maximum, O0H is not
required to be set.

b15 b8 b7 b0
(s) ASCII 10% ' 2DH (-)
(s)+1 ASCII 102 ASCII 103
(s)+2 ASCII 10° | ASCII 107

ASCII 10% Ones place of ASCII code
ASCII 10": Tens place of ASCII code

ASCII 10* Ten-thousands place of ASCII code

» The ASCII data in the device specified by (s) to (s)+2 is within the range from -32768 to 32767 for the DABIN(P) instruction,
and it is within the range from 0 to 65535 for the DABIN(P)_U instruction.
» Set 2DH (-) to lower byte of (s)+0 as sign data when the ASCII data is negative. Set an ASCII code of the uppermost digit

instead of setting sign data when the ASCII data is 0 or positive.

» Avalue from 30H to 39H can be set in each place of ASCII code.

« If the value is positive and the numeric part has 5 digits, the data of the upper byte of (s)+2 or later is ignored. If the value is

negative and the numeric part has 5 digits, the data of (s)+3 or later is ignored.

« If a value 20H is set in each place of ASCII code, the value is processed as 30H. If a value 00H is set, the value is

processed as the end of the decimal ASCII data.

* In the following cases, 0 is stored.
* The first character is 00H (NULL).
* The first character is 2DH (-) and the second character is 00H (NULL).

Operation. error

Error code Description
(SDO)
3401H Invalid data that cannot be converted are input in (s) to (s)+2.

* The ASCII code of the first character is other than 2DH, 30H to 39H, 20H, and 00H.™

» The ASCII code of the second character or later is other than 30H to 39H, 20H, and 00H.

* When the DABIN(P) instruction is used, ASCII data is out of the range from -32768 to 32767.
* When the DABIN(P)_U instruction is used, ASCII data is out of the range from 0 to 65535.

*1 When SM705 (Number of conversion digits selection) is off, no error is detected no matter what value is set for the ASCII code of the

first character.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

471

Converting decimal ASCII data to 32-bit binary data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert decimal ASCII data to 32-bit binary data.

ENO:=DDABIN(EN,s,d); ENO:=DDABIN_U(EN,s,d);
— ENO:=DDABINP(EN,s,d); ENO:=DDABINP_U(EN,s,d);
—||:___:||(s>|(d)}—{ (ENs.a) UENSA)

1

— EN ENO [—

HEExecution condition

DDABINP
DDABINP_U

DDABIN
DDABIN_U |_
1

|

EDescription, range, data type

(s) ASCII data to be converted to binary data or — String ANYSTRING_SINGLE
the start device where the ASCII data is stored
(d) DDABIN(P) Start device for storing the conversion result — 32-bit signed binary ANY32_S
DDABIN(P)_U 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HApplicable devices

(d) (@] (@] @) (@) o0 o |0 — — ==

472 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Processing details

» These instructions convert the decimal ASCII data in the device areas specified by (s) and later to 32-bit binary data, and
store the converted data in the device specified by (d).

» The setting method of the decimal ASCII data to be set in (s) depends on the status of SM705 (Number of conversion digits

selection).
Status of SM705"" Setting method of (s) Reference
OFF Set (s) with a fixed number of digits (a sign + 10 Page 473 Setting method of (s) for when SM705 (Number of conversion
digits in the numeric part). digits selection) is off
ON

Set (s) with a desired number of digits (maximum: a | Page 474 Setting method of (s) for when SM705 (Number of conversion
sign + 10 digits in the numeric part). digits selection) is on

*1 For the firmware version of the CPU module supporting SM705, refer to the following.
L1 MELSEC iQ-R CPU Module User's Manual (Application)
A CPU module which does not support SM705 operates in the same way as SM705 is off even if it is turned on.

ESetting method of (s) for when SM705 (Number of conversion digits selection) is off
Set decimal ASCII data with the fixed number of digits in (s) to (s)+5.

b15

b8 b7

(s)

ASCII 10°

ASCII S

(s)+1

ASCII 107

ASCII 108

(s)+2

ASCII 10°

ASCII 10°

(s)+3

ASCII 10°

ASCII 10*

(s)+4

ASCII 10°

ASCII 10?

(s)+5

Q)

ASCII 10°

ASCII S: Sign data of ASCII code

ASCII 10°:
ASCII 10":
ASCII 102
ASCII 10%:
ASCII 10%:
ASCII 105:
ASCII 108:
ASCII 107:
ASCII 108:
ASCII 10%

Ones place of ASCII code

Tens place of ASCII code
Hundreds place of ASCII code
Thousands place of ASCII code

Ten-thousands place of ASCII code
Hundred-thousands place of ASCII code

Millions place of ASCII code

Ten-millions place of ASCII code

Hundred-millions place of ASCII code

Billions place of ASCII code

(1) Ignored.

(2) Upper 16 bits

(3) Lower 16 bits

» The ASCII data in the device specified by (s) to (s)+5 is within the range from -2147483648 to 2147483647 for the
DDABIN(P) instruction, and it is within the range from 0 to 4294967295 for the DDABIN(P)_U instruction. Any data stored in
the upper bytes in the device specified by (s)+5 and data in the device specified by (s)+6 and later are ignored.

+ As sign data, set 20H if the ASCII data is positive, and set 2DH if the data is negative. (If a value other than 20H and 2DH
is set, the data will be processed as positive data.)

» Avalue from 30H to 39H can be set in each place of ASCII code.

« If a value 20H or O0H is set in each place of ASCII code, the value will be processed as 30H.

[Ex]

(d)+1 (d)
b31 b16 b15 b0

— 2) | { (3) |

BIN32

"-1234543210" is set in (s) when the DDABIN(P) instruction is used

b15 b8 b7

(s) 31H (1) i 2DH (-)
(s)+1 33H (3) i 32H (2)
(s)+2 35H (5) ! 34H (4)
(s)+3 33H (3) i 34H (4)
(s)+4 31H (1) : 32H (2)
(s)+5 : 30H (0)

(d)+1 (d)

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions 473

BSetting method of (s) for when SM705 (Number of conversion digits selection) is on
Set decimal ASCII data with a desired number of digits (including 00H (NULL code)) in (s). Note that 00H (NULL code) is not

required to be set if the integral part has the maximum number of digits (10 digits).

The following table lists the setting method of (s).

Value to be setin | Data of (s) to (s)+5 Value to be set in | Data of (s) to (s)+5
(s) (s)
*0 « Set 00H in the upper byte of (s). « Positive value (2 » Set O0H in the lower byte of (s)+1.

« Positive value (1
digit in numeric
part)

» The data of (s)+1 or later is ignored.

b15 b8 b7 b0

ASCII 100

00H

A
n
Y

X

—
w
¥

N

A
RGN CRCINC
T
w

F
(6]

¥
S

digits in numeric
part)

* Negative value (1
digit in numeric
part)

» The data of the upper byte of (s)+1 or later is
ignored.

b15 b8 b7 b0
(s) ASCII 10° i ASCII 10"/ 2DH ()
(s)+1 : 00H
(s)+2
(s)+3
(s)+4
(s)+5

« Positive value (9
digits in numeric
part)

* Negative value (8
digits in numeric
part)

» Set 00H in the upper byte of (s)+4.
* (s)+5 is ignored.

b15 b8 b7 b0
(s) ASCII 107 ' ASCII 108/ 2DH (-)
(s)+1 ASCII 10° ! ASCII 10°

(s)+2 ASCII 108 E ASCII 10*

(s)+3 ASCII 107 ; ASCII 102

(s)+4 00H i ASCII 10°

(s)+5

* Negative value (9
digits in numeric
part)

» Set 00H in the lower byte of (s)+5.
» The data of the upper byte of (s)+5 is ignored.

b15 b8 b7 b0
(s) ASCII 108 ! 2DH (-)

(s)+1 ASCII 108 ! ASCII 107

(s)+2 ASCII 10* E ASCII 10°

(s)+3 ASCII 102 ; ASCII 108

(s)+4 ASCII 100 i ASCII 10"

(s)+5 00H

« Positive value (10
digits in numeric
part)

* (s)+5 is ignored. Since the number of digits is the
maximum, O0H is not required to be set.

b15 b8 b7 b0
(s) ASCII 108 ' ASCII 10°

(s)+1 ASCII 108 ! ASCII 107

(s)+2 ASCII 104 5 ASCII 108

(s)+3 ASCII 102 ; ASCII 103

(s)+4 ASCII 10° : ASCII 10"

(s)+5 :

» Negative value (10
digits in numeric
part)

» The data of the upper byte of (s)+5 is ignored.
Since the number of digits is the maximum, O0H is
not required to be set.

b15 b8 b7 b0
(s) ASCII 10° ' 2DH (-)

(s)+1 ASCII 107 : ASCII 108

(s)+2 ASCII 10° . ASCII 108

(s)+3 ASCII 108 : ASCII 10%

(s)+4 ASCII 10" . ASCII 102

(s)+5] ASCII 10°

ASCII 10% Ones place of ASCII code
ASCII 10": Tens place of ASCII code

ASCII 10°: Billions place of ASCII code

» The ASCII data in the device specified by (s) to (s)+5 is within the range from -2147483648 to 2147483647 for the
DDABIN(P) instruction, and it is within the range from 0 to 4294967295 for the DDABIN(P)_U instruction.

Set 2DH (-) to lower byte of (s)+0 as sign data when the ASCII data is negative. Set an ASCII code of the uppermost digit
instead of setting sign data when the ASCII data is 0 or positive.
A value from 30H to 39H can be set in each place of ASCII code.
If the value is positive and the numeric part has 10 digits, the data stored in (s)+5 or later is ignored. If the value is negative
and the numeric part has 10 digits, the data stored in the upper byte of (s)+5 or later is ignored.

If a value 20H is set in each place of ASCII code, the value is processed as 30H. If a value 00H is set, the value is
processed as the end of the decimal ASCII data.
In the following cases, "0" is stored in (d).

474

* The first character is 00H (NULL).
« The first character is 2DH (-) and the second character is 00H (NULL).

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

3401H

Invalid data that cannot be converted are input in (s) to (s)+5.
« The ASCII code of the first character is other than 2DH, 30H to 39H, 20H, and 00H.™
« The ASCII code of the second character or later is other than 30H to 39H, 20H, and 00H.

» When the DDABIN(P) instruction is used, ASCII data is out of the range from -2147483648 to 2147483647.

* When the DDABIN(P)_U instruction is used, ASCII data is out of the range from 0 to 4294967295.
*1

When SM705 (Number of conversion digits selection) is off, no error is detected no matter what value is set for the ASCII code of the
first character.

6 BASIC INSTRUCTIONS 47
6.6 Data Conversion Instructions 5

Converting hexadecimal ASCII data to 16-bit binary data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert hexadecimal ASCII data to 16-bit binary data.

—C=ale e }—{

ENO:=HABIN(EN,s,d);
ENO:=HABINP(EN,s,d);

1

ENO |—

HEExecution condition

HABIN

HABINP

L
=

|

EDescription, range, data type

(s) ASCII data to be converted to binary data or the start String ANYSTRING_SINGLE
device where the ASCII data is stored

(d) Device for storing the conversion result 16-bit signed binary ANY16

EN Execution condition Bit BOOL

ENO Execution result Bit BOOL

HMApplicable devices

(s)

(d)

476 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Processing details

» These instructions convert the hexadecimal ASCII data stored in the device areas specified by (s) and later to 16-bit binary
data, and store the converted data in the device specified by (d).

» The setting method of the hexadecimal ASCII data to be set in (s) depends on the status of SM705 (Number of conversion
digits selection).

Status of SM705"" Setting method of (s) Reference

OFF Set (s) with a fixed number of digits (4 digits). Page 477 Setting method of (s) for when SM705 (Number of
conversion digits selection) is off

ON Set (s) with a desired number of digits (maximum: 4 digits). Page 477 Setting method of (s) for when SM705 (Number of
conversion digits selection) is on

*1 For the firmware version of the CPU module supporting SM705, refer to the following.
L1 MELSEC iQ-R CPU Module User's Manual (Application)
A CPU module which does not support SM705 operates in the same way as SM705 is off even if it is turned on.

ESetting method of (s) for when SM705 (Number of conversion digits selection) is off
» Set hexadecimal ASCII data with 4 digits (fixed) in (s) to (s)+1.

b15 b8 b7 b0
(s) ASCII 3 | ASCII 4

(s)+1 ASCII 1 ASCII 2

b15 b0

[E—)]|

BIN16

ASCII O: ASCII code (Oth digit)

» The ASCII data in the device specified by (s) to (s)+1 is within the range from 0000H to FFFFH.
» The data of (s)+2 or later is ignored.

» Avalue from 30H to 39H and 41H to 46H can be set in each place of ASCII code.

When 5A8DH is specified in (s)

b15 b8 b7 b0 b15 b0

(s) 41H (A) ' 35H (5) —> 5A.E.3.DH
(s)+1 44H (D) ' 38H (8) “l |

BSetting method of (s) for when SM705 (Number of conversion digits selection) is on

Set hexadecimal ASCII data with a desired number of digits (including 00H (NULL code)) in (s). Note that 00H (NULL code) is
not required to be set for the maximum number of digits (4 digits).

The following table lists the setting method of (s).

Value to be set | Data of (s) to (s)+1 Value to be set | Data of (s) to (s)+1
in (s) in (s)
*OHto FH » Set 00H in the upper byte of (s)+0. * 10H to FFH « Set 00H in the lower byte of (s)+1.
* The data of (s)+1 or later is ignored. *» The data of the upper byte of (s)+1 or later is ignored.
b15 b8 b7 b0 b15 b8 b7 b0
(s) 00H : ASCII 1 (s) ASCII 1 : ASCII 2
(s)+1 (s)+1 : 00H
* 100H to FFFH » Set 00H in the upper byte of (s)+1. * 1000H to FFFFH | « The data of (s)+2 or later is ignored.
» The data of (s)+2 or later is ignored. b15 b8b7 b0
b15 b8 b7 b0 (s) ASCII 3 1 ASCIl 4
(s) ASCII 2 , ASCII 3 (s)+1 ASCII 1 . ASCII 2
(s)+1 00H H ASCII 1

ASCII O: ASCII code (Oth digit)

» The ASCII data in the device specified by (s) to (s)+1 is within the range from 0000H to FFFFH.

» The data of (s)+2 or later is ignored.

» Avalue from 30H to 39H and 41H to 46H can be set in each place of ASCII code.

« If a value O0H is set in each place of ASCII code, the value will be processed as the end of the hexadecimal ASCII data.

6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions 477

3401H Invalid data that cannot be converted are input in (s) to (s)+1.
* Avalue in each place of ASCII code is other than "30H" to "39H" and "41H" to "46H".

478 6 BASIC INSTRUCTIONS
6.6 Data Conversion Instructions

Converting hexadecimal ASCII data to 32-bit binary data

A A
RnPCPU § RnPCPU JRnPSFCPURRnPSFCPUNRSFCPU W RnSFCPU
RnCPUQRRnENCPU (Redundant)l(Standard)}| (Safety) M(Standard)}] (Safety)

These instructions convert hexadecimal ASCII data to 32-bit binary data.

ENO:=DHABIN(EN,s,d);
ENO:=DHABINP(EN,s,d);

—C=ale e }—{

1

— EN ENO [—

HEExecution condition

DHABINP

DHABIN J_I_
I

|

EDescription, range, data type

(s) ASCII data to be converted to binary data or the start — String ANYSTRING_SINGLE
device where the ASCII data is stored

(d) Start device for storing the conversion result 32-bit signed binary ANY32

EN Execution condition Bit BOOL

ENO Execution result Bit BOOL

HMApplicable devices

() — — o — —|— —|o — |—|of-

(d) (@] O O (@) (OR NO) o |0 — — ==

6 BASIC INSTRUCTIONS 479
6.6 Data Conversion Instructions

Processing details

» These instructions convert the hexadecimal ASCII data stored in the device specified by (s) and later to 32-bit binary data,
and store the converted data in the device specified by (d).

» The setting method of the hexadecimal ASCII data to be set in (s) depends on the status of SM705 (Number of conversion
digits selection).

Status of SM705"" Setting method of (s) Reference
OFF Set (s) with a fixed number of digits (8 digits). Page 480 Setting method of (s) for when SM705 (Number of conversion
digits selection) is off
ON Set (s) with a desired number of digits (maximum: 8 Page 481 Setting method of (s) for when SM705 (Number of conversion
digits). digits selection) is on

*1 For the firmware version of the CPU module supporting SM705, refer to the following.
L1 MELSEC iQ-R CPU Module User's Manual (Application)

A CPU module which does not support SM705 operates in the same way as SM705 is off even if it is turned on.

ESetting method of (s) for when SM705 (Number of conversion digits selection) is off
» Set hexadecimal ASCII data with 8 digits (fixed) in (s