
MELSEC iQ-F
FX5 Programming Manual (Program Design)

1

SAFETY PRECAUTIONS
(Read these precautions before using this product.)
Before using the FX5 PLCs, please read the manual supplied with each product and the relevant manuals introduced in that
manual carefully and pay full attention to safety to handle the product correctly.
Store this manual in a safe place so that it can be taken out and read whenever necessary. Always forward it to the end user.

INTRODUCTION
This manual describes the instructions and functions required for programming of the FX5. Please read this manual and the
relevant manuals and understood the functions and performance of the FX5 PLCs before attempting to use the unit.
It should be read and understood before attempting to install or use the unit. Store this manual in a safe place so that you can
take it out and read it whenever necessary. Always forward it to the end user.
When utilizing the program examples introduced in this manual to the actual system, always confirm that it poses no problem
for control of the target system.

Regarding use of this product
 • This product has been manufactured as a general-purpose part for general industries, and has not been designed or

manufactured to be incorporated in a device or system used in purposes related to human life.
 • Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger

movement vehicles, consult with Mitsubishi Electric.
 • This product has been manufactured under strict quality control. However when installing the product where major

accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

Note
 • If in doubt at any stage during the installation of the product, always consult a professional electrical engineer who is

qualified and trained to the local and national standards. If in doubt about the operation or use, please consult the nearest
Mitsubishi Electric representative.

 • Since the examples indicated by this manual, technical bulletin, catalog, etc. are used as a reference, please use it after
confirming the function and safety of the equipment and system. Mitsubishi Electric will accept no responsibility for actual
use of the product based on these illustrative examples.

 • This manual content, specification etc. may be changed without a notice for improvement.
 • The information in this manual has been carefully checked and is believed to be accurate; however, if you have noticed a

doubtful point, a doubtful error, etc., please contact the nearest Mitsubishi Electric representative. When doing so, please
provide the manual number given at the end of this manual.

2

CONTENTS
SAFETY PRECAUTIONS .1
INTRODUCTION. .1
RELEVANT MANUALS .4
TERMS .4
GENERIC TERMS AND ABBREVIATIONS. .4

CHAPTER 1 OUTLINE 5

CHAPTER 2 PROGRAM CONFIGURATION 7

CHAPTER 3 PROGRAM ORGANIZATION UNITS 9
3.1 Program Blocks . 10
3.2 Functions (FUN). 12
3.3 Function Blocks (FB) . 17
3.4 Precautions . 27

CHAPTER 4 LABELS 31
4.1 Type . 31
4.2 Class . 32
4.3 Data Type . 32
4.4 Arrays . 35
4.5 Structures. 37
4.6 Constant . 39
4.7 Precautions . 40

CHAPTER 5 LADDER DIAGRAM 42
5.1 Configuration. 42

Ladder symbols . 42
Program execution order . 43
Precautions for using a function block in ladder diagram . 44

5.2 Inline ST . 45
5.3 Statements and Notes. 46

CHAPTER 6 ST LANGUAGE 47
6.1 Configuration. 48

Delimiter . 49
Operator . 49
Syntax . 50
Constant . 58
Label and device . 59
Comment . 60

CHAPTER 7 FBD/LD LANGUAGE 61
7.1 Configuration. 61

Program unit . 62
Worksheet . 67
Constant . 67
Labels and devices . 67

C
O

N
TE

N
TS
7.2 Inline ST . 69
7.3 Program Execution Order. 70

The order of executions of program units . 70

CHAPTER 8 SFC PROGRAM 71
8.1 Specifications . 74
8.2 Structure. 75

Block . 76
Step . 77
Action. 85
Transition. 87

8.3 SFC Control Instructions . 95
8.4 SFC Setting . 97

CPU parameter . 97
SFC block setting . 101

8.5 SFC Program Execution Order. 102
Whole program processing . 102
SFC program processing sequence . 103

8.6 SFC Program Execution . 109
Starting and stopping the SFC program . 109
Starting and ending a block. 109
Activating and deactivating a step . 110
Behavior when an active step is activated. 111
Operation when a program is modified . 112
Checking SFC program operation . 113

APPENDICES 114
Appendix 1 Operations of when the MC/MCR instructions are used to control EN . 114
Appendix 2 Added and Changed Functions . 119

INDEX 120

REVISIONS. .122
WARRANTY .123
TRADEMARKS .124
3

4

RELEVANT MANUALS

TERMS
Unless otherwise specified, this manual uses the following terms.

GENERIC TERMS AND ABBREVIATIONS
Unless otherwise specified, this manual uses the following generic terms and abbreviations.

Manual name <manual number> Description
MELSEC iQ-F FX5 Programming Manual (Program Design)
<JY997D55701> (This manual)

Describes the specifications of ladder, ST, FBD/LD, and SFC programs, and labels.

MELSEC iQ-F FX5 Programming Manual (Instructions, Standard
Functions/Function Blocks)
<JY997D55801>

Describes the specifications of instructions and functions that can be used in
programs.

GX Works3 Operating Manual
<SH-081215ENG>

Describes the system configuration, parameter settings, and online operations of GX
Works3.

Terms Description
Buffer memory A memory in an intelligent function module, where data (such as setting values and monitoring values) are

stored.

Device A device (X, Y, M, D, or others) in a CPU module.

Engineering tool The product name of the software package for the MELSEC programmable controllers

POU Defined unit of a program. Use of POUs enables a program to be divided into units according to process or
function, and each unit to be programmed individually.

Signal flow The execution status that the last time an operation of a program or an FB is executed in each step.

Generic term/abbreviation Description
FX3 intelligent function module A generic term for FX3U-4AD, FX3U-4DA, FX3U-4LC, FX3U-1PG, FX3U-2HC, FX3U-16CCL-M, FX3U-

64CCL, FX3U-128ASL-M, and FX3U-32DP

FX5 A generic term for FX5S, FX5UJ, FX5U, and FX5UC PLCs

FX5 CPU module A generic term for FX5S CPU module, FX5UJ CPU module, FX5U CPU module, and FX5UC CPU module

FX5 intelligent function module A generic term for FX5-4AD, FX5-4DA, FX5-8AD, FX5-4LC, FX5-20PG-P, FX5-20PG-D, FX5-40SSC-G,
FX5-80SSC-G, FX5-40SSC-S, FX5-80SSC-S, FX5-ENET, FX5-ENET/IP, FX5-CCLGN-MS, FX5-CCLIEF,
FX5-CCL-MS, FX5-ASL-M, and FX5-DP-M

GX Works3 The product name of the software package, SWnDND-GXW3, for the MELSEC programmable controllers
(The 'n' represents a version.)

Intelligent function module A generic term for FX5 intelligent function modules and FX3 intelligent function modules

Operand A generic term for items, such as source data (s), destination data (d), number of devices (n), and others,
used to configure instructions and functions.

1

1 OUTLINE
This manual describes program configurations, content, and method for creating programs.
For how to create, edit, or monitor programs using the engineering tool, refer to the following.
GX Works3 Operating Manual

Type of programming languages
With the FX5 series, the optimal programming language can be selected according to the application.
: Applicable : Inapplicable

■Ladder diagram

When using ladder diagram, refer to the following.
Page 42 LADDER DIAGRAM

■ST language

When using ST language, refer to the following.
Page 47 ST LANGUAGE

Programming
language

Description Applicability to CPU
module

FX5S FX5UJ FX5U/
FX5UC

Ladder diagram Ladder diagram is a graphic language that indicates circuits using contacts, coils, and others.
The ladder diagram describes logic circuits with symbolized contacts and coils for easy-to-
understand sequence control.

  

Structured text language
(ST language)

ST language is a text language that describes programs with IF statements, operators, and
others.
Because operation processing that is difficult to describe in ladder diagram can be easily and
briefly described with ST language, ST language is suitable for applications requiring
complicated arithmetic operation or comparative operation. With ST language, programs can
be easily described with syntax using selective branches with conditional statements and
repetition by repetitive statements in the same way as C language.

  

Function block diagram/
ladder diagram (FBD/LD
language)

This is a graphic language that describes a program by wiring blocks for specific processing
(function elements, FB elements), variable elements, and constant elements along with the
flows of data and signals.
You can easily create a program that may be complicated to create by using a ladder program.
So you can enhance the productivity of programs.

  

Sequential function chart
(SFC program)

SFC is a program description format in which a sequence of control operations is split into a
series of steps to enable a clear expression of each program execution sequence and
execution conditions.

  
1 OUTLINE
 5

6

■FBD/LD language

When using FBD/LD language, refer to the following.
Page 61 FBD/LD LANGUAGE

■SFC program

When using SFC program, refer to the following.
Page 71 SFC PROGRAM

 • Ladder diagram and FBD/LD language are for customers who have knowledge or experience of sequence
control and logic circuits.

 • ST language is for customers who have knowledge or experience of the C language programming.
 • SFC program is suitable for creating program blocks for each actual control of machines and controlling the

transition of each operation.
 • By using labels in a program, the readability of the program is improved, and activating a program for the

system with a different module configuration is easy.
1 OUTLINE

2

2 PROGRAM CONFIGURATION
Using the engineering tool, multiple programs and program organization units (POUs) can be created.
Programs and POUs can be divided according to processing.
This chapter describes the program configuration.

For POUs, refer to the following.
Page 9 PROGRAM ORGANIZATION UNITS

Project
A project is a group of data (such as programs and parameters) to be executed in a CPU module.
Only one project can be written to a single CPU module.
At least one program file needs to be created in a project.

Program file
A program file is a group of programs and POUs.
A program file consists of at least one program block. ( Page 10 Program Blocks)
The following operations are performed in units of program file: changing the program execution type from the fixed scan
execution type to the standby type and writing data to the CPU module.

Program file 1

Program block

Program block

POU

Program file 2

Program block

POU

FB file

Function block

Function block

POU

FUN file

Function

Function

POU

Project
2 PROGRAM CONFIGURATION
 7

8

MEMO
2 PROGRAM CONFIGURATION

3

3 PROGRAM ORGANIZATION UNITS
There are three types of program organization units (POUs).
 • Program block
 • Function
 • Function block
Processing can be described in the programming language that suits the control performed in each POU. Processing can be
described in the ladder diagram, structured text language, or FBD/LD in a function or a function block.
Functions and function blocks are called and executed by program blocks.

A structured program is a program created by components. Processes in lower levels of hierarchical
sequence program are divided into several components according to their processing information and
functions.
Each component of a program is specified to have a high degree of independence for easy addition and
replacement.
The following are the examples of processing that would be ideal to be structured.
 • Processing which is used repeatedly in a program
 • Processing which can be separated as one function

This chapter describes three types of POUs using labels.
Devices can also be used in the program (worksheet) of each POU. For details on devices, refer to the following.
 MELSEC iQ-F FX5 User's Manual (Application)

Up to 32 worksheets can be created in one POU in the structured text language and FBD/LD.
Set the execution order of multiple worksheets on the "Worksheet Execution Order Setting" window of the
engineering tool. ( GX Works3 Operating Manual)

Project

Program file

POU folder

POU

Function block

POU

Program block

POU

POU

Function

Used
3 PROGRAM ORGANIZATION UNITS
 9

10
3.1 Program Blocks
A program block is a unit for making up a program.
Multiple program blocks can be created in a program file and executed in the order specified in the program file setting. If the
order is not specified in the program file setting, the program blocks are executed in ascending order of their names.
By separating program blocks for individual functions and processing, the order of programs can be changed easily and
programs can be exchanged easily.
The program of a program block is stored by each registration destination program in a program file.

Dividing into program blocks
A main routine program, subroutine program, and interrupt program can be created separately in individual program blocks.

■Program file setting
In the program file setting, the order of executions of program blocks in a program file can be set.

[Convert]  [Program File Setting]

[Navigation window]  Select and right-click the program file.  [Program File Setting]

For details of the program file setting, refer to the following.
GX Works3 Operating Manual

Program type Description
Main routine program A program beginning with step 0 and ending with the FEND instruction

Subroutine program A program beginning with a pointer (P) and ending with the RET instruction.
This program is executed only when it is called by a subroutine call instruction (CALL and XCALL instructions).

Interrupt program A program beginning with an interrupt pointer (I) and ending with the IRET instruction.
When an interrupt factor occurs, the interrupt program corresponding to the interrupt pointer number is executed.

Program file
Program block 1

Program block 2
3 PROGRAM ORGANIZATION UNITS
3.1 Program Blocks

3

Ex.

Create a program block as shown below.

Execute the program according to the order of the execution of program file setting.

 • Create a subroutine program and interrupt program after the FEND instruction of the main routine program.
Any program after the FEND instruction is not executed as a main routine program. For example, when the
FEND instruction is used at the end of the second program block, the third program block or later runs as a
subroutine program or interrupt program. (Page 27 When a subroutine program or an interrupt program
is used)

 • To create an easy-to-understand program, use a pair of instructions, such as the FOR and NEXT
instructions or the MC and MCR instructions, within a single program block.

 • A simple program can be executed in the CPU module simply by writing the main routine in one program
block.

For details on the subroutine program and interrupt program, refer to the following.
 MELSEC iQ-F FX5 User's Manual (Application)

(1) The END instruction in the middle of the program file is ignored.

ProgPou1

FEND
END

Main routine program

ProgPou2

P0

RET
END

Subroutine program
I0

ProgPou3

IRET
END

Interrupt program

FEND
END

Main routine program

The order of the program blocks

ProgPou1

ProgPou2

(1)

ProgPou3

P0

RET
END

Subroutine program

I0

IRET
END

Interrupt program

FEND

Main routine program

Actual program

P0

RET

Subroutine program

I0

IRET
END

Interrupt program

Program file setting

(1)
3 PROGRAM ORGANIZATION UNITS
3.1 Program Blocks 11

12
3.2 Functions (FUN)
A function is a POU called and executed by program blocks, function blocks, and other functions.
After the processing completes, a function passes a value to the calling source. This value is called a return value.
A function always outputs the same return value, as the processing result, for the same input.
By defining simple, independent algorithms that are frequently used, functions can be reused efficiently.

Operation overview
The program of a function is stored in the FUN file and called by the calling source program when executed.

Ex.

When calling FUN1 and FUN2 from the main program, and calling FUN3 by FUN1 (Nested three times)
 to  indicate the execution flow (order).

Up to 32 subroutine type function blocks, macro type function blocks, and functions in total can be nested.

FUN

FB or FUNFUN

Program
blockFunction

Function block
or
function

Program
block

FUN1

FUN2

FUN3

(Program file)
Main program

(FUN file)
FUN1 program

(FUN file)
FUN2 program

(FUN file)
FUN3 program
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN)

3

Input variables and output variables
Input and output variables can be defined in functions. Output data which is different from the return value can be assigned to
the output variable.

Input variables are set in the VAR_INPUT class and output variables are set in the VAR_OUTPUT class.

Variables defined in the function are overwritten every time the function is called.
To hold the data in the variables, create a program by using function blocks or so that the data in the output
variable is saved in another variable.

EN and ENO
EN (enable input) and ENO (enable output) can be appended to a function to control execution processing.
 • Set a boolean variable used as an execution condition of a function to EN.
 • A function with EN is executed only when the execution condition of EN is TRUE.
 • Set a boolean variable used to output a function execution result to ENO.
The following table lists the ENO states and operation results according to the EN states.

 • Setting an output label to ENO is not always required for the program written in ladder or FBD/LD.
 • When EN/ENO is used in a standard function, the function with EN is represented by "function-name_E".

Ladder program FBD/LD program

The return value of the function is not displayed.

(1) Function name
(2) Input variable
(3) Output variable

EN ENO Operation result
TRUE (executed) TRUE Operation result output value

FALSE (not executed) FALSE Undefined value

(1)

(2)

(3)

(1)

(2)
(3)
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN) 13

14
Creating programs
The program of a function can be created by using the engineering tool.

[Navigation window]  [FB/FUN]  Right-click  [Add New Data]
Select "Function" for "Data Type" in "Basic Setting".

The created program is stored in the FUN file.

[CPU Parameter]  [Program Setting]  [FB/FUN File Setting]
Up to 64 created programs can be stored in one FUN file.
The rising edge execution instruction or falling edge execution instruction cannot be used in the function.
For details on program creation, refer to the following.

■Applicable devices and labels
The following table lists the devices and labels that can be used in function programs.
: Applicable, : Applicable only in instructions (Cannot be used to indicate the program step.), : Not applicable

*1 The following data types cannot be used.
Timer, retentive timer, counter, and long counter

Program a function name as a label in a function to set a return value of the function. Setting function names
as labels is not necessary. The data type set in "Result Type" in the properties of the function can be used.

Item Reference
How to create function programs  GX Works3 Operating Manual

Number of FB/FUN files that can be written to a CPU module  MELSEC iQ-F FX5S/FX5UJ/FX5U/FX5UC User's Manual (Hardware)

Type of device/label Availability
Label (other than the pointer type) Global label 

Local label *1

Label (pointer type) Pointer type global label 

Pointer type local label 

Device Global device 

Pointer Global pointer 
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN)

3

Labels defined by a function
The labels defined by a function are assigned in the temporary areas of the storage-target memory during execution of the
function, and the areas are freed after the processing completes.

Ex.

When calling FUN1 and FUN2 from the main program, and calling FUN3 by FUN1
( to  indicate the execution flow (order).)

The following figure shows the label assignments while the above functions are being executed.

The class of labels that can be defined in the function are VAR, VAR_CONSTANT, VAR_INPUT, and VAR_OUTPUT.

The label to be defined by a function must be initialized by a program before the first access because the label
value will be undefined.

FUN1

FUN2

FUN3

(Program file)
Main program

(FUN file)
FUN1 program

(FUN file)
FUN2 program

(FUN file)
FUN3 program

Label area of FUN3

Main program being executed FUN1 being executed
(before FUN3 is called)

FUN3 being executed

Label area of FUN1 Label area of FUN1 Label area of FUN1

FUN1 being executed
(after FUN3 is executed)

Main program being executed FUN2 being executed

Label area of FUN2

Main program being executed

Temporary area
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN) 15

16
Number of steps
To call a function, the number of steps is required not only for the program itself but also for the processing that passes the
argument and return value and the processing that calls the program.

■Program
The number of steps required for a function program is the total number of instruction steps plus a minimum of additional 13
steps occupied by the system. For the number of steps required for each instruction, refer to the following.
 MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)

■Calling source
When calling a function, the calling source generates the processing that passes the argument and return value before and
after the call processing.

 • Passing the argument
The instruction used to pass the argument differs depending on the class and data type of the argument. The following table
summarizes the instructions that can be used to pass the argument.

 • Calling the program
The following table lists the number of steps required to call the program of the function.

 • Passing the return value
The instruction and the number of steps used for passing the return value are identical to those for passing the argument.

(1) Passing the argument
(2) Calling the FUN1 program
(3) Passing the return value

Argument class Data type Instruction used Number of steps
VAR_INPUT Bit LD+OUT

LD+MOVB
(Either of the instruction sets is used
depending on the combination of
programming language, function, and input
argument used.)

For the number of steps required for
each instruction, refer to the following.
 MELSEC iQ-F FX5 Programming
Manual (Instructions, Standard
Functions/Function Blocks)

Word [unsigned]/bit string [16 bits]
Double word [unsigned]/bit string [32 bits]
Word [signed]
Double word [signed]

LD+MOV
LD+DMOV

Single-precision real number LD+EMOV

Time LD+DMOV

String(32) LD+$MOV

String [Unicode](32) LD+$MOV_WS

Array, Structure LD+BMOV

Item Number of steps
With EN 10

Without EN 12

Argument class Data type Instruction used Number of steps
VAR_OUTPUT Same as for passing the argument Same as for passing the argument Same as for passing the argument

(1)

(2)

(3)

FUN1

FUNCall FUN1
FUN2

MOV D0 XX

D0
M0

D10
M10 Y40

Y20
M0

Y20

Program file

FUN1 program

FUN file

The call-target program is
replaced with the instruction
for calling a function.

Program block 1
(displayed)

Calling the function
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN)

3

 • EN/ENO
The following table lists the number of steps required for EN/ENO.

3.3 Function Blocks (FB)
A function block is a POU called and executed by program blocks and other function blocks.

Unlike a function, a function block does not have a return value.
A function block can hold values in variables and thus can hold input states and processing results.
A function block uses the value it holds for the next processing and therefore it does not always output the same result even
with the same input value.

A function block needs to be instantiated to be used in programs.
Page 20 Instances

 • For details on standard function blocks, refer to the following.
 MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)
 • For details on module function blocks, refer to the following.
 Function Block Reference for the module used

Item Number of steps
EN 4 to 7

(The number of steps differs depending on the details of the program such as the type and number of the device specified as the
input source of EN.)

ENO 6 to 10
(The number of steps differs depending on the details of the program such as the type and number of the device specified as the
output destination of ENO.)

Ladder language FBD/LD language
(1) Instance name
(2) Function block name
(3) Output variable
(4) Input variable

FB

FBFB

Program
block

Function
block

Function
block

Program
block

(1)

(2)

(4)

(3)

(1)

(2)

(4)

(3)
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 17

18
Operation overview
■Macro type function blocks
The program of a macro type function block is loaded by a calling source program along the execution flow. At the time of
program execution, the loaded program is executed in the same way as the main program.
Use a macro type function block when giving a higher priority to the processing speed of the program.

Ex.

When calling FB1_a and FB2_a from the main program, calling FB3_a by FB1_a, and calling FB3_b by FB2_a

■Subroutine type function blocks
The program of a subroutine type function block is stored in the FB file and called by the calling source program when
executed.
Use a subroutine type function block to reduce the program size.

Ex.

When calling FB1_a and FB2_a from the main program, calling FB3_a by FB1_a, and calling FB3_b by FB2_a (Nested three
times)
 to  indicate the execution flow (order).

Up to 32 subroutine type function blocks, macro type function blocks, and functions in total can be nested.

(1) The FB1 program is loaded into the main program and executed.
(2) The FB3 program called by FB1 is loaded into the FB1 program.
(3) The FB2 program is loaded into the main program and executed in the same way as the FB1 program.
(4) The FB3 program called by FB2 is loaded into the FB2 program.

(2)

(1)
FB1_a
FB1

FB2_a
FB2

(4)

(3)

(Program file)
Main program

FB1 program

Actual structure of
main program

Execution
flow

FB3 program

FB2 program

FB3 program

FB3_b
FB3

FB1_a
FB1

FB3_a
FB3

FB2_a
FB2

(Program file)
Main program

(FB file)
FB1 program

(FB file)
FB2 program

(FB file)
FB3 program

Program memory

Main program

FB1 program

FB2 program

FB3 program
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

Input variables, output variables, and input/output variables
Input variables, output variables, and input/output variables need to be defined in function blocks.
A function block can output multiple operation results. It can also be set not to output operation results.

Input variables are set in the VAR_INPUT class, output variables are set in the VAR_OUTPUT class and
VAR_OUTPUT_RETAIN class, and input/output variables are set in the VAR_IN_OUT class.

Internal variables
Function blocks use internal variables. For each instance of a function block, labels are assigned to the different areas. Even
though the same label names are used, different states are held for each instance.

Ex.

The above function block starts counting when the input variables turn on and turns on the output variable when the current
value held in the internal variable reaches the set value. Even though the same function block is used, the output timings differ
because the instances A and B hold different states.
Internal variables are set in the VAR, VAR_CONSTANT and VAR_RETAIN class.

External variables and public variables
Function blocks can use external variables (global label) and public variables.
Public variables are set in the VAR_PUBLIC and VAR_PUBLIC_RETAIN class.

(1) The operation result(s) is output.
(2) No operation result is output.

_S1 Q1

RESET

IN_Bool

iTim

lCnt

CD Q

CVLOAD

PV

InstanceInstance

Instance

SR SAMPLE_FB1

CTD

(1) (2)

bLabel3 bLabel6
bLabel1

uLabel2

bLabel10

uLabel12
bLabel13

cdLabel11

uLabel12

cdLabel11

bLabel4

uLabel5

bLabel10
bLabel13

Instance A

Function block

Instance B

Function block

Count contact

Count set value

Count contact

Count set value

Current value Current value

Counting-up Counting-up
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 19

20
Instances
■Instances
An instance is a label assigned to realize a function block definition. Multiple instances can be created from one function block
definition.
An instance consists of the following items.

Ex.

Structure of instance (Example of subroutine type function block)

For the local label area and local latch label area, since the label area is secured in units of four words, three-words (padding
size) are secured in the above example.
Each area occupies a reserved area. The reserved area is used to add or change the local label, instructions, or instances of
the function block while keeping the label assignment by conversion or online change. If the area of the target data type to be
added cannot be secured, all programs are required to be converted (reassigned).

Item Description
Local label area Used to assign the local label of the function block.

Local latch label area Used to assign the latch attribute local label of the function block.

Signal flow area (Signal flow for FB) Used to assign the signal flow for the instruction in the function block definition.

bLabel0

bLabel0

INCP wLabel0

wLabel0
BIT
WORD

bLabel0

wLabel0

VER
VER_RETAIN

FB1 definitionFB1 definition

Ladder program (FB1)

Local label definition (FB1)

Label name Data type Class

Reserved area (FB1)
Area Size
Local label area
Local latch label area

Local label area

Local latch label area

48 words
16 words

FB1 instance structureFB1 instance structure

Padding size
3 words

Padding size
3 words

Reserved area 16 words

20 words

Reserved area 48 words

52 words

Signal flow for FB 8 words

Reserved area 8 words
9 words

For LD(2 bits)For INCP(3 bits)

Another instance of FB1Another instance of FB1

Creating another
instance based on
FB1 definition
(same area size)

Local label area

Local latch label area

Signal flow for FB

Creating an
instance based on
FB1 definition

Signal flow for FB
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

Ex.

Structure of instance for nested function block

The instance of FB2 declared as a local label is secured in the local label area, local latch label area, and signal flow for FB of
FB1 which is the declared source.
When an FB type local label to FB1 is added in the above example, since the capacity of the reserved area is 48 words for
local label area, 16 words for local latch label area, and 8 words for signal flow for FB, all programs are required to be
converted (reassigned) to add a function block with an area exceeding the capacity.

bLabel0

FB2_a

INCP wLabel0

wLabel1
FB2
WORD

bLabel0

VER
VER

bLabel1 BIT VER
bLabel2 BIT VER
wLabel0 WORD VER_RETAIN

bLabel0 BIT VER

bLabel1

bLabel2
wLabel1FB2

bLabel1

bLabel2
wLabel1

wLabel1

bLabel1
wLabel0 bLabel0

bLabel0
INC wLabel0

wLabel1 WORD VER_OUTPUT

bLabel1 BIT VER_INPUT
wLabel0 WORD VER

bLabel0 BIT VER_INPUT

bLabel1
wLabel1MOVP wLabel0

wLabel0

Ladder program (FB1)

Local label definition (FB1)

Label name Data type Class

Reserved area (FB1)
Area Size
Local label area
Local latch label area

Local label area

Local latch label area

48 words
16 words

Creating an
instance based on
FB1 definition

FB1 instance structureFB1 instance structure

Padding size
3 words

Padding size
2 words

Reserved area 16 words

Reserved area 48 words

FB2 area
52 words

Signal flow for FB 8 words

Signal flow for FB

Reserved area 8 words

FB2 definitionFB2 definition

Ladder program (FB2)

Local label definition (FB2)

Label name Data type

Reserved area (FB2)
Area Size
Local label area
Local latch label area

48 words
16 words

Signal flow for FB 8 word

Padding size 1 word

Reserved area 48 words

FB1 area
104 words

Reserved area 16 words

FB1 area
36 words

FB2 area
16 words

Reserved area 8 words
For MOVP (4 bits)

For INCP (3 bits)

FB2 area
9 words FB1 area

18 words

Class

FB1 definitionFB1 definition
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 21

22
■Creating instances
A function block needs to be instantiated to be used in programs.
By creating instances, a function block can be called and executed by a program block or another function block.
Declare instances with global labels or local labels.

*1 Local labels can be declared as the local labels of a program block or function block. Local labels cannot be declared in a function.
Same function blocks can be instantiated with different names in a single POU.

Label type Instance type Class
Global label Global FB VAR_GLOBAL

Local label*1 Local FB VAR

(1) Same instances use the same internal variables.
(2) Different instances use different internal variables.

wLabel1

wLabel2

wLabel3

wLabel5

wLabel6

wLabel8

wLabel9wLabel7

wLabel1

wLabel2

wLabel3

wLabel5

wLabel6

wLabel8

wLabel9wLabel7

wLabel10

wLabel11

wLabel12

wLabel5

wLabel6

wLabel8

wLabel9wLabel7

wLabel4

wLabel4 wLabel13

(2)(1)

Instance A

Function block

Instance A

Function block

Instance B

Function block

Input variable 1

Input variable 2

Output variable

Input variable 3 Local variable

Input variable 2

Output variable

Input variable 3 Local variable

Input variable 1

Input variable 1

Output variable

Input variable 1 Local variable

Input variable 1
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

■Capacity of instance
The capacity of each data area of an instance should be calculated as follows.
 • Capacity of local label area
Capacity of local label area of instance = Total capacity of data of local labels (except the ones with latch attribute) + Capacity
of reserved area

 • Capacity of local latch label area
Capacity of local latch label area of instances = Total capacity of data of local labels with latch attribute + Capacity of reserved
area

 • Capacity of signal flow for FB
In the macro type function block, the number of steps are the same as the program.
The capacity of the subroutine type function block is as follows.
Capacity of signal flow for FB (word) = The number of program steps of the function block / 16 + Capacity of reserved area

If the reserved area capacity cannot be allocated to the data to be added by online change, the online change
cannot be executed and all programs are required to be converted (reassigned).

Item Description
Capacity of local labels (except the ones with latch
attribute)

Total capacity of the data used for local labels.
The capacity of areas to be used differs depending on the memory assignment of labels. For details on
memory assignment of labels, refer to the following.
 GX Works3 Operating Manual

Capacity of reserved area 48 words.

Item Description
Capacity of latch attribute local labels Total capacity of the data used for latch attribute local labels.

The capacity of areas to be used differs depending on the memory assignment of labels. For details on
memory assignment of labels, refer to the following.
 GX Works3 Operating Manual

Capacity of reserved area 16 words.

Item Description
Capacity of signal flow for FB Total capacity of the signal flow for FB for the instruction in the function block definition

Capacity of reserved area 8 words.
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 23

24
EN and ENO
In the same way as a function, EN (enable input) and ENO (enable output) can also be appended to a function block to control
execution processing.
Page 13 EN and ENO
When the instance of a function to which EN/ENO has been appended is called, an actual argument must be assigned to EN.

Creating programs
The program of a function block can be created by using the engineering tool.

[Navigation window]  [FB/FUN]  Right-click  [Add New Data]
Select "Function Block" for "Data Type" in "Basic Setting".

The created program is stored in the FB file.

[CPU Parameter]  [Program Setting]  [FB/FUN File Setting]
Up to 64 created programs can be stored in one FB file.
For details on program creation, refer to the following.

■Types of program
There are two types of function blocks and the program of each function block type is stored in different ways.
 • Macro type function block
 • Subroutine type function block
For details, refer to the following.
Page 18 Operation overview
The above cannot be selected for module function blocks, standard functions, and standard function blocks.

Item Reference
How to create function blocks  GX Works3 Operating Manual

Number of FB/FUN files that can be written to a CPU module  MELSEC iQ-F FX5S/FX5UJ/FX5U/FX5UC User's Manual (Hardware)
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

■Inherent property setting
The following items can be set when a program of a function block is created. ( GX Works3 Operating Manual)

*1 To select this item, select "Yes" for "Use EN/ENO". However, the item cannot be used depending on the versions of the CPU module
and GX Works3 used when "Subroutine Type" is selected for "FB Type". For the versions of the CPU module and the GX Works3, refer
to the following.
 MELSEC iQ-F FX5 User's Manual (Application)

■Applicable devices and labels
The following table lists the devices and labels that can be used by function block programs.
: Applicable, : Applicable only in instructions (Cannot be used to indicate the program step.), : Not applicable

Number of steps (Macro type function blocks)
■Calling source
When calling a macro type function block, the calling source loads the call-target program during compilation.

■Program
The number of steps required for a function block program is the total number of instruction steps, like usual programs.
For the number of steps required for each instruction, refer to the following.
 MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)

Item Description
Use MC/MCR to Control EN*1 For "Yes", the MC/MCR instructions are used to control EN. For "No", the CJ instruction is used to control EN.

Select "Yes" when instructions executed at the rising edge or falling edge are used in an FB. The operations of a
timer/counter and the OUT instruction used in an FB differ depending on the selected item. For details, refer to the
following.
Page 114 Operations of when the MC/MCR instructions are used to control EN

Use EN/ENO For "Yes", a function block with EN/ENO is created, and EN/ENO labels can be used in a program without
registering as local labels. For "No", a function block without EN/ENO is created.
For details on EN/ENO, refer to the following.
Page 24 EN and ENO

Type of device/label Availability
Label (other than the pointer type) Global label 

Local label 

Label (pointer type) Pointer type global label 

Pointer type local label 

Device Global device 

Pointer Global pointer 

(1) The program is loaded in two or more call locations.

FB1

FB1_a

FB1

FB1_b

(FB1_b)

(FB1_a)

(1)

Program block 1 (displayed)

FB1 program

FB1 program

Program file
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 25

26
Number of steps (Subroutine type function blocks)
■Calling source
When calling a subroutine type function block, the calling source generates the processing that passes the argument before
and after the call processing.

 • Passing the argument
The instruction used to pass the argument differs depending on the class and data type of the argument. The following table
summarizes the instructions that can be used to pass the argument.

 • Calling the program
The following table lists the number of steps required to call the program of the function block.

 • EN/ENO
The following table lists the number of steps required for EN/ENO.

■Program
The number of steps required for a function block program is the total number of instruction steps, like usual programs.
For the number of steps required for each instruction, refer to the following.
 MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)

(1) Passing the argument (input argument, input/output
argument)

(2) Calling the FB1 program
(3) Passing the argument (output argument, input/output

argument)

Argument class Data type Instruction used Number of steps
VAR_INPUT
VAR_IN_OUT
VAR_OUTPUT

Bit LD+OUT
LD+MOVB
(Either of the instruction sets is used
depending on the combination of
programming language, function, and input
argument used.)

For the number of steps required for
each instruction, refer to the following.
 MELSEC iQ-F FX5 Programming
Manual (Instructions, Standard
Functions/Function Blocks)

Word [unsigned]/bit string [16 bits]
Double word [unsigned]/bit string [32 bits]
Word [signed]
Double word [signed]

LD+MOV
LD+DMOV

Single-precision real number LD+EMOV

Time LD+DMOV

String(32) LD+$MOV

String [Unicode](32) LD+$MOV_WS

Array, Structure LD+BMOV

Item Number of steps
With EN 10

Without EN 12

Item Number of steps
EN 4 to 7

(The number of steps differs depending on the details of the program such as the type and number of the device specified as the
input source of EN.)

ENO 6 to 10
(The number of steps differs depending on the details of the program such as the type and number of the device specified as the
output destination of ENO.)

(1)

(2)

(3)

FB1

FBCall FB1_a
FB1

MOV D0 XX

D0
M0

D10
M10 Y40

Y20
M0

Y20

FB1_a

FB1_b

Program file

FB1 program

FB file

The call-target program is
replaced with the instruction
for calling a function block.

Program block 1
(displayed)

Calling the
function block
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

3.4 Precautions

When a subroutine program or an interrupt program is used
 • Set subroutine programs and interrupt programs after the FEND instruction. When the subroutine program and interrupt

program are set before the FEND instruction, an error occurs.

 • Only one FEND instruction can be used for a program file. When multiple FEND instructions are used, an error occurs.

When a function is used
■Global pointer/pointer type global labels
The global pointer and pointer type global labels cannot be used as the labels indicating the number of program steps.

Execution
order

Program file

FEND

Main routine program

P0

Subroutine program

RET

Interrupt program
I0

IRET
END

Because the subroutine
program is set before the
FEND instruction, an error

occurs.

Change the execution order in the
program file setting.

Execution
order

Program file

FEND

Main routine program

FEND

Main routine program

Interrupt program
I0

IRET
END

Because there are two
FEND instructions are in
the program file, an error

occurs.

The program after the FEND instruction is not
executed as the main routine program.
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions 27

28
When a function block is used
■Global pointer/pointer type global labels
The global pointer and pointer type global labels cannot be used as the labels indicating the number of program steps.

■When the index register is used
When the index register is used in the function block program, ladder programs for saving and returning the index register
values are required to protect the values.
Setting the index register data to 0 when saving can prevent an error that could be caused by an index modification validity
check. (Whether the device number exceeds the device range or not is checked.)

Ex.

A program that saves the values in the index register Z1 and Z2 before the program execution and returns the saved values
after the program execution

■Argument of macro type function block
Except in the program of the macro type function block, use the device/label used for passing the argument instead of the
argument of the function block.

Ex.

Device used for passing the argument

An unintended value may be generated if the argument of the macro type function block is used in other than the program of
the macro type function block.

Ex.

Unintended value

MacroFbPou_1 (EN := M0, ENO => M1);
M2 := M1;

MacroFbPou_1 (EN := M0, ENO => M1);
M2 := MacroFbPou_1.ENO;

SM400
Z1MOV index_reg_tmp1

Z2MOV index_reg_tmp2

K0MOV Z1

K0MOV Z2

SM400
Z1MOV index_reg_tmp1

Z2MOV index_reg_tmp2

Before the program execution,
save the index register values in
index_reg_tmp.

Set 0 to the index register areas.

After the program execution, return the
values saved in index_reg_tmp to the
index register.

Program execution

Save the index register values.

Clear the index register values.

Return the register values.
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions

3

■When a conversion error occurs in VAR_INPUT, VAR_OUTPUT, or VAR_IN_OUT in a macro
type function block

A program block that is the calling source of the function block or the function block may cause the error. In this case, check
the inputs and outputs of the program block that is the calling source of the function block and the function block.

Ex.

A conversion error (1) occurs in VAR_OUTPUT in the macro type function block (FbPou)

If no error was found in (1), check the inputs and outputs (2) of the corresponding function block in the program block that is
the calling source.

Since the output variables of the function block have been passed to the write-protected label/device, a conversion error has
occurred in the above example.

■Restrictions for module function blocks
The following describes the restrictions for the use of module function blocks.
 • Do not turn off the contact of the MC instruction when calling a module function block between the MC instruction and MCR

instruction.
 • Do not perform the jump processing that prevents module function blocks from being called by the CJ instruction.
 • Execute a subroutine program every scan when calling a module function block in the subroutine program. Do not perform

the non-execution processing of a subroutine program by using the XCALL instruction.
 • Do not call a module function block in an interrupt program or event execution type program.
 • Do not call a module function block between the FOR and NEXT instructions, in the inline ST, or the control syntax of the

structured text language (IF statement, FOR statement, and CASE statement.)

■When a master control instruction is used
Shown here is the operation when the master control is OFF.
 • Macro type function block
The operation in the function block is the same as contact OFF (OFF execution or no execution is made).
 • Subroutine type function block and function
No execution is made in the function block.

(1)

(2)
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions 29

30
Changing program capacity (FX5U/FX5UC CPU module only)
When the program capacity setting parameter is changed to 128000 steps from 64000 steps, the operation changes as
follows.
 • Signal flow area for FB is expanded from 16K bytes to 32K bytes.
 • Temporary area capacity is expanded form 700 words to 32767 words.
 • Execution time for each instruction is prolonged.
Do not write a program with more than 64000 steps to the CPU module firmware version earlier than 1.100. The program
does not operate normally.
For the program capacity setting, refer to the following.
MELSEC iQ-F FX5 User's Manual (Application)
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions

4

4 LABELS
Labels are variables for I/O data or internal processing, specified by a character string.
Users can create a program without considering devices or buffer memory size by using labels.
Thus, a program, where labels are used, can be reused in a system with a different module configuration easily.
When labels are used, there are some precautions on programming and functions used. For details, refer to the following.
Page 40 Precautions

4.1 Type
This manual describes the following types of label.
 • Global labels
 • Local labels

Global labels
Global labels are labels that can be shared by programs in a project. Global labels can be used in all the programs in a
project.
Global labels can be used in program blocks and function blocks.
When setting a global label, set the label name, class and data type, and assign a device.

■Device assignment
Devices can be assigned to global labels.

Local labels
Local labels are labels that can be used in each POU only. Local labels that are not included in POUs cannot be used.
When setting a local label, set the label name, class, and data type.

There are other types of labels available in addition to global labels and local labels.
System labels
System labels can be shared among iQ Works-compatible products and are managed by MELSOFT
Navigator. Global labels registered as system labels can be monitored or accessed using the system labels on
GOT.
For details, refer to the following.
iQ Works Beginner's Manual
Module labels
Module labels are labels defined uniquely by each module. Module labels are automatically generated by the
engineering tool from the module used, and can be used as a global label.
For details, refer to the following.
MELSEC iQ-F FX5 CPU Module Function Block Reference
For registration of module labels, refer to the following.
GX Works3 Operating Manual

Item Description
Label to which no device is assigned • Programming without concern to devices is possible.

• Defined labels are allocated to the label area or latch label area in the device/label memory.

Label to which a device is assigned • If a device is to be programmed as a label referring to a device that is being used for input or output, the device can
be assigned directly.

• Defined labels are allocated to the device area in the device/label memory.
4 LABELS
4.1 Type 31

32
4.2 Class
The label class indicates how each label can be used from which POU.
The selectable class varies depending on the POU.

4.3 Data Type
Labels are classified into several data types according to the bit length, processing method, or value range.
The following two data types are provided.
 • Elementary data type
 • Generic data type (ANY)

Elementary data type
The following data types are available as the elementary data type.

Global label

Class Description Applicable POU

Program
block

Function
block

Function

VAR_GLOBAL Common label that can be used in program blocks and function blocks   

VAR_GLOBAL_CONSTANT Common constant that can be used in program blocks and function blocks   

VAR_GLOBAL_RETAIN Latch type label that can be used in program blocks and function blocks   

Local label

Class Description Applicable POU

Program
block

Function
block

Function

VAR Label that can be used within the range of declared POUs
This label cannot be used in other POUs.

  

VAR_CONSTANT Constant that can be used within the range of declared POUs
This label cannot be used in other POUs.

  

VAR_RETAIN Latch type label that can be used within the range of declared POUs This label
cannot be used in other POUs.

  

VAR_INPUT Label that inputs to a function or a function block.
This label receives a value, and cannot be changed in POUs.

  

VAR_OUTPUT Label that outputs a value from a function or a function block   

VAR_OUTPUT_RETAIN Latch type label that outputs a value from a function or a function block   

VAR_IN_OUT Local label which receives a value, outputs it from a POU, and can be changed
in POUs

  

VAR_PUBLIC Label that can be accessed from other POUs   

VAR_PUBLIC_RETAIN Latch type label that can be accessed from other POUs   

Data type Description Value range Bit
length

Bit BOOL Represents binary status, such as ON or
OFF

0 (FALSE), 1 (TRUE) 1-bit

Word [Unsigned]/Bit String [16-bit] WORD Represents 16-bit 0 to 65535 16-bit

Double Word [Unsigned]/Bit String
[32-bit]

DWORD Represents 32-bit 0 to 4294967295 32-bit

Word [Signed] INT Handles positive and negative integer
values

-32768 to +32767 16-bit

Double Word [Signed] DINT Handles positive and negative double word
integer values

-2147483648 to +2147483647 32-bit

FLOAT [Single Precision] REAL Handles the portion after the decimal point
of the float (single precision)
Effective digits: 7 (after the decimal point:
6)

-2128 to -2-126, 0, 2-126 to 2128 32-bit
4 LABELS
4.2 Class

4

*1 The time data is used in the time data type function of standard functions. For the standard function, refer to the following.
MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)

*2 When using a constant for a label of the time data, prefix "T#" to the label.

■Data types of timers and counters
The data types of a timer, retentive timer, counter, and long counter are structures that have contacts, coils, and current
values.

*1 The unit of the current value is specified by instruction name.
*2 When use a long counter in the OUT LC instruction: 0 to 4294967295

When use a long counter in the UDCNTF instruction: -2147483648 to +2147483647
For the operation of each device, refer to the following.
MELSEC iQ-F FX5 User's Manual (Application)
The specification method of each member is the same as the member specification of the structure data type. (Page 37
Structures)

Time*1 TIME Handles values as d (day), h (hour), m
(minute), s (second), or ms (millisecond)

T#-24d20h31m23s648 ms to
T#24d20h31m23s647 ms*2

32-bit

String(32) STRING Handles a character string (ASCII, Shift
JIS)

Up to 255 letters (half-width
character)

Variable

String [Unicode](32) WSTRING Handles a Unicode character string Up to 255 letters Variable

Timer TIMER Structure that corresponds to a timer (T) of
a device

Page 33 Data types of timers and counters

Retentive Timer RETENTIVETIMER Structure that corresponds to a retentive
timer (ST) of a device

Counter COUNTER Structure that corresponds to a counter (C)
of a device

Long Counter LCOUNTER Structure that corresponds to a long
counter (LC) of a device

Pointer POINTER Type that corresponds to a pointer (P) of a device (MELSEC iQ-F FX5 User's Manual
(Application))

Data type Member
name

Data type of
member

Description Value range

Timer TIMER S Bit Indicates contacts. The operation is the same
as the contact of a timer device (TS).

0 (FALSE), 1
(TRUE)

C Bit Indicates coils. The operation is the same as the
coil of a timer device (TC).

0 (FALSE), 1
(TRUE)

N Word [unsigned]/Bit
String [16-bit]

Indicates a current value. The operation is the
same as the current value of a timer device
(TN).

0 to 32767*1

Retentive Timer RETENTIVETIMER S Bit Indicates contacts. The operation is the same
as the contact of a retentive timer device (STS).

0 (FALSE), 1
(TRUE)

C Bit Indicates coils. The operation is the same as the
coil of a retentive timer device (STC).

0 (FALSE), 1
(TRUE)

N Word [unsigned]/Bit
String [16-bit]

Indicates a current value. The operation is the
same as the current value of a retentive timer
device (STN).

0 to 32767*1

Counter COUNTER S Bit Indicates contacts. The operation is the same
as the contact of a counter device (CS).

0 (FALSE), 1
(TRUE)

C Bit Indicates coils. The operation is the same as the
coil of a counter device (CC).

0 (FALSE), 1
(TRUE)

N Word [unsigned]/Bit
String [16-bit]

Indicates a current value. The operation is the
same as the current value of a counter device
(CN).

0 to 32767

Long Counter LCOUNTER S Bit Indicates contacts. The operation is the same
as the contact of a long counter device (LCS).

0 (FALSE), 1
(TRUE)

C Bit Indicates coils. The operation is the same as the
coil of a long counter device (LCC).

0 (FALSE), 1
(TRUE)

N Double Word [unsigned]/
Bit string [32-bit]

Indicates a current value. The operation is the
same as the current value of a long counter
device (LCN).

*2

Data type Description Value range Bit
length
4 LABELS
4.3 Data Type 33

34
Generic data type (ANY)
The generic data type indicates data type of a label which combines several basic data types. The data type name begins with
"ANY".
The generic data type is used when multiple data types are available in arguments or return values etc. of a function of a
function block.
Labels defined as generic data types can be used for any sub-level data type.
For the types of generic data types and the primitive data types, refer to the following.
MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)

Definable data types
The following tables list the definable data types possibilities for each label class.

*1 The pointer type cannot be defined.
*2 None of the timer, retentive timer, long timer, counter, long timer, long retentive timer, and long counter types can be defined.

Global label

Class Definable data type
VAR_GLOBAL Primitive data type, array, structure, function block

VAR_GLOBAL_CONSTANT Primitive data type*1

VAR_GLOBAL_RETAIN Primitive data type*1, array, structure

Local label (program block)

Class Definable data type
VAR Primitive data type, array, structure, function block

VAR_CONSTANT Primitive data type*1

VAR_RETAIN Primitive data type*1, array, structure

Local label (function)

Class Definable data type
VAR Primitive data type*2, array, structure

VAR_CONSTANT Primitive data type*1

VAR_INPUT Primitive data type*1*2, array, structure

VAR_OUTPUT

Return value

Local label (function block)

Class Definable data type
VAR Primitive data type, array, structure, function block

VAR_CONSTANT Primitive data type*1

VAR_RETAIN Primitive data type*1, array, structure

VAR_INPUT

VAR_OUTPUT

VAR_OUTPUT_RETAIN

VAR_IN_OUT

VAR_PUBLIC

VAR_PUBLIC_RETAIN
4 LABELS
4.3 Data Type

4

4.4 Arrays
An array represents a consecutive accumulation of the same data type labels, under the same name.
Arrays can be defined by the elementary data types or structures.
The maximum number of arrays differs depending on the data types.

Definition of arrays
■Array elements
When an array is defined, the number of elements, or the length of array, must be determined. For the range of the number of
elements, refer to the following.
Page 36 Maximum number of array elements

■Definition format
The following table lists definition format examples up to three dimensions.
The range from the array start value to the array end value is the number of elements.

How to use arrays
To identify individual labels of an array, append an index enclosed by "[]" after the label name.
For an array with two or more dimensions, delimit indexes in "[]" by using "comma (,)".

One-dimensional array Two-dimensional array

Number of array
dimensions

Format Remarks

One dimension Array of elementary data type/structure name (array start value .. array end value) • For elementary data types:
Page 32 Elementary data type
• For structured data types:
Page 37 Structures

(Definition example) Bit (0..2)

Two dimensions Array of elementary data type/structure name (array start value .. array end value, array start
value .. array end value)

(Definition example) Bit (0..2, 0..1)

Three dimensions Array of elementary data type/structure name (array start value .. array end value, array start
value .. array end value, array start value .. array end value)

(Definition example) Bit (0..2, 0..1, 0..3)

Type Specification example Remarks
Constant bLabel1[0] An integer equal to or greater than 0 can be specified. Decimal constant or hexadecimal constant can

be specified.

Device bLabel1[D0] A word device or double-word device can be specified.

Label bLabel1[uLabel2] The following data types can be specified.
• Word [unsigned]/bit string [16 bits]
• Double word [unsigned]/bit string [32 bits]
• Word [signed]
• Double word [signed]

Expression bLabel1[5+4] Expressions can be specified only in ST language.

bLabel1 [0] [n][1] …

Label name Indexes

bLabel2 [0,0] [0,1] [0,n]

[1,0] [1,1]

[m,0] [m,n]

… …

…

…

……

……

…
Label name Indexes

bLabel1 [0] bLabel2 [0,3]

Label name Indexes
4 LABELS
4.4 Arrays 35

36
Precautions
When a bit of a device/label (example: D0.0) is assigned to bit array in global label, labels and devices can not be used for
the array index in programming (example: bLabel1[D0] cannot be programmed).

 • The data storage location becomes dynamic by specifying a label for the array index. This enables arrays to
be used in a program that executes loop processing. The following is a program example that consecutively
stores "1234" in the "uLabel4" array.

 • In the case of the ladder diagram, arrays can be used with element numbers omitted. When the element
number is omitted, it is converted to the starting number of the array element. For example, when the label
name you define is "boolAry" and the data type is "bit (0..2,0..2)", then "boolAry[0,0]" and "boolAry" are
treated in the same way.

 • A multidimensional array can be specified as setting data of an instruction, function, or function block using
arrays. In that case, the rightmost element in the multidimensional array is treated as the first dimension.

Maximum number of array elements
The maximum number of array elements differs depending on data types.

Precautions
■When an interrupt program is used
When a label or device is specified for the array index, the operation is performed with a combination of multiple instructions.
For this reason, if an interrupt occurs during operation of the label defined as an array, data inconsistency may occur
producing an unintended operation result.
To prevent data inconsistency, create a program using the DI/EI instructions that disables/enables interrupt programs as
shown below.

For the DI/EI instructions, refer to the following.
MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)

Data type Setting range
Bit
Word [Unsigned]/Bit String [16-bit]
Double Word [Unsigned]/Bit String [32-bit]
Word [Signed]
Double Word [Signed]
FLOAT [Single Precision]
Time
Timer
Retentive Timer
Counter
Long Counter

1 to 32768

String(32) 1 to 32768  character string length

String [Unicode](32) 1 to 16384  character string length

bLabel1

bLabel2
uLabel4[wLabel3]K1234MOV

wLabel3INC

Program using the label defined as an array

DI

EI
4 LABELS
4.4 Arrays

4

■Array elements
When accessing the element defined in an array, access it within the range of the number of elements.
If a constant out of the range defined for the array index is specified, a compile error will occur.
If the array index is specified with data other than a constant, a compile error will not occur. The processing will be performed
by accessing another label area or latch label area.

4.5 Structures
A structure is a data type that includes different labels. Structures can be used in all POUs.
Each member (label) included in a structure can be defined even when the data types are different.

Creating structures
To create a structure, first create the configuration of the structure, and define members for the created structure.

How to use structures
To use structures, register the label with the defined structure as a new data type.
To specify each member, append an element name after the structure label name with "period (.)" as a member name.

Ex.

When using the member of a structure

 • When labels are registered by defining multiple data types in a structure and used in a program, the order
the data is stored after converted is not the order the data types were defined. When programs are
converted using the engineering tool, labels are classified into type and data type, and then assigned to the
memory (memory assignment by packing blocks).

GX Works3 Operating Manual
 • If a member of a structure is specified in an instruction operand that uses control data (series of consecutive

devices from the operand used by the instruction), the control data is assigned to members of the structure
by the order they are stored in memory, not the order the members are defined.

Member (Label 1)

Member (Label 2)

Member (Label 3)

Member (Label 4)

Structure

stLabel1 . bLabel1

Structure label name

Member name
4 LABELS
4.5 Structures 37

38
Arrays of structures
Structures can also be used as arrays.

When a structure is declared as an array, append an index enclosed by "[]" after the structure label name.
The array of structure can be specified as arguments of functions and function blocks.

Ex.

 When using an element of the structured array

Data types that can be specified
The following data types can be specified as a member of a structure.
 • Elementary data type
 • Pointer type
 • Arrays
 • Other structures

Structure types
The following data types are defined as a structure beforehand.

Type Reference
Timer type Page 32 Data Type

Retentive Timer type

Counter type

Long Counter type

Member (Label 2)

Member (Label 1)

Member (Label 3)

Member (Label 4)

Structure label [1] Structure label [2] Structure label [3] Structure label [4]

Member (Label 2)

Member (Label 1)

Member (Label 3)

Member (Label 4)

Member (Label 2)

Member (Label 1)

Member (Label 3)

Member (Label 4)

Member (Label 2)

Member (Label 1)

Member (Label 3)

Member (Label 4)

stLabel [0] . bLabel1

Indexes

Member name

Structure label name
4 LABELS
4.5 Structures

4

4.6 Constant

Types of constants
The following table shows the expressions for setting a constant to a label.

*1 In the binary notation, the octal notation, the decimal notation, the hexadecimal notation, and the real number notation, values can be
delimited by an underscore (_) to make programs easy to read. (In the program processing, underscores are ignored.)

When "$" is used in character string type data
"$" is used as an escape sequence. Two hexadecimal numbers after "$" are recognized as an ASCII code, and characters
corresponding to the ASCII code are inserted in the character string. If no ASCII code for the two hexadecimal numbers after
"$" exists, a conversion error occurs. However, when any of the following characters is described after "$", no error occurs.

Applicable data type Type Expression Example
Bit Boolean data Input "TRUE" or "FALSE". TRUE, FALSE

Binary Append "2#" in front of a binary number. 2#0, 2#1

Octal Append "8#" in front of an octal number. 8#0, 8#1

Decimal Directly input a decimal number, or append "K" in front of a
decimal number.

0, 1, K0, K1

Hexadecimal Append "16#" or "H" in front of a hexadecimal number. 16#0, 16#1, H0, H1

• Word [Unsigned]/Bit String [16-bit]
• Double Word [Unsigned]/Bit String [32-

bit]
• Word [Signed]
• Double Word [Signed]

Binary*1 Append "2#" in front of a binary number. 2#0010, 2#01101010,
2#1111_1111

Octal*1 Append "8#" in front of an octal number. 8#0, 8#337, 8#1_1

Decimal*1 Directly input a decimal number or append "K" in front of a
decimal number.

123, K123, K-123,
12_3

Hexadecimal*1 Append "16#" in front of a hexadecimal number.
Or append "H" in front of a value.

16#FF, HFF, 16#1_1

FLOAT [Single Precision] Real number*1 Directly input a real number, or append "E" in front of a real
number.

2.34, E2.34, E-2.34,
3.14_15

Real number
(exponent
expression)

Append "E" in front of an exponent expression or a real number.
Append "+" in front of exponent part.

1.0E6, E1.001+5

String(32) Character string Enclose a character string (ASCII, Shift JIS) with single
quotations (').

'ABC'

String [Unicode](32) Unicode character
string

Enclose a Unicode character string in double quotation marks ("). "ABC"

Time Time Append "T#" in front. T#1h,
T#1d2h3m4s5ms

Expression Symbol that is used in character string, or printer code
$$ $

$' '

$'' ''

$L or $l Line feed

$N or $n Newline

$P or $p Page (form feed)

$R or $r Return

$T or $t Tab
4 LABELS
4.6 Constant 39

40
4.7 Precautions

Functions with limitations
In the following functions, there is a limitation on label use.

■Defining and using a global label with a device assigned
Define a global label following the procedure below, and use it when the functions having restriction on the use of labels are
executed.
Since the device area in the device/label memory is used, reserve device area capacity. (The label area is not consumed.)

1. Reserve the device area to be used.

CPU Parameter  Memory/Device Setting  Device/Label Memory Area Capacity Setting

2. Define a label as a global label, and assign a device manually.

3. Use the label defined in step 2 for the functions having no restrictions on the use of labels. Use the device assigned to
the label for the function having restrictions on the use of labels.

■Copying the label data into a specified device
Copy the label data into a specified device following the procedure below, and use the copy-target device.
Since the device area in the device/label memory is used, reserve device area capacity.

1. Reserve the device area to be used.

CPU Parameter  Memory/Device Setting  Device/Label Memory Area Capacity Setting

2. Create a program using the label. The following is the program example for copying the data. (The data logging function
uses the data in udLabel1.)

3. Use the device where the data has been transferred in step 2 for the function having restrictions on the use of labels. (In
the program example in step 2, use D0.)

When copying a value of a label to another device by a transfer instruction, note that the number of program
steps increases. In addition, when adding a transfer instruction on a program, consider execution timing of the
function to be used.

Item Description
Trigger of an event execution type program Labels cannot be used. Consider taking the following measures.

• Use devices.
• Define a label to be used as a global label and assign devices to the global label.

Intelligent function module refresh setting Labels cannot be used. Consider taking the following measures.
• Use devices.

SM400
udLabel1 D0DMOV
4 LABELS
4.7 Precautions

4

Precautions for creating programs
When specifying a label as an operand used in instructions, match the data type of the label with that of the operand. In
addition, when specifying a label as an operand used in instructions that control continuous data, specify the data range used
in instructions within the data range of the label.

Ex.

 SFT(P) instruction

Ex.

 SFR(P) instruction

Specify a label which has a larger data range than the search range (n) points.

Limitations on label names
Label names have the following limitations:
 • A label name must start with a nonnumeric character or underscore (_). It cannot start with a number.
 • Reserved words cannot be used as label names.
For details of reserved words, refer to the following.
GX Works3 Operating Manual

bLabel[0]SFT

bLabel[1]SFTP

SFTP

wLabel1.0

wLabel1.1

SFT

To shift the bits correctly, specify the array of a bit type label.

Specify the bit number of a word type label.

or

wLabel1[0]

wLabel1[1]

wLabel1[n]

10

500

20

123

-123

123

Start device number of search range

Data matched

Search range :
(n) points
4 LABELS
4.7 Precautions 41

42
5 LADDER DIAGRAM
Ladder diagram is a language that describes the sequence control by indicating logical operations consisting of "AND" or
"OR" with combinations of series connections and parallel connections in a ladder consisting of contacts and coils.

5.1 Configuration
With the ladder diagram, the following ladder can be created.

(1) A ladder consists of contacts and coils
(2) A ladder connected in series
(3) A ladder connected in parallel
(4) A ladder where instructions are used
(5) A ladder where standard functions and function blocks are used

Ladder symbols
This section shows ladder symbols that can be used for programming in the ladder diagram.

Element Symbol Description
NO contact Turns on when a specified device or label is ON.

NC contact Turns on when a specified device or label is OFF.

Rising edge Turns on at the rising edge (OFF to ON) of a specified device or label.

Falling edge Turns on at the falling edge (ON to OFF) of a specified device or label.

Negated rising edge Turns on when a specified device or label is OFF or ON, or at the falling edge (ON to OFF) of a
specified device or label.

Negated falling edge Turns on when a specified device or label is OFF or ON, or at the rising edge (OFF to ON) of a
specified device or label.

Conversion of operation result
to leading edge pulse

Turns on at the rising edge (OFF to ON) of an operation result. Turns off when the operation result
is other than the rising edge.

Conversion of operation result
to trailing edge pulse

Turns on at the falling edge (ON to OFF) of an operation result. Turns off when the operation result
is other than the falling edge.

Inverting the operation result Inverts the operation just before this instruction.

Coil Outputs an operation result to a specified device or a label.

Instruction Executes an instruction specified in [].

Turn-back Turns back a circuit by creating a turn source symbol and a turn destination symbol when the
number of contacts exceeds the number of contacts that can be created in one line.

(1)

(2)

(3)

(4)

(5)
5 LADDER DIAGRAM
5.1 Configuration

5

Program execution order
The program is executed in order of the following numbers.

When executing the program above, Y1 and Y2 turn on corresponding to turning ON or OFF of X1 to X4 as shown below.

Function Executes a function.
• How to create functions (GX Works3 Operating Manual)
• Standard function (MELSEC iQ-F FX5 Programming Manual (Instructions, Standard

Functions/Function Blocks))

Function block Executes a function block.
• How to create function blocks (GX Works3 Operating Manual)
• Standard function blocks (MELSEC iQ-F FX5 Programming Manual (Instructions, Standard

Functions/Function Blocks))
• Module function blocks (MELSEC iQ-F FX5 CPU Module Function Block Reference)

Element Symbol Description

X1 X3

X4

Y1

X2 Y2

1

2

3

5

4

6

ON
OFF
ON
OFF

ON
OFF

ON
OFF

ON
OFF

ON
OFF

X1

X2

X3

X4

Y1

Y2
5 LADDER DIAGRAM
5.1 Configuration 43

44
Precautions for using a function block in ladder diagram

Precautions for directly connecting to an FB instance from the left rail
When EN and input variables (bit type) are directly connected to the left rail in the input circuit of the FB instance, the on/off
state does not change.

To change the on/off states of EN and the input variables (bit type), use a contact or an instruction equivalent to the contact.

(1): The on/off state does not change.

(2): Contact
(3): Instruction equivalent to a contact

(1)

(2)

(3)
5 LADDER DIAGRAM
5.1 Configuration

5

5.2 Inline ST
Inline ST is a function that creates, edits and monitors inline ST box that displays an ST program in a cell of an instruction that
is equivalent to a coil in the ladder editor.
Numerical operations or character string operations can be created easily in a ladder program.
 • Program with the inline ST

 • Program without the inline ST

The inline ST cannot be used in the Zoom editor of SFC programs.

Specifications
For the specifications of the inline ST, refer to the ST language specifications.
Page 47 ST LANGUAGE

Precautions
 • Only one inline ST can be created in one line of a ladder program.
 • Creating both a function block and an inline ST box in one line of a ladder program is impossible.
 • Creating an inline ST box in a position of an instruction that is equivalent to a contact creates an inline ST box in a position

of an instruction that is equivalent to a coil.
 • The maximum number of characters that can be input in an inline ST is 2048. (A newline is counted as two characters.)
 • In inline ST, do not use rising execution instructions, falling execution instructions, special timer instructions, OUT

instruction, positioning instructions, or standard function blocks (edge detection function blocks and counter function
blocks) as they may not work property.

 • When the RETURN syntax is used in an inline ST, the processing inside the inline ST box ends, and the processing inside
the program block does not end.

X0
W0:=K0;1
W0:=(D0+D1+D2+D3+D4+D5+D6+D7+D8+D9+D10+D11)/K12;2

X0
K0MOV W0

D0+ W0

D1+ W0

D2+ W0

D3+ W0

D4+ W0

D5+ W0

D6+ W0

D7+ W0

D8+ W0

D9+ W0

D10+ W0

D11+ W0

K12W0 W0/
5 LADDER DIAGRAM
5.2 Inline ST 45

46
5.3 Statements and Notes
In a ladder program, statements and notes can be displayed.

Statements
By using statements, users can append comments to circuit blocks. Appending statements makes the processing flow easy to
understand.
Statements include line statements, P statements, and I statements.
A line statement can be displayed on a tree view of the Navigation window.

■Line statement
A comment is appended to a ladder block as a whole.

■P statement
A comment is appended to a pointer number.

■I statement
A comment is appended to an interrupt pointer number.

Notes
By using notes, users can append comments to coils and instructions in a program.
Appending notes makes the details of coils and application instructions easy to understand.

Types of statements and notes
"PLC" and "Peripheral" are the types of statements and notes.

Type Type Description
PLC • Line statement

• P statement
• I statement
• Note

Statements and notes can be stored on the CPU module.
PLC statement uses the following number of steps. (Decimal fraction is rounded down.)
• Without character: 3 steps
• With character: 4 + (Number of characters + 2 + 14) / 15 + Number of characters (steps)

Peripheral • Line statement
• P statement
• I statement
• Note

Strings of the description are not embedded in the program, but they are saved as attached
information of the program.
One statement or note line uses one step.
A * symbol is prefixed to the entered text automatically.
5 LADDER DIAGRAM
5.3 Statements and Notes

6

6 ST LANGUAGE
The ST language is one of the languages supported by IEC 61131-3, the international standard that defines the description
methods for logic. ST language is a text programming language with a grammatical structure similar to C language. ST
language is suitable for programming some complicated processing that cannot be easily described using ladder diagram.
ST language supports control syntaxes, operational expressions, function blocks (FBs), and functions (FUNs). Therefore, the
following description can be made.

Ex.

 Control syntaxes using selective branches with conditional statements and repetition by iteration statements

Ex.

 Expressions using operators (such as *, /, +, -, <, >, and =)

Ex.

 Calling a defined function block

Ex.

 Calling a standard function

(* Control conveyors of Line A to C. *)
CASE Line OF

1: Start_switch := TRUE; (* The conveyor starts. *)
2: Start_switch := FALSE; (* The conveyor stops. *)
3: Start_switch := TRUE; (* The conveyor stops with an alarm. *)
ELSE Alarm_lamp := TRUE;

END_CASE;

IF Start_switch = TRUE THEN (* The conveyor starts and performs processing 100 times. *)
FOR Count := 0

TO 100
BY 1 DO
Count_No := Count_No +1;

END_FOR;
END_IF;

D0 := D1* D2 + D3 / D4 -D5;
IF D0 > D10 THEN

D0 := D10;
END_IF;

//FB data name : LINE1_FB
//Input variable : I_Test
//Output variable : O_Test
//Input/output variable : IO_Test
//FB label name : FB1
FB1(I_Test :=D0,O_Test => D1,IO_Test := D100);

(* Convert BOOL data type to INT/DINT data type. *)
wLabel2 := BOOL_TO_INT (bLabel1);
6 ST LANGUAGE
 47

48
6.1 Configuration
Operators and syntaxes are used for programing in ST language.

A statement must end with ";" (semicolon).

Spaces, tabs, and line feeds can be inserted anywhere between an operator and data.

Comments can be inserted in a program.

Constituent elements of a program
A ST program consists of the following elements.

 • Use one-byte delimiters, operators, and reserved words.
 • For details of reserved words, refer to the following.
GX Works3 Operating Manual

Item Example Reference
Delimiter ;, () Page 49 Delimiter

Operator +, -, <, >, = Page 49 Operator

Reserved word Syntax IF, CASE, WHILE, RETURN Page 50 Syntax

Device X0, Y10, M100 MELSEC iQ-F FX5 User's Manual (Application)

Data type BOOL, DWORD Page 32 Data Type

Function ADD, REAL_TO_STRING_E MELSEC iQ-F FX5 Programming Manual
(Instructions, Standard Functions/Function Blocks)

Constant 123, 'abc' Page 58 Constant

Label Switch_A Page 59 Label and device

Comment (* Turn ON *), //Turn ON, /*Turn ON*/ Page 60 Comment

Other symbols One-byte space, line feed code, tab code 

intV2 := ABS(intV1);

IF M1 THEN
btn01 := TRUE;

ELSE
btn01 := FALSE;

END_IF;

Output_ENO := ENEG(btn01,Input1);

LadderFBInstance(Input1:=bool1,Input2:=bool2,Input3:=bool3);
(* user function block *)

Assignment statement

Conditional statement

Calling a function

Calling a function block

intV1 := 0 ;
intV2 := 2 ;

End of the statement

intV1 := 0 ;
intV2 :=
2 ;

Space

Tab

Line feed

intV1 := 0;
(* Substitution *)
intV2 := 2;

Comment
6 ST LANGUAGE
6.1 Configuration

6

Delimiter
The following delimiters are provided in ST language for clarifying the program structure.

Operator
The following shows the operators used in a ST program and the target data types and operation result data types for each
operator.

*1 WSTRING data type Unicode character string cannot be specified.
The following table shows the priorities of the operators.

 • If an expression includes multiple operators with the same priority, the operation is performed from the leftmost operator.
 • Up to 1024 operators can be used in one statement.

Symbol Description
() Parenthesized

[] Specification of an array element

. (period) Specification of members of the structure or function block

, (comma) Separation of arguments

: (colon) Device type specifier

; (semicolon) End of a sentence

' (single quotation mark) Description of a character string (ASCII, Shift JIS)

" (double quotation mark) Description of a Unicode character string

.. (two periods) Specification of an integer range

Operator Target data type Operation result type
*, /, +, - ANY_NUM ANY_NUM

<, >,<=, >=, =, <> ANY_ELEMENTARY*1 Bit

MOD ANY_INT ANY_INT

AND, &, XOR, OR, NOT ANY_BIT ANY_BIT

** ANY_REAL (Base)
ANY_NUM (Exponent)

ANY_REAL

Operator Description Example Priority
() Parenthesized expression (2+3)*(4+5) 1

Function () Argument of a function CONCAR('AB','CD') 2

** Exponentiation 3.0**4 3

- Inversion of sign -10 4

NOT Bit type complement NOT TRUE

* Multiplication 10 * 20 5

/ Division 20 / 10

MOD Modulus operation 17 MOD 10

+ Addition 1.4 + 2.5 6

- Subtraction 3 - 2

<, >, <=, => Comparison 10 > 20 7

= Equality T#26h = T#1d2h 8

<> Inequality 8#15 <> 13

&, AND Logical AND TRUE AND FALSE 9

XOR Exclusive OR TRUE XOR FALSE 10

OR Logical OR TRUE OR FALSE 11
6 ST LANGUAGE
6.1 Configuration 49

50
Syntax
The following table shows the types of statements that can be used in a ST program.

Write statements using half width characters.

Assignment statement

When an array type label or a structure label is used, check the data types of the left side and right side of the assignment
statement.
When an array type label is used, the data type and the number of elements need to be the same for the left side and right
side. Do not specify elements.

Ex.

 intAry1 := intAry2;
When a structure label is used, the data type needs to be the same for the left side and right side.

Ex.

 dutVar1 := dutVar2;

■Automatic conversion of data types
In the ST language, if a different data type is assigned or a different arithmetic operation is described, the data type may be
automatically converted.

Ex.

 Example of automatic conversion

Type conversion is performed in an assignment statement, input argument pass to a function block and function (VAR_INPUT
part), and an arithmetic operation.

Item Description Reference
Assignment statement Assignment statement Page 50 Assignment statement

Sub-program control statement Function block call statement, function call statement Page 51 Sub-program control statement

RETURN statement

Conditional statement IF statement (IF, IF...ELSE, IF...ELSIF) Page 52 Conditional statement

CASE statement

Iteration statement FOR statement Page 53 Iteration statement

WHILE statement

REPEAT statement

EXIT statement

Format Description Example
<Left side> := <Right side> ; The assignment statement assigns the result of the right side expression to the label or device of

the left side.
The result of the right side expression and the data type of the left side need to be the same data
type.

intV1 := 0;
intV2 := 2;

dintLabel1 := intLabel1;
// Assignment statement : Automatically convert the INT type variable (intLabel1) to a DINT type variable,

and assign it the DINT type variable (dintLabel1).

dintLabel1 := dintLabel2 + intLabel1;
// Arithmetic operation expression : Automatically convert the INT type variable (intLabel1) to a DINT type

variable, and perform DINT type addition.
6 ST LANGUAGE
6.1 Configuration

6

To avoid the deletion of the data during type conversion, only conversion from smaller type to larger type is performed. Of the
elementary data types, type conversion is performed only for the following data types among basic data types are the targets
of a type conversion.

*1 When the data of 16 bits (a word [signed] or a word [unsigned]/bit string [16 bits]) is transferred to an input argument of the data type
ANY_REAL, an automatic conversion is made into a single- precision real.

*2 When the data of a word [unsigned]/bit string [16 bits] is transferred to an input argument of ANY32, an automatic conversion is made
into a double word [unsigned]/bit string [32 bits].

For data types that are not described above, use the type conversion function.
Since type conversion is not performed in the following cases, use the type conversion function.
 • Type conversion between integer-data types with different signs
 • Type conversion between the data types by which the data is deleted
For the precautions for assigning the result of an arithmetic operation, refer to the following.
Page 54 When an assigned arithmetic operation is used

Sub-program control statement
■Function block call statement

The following table shows the symbols used for arguments in a function block call statement and available formats.

The execution result of the function block is stored by assigning the output variable that is specified by adding "." (period) after
the instance name to the variable.

Data type Description
Word [Signed] In the case of a double word [signed] after conversion, the conversion is automatically made into a value

with a sign extension.
In the case of a single-precision real, an automatic conversion is made into the same value as the integer
before the conversion.*1

Word [Unsigned]/Bit String [16-bit] In the case of a double word [unsigned]/bit string [32 bits] or a double word [signed] after conversion, an
automatic conversion is made into to a value with a zero extension.*2

In the case of a single-precision real, an automatic conversion is made into the same value as the integer
before the conversion.*1

Format Description
Instance name(Input variable1:= Variable1, ... Output
variable1: => Variable2, ...);

Enclose the assignment statement that assigns variables to the input variable and output
variable by "()" after the instance name.
When using multiple variables, delimit the assignment statement by "," (comma).

Instance name.Input variable1:= Variable1;
:
Instance name();
Variable2:= Instance name.Output variable1;

List the assignment statement that assigns variables to the input variable and output variable
before and after a function block call statement.

Type Description Attribute Symbol Available formats
VAR_INPUT Input variable N/A, or RETAIN := All formats

VAR_OUTPUT Output variable N/A, or RETAIN => Variable only

VAR_IN_OUT Input/Output variable N/A := Variable only

Function block FB definition Example
Calling a function block with one input variable and one
output variable

FB name: FBADD
FB instance name: FBADD1
Input variable1: IN1
Output variable1: OUT1

Calling a function block with three input variables and two
output variables

FB name: FBADD
FB instance name: FBADD1
Input variable1: IN1
Input variable2: IN2
Input variable3: IN3
Output variable1: OUT1
Output variable2: OUT2

FBADD1(IN1:= Input1);
Output1 := FBADD1.OUT1;

FBADD1(IN1:=Input1, IN2:=Input2, IN3:=Input3);
Output1 := FBADD1.OUT1;
Output2 := FBADD1.OUT2;
6 ST LANGUAGE
6.1 Configuration 51

52
■Function call statement

Assigning to variables stores the execution result of the function.

A user-defined function that does not return a value and a function that includes a VAR_OUTPUT variable in the argument of
a call statement can be executed as a statement by adding a semicolon (;) at the end.

■RETURN statement

A user-defined function that does not return a value and a function that includes a VAR_OUTPUT variable in the parameter of
a call statement can be executed as a statement by adding a semicolon (;) at the end.

Conditional statement

Format Description
Function name(Variable1, Variable2, ...); Enclose an argument by "()" after the function name.

When using multiple arguments, delimit them by "," (comma).

Function Example
Calling a function with one input variable (Example: ABS)

Calling a function with three input variables (Example:
MAX)

Calling a function with EN/ENO (standard functions)
(Example: MAX_E)

Calling other than standard functions (Example: MOV)

(The execution result of the function is ENO and the first argument (Variable1) is EN.)

Syntax Format Description Example
■RETURN RETURN; The RETURN statement is used to end a program, function

block, or function in the middle of processing.
When the RETURN statement is used in a program, the
processing jumps to the next step after the last line of the
program.
When the RETURN statement is used in a function block, the
processing is returned from the function block.
When the RETURN statement is used in a function, the
processing is returned from the function.
One pointer type label is used by the system for one RETURN
statement.

Syntax Format Description Example
■IF IF <Boolean expression> THEN

<Statement> ;
END_IF;

The statement is executed when the value of Boolean
expression (conditional expression) is TRUE. The statement is
not executed if the value of Boolean expression is FALSE.
Any expression that returns TRUE or FALSE as the result of the
Boolean operation with a single bit type variable status, or a
complicated expression that includes many variables can be
used for the Boolean expression.

■IF...ELSE IF <Boolean expression> THEN
<Statement 1> ;
ELSE
<Statement 2> ;
END_IF;

Statement 1 is executed when the value of Boolean expression
(conditional expression) is TRUE.
Statement 2 is executed when the value of Boolean expression
is FALSE.

■IF...ELSIF IF <Boolean expression 1> THEN
<Statement 1> ;
ELSIF <Boolean expression 2> THEN
<Statement 2> ;
ELSIF <Boolean expression 3> THEN
<Statement 3> ;
END_IF;

Statement 1 is executed when the value of Boolean expression
(conditional expression) 1 is TRUE. Statement 2 is executed
when the value of Boolean expression 1 is FALSE and the
value of Boolean expression 2 is TRUE.
Statement 3 is executed when the value of Boolean expression
1 and 2 are FALSE and the value of Boolean expression 3 is
TRUE.

Outout1 := ABS(Input1);

Outout1 := MAX(Input1, Input2, Input3);

Output1 := MAX_E(boolEN, boolENO, Input1, Input2, Input3);

boolENO := MOV(boolEN, Input1, Output1);

IF bool1 THEN
RETURN;

END_IF;

IF bool1 THEN
intV1:=intV1+1;

END_IF;

IF bool1 THEN
intV3:=intV3+1;

ELSE
intV4:=intv4+1;

END_IF;

IF bool1 THEN
intV1:=intV1+1;

ELSIF bool2 THEN
intv2:=intV2+2;

ELSIF bool3 THEN
intV3:=intV3+3;

END_IF;
6 ST LANGUAGE
6.1 Configuration

6

Iteration statement

■CASE CASE <Integer expression> OF
<Integer selection 1> :
<Statement 1> ;
<Integer selection 2> :
<Statement 2> ;


<Integer selection n> :
<Statement n> ;
ELSE
<Statement n+1> ;
END_CASE;

When the statement that has the integer selection value that
matches with the value of the integer expression (conditional
expression) is executed, and if no integer selection value
matches with the expression value, the statement that follows
the ELSE statement is executed.
The CASE statement is used to execute a conditional statement
based on a single integer value or an integer value as the result
of a complicated expression.

Syntax Format Description Example
■FOR FOR <Repeat variable initialization>

TO <Last value>
BY <Incremental expression> DO
<Statement> ;
END_FOR;

The FOR...DO statement first initializes the data used as a
repeat variable.
An addition or subtraction is made to the initialized repeat
variable according to the incremental expression. One or more
statements from DO to END_FOR are repeatedly executed until
the final value is exceeded.
The repeat variable at the end of the FOR...DO syntax is the
value at end of the execution.

■WHILE WHILE <Boolean expression> DO
<Statement> ;
END_WHILE;

The WHILE...DO statement executes one or more statements
while the value of Boolean expression (conditional expression)
is TRUE.
The Boolean expression is evaluated before the execution of
the statement. If the value of Boolean expression is FALSE, the
statement in the WHILE...DO statement is not executed. Since
a return result of the Boolean expression in the WHILE
statement requires only TRUE or FALSE, any Boolean
expression that can be specified in the IF conditional statement
can be used.

■REPEAT REPEAT
<Statement> ;
UNTIL <Boolean expression>
END_REPEAT;

The REPEAT...UNTIL statement executes one or more
statements while the value of Boolean expression (conditional
expression) is FALSE.
The Boolean expression is evaluated after the execution of the
statement. If the value of Boolean expression is TRUE, the
statement in the REPEAT...UNTIL statement are not executed.
Since a return result of the Boolean expression in the REPEAT
statement requires only TRUE or FALSE, any Boolean
expression that can be specified in the IF conditional statement
can be used.

■EXIT EXIT; The EXIT statement is used only in an iteration statement to
end the iteration statement in the middle of processing.
When the EXIT statement is reached during execution of the
iteration loop, the iteration loop processing after the EXIT
statement is not executed. The processing continues from the
line after the one where the iteration statement is ended.

Syntax Format Description Example

CASE intV1 OF
1:
bool1:=TRUE;
2:
bool2:=TRUE;

ELSE
intV1:=intV1+1;

END_CASE;

FOR intV1:=0
TO 30
BY 1 DO
intV3:=intV1+1;

END_FOR;

WHILE intV1=30 DO
intV1:=intV1+1;

END_WHILE;

REPEAT
intV1:=intV1+1;
UNTIL intV1=30

END_REPEAT;

FOR intV1:=0
TO 10
BY 1 DO
IF intV1>10 THEN

EXIT;
END_IF;

END_FOR;
6 ST LANGUAGE
6.1 Configuration 53

54
Precautions
■When an assignment statement is used
 • The maximum number of character strings that can be assigned is 255. If 256 or more character strings are assigned, a

conversion error occurs.
 • Contacts and coils of the timer type or counter type cannot be used for the left side of an assignment statement.
 • The instance of a function block cannot be used for the left side of an assignment statement. Use input variables, input/

output variables, and external variables of the instance for the left side of an assignment statement.

■When the step relay (S) or SFC block device (BL) is used
If the step relay (S) or SFC block device (BL) is used at the right-hand of an assignment statement or as an input argument of
a function or function block, a conversion error may occur. If an error occurs, change the assignment statement.

Ex.

The following is the example of rewriting.

In addition, to use the digit-specified step relay (S) or the step relay with block specification (BL\S), the data size must be
specified correctly. Since the step relay (S) and the step relay with block specification (BL\S) are not targeted for
automatic conversion of data type, a conversion error may occur if the data size is not the same.

Ex.

The following is the example of rewriting.

■When an assigned arithmetic operation is used
When an arithmetic operation result is assigned to a variable of the larger data type, convert the variable of the arithmetic
operation to the data type of the left side in advance and execute the operation.

Ex.

 When an arithmetic operation result of 16-bit data (INT type) is assigned to 32-bit data (DINT type)

The arithmetic operation result is the same data type as that of the input operand. Thus, in the case of the above program,
when the operation result of varInt1 * 10 exceeds the range of the INT type (-32768 to +32767), an overflow or underflow
result is assigned to varDint1.
In this case, convert the operand of the operational expression to the data type of the left side in advance and execute the
operation.

Before change After change

Before change After change

M0 := S0; IF S0 THEN
M0 := TRUE;
ELSE
M0 := FALSE;

END_IF;

(*Conversion error because K4S0 is 16 bits and D0:UD is 32 bits*)
D0:UD := K4S0;
(*Conversion error because BL1\K4S10 is 16 bits and the second
 argument of DMOV is 32 bits*)
DMOV(TRUE,BL1\K4S10,D100);

(*Assign data to the 16-bit device.*)
D0 := K4S0;
(*Specify 32-bit data for DMOV.*)
DMOV(TRUE, BL1\K8S10, D100:UD);

varDint1 := varInt1 * 10; // VarInt1 is a INT type variable, and varDint1 is a DINT type variable.

varDint2 := INT_TO_DINT(varInt1); // INT type variable is converted to DINT type variable.
varDint2 := varDint2 * 10; // DINT type multiplication is performed, and the operation result is assigned.
6 ST LANGUAGE
6.1 Configuration

6

■Using the operator "-" for sign inversion in an arithmetic operation
When the operator "-" is used to invert the sign of the minimum value of a data type, the minimum value evaluates to the same
value.
For example, -(-32768), where the operator "-" is used with the minimum value of INT type, evaluates to -32768. Thus, an
unintended result may be produced if the operator "-" is used to invert the sign of a variable whose data type will be
automatically converted.

Ex.

 When the value of varInt1 (INT type) is -32768, and the value of varDint1 (DINT type) is 0.

In the example above, the value of (-varInt1) evaluates to -32768 and -32768 is assigned to varDint2.
When using the operator "-" to invert the sign of a variable in an arithmetic operation, perform automatic conversion of the
data type of the variable before the arithmetic operation. Alternatively, avoid using the operator "-" for sign inversion in the
program.

Ex.

 Performing automatic conversion of the data type before an arithmetic operation

Ex.

 Avoiding the use of the operator "-" for sign inversion

■When a bit type label is used
Once the Boolean expression (conditional expression) is satisfied in a conditional statement or an iteration statement, the bit
type label that is turned ON in <Statement> is always set to ON.

Ex.

 Program whose bit type label is always set to on

To avoid the bit device to be always set to ON, add a program to turn OFF the bit type label as shown below.

Ex.

 Program to avoid the bit type label to be always set to ON

*1 The above program can also be described as follows.
bLabel2 := bLabel1;
or
OUT(bLabel1,bLabel2);
However, when the OUT instruction is used in <Statement>, the program status becomes the same as the program whose bit type label
is always set to on.

ST program Ladder program equivalent to ST program

ST program*1 Ladder program equivalent to ST program

varDint2 := -varInt1 + varDint1;

varDint3 := varInt;
varDint2 := -varDint3 + varDint1;

varDint2 := varDint1 - varInt1;

IF bLabel1 THEN
bLabel2 := TRUE;

END_IF;

bLabel1
bLabel2SET

IF bLabel1 THEN
bLabel2 := TRUE;

ELSE
bLabel2 := FALSE;

END_IF;

bLabel1 bLabel2
6 ST LANGUAGE
6.1 Configuration 55

56
■When a timer function block or counter function block is used
Boolean expression (conditional expression) in a conditional statement differs for the execution conditions of the timer
function block or counter function block.

An error occurs when the program before change is used since the statement related to the timer or counter is not executed
when the selection statement is not satisfied.
When the timer or counter is operated according to the AND condition of bLabel1 and bLabel2, do not use any control
statement, just use a function block only.
Using the program after change operates the timer and counter.

■When the FOR...DO statement is used
 • Structure members and array elements cannot be used as repeat variables.
 • Match the type used for a repeat variable with the types of <Last value expression> and <Incremental expression>.
 • <Incremental expression> can be omitted. When omitted, <Incremental expression> is treated as 1 and executed.
 • When 0 is assigned to <Incremental expression>, the statements after the FOR syntax may not be executed or the

processing goes into an infinite loop.
 • In the FOR...DO syntax, the counting process of repeat variables is executed after the execution of <Statement> in the

FOR syntax. If the count is greater than the maximum value or smaller than the minimum value of the data type of the
repeat variable, the processing goes into an infinite loop.

When a timer function block is used
Program before change

Program after change

When a counter function block is used
Program before change

Program after change

Ex.

IF bLabel1 THEN
TIMER_100_FB_M_1(Coil:=bLabel2,Preset:=wLabel3,ValueIn:=wLabel4,ValueOut=>wLabel5,Status=>bLabel6);

END_IF;
(* When bLabel1 = on and bLabel2 = on, counting starts. *)
(* When bLabel1 = on and bLabel2 = off, the counted value is cleared. *)
(* When bLabel1 = off and bLabel2 = on, counting stops. The counted value is not cleared. *)
(* When bLabel1 = off and bLabel2 = off, counting stops. The counted value is not cleared. *)

TIMER_100_FB_M_1(Coil:=(bLabel1&bLabel2),Preset:=wLabel3,ValueIn:=wLabel4,ValueOut=>wLabel5,Status=>bLabel6);

IF bLabel1 THEN
COUNTER_FB_M_1(Coil:=bLabel2,Preset:=wLabel3,ValueIn:=wLabel4,ValueOut=>wLabel5,Status=>bLabel6);

END_IF;
(* When bLabel1 = on and bLabel2 = on/off, the value is incremented by 1. *)
(* When bLabel1 = off and bLabel2 = on/off, the value is not counted. *)
(* The counting operation does not depend on the on/off status of bLabel1. *)

COUNTER_FB_M_1(Coil:=(bLabel1&bLabel2),Preset:=wLabel3,ValueIn:=wLabel4,ValueOut=>wLabel5,Status=>bLabel6);
6 ST LANGUAGE
6.1 Configuration

6

■When a rising execution instruction or a falling execution instruction is used
Shown here is the operation when a rising execution instruction or an fall execution instruction is used in an IF statement or a
CASE statement.

*1 This is a fall (ON to OFF), but the instruction is not executed because the condition in the IF statement or the CASE statement is not
satisfied.

Ex.

When the PLS instruction (rising execution instruction) is used in an IF statement

Condition Result of operation

Conditional
expression of an IF
statement or a
CASE statement

Condition to
execute an
instruction (EN)

Result of the ON/
OFF judgment of
the instruction at
the time of the
previous scan

Result of the ON/
OFF judgment of
the instruction

Rising execution
instruction

Falling execution
instruction

Agreement of TRUE or
CASE

TRUE ON ON Not executed Not executed

OFF ON Executed Not executed

FALSE ON OFF Not executed Executed

OFF OFF Not executed Not executed

Disagreement of FALSE
or CASE

TRUE ON OFF Not executed Not executed*1

OFF OFF Not executed Not executed

FALSE ON OFF Not executed Not executed*1

OFF OFF Not executed Not executed

(1) If bLabel0 = OFF (the condition expression in the IF statement is
FALSE), the ON/OFF judgment result is OFF. The PLS
instruction is not executed. (bLabel10 = OFF does not change.)

(2) If bLabel0 = ON (the condition expression in the IF statement is
TRUE) and bLabel1 = OFF (the condition for executing the
instruction is OFF), the ON/OFF judgment result is OFF. The PLS
instruction is not executed. (bLabel10 = OFF does not change.)

(3) If bLabel0 = ON (the condition expression in the IF statement is
TRUE) and bLabel1 = ON (the condition for executing the
instruction is ON), the ON/OFF judgment result is OFF to ON (the
condition for a rise is satisfied). The PLS instruction is executed.
(bLabel10 turns ON for once scan only.)

IF bLabel0 THEN
PLS(bLabel1,bLabel10);

END_IF;

ON

OFF

OFF

OFF

OFF

ON

(1) (2)

ON

ON

ON
(3)

bLabel0

bLabel10

bLabel1

1 scan

ON/OFF
judgment
result
6 ST LANGUAGE
6.1 Configuration 57

58
■When a master control instruction is used
Shown here is the operation when the master control is OFF.
 • The statement in a selection statement (an IF statement or a CASE statement) or in a iteration statement (a FOR

statement, a WHILE statement, or a REPEAT statement) is not processed.
 • Outside of a selection statement or a iteration statement, assignment statement is not processed and statement other than

assignment statement is not executed.

Ex.

 A statement in a selection statement (IF statement)

Ex.

 A statement out of a selection statement or a iteration statement (in the case of a bit assignment statement)

Ex.

 A statement out of a selection statement or a iteration statement (in the case of an OUT instruction)

Constant

Methods for expressing constants
The following table shows the expression methods for setting a constant in a ST program.

For the expression methods other than the one described the above, refer to the following.
Page 39 Constant

Data type Expressing method Example
String(32) STRING Enclose character string (ASCII, Shift JIS) with single quotation ('). Stest := 'ABC';

String [Unicode](32) WSTRING Enclose a Unicode character string in double quotation marks ("). Stest := "ABC";

MC(M0,N1,M1); //Master control OFF
IF M2 THEN

M3:=M4; //No processing is executed when the master control is OFF. So, M3 maintains the value at the time of a previous scan.
END_IF;
M20:=MCR(M0,N1);

MC(M0,N1,M1); //Master control OFF
M3:=M4; //No processing is executed when the master control is OFF. So, M3 maintains the value at the time of a previous scan.
M20:=MCR(M0,N1);

MC(M0,N1,M1); //Master control OFF
OUT(M2,M3); //No execution is made when the master control is OFF.
M20:=MCR(M0,N1);
6 ST LANGUAGE
6.1 Configuration

6

Label and device

Specification method
Labels and devices can be directly described in the ST program. Labels and devices can be used for the left or right side of an
expression or as an argument or return value of a standard function/function block.
For available labels, refer to the following.
Page 31 LABELS
For available devices, refer to the following.
MELSEC iQ-F FX5 User's Manual (Application)

■Device expression with type specification
A word device can be used in ST language as an arbitrary data type by adding a device type specifier to its name.

The following shows the devices to which device type specifiers can be added.
 • Data register (D)
 • Link register (W)
 • Module access device (U\G)
 • File register (R)

■Device specification method
The following methods can be used for specifying a device.
 • Indexing
 • Bit specification
 • Nibble specification
 • Indirect specification
For details, refer to the following.
MELSEC iQ-F FX5 User's Manual (Application)
MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)

Device type specifier Data type Example Description
N/A Generic data type ANY16.

When only devices are used in arithmetic operations,
the data type is Word [signed].
However, when the data is specified as a device
without the type specification in the argument part of
FUN/FB, the data type is the one of the argument
definition.

D0 When no type specifier is added to D0

:U Word [Unsigned]/Bit String [16-bit] D0:U The value when D0 is Word [unsigned]/Bit string [16-bit]

:D Double Word [Signed] D0:D The value when D0 and D1 are Double word [signed]

:UD Double Word [Unsigned]/Bit String [32-bit] D0:UD The value when D0 and D1 are Double word [unsigned]/Bit
string [32-bit]

:E FLOAT (Single Precision) D0:E The value when D0 and D1 are single-precision real
numbers
6 ST LANGUAGE
6.1 Configuration 59

60
Precautions
 • The pointer type can be used for ST programs.
 • When a value is assigned using nibble specification, use the same data type for the left side and right side of an operation.

Ex.

 D0 := K5X0;
In the above case, since K5X0 is the double word type and D0 is the word type, an error occurs in the program.
 • When a value is assigned using nibble specification and the data size of the right side is larger than that of the left side,

data is transmitted within the range of the target points of the left side.

Ex.

 K5X0 := 2#1011_1101_1111_0111_0011_0001;
In the above case, since the target points of K5X0 is 20, 1101_1111_0111_0011_0001 (20 bits) are assigned to K5X0.
 • When the current value (such as TNn) of a counter (C), timer (T), or retentive timer (ST) is used with a type other than Word

[unsigned]/Bit string [16-bit], or when the current value (such as LCNn) of a long counter (LC) is used with a type other than
Double word [unsigned]/Bit string [32-bit], use the type conversion function.

Ex.

 varInt := WORD_TO_INT(TN0); (*Use the type conversion function*)

Comment
The following table shows the comment formats that can be used in a ST program.

When the multiple-line comment format is used, do not use end symbols inside comments.

Comment format Comment
symbol

Description Example

Single line comment // The character strings between the start symbol "//" and the end of the
line are used as a comment.

// Comment

Multiple-line comment (* *) The character strings between the start symbol "(*" and the end symbol
"*)" are used as a comment.
Newlines can be inserted in the comment.

■Without newline
(* Comment *)
■With newline
(* Comment in the first line
Comment in the second line *)

/* */ The character strings between the start symbol "/*" and the end symbol
"*/" are used as a comment.
Newlines can be inserted in the comment.

■Without newline
/* Comment */
■With newline
/* Comment in the first line
Comment in the second line */
6 ST LANGUAGE
6.1 Configuration

7

7 FBD/LD LANGUAGE
This is a language that creates a program by wiring blocks for specific processing, variables, and constants along with the
flows of data and signals.

7.1 Configuration
With the FBD/LD language, the following program can be created.

In a program of the FBD/LD language, data flows from the output point of a function block (FB), a function (FUN), a variable
unit (label or device), and constant unit to the input point of another function block, variable unit, and so forth.

(1) FBD unit
(2) LD unit
(3) Common unit
(4) Connecting wire
(5) Connecting point
(6) Worksheet

(4)(1)

(3)

(2) (5)

(6)
7 FBD/LD LANGUAGE
7.1 Configuration 61

62
Program unit

FBD unit
Units constituting FBD/LD program are shown below.

■The data type of a constant unit
In the case of a constant unit, the data type of the constant value is not determined at the time when the constant value is
input. The data type is determined when the constant unit and an FBD unit are connected over a connecting wire. The data
type of the constant value is the same data type as the FBD unit at the destination of the connecting wire.

Ex.

When 1 is input as a constant value
The data type can be a BOOL type, a WORD type, a DWORD type, an INT type, a DINT type, or a REAL type. So, the data
type is not determined. When the constant unit and an FBD unit are connected over a connecting wire, the data type becomes
the data type at the input point of the unit at the destination of the connection.

■Automatic conversion of data types
The data type of an element may be automatically converted when it is connected to another element of a different data type.
To avoid the deletion of the data during the type conversion, only conversion from smaller type to larger type is performed.
Automatic conversion of data type in the FBD/LD language behaves in the same way as that in the ST language. For details,
refer to the following.
Page 50 Automatic conversion of data types

Unit Symbol Description
Variable A variable is used to store each value (data). The data type of a variable should be a certain type.

Only the value (data) of the data type is stored.
You can specify a label or a device to a variable.

Constant The constant specified is output.

Function (FUN) Executes a function.
• How to create functions (GX Works3 Operating Manual)
• Standard function (MELSEC iQ-F FX5 Programming Manual (Instructions, Standard

Functions/Function Blocks))

Function Block (FB) Executes a function block.
• How to create function blocks (GX Works3 Operating Manual)
• Standard function blocks (MELSEC iQ-F FX5 Programming Manual (Instructions, Standard

Functions/Function Blocks))
• Module function blocks (MELSEC iQ-F FX5 CPU Module Function Block Reference)

(1) The data type is not determined.
(2) INT type
(3) INT type

1

(1)

1

(2)

INT_TO_REAL

IN

(3)
7 FBD/LD LANGUAGE
7.1 Configuration

7

■The input/output point of a function
 • It is necessary that all the input points of a function should be connected to other FBD units over connecting wires.
 • The data types of the input variables and output variables of a function should be of certain types. It is necessary that the

FBD units to be connected to the input point or output point should be of the same data types.
 • Connect a variable element between an output variable (except for ENO) of a CPU module instruction or module dedicated

instruction and an input variable of another function (or function block).
 • In a program that connects a function with EN to another function over a connecting wire, the other function must be a

function with EN and the program must connect ENO and EN over a connecting wire, in order to prevent the function from
using an indefinite value.

■When the step relay (S) or SFC block device (BL) is used
If the step relay (S) or SFC block device (BL) is used as a variable element, a conversion error may occur. If an error occurs,
change the variable element to a contact element.

Ex.

The following is the example of rewriting.

In addition, to use the digit-specified step relay (S) or the step relay with block specification (BL\S), the data size must be
specified correctly. Since the step relay (S) and the step relay with block specification (BL\S) are not targeted for auto data
type conversion, a conversion error may occur if the data size are not the same.

Ex.

The following is the example of rewriting.

Before change After change

Before change After change

AND_E

EN

IN1

IN2

ENO

AND_E

EN

IN1

IN2

ENO

BOOL_OUT_DATA1

BOOL_EN_DATA

bLabel1

bLabel2

bLabel3

(1)

(1) Connect ENO and EN over a connecting wire.

M0S0 M0
S0

D0: UDK4S0

16 bit 32 bit

D100BL1\K4S10

32 bit

16 bit

TRUE

DMOV

EN

S

ENO

d

D0K4S0

16 bit 16 bit

D100: UDBL1\K8S10

32 bit

32 bit

TRUE

DMOV

EN

S

ENO

d

7 FBD/LD LANGUAGE
7.1 Configuration 63

64
LD unit
Units of ladder diagram that can be used in a program of the FBD/LD language are shown below.

■The AND operation and OR operation of a contact symbol
A contact symbol executes an AND operation or an OR operation depending on the status of the connection of a circuit chart.
This is reflected in the operation result.
 • In the case of a series connection (1), an AND operation is executed with the operation results so far. This will be the

operation result.
 • In the case of a parallel connection (2), an OR operation is executed with the operation results so far. This will be the

operation result.

Unit Symbol Description
Left bus This is an unit to represent a bus. This is the starting point to create a ladder circuit.

NO contact Turns on when a specified device or label is ON.

NC contact Turns on when a specified device or label is OFF.

Rising edge Turns on at the rising edge (OFF to ON) of a specified device or label.

Falling edge Turns on at the falling edge (ON to OFF) of a specified device or label.

Negated rising edge Turns on when a specified device or label is OFF or ON, or at the falling edge (ON to OFF) of a
specified device or label.

Negated falling edge Turns on when a specified device or label is OFF or ON, or at the rising edge (OFF to ON) of a
specified device or label.

Coil Outputs an operation result to a specified device or a label.

Complementing coil When the operation result turns OFF, the specified device or label turns ON.

Set When the operation result turns ON, the specified device or label turns ON.
The device or the label that turns ON remains ON even if the operation result turns OFF.

Reset When the operation result turns ON, the specified device or label turns OFF.
When the operation result is OFF, the status of the device or the label does not change.

(1) Series connection contact

(2) Parallel connection contact
7 FBD/LD LANGUAGE
7.1 Configuration

7

Common unit
This represents a common unit placed on the FBD/LD editor.

*1 These elements cannot be used in the Zoom editor of SFC programs.

■Precautions for a jump unit
 • If the timer of a coil that is ON is jumped over by using a jump unit, a normal measurement cannot be conducted.
 • You can add a jump label on the top side (the execution is earlier) of a jump unit. In this case, create the program by

including a method to break the loop in order not to exceed the setting value of the watchdog timer.
 • You can specify only a local label of a pointer type for a jump element and jump label. The structure members cannot be

used.
 • The pointer branch instruction (CJ) cannot be used. For jumping, use jump elements.
 • Jumps to or from outside the program block cannot be executed. The following is a list of jump operations that cannot be

executed.
- Jumping to outside the program block*1

- Jumping from outside the program block*1

- Calling subroutine programs
- Called as subroutine programs
*1 Includes branches caused by the BREAK instruction.

Unit Symbol Description
Jump*1 The execution processing is jumped over from a jump unit to a jump label. The portion that is

jumped over is not executed.
Whether a jump is made or not is controlled depending on the ON/OFF information to the jump unit.
ON: The execution processing is jumped over up to a jump label.
OFF: The execution processing is not jumped over but is executed.

Jump label*1 This is the destination of a jump from a jump instruction in the same program. The processing is
executed from a program in the execution order after the jump label.

Connector This is used as a substitute of a connecting wire.
The processing moves on to the corresponding connector unit.
You can use one input connector or multiple input connectors for one output connector.

Return*1 The processing after a return unit in the program is aborted. Use this when you want to prohibit the
execution of the processing of a program, function, or a function block after the return unit.
Whether the return processing is executed or not is controlled depending on the ON/OFF
information to the return unit.
ON: The return processing is executed.
OFF: The return processing is not executed, but the ordinary execution processing is executed.

Comment Use this to describe a comment.

Inline ST*1 An ST program is displayed in the FBD/LD editor.
By double-clicking an inserted inline ST element, the ST editor is displayed for editing or monitoring
an ST program.
For details, refer to the following.
Page 69 Inline ST
7 FBD/LD LANGUAGE
7.1 Configuration 65

66
■The operation of a return unit
A return unit operates differently depending on whether a program, function, and/or function block used there.

■Connector unit
Use a connector element to place the program within the display area or print area of the FBD/LD editor.

Connecting wire
This is the wire to connect the connecting points between FBD unit, LD unit, and common unit.
After units are connected, the data is transferred from the left end to the right end. The data types of the connected units need
to be the same.

Connecting point
This is a terminal point to use a connecting wire to connect FBD unit, LD unit, and common unit.
The point on the left side of each unit is the input side, while the point on the right side represents the output side.

The connecting point is hidden after connecting a wire.

■Inverting input and output points

Program unit to use
Program The execution of the program unit is terminated.

Function The function is terminated, and the step goes back to the one next to the instruction that has called the function.

Function block The function block is terminated, and the step goes back to the one next to the instruction that has called the function
block.

Unit Input connecting
point

Output connecting
point

Unit Input connecting
point

Output connecting
point

Contact Coil

Variable Constant 

Function

The return value is not
shown on a function.

Function Block

You can invert an input to an unit or an output from an unit by using a connecting point.
The connecting point having been inverted is circled with a black circle. The data to be input or
output is inverted (FALSE to TRUE or TRUE to FALSE).
You can invert the following data types: BOOL, WORD, DWORD, ANY_BIT, and ANY_BOOL.

CONNECTOR
Var1 Var2 Var3 Var4 Var5

CONNECTOR
Var6 Var7 Var8 Coil1
7 FBD/LD LANGUAGE
7.1 Configuration

7

Worksheet
A worksheet is a work area for inserting program units and for connecting them with wires.

Constant

Methods for expressing constants
The following table shows the expression methods for setting a constant in FBD/LD language.

For the expression methods other than the one described the above, refer to the following.
Page 39 Constant

Labels and devices

Specification method
You can directly describe and use labels and devices in an FBD/LD program. You can use labels and devices for inputs and
output points of units, for arguments of standard functions/function blocks, return values, and so forth.
For available labels, refer to the following.
Page 31 LABELS
For available devices, refer to the following.
MELSEC iQ-F FX5 User's Manual (Application)

■Device expression with type specification
A word device can be used as any data by adding a device type specifier to its name. If you do not specify a data type, the
word device operates as a word [signed] (INT).
For the device type specifiers and the devices you can use, refer to the following.
Page 59 Device expression with type specification
If you do not specify a data type for a word device, the data type is determined by the type of device.

Data type Expressing method Example
String(32) STRING Enclose character string (ASCII, Shift JIS) with single

quotation (').

String [Unicode](32) WSTRING Enclose a Unicode character string in double quotation marks
(").

Word device Data type
The current value of a timer device (TN), the current value of a retentive timer device (STN), the current value of a counter
device (CN)

WORD

The current value of a long counter device (LCN) DWORD

Other than the above INT

'ABC'

"ABC"
7 FBD/LD LANGUAGE
7.1 Configuration 67

68
Caution
■When using label
 • Labels whose name ends with "_" cannot be used as an array index. To use such a device or label as an array index,

assign it to another device or label and specify that device or label as an index.
 • Members of labels (structures or function blocks) whose name ends with "_" cannot be specified.
 • Indexes cannot be specified to labels (arrays) whose name ends with "_".
7 FBD/LD LANGUAGE
7.1 Configuration

7

7.2 Inline ST
The inline ST is the function used to create an inline ST unit that displays an ST program in the FBD/LD editor, and edit and
monitor it.
This function enables to create numerical operations and character string processing easily in FBD/LD programs.
 • Program that uses the inline ST

 • Program that does not use the inline ST

The inline ST cannot be used in the Zoom editor of SFC programs.

Specifications
For the specifications of the inline ST, refer to the ST language specifications.
Page 47 ST LANGUAGE

Precautions
 • Up to 64 inline ST elements can be inserted into a single POU of an FBD/LD program.
 • When the RETURN syntax is used in an inline ST, the processing inside the inline ST unit ends, and the processing inside

the program block does not end.
 • Since inline ST units have no connection points, an inline ST element inserted into an FBD/LD program is executed every

scan.
7 FBD/LD LANGUAGE
7.2 Inline ST 69

70
7.3 Program Execution Order
The order of executions of program units
The order of executions of the units in the FBD/LD editor is determined depending on the positional relation of the units and
on the status of connecting wires.

The number of the order of the execution is shown on each unit placed on the FBD/LD editor.

CTD_E

EN

CD

LD

ENO

Q

PV

CV

Var_CU

Var_R

Var_PV

CTD_E_1

Var_Q

Var_CV

RETURN

M0

SM400

SM400

Y0

1 2

3

4

5

6 7

8

9

10 11

Executed from
the left side to
the right side

Executed from
the top to the
bottom

ADD

IN1

IN2

Var001

Var002

Var003

13
14

1512
7 FBD/LD LANGUAGE
7.3 Program Execution Order

8

8 SFC PROGRAM
SFC is a program description format in which a sequence of control operations is split into a series of steps and the execution
sequence and execution conditions of each program can be clearly expressed.

 • It is compatible with the SFC program of FX3, and the configuration of FX3 can be replaced with that of
FX5. (Page 100 FX3 compatible transition operation mode setting)

 • This chapter describes the operations and specifications of SFC programs. For details on the information
not described in this chapter, refer to the following.

GX Works3 Operating Manual
MELSEC iQ-F FX5 User's Manual (Application)
Transition from MELSEC FX3G, FX3U, FX3UC Series to MELSEC iQ-F Series Handbook

 • Applicable only to FX5U/FX5UC CPU module.
 • Check the versions of the CPU module and the engineering tool before using the SFC program. For the

versions of the CPU module and engineering tool, refer to Page 119 Added and Changed Functions.
8 SFC PROGRAM
 71

72
The SFC program consists of steps that represent units of operations in a series of machine operations.
In each step, the actual detailed control is programmed.

An SFC program starts at an initial step, executes an action of the next step in due order every time the relevant transition
becomes TRUE, and ends a series of operations at an end step.

X0 X1 Y20

X2
TRAN

SM400 Y21

X3
TRAN

SM400 Y22

Y22
M0PLS

M0
Y23SET

X4
Y23RST

K20T0OUT

T0
Y24SET

X5
TRAN

SM400 Y25

Y25
M1PLS

M1
Y24SET

X6 Y20

X7
TRAN

Start
switch

Workpiece
detection

Conveyer
start

Ladder diagram of the action or transition of each step

Pallet
clamping

Drill rotation

Drill down

Drill down endpoint

Drill up

Pallet
unclamping

Unclamp confirmation
Conveyer start

SFC diagram
Machining
operation flowchart

1 operation unit

1 operation unit

1 operation unit

1 operation unit

1 operation unit

Pallet
detection

Always ON

Clamp
confirmation

Always ON

Drill up
endpoint

Always ON

Workpiece unloading
confirmation

Start processing

Pallet check and
clamping operation

Hole making
operation

Unclamping operation
and workpiece unloading

End processing
8 SFC PROGRAM

8

It is possible to assign the actual controls of the entire facility, mechanical devices of each station, and all machines to the
steps in the blocks of the SFC program.

Transfer machine start
(Initial step)

End
(End step)

Step transition control unit for overall process
(Block 0)

Station 1 start
(Block 1 start)

Station 2 start
(Block 2 start)

Station 3 start
(Block 3 start)

Repeated

Start
(Initial step)

(End step)

Station 1 control unit
(Block 1)

Pallet clamping
(Step 1)

Hole making
(Step 2)

Pallet unclamping
(Step 3)

Start
(Initial step)

(End step)

Station 2 control unit
(Block 2)

Pallet clamping
(Step 1)

Tapping
(Step 2)

Pallet unclamping
(Step 3)

Start
(Initial step)

(End step)

Station 3 control unit
(Block 3)

Pallet clamping
(Step 1)

Workpiece unloading
(Step 2)

Pallet unclamping
(Step 3)

Overall process (SFC program)

Step transition
control unit for
overall process

Transfer machine

Station 1
control unit

Station 2
control unit

Station 3
control unit
8 SFC PROGRAM
 73

74
8.1 Specifications
This section lists the performance specifications related to SFC Programs.

For the processing time of the SFC program, refer to the following.
MELSEC iQ-F FX5 User's Manual (Application)

Item Specifications
Number of device points (SFC) Step relay (S) 4096 points

SFC block device (BL) 32 points

SFC transition device (TR) 0 points

Number of executable SFC programs 1

Number of blocks 32 blocks

Number of SFC steps Up to 4096 steps in all blocks, up to 512 steps in 1 block

Step No. 0 to 511 per block

Number of branches 32 branches maximum

Number of simultaneously active steps Up to 128 steps in all blocks and in 1 block

Number of initial steps 1 step maximum per block

Number of actions 4 actions maximum per step

Number of sequential steps Action No limit

Transition Only one per ladder block
8 SFC PROGRAM
8.1 Specifications

8

8.2 Structure

Basic operation of SFC
An SFC program starts at an initial step, executes the next step every time the relevant transition becomes TRUE, and ends a
series of operations at an end step.

1. When starting a block, the initial step (1) is activated first and then the action (2) is executed. After execution of the action
(2), the program checks whether the next transition (3) has become TRUE.

2. The program executes only the action (2) until the transition (3) becomes TRUE. When the transition (3) becomes TRUE,
the program ends the action (2), deactivates the initial step (1), and activates the next normal step (4).

3. After execution of the action of the normal step (4), the program checks whether the next transition has become TRUE. If
the next transition does not become TRUE, the program repeats the execution of the action of the normal step (4).

4. When the transition becomes TRUE, the program ends the action, deactivates the step (4), and activates the next step
(5).

5. Every time the transition becomes TRUE, the program activates the next step and ends the block when it finally activates
the end step (6).

 • Up to 4 actions can be created in one step. When multiple actions are created, they will be executed in
order from the top. (Page 85 Action)

 • The operation of the initial step and normal step can be changed by adding the attribute. (Page 78 Step
types)

(1) Initial step
(2) Action
(3) Transition
(4) Normal step
(5) Normal step
(6) End step

(1)

(2)
(3)

(4)

(6)

(5)
8 SFC PROGRAM
8.2 Structure 75

76
Block
A block is a unit showing a series of operation consisting of steps and transitions.

For the maximum number of blocks that can be created in an SFC program, refer to the following.
Page 74 Specifications
A block begins with an initial step, a step and a transition are connected alternately, and ends with an end step or jump
sequence.
A block is in the active or inactive state.
 • Active: The block has an active step.
 • Inactive: All steps in the block are inactive.
When the block state changes from inactive to active, the initial step becomes active to start sequential processing. (Page
103 Block execution sequence)

 • Depending on the CPU parameter setting, only the block 0 can be started automatically when the SFC
program starts. In this case, when the end step is activated and the block 0 is finished, the block 0 will be
automatically restarted and executed again from the initial step. (Page 99 Start Conditions Setting)

 • If a start request is issued to a step in an inactive block by using the SFC control instruction (activating a
step), the block is activated to execute processing from the specified step.

Block0 Block1 Block2
8 SFC PROGRAM
8.2 Structure

8

Step
A step is the basic unit for comprising a block.

For the maximum number of steps that can be created per block, refer to the following.
Page 74 Specifications
Steps have the following characteristics.
 • When the step becomes active, the associated action is executed.
 • A step No. is assigned to each step. The step No. is used to monitor the running step or forcibly start or stop the step by

using the SFC control instruction. (Page 84 Assigning the step relay (S) areas to steps)
 • Each step name and No. are unique within each block. (Each cannot be a blank.)

The step name, step No., attribute and attribute target can be changed in the Step Properties window.
Select a step, and select [Edit]  [Properties] on the menu. Then, the Step Properties window will appear.
(GX Works3 Operating Manual)

(1) Step name
(2) Step No.
(3) Attribute
(4) Attribute target

(1) (2)

(3) (4)

Step0

BS

S1

BL1
8 SFC PROGRAM
8.2 Structure 77

78
Step types
The following table lists the types of steps.

The following table lists the attributes of steps.

 • The type of a step can be changed by changing the setting of "Step Attribute" in the "Step Properties"
window.

 • For the reset step [R], block start step (with END check) [BC], or block start step (without END check) [BS],
specify a step name or a block No. in "Step Attribute Target" in the Properties window.

For the setting procedure, refer to the following.
GX Works3 Operating Manual

Item Description
Initial step A step that indicates the beginning of a block.

While this type of step is active, the transition following the
step is constantly checked, and when the transition becomes
TRUE, the next step becomes active.
The attributes of SC and R can be added. This step can also
be used as a step without creation of an action.

Normal step A basic step used to configure a block.
While this type of step is active, the transition following the
step is constantly checked, and when the transition becomes
TRUE, the next step becomes active.
The attributes of SC, R, BC, and BS can be added. This step
can also be used as a step without creation of an action.

End step A step that ends a block.
An action cannot be created.

Attribute Item Description
SC Coil HOLD step [SC] Coil HOLD step [SC] is a step that holds the outputs of a coil

that has been turned on by the action even after the active
state transitions.

R Reset step [R] Reset step [R] is a step that deactivates the specified step.

BC Block start step (with
END check) [BC]

A step that activates the specified block.
When the specified block becomes inactive and the transition
becomes TRUE, the active state transitions to the next step.
An action cannot be created.

BS Block start step (without
END check) [BS]

A step that activates the specified block.
When the transition becomes TRUE, the active state
transitions to the next step.
An action cannot be created.

N Action0

Initial S0

Initial S0

N Action1

Step0 S1

Step0 S1

EndStep

N Action2
Step1

SC

S2

N Action3
Step2

R

S3

Step1

Step3

BC

S4

BL1

Step4

BS

S5

BL2
8 SFC PROGRAM
8.2 Structure

8

Normal step (without attribute)
A basic step used to configure a block.
While this type of step is active, the transition condition following the step is constantly checked, and when the transition
becomes TRUE, the next step becomes active.
The output status of the action of a step at a transition to the next step varies depending on the instruction used.

■Step without action
A step without an action can also be used as a waiting step.
 • While a step is active, the transition is always checked and, when the transition becomes TRUE, the next step becomes

active.
 • This type of step works as a normal step if an action is added to it.

Item Description Example
When the OUT
instruction is used
(Other than the
OUT C instruction)

When a transition to the next step occurs and the
relevant step becomes inactive, the output by using the
OUT instruction turns off automatically.
Similarly, the timer also clears the current value and
turns off the contact.
However, the select statement of structured text
language or the output by using the OUT instruction
which is repeatedly using within the statement does
not turn off automatically.

When the transition (2) becomes TRUE while Y0 is turned on by using the
OUT instruction triggered by the action of step (1), Y0 is automatically turned
off.

When the OUT C
instruction is used

If the execution condition of the counter in the action is
already on when the transition becomes TRUE and
activate the step using the counter, the counter is
incremented by 1.
When a transition to the next step occurs before reset
instructions of the counter is executed, the present
value of the counter and the ON state of the contact is
held even if the step using counter becomes inactive.
To reset the counter, use the RST instruction in
another step.

If X10 is already on while step (1) is active, counter C0 counts once when
execution proceeds to step (3) after the transition (2) becomes TRUE.

When the SET,
basic, or application
instruction is used

Even if the active state transitions to the next step and
the step that has used the instruction becomes
inactive, the ON state or the data stored in the device/
label are held.
To turn off the ON device/label or clear the data stored
in the device/label, use the RST instruction in another
step.

When Y0 is turned on by using the SET instruction triggered by the action in
step (1), the ON state will be held even when the transition (3) becomes TRUE
and a transition to step (4) occurs.

When the PLS
instruction or
instructions
executed at the
rising edge is used

Even when the contact of the execution condition is
constantly on, the instruction is executed every time
the step using the instruction changes from inactive to
active.

Even when the contact of the execution condition is on (1), the PLS instruction
is executed every time the step (2) becomes active.

(1)

(2)

X1 Y0

(1)

(2)

(3)
X10

K10C0OUT

(1)

(3)

(4)

X2
Y0SET
(2)

(2)
ON

Y0PLS
(1)
8 SFC PROGRAM
8.2 Structure 79

80
Initial step
The initial step represents the beginning of each block. Only one initial step can be described in one block. (Page 74
Specifications) Execute the initial steps in the same way as executing other steps.

■Active steps at block START
When multi-initial steps are used, the active steps change depending on the starting method as described below.

■Operation of the initial steps with step attributes
The attribute of SC (coil HOLD step) or R (reset step) can be added to the initial step. When the attribute is added, the
operations other than the operation that will be automatically activated at the start of the block are the same as those in other
steps. This step can also be used without an action.

Coil HOLD step [SC]
Coil HOLD step [SC] is a step that holds the outputs of a coil that has been turned on by the action even after the active state
transitions.

No operation in the action is performed after a transition becomes TRUE and the next step is activated. Therefore, the coil
output status will remain unchanged even if the input condition in the action is changed.

■Timing of when coil output turns off
The coil output holding ON state is turned off in the coil HOLD step [SC] after transition when:
 • The end step of a block is executed (other than the case where SM327 is on).
 • A block is forcibly terminated by the SFC control instruction (Ending a block).
 • A step is reset by using the SFC control instruction (Ending a step).
 • A reset step [R] for resetting the coil HOLD step [SC] becomes active.
 • SM321 (Start/stop SFC program) is turned off.
 • The coil is reset by the program.
 • S999 is specified at a reset step [R] within a block.

Operation of active step Method
All initial steps become active. When a start is made using the block start step

When a start is made using the block START instruction of the SFC control instructions

When block 0 is started using the auto-start setting of block 0

Only the specified step is activated. When any of the initial steps is specified using the step control instruction of the SFC control instructions

Y10 (1) that has been turned on by the OUT instruction is not turned off and
remains on (3) even when the transition (2) becomes TRUE.

(2)

X10

Y10
SC

ON

(1)
ON

(3)

ON
8 SFC PROGRAM
8.2 Structure

8

Reset step [R]
Reset step [R] is a step that deactivates the specified step.
 • The reset step [R] deactivates the specified step in the current block before executing the output of every scan. Except for

resetting the specified step, the reset step is the same as a normal step (without step attributes).
 • The step No. of the coil HOLD step [SC] or S999 can be specified as specified step No. When the specified step No. is

S999, the coil HOLD steps [SC] that hold operations in the current block are all deactivated.

Block start step (with END check) [BC]
A step that activates the specified block.
When the specified block becomes inactive and the transition becomes TRUE, the active state transitions to the next step.

The operation to be performed if multiple attempts to start one block are performed simultaneously or if an attempt to start an
already started block is performed depends on "Act at block Multi-Activated." (Page 101 Act at block Multi-Activated)
Only one block can be specified. To start multiple blocks simultaneously, use parallel branches and multiple block start steps.

■Precautions
 • An action cannot be created to the block start step (with end check) [BC].
 • The block start step (with END check) [BC] cannot be created immediately before convergence of a parallel convergence.

To create the step immediately before the convergence of a parallel convergence, use a block start step (without END
check) [BS].

When this step is activated, the block start step (with END check) [BC] starts
block (BL1).
No processing is performed until the execution of the start destination block
(BL1) ends and becomes inactive and the transition (2) is not checked.
When the execution of block (BL1) ends and becomes inactive, only the
transition (2) check is performed and, when the transition (2) becomes TRUE,
the transition to the next step occurs.

BC BL1

(1)

BL1

(2)
8 SFC PROGRAM
8.2 Structure 81

82
Block start step (without END check) [BS]
Block start step (without END check) [BS] is a step that activates the specified block.
When the transition becomes TRUE, the active state transitions to the next step.

The operation to be performed if multiple attempts to start one block are performed simultaneously or if an attempt to start an
already started block is performed depends on "Act at block Multi-Activated." (Page 101 Act at block Multi-Activated)
Only one block can be specified. To start multiple blocks simultaneously, use parallel branches and multiple block start steps.

■Precautions
An action cannot be created to the block start step (without END check) [BS].

End step
End step is a step that ends a block.
 • When the active state transitions to the end step, and if there are no active steps other than steps that hold operations in

the block, all the HOLD steps that hold operations in the block are deactivated, and the block is ended.
 • When a block contains any active steps other than steps that hold operations in a block, the following processing is

performed depending on the status of SM328 (Clear processing mode when the sequence reaches the END step).

 • When the clear processing is performed, the coil outputs turned on by using the OUT instruction are all turned off. However,
for the coil outputs of the HOLD steps that hold operations, the following processing is performed depending on the status
of SM327 (Output mode at execution of the END step).

After this step starts block (BL1), only the transition (2)
is checked and, when the transition becomes TRUE,
execution proceeds to the next step without waiting for
the start destination block to end.

Status of SM328 Description
OFF (default) Clear processing is performed.

The active steps remaining in the block are all terminated forcibly to end the block.

ON Clear processing is not performed.
The block continues running in the state when the end step is reached and does not end.

Status of SM327 Description
OFF (default) All the outputs of the HOLD steps that hold operations are turned off.

ON All the outputs of the HOLD steps that hold operations are held.
The setting of SM327 is valid for only the coil HOLD step [SC] that holds operation. All the
outputs of the coil HOLD step [SC] that does not hold operation and the transition does not
become TRUE are turned off. Also, even when SM327 is on, the steps become inactive.
However, when a forced end is performed such as by the block end instruction, the coil
outputs of all steps are turned off.

BC BL1

BL1

(2)
X0

TRAN

(1)
8 SFC PROGRAM
8.2 Structure

8

 • The following shows how to restart the block once ended.

Precautions
 • An action cannot be created to the end step.
 • The setting of SM327 (Output mode at execution of the END step) is valid only when the end step becomes active. When a

forced termination is performed by the SFC control instruction (Ending a block) or the like, the coil outputs of all steps are
turned off.

 • If only the HOLD steps that hold operations remain when the end step becomes active, those steps are deactivated even
though SM328 (Clear processing mode when the sequence reaches the END step) is on. If it is not required to turn off the
coil outputs of the HOLD steps that hold operations, turn on SM327. The following figure shows the operational relationship
between SM328 and the coil HOLD step [SC].

 • If a block is started at the block start step when SM328 is on, execution returns to the source as soon as there are no active
step that does not hold the operation in the block.

 • When "FX3 compatible transition operation mode setting" is set to "Enable", the CPU module is powered off and on, or
SM328 is turned on at reset.

Multiple end steps can be created in the SFC diagram.
To do so, select a step in the selection branch and select [Edit]  [Modify]  [End Step/Jump] from the menu.

Item Description
Block 0 "Start Conditions Setting" is set to "Auto-start

block 0" in the SFC Setting of parameters.
The initial step is automatically activated again and processing is executed repeatedly.

"Start Conditions Setting" is set to "Do not auto-
start block 0" in the SFC Setting of parameters.

The block is restarted when a start request is issued for the specified block in the following
methods.
• The block start step is activated by another block.
• The SFC control instruction (Starting a block) is executed.

All blocks other than block 0

When a normal active step remains or when a coil HOLD step
[SC] whose transition has not become TRUE remains (the step
does not hold an operation)

When an active step that holds an operation remains

• When SM328 is off, the block is ended by clearing the step.
• When SM328 is on, processing is continued without clearing the step.

The block is ended by clearing the step regardless of the setting of SM328.

SC SC
8 SFC PROGRAM
8.2 Structure 83

84
Assigning the step relay (S) areas to steps
The step relay is a device corresponding to each step in the SFC program. It is on when the relevant step is active (even in
the stop or hold state) and is off when the relevant step is inactive.
Step relays are assigned as follows.
 • Step relays are assigned sequentially in order of block No. starting from block 0 in an SFC program and in order of step No.

within a block.
 • No step relay is assigned to any non-existing block No.
 • Step relays are assigned to missing step Nos. in one block. The bits of the missing numbers are constantly off.
 • All bits after the step relays assigned in the last block are off.

Ex.

The following example shows the step relay assignments of the following block configuration.

Any step No. can be assigned to each step (except end step).
 • Assign step Nos. in ascending order wherever possible because any missing step No. will decrease the

maximum number of steps that can be created.
 • The step No. other than step No. 0 (S0) cannot be used for the initial step of the top line and left end.

Step No. 0 is assigned to the initial step in a block.
For the step Nos. that can be used per block, refer to the following.
Page 74 Specifications
Any step No. exceeding the upper limit cannot be assigned. Any step No. must be unique within a block. Same step Nos. can
be used in different blocks.
To specify a step relay in another block, use the following format.

Ex.

Specifying step No. 23 in block No. 12

• Block0: The largest step No. is 8, and step No. 3 and 6 are missing.
• Block1: Missing
• Block2: The largest step No. is 12, and step No. 3 is missing.
• Block3 and after: Missing

(1) Stored data
(2) Step Nos. in a block
(3) All 0s for missing blocks

Program type Device notation Description
SFC program In the same block S23 The block name can be omitted when specifying a step in the

same block.

Other than block 12 BL12\S23 Specify the target block No. and step No.

Sequence program other
than SFC program

Specifying the current target block S23 The block name can be omitted when specifying a step in the
target block.

Specifying a block different from the current
target block

BL12\S23 Specify the target block No. and step No.

b15

S6

b14

S5

b13

S4

b12

-

0

b11

S2

b10

S1

b9

S0

b8

S8

b7

S7

b6

-

0

b5

S5

b4

S4

b3

-

0

b2

S2

b1

S1

b0

S0

b15 b14

0

b13

0

b12

0

b11

0

b10

0

b9

0

b8

0

b7

0

b6

0

b5

S12

b4

S11

b3

S10

b2

S9

b1

S8

b0

S7

Block2 Block0

(1)

(2)

(1)

(2)

(3) Block2

0

S15 to S0

S31 to S16
8 SFC PROGRAM
8.2 Structure

8

Action
An action is a program which is executed while a step is active.

*1 N indicates that the action is executed while a step is active. Nothing but N can be set.
When the step becomes active, the action is executed every scan. When the step becomes inactive, the action is ended and
not executed until next time the step becomes active.
Up to 4 actions can be created in one step. When multiple actions are created, they will be executed in order from the top.
The detailed expression of actions can be created in ladder, ST or FBD/LD language.

For details on detailed expression or labels/devices, refer to the following.
GX Works3 Operating Manual

Instructions that cannot be used
Some instructions cannot be used in actions. The following table lists the instructions that cannot be used.

*1 This instruction can be used in a function or a function block in the action.

(1) Action name
(2) Qualifier*1

(3) Detailed expression of the action
(4) Action label/device

Classification Instruction symbol
Master control instruction MC*1

MCR*1

Termination instruction FEND

END

Program branch instruction CJ*1

GOEND

Program execution control instruction IRET

Structure creation instruction BREAK*1

RET

SRET

Creating a dummy transition condition TRAN

Step ladder instruction STL

RETSTL

Initial state IST

N Action0Step1 S1

N M20Step2 S2

N bLabel5

Transition1

TR1

(1)

(2)

(4)

SM400 bLabel2

wLabel4wLabel3MOV

(3)
8 SFC PROGRAM
8.2 Structure 85

86
Create a contact to be input condition of each instruction in the ladder of detailed expression.

■Restrictions
The following table lists the restrictions on individual programming languages used to create an action.

Precautions
 • The step operation is almost the same as the following circuit. For the execution of action, refer to Page 104 Execution

of action.

 • If the CALL instruction is used to issue a subroutine call in an action of the step, the output of the call destination is not
turned off even when the step becomes inactive after the transition becomes TRUE. To turn off the output of the call
destination when the step becomes inactive after the transition becomes TRUE, use the XCALL instruction.

 • Even when the input condition in the action is always on, it is assumed to be off when the action is inactive. Therefore,
immediately after the step becomes active, the instruction is executed when the output is turned on. For example, when the
input condition is set to be always on by using the instructions executed at the rising edge such as the PLS or INCP
instruction, the instruction is executed every time the step becomes active.

 • The device that turned on by the OUT C instruction, the SET instruction, a basic instruction, or an application instruction in
the action is not turned off even when the step is deactivated and the action is ended. To turn off the device, execute the
RST instruction separately.

 • With the PLS or PLF instruction, the specified device is normally turned on for only one scan and thereafter becomes off.
However, the specified device holds the ON state if it is turned on at the same time when the transition of the coil HOLD
step [SC] becomes TRUE. In this case, it is turned off by changing the condition to the one where the coil output of the coil
HOLD step [SC] turns off or activating the step again. For the conditions where the coil output turns off, refer to the
following.

Page 80 Timing of when coil output turns off
 • If the step is deactivated and the action is ended while the input condition of the PLF instruction is on, the specified device

remains on.
 • The operation of SFC control instruction depends on the execution condition before the no-execution status is entered.

Language Description
Ladder diagram Detailed expression A pointer and an interrupt pointer cannot be input in the pointer input area.

■Functions/function blocks that cannot be used
• Function/function block that includes an instruction that cannot be used in an action
• Function/function block that includes a pointer
• A macro type function block for which "Use MC/MCR to Control EN" is set to "Yes" and "Use EN/

ENO" is set to "No"

Structured text language Page 47 ST LANGUAGE

FBD/LD language Page 61 FBD/LD LANGUAGE

(1) Input condition of each instruction
(2) Contact indicating the step status (on when active, off

when inactive)(1)

(1)
(2)

Action
8 SFC PROGRAM
8.2 Structure

8

Transition
A transition is the basic unit for comprising a block and transfers the active state to the next step when the condition becomes
TRUE.

Detailed expression of a transition can be created in ladder diagrams, ST language, or FBD/LD language.

(1) Transition name
(2) Transition No.
(3) Detailed expression of transition (Page 93 Detailed expression of transitions)
(4) Direct expression of transitions (Page 94 Direct expression of transitions)
(5) Transition label/device (Page 94 Transition label/device)

Step1 S1

Step2 S2

TR1

(2)

(1) bLabel1
TRAN

(3)
Transition1

TR0

M100

TR2

(5)

bLabel2

bLabel1

(4)
8 SFC PROGRAM
8.2 Structure 87

88
Transition types
The following table lists the types of transition.

For the operation of transition to the step which is already activated, refer to the following.
Page 111 Behavior when an active step is activated

Item Description
Series sequence When the transition becomes TRUE, the active state transitions from the

preceding step to the subsequent step.

Selective sequence
(divergence/convergence)

Divergence: A step branches to multiple transitions, and only the step in the line
where the transition becomes TRUE first is activated.

Convergence: The next step is activated when the transition immediately before
convergence, which is in the line where the transition becomes TRUE first,
becomes TRUE.

Simultaneous sequence
(divergence/convergence)

Divergence: All the steps branched from one step are activated simultaneously.
Convergence: When all the steps immediately before convergence are activated

and the common transition becomes TRUE, the active state transitions to
the next step.

Jump sequence When the transition becomes TRUE, the active state transitions to the specified
step in the same block.
8 SFC PROGRAM
8.2 Structure

8

Series sequence
When the transition becomes TRUE, the active state transitions from the preceding step to the subsequent step.

Selective sequence (divergence/convergence)
A step branches to multiple transitions, and only the step in the line where the transition becomes TRUE first is activated. The
next step is activated when the transition immediately before convergence, which is in the line where the transition becomes
TRUE first, becomes TRUE.

 • The selective sequence allows branching to up to 32 transitions.
 • If multiple transitions become TRUE simultaneously, the condition to the left will take precedence.

 • An SFC diagram in which the number of branches is different from the number of merges in a selective sequence can also
be created. However, in an SFC diagram, selective divergence and parallel convergence or parallel divergence and
selective convergence cannot be combined.

When the transition (2) becomes TRUE while the step (1) is active, the step (1) is
deactivated and the step (3) is activated.

Item Description
Divergence When the step (1) is active, the step whose transition becomes TRUE first is

activated. (When the transition (3) becomes TRUE before (2) becomes TRUE,
the step (5) is activated.)
The step (1) becomes inactive. However, if it is a coil HOLD step [SC], the step
holds the coil output or action according to its attribute.
• If multiple transitions become TRUE simultaneously, the condition to the left

will take precedence.
• Subsequent processing will proceed from step to step in the selected column

until another convergence occurs.

Convergence When the transition (1) or transition (2) on the activated branch becomes
TRUE, the step (5) is activated.
The activated step (3) or (4) becomes inactive. However, if it is a coil HOLD
step [SC], the step holds the coil output or action according to its attribute.

If transition (1) and (2) become TRUE simultaneously, the action of step (3) will
be executed.

(1)

(2)

(3)

(1)

(4) (5)

(2) (3)

(5)

(3) (4)

(1) (2)

(1) (2)

(3)
8 SFC PROGRAM
8.2 Structure 89

90
 • In a selective transition, a convergence can be omitted by a jump transition or end transition.

The above program can be created by changing the steps other than the step of the leftmost branch to end
steps and changing the end step of the leftmost branch to a jump sequence.
For the operation method for changing steps, refer to the following.
GX Works3 Operating Manual

Simultaneous sequence (divergence/convergence)
All the steps branched from one step are activated simultaneously. When all the steps immediately before convergence are
activated and the common transition becomes TRUE, the active state transitions to the next step.

When transition (2) becomes TRUE during action of step (1), step (3) and step
(4) are sequentially executed. When the transition (5) becomes TRUE, a jump
sequence to step (1) occurs.

Item Description
Divergence When the transition (2) becomes TRUE while the step (1) is active, both of the

step (3) and step (4) are activated at the same time.
The step (1) becomes inactive. However, if it is a coil HOLD step [SC], the step
holds the coil output or action according to its attribute.
Processing will proceed to step (7) when the transition (5) becomes TRUE and
to step (8) when the transition (6) becomes TRUE.

Convergence After the step (1) and step (2) immediately before the convergence become
active, the transition (3) is checked, then becomes TRUE, the step (4) is
activated.
The step (1) and step (2) become inactive. However, if it is a coil HOLD step
[SC], the step holds the coil output or action according to its attribute.

(1)

(3)

(4)

(2)

(5)

(1)

(3) (4)

(7) (8)

(2)

(5) (6)

(4)

(1) (2)

(3)
8 SFC PROGRAM
8.2 Structure

8

 • The simultaneous sequence allows transitions to up to 32 steps.
 • If another block is started by the simultaneous sequence, the START source block and START destination block will be

executed simultaneously.
 • A simultaneous convergence is always performed after a simultaneous branch.

■Precautions
 • When the steps merged by parallel convergence include HOLD steps that hold operations, the steps are handled as

inactive steps, and the transition to the next step does not occur.
 • In the simultaneous convergence, a block start step (with END check) [BC] cannot be created immediately before the

convergence. Use a block start step (without END check) [BS].

Jump sequence
When the transition becomes TRUE, the active state transitions to the specified step in the same block.

 • There are no restrictions regarding the number of jump sequences.
 • A jump sequence in the simultaneous sequence is possible only in the same branch. A jump sequence to another branch

within a simultaneous branch, a jump sequence for exiting from a simultaneous branch, or a jump sequence to a
simultaneous branch from outside a simultaneous branch cannot be created.

Ex.

Example of jump sequence that can be specified in the simultaneous branch

When the transition (2) becomes TRUE while the step (1) is active, the step (3)
is activated.
The step (1) becomes inactive. However, if it is a coil HOLD step [SC], the step
holds the coil output or action according to its attribute.

(1)
(3)

(2)
8 SFC PROGRAM
8.2 Structure 91

92
Ex.

Example of jump sequence that cannot be specified in the simultaneous branch

■Precautions
Under the following conditions, a step cannot be specified as the destination of jump sequence.
 • When a step immediately before the preceding transition is specified

 • When current step is specified (when "FX3 compatible transition operation mode setting" is set to "Enable", a step can be
specified.)

■Jump sequence to another branch within a
simultaneous branch

■Jump sequence for exiting from a simultaneous
branch

■Jump sequence to a simultaneous branch from
outside a simultaneous branch

(1) A simultaneous convergence cannot be performed.

(1) (1)
8 SFC PROGRAM
8.2 Structure

8

Detailed expression of transitions
Create detailed expression of transitions in the Zoom editor. The condition can be created in following programming
languages.

 • The detailed expression of the same transition can be used for multiple transitions.
 • The created detailed expression can be confirmed in the Zoom list. (GX Works3 Operating Manual)

■Usable instructions
The following table lists the instructions that can be used in transition programs.

Type Description
Ladder
diagram

Detailed expression Used to create a transition program consisting of a contact circuit and the TRAN instruction (Creating a dummy
transition condition) in a single circuit block. The transition becomes TRUE when the TRAN instruction is
executed.

■Restrictions
• Inline ST cannot be used.
• Only a TRAN instruction can be input to the coil.

Structured text language Used to create the following transition program.
■Method of writing a TRAN function (Creating a dummy transition condition) call statement
TRAN(bLabel1 & bLabel2);
//The transition becomes TRUE when the Boolean expression of the input argument is true.
■Method of writing an assignment statement of Boolean expression for reserved word "TRAN"
TRAN := bLabel1 & bLabel2;
//The transition becomes TRUE when the Boolean expression of the right-hand side is true.
■Method of writing an assignment statement of Boolean expression for the transition name
Transition1 := bLabel1 & bLabel2;
//Transition1 indicates the transition name input on the SFC editor. The transition becomes TRUE when the
Boolean expression of the right-hand side is true.

FBD/LD language Used to create a transition program ending with the TRAN instruction (Creating a dummy transition condition) in
a single FBD network block.

■Restrictions
• Inline ST cannot be used.
• Only one TRAN instruction can be used.
• A program to be assigned to the device/label cannot be created.
• Coil, function block, function (except some), jump, jump label, and return program elements cannot be used.

For usable instructions other than the TRAN instruction, refer to the following.
Page 93 Usable instructions

Classification Instruction symbol
Contact instruction LD, LDI, AND, ANI, OR, ORI

LDP, LDF, ANDP, ANDF, ORP, ORF

LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI

Association instruction ANB, ORB

INV

MEP, MEF

Comparison operation instruction LD, LD_U, AND, AND_U, OR, OR_U

LDD, LDD_U, ANDD, ANDD_U, ORD, ORD_U

Real number instruction LDE, ANDE, ORE

Character string processing instruction LD$, AND$, OR$

Creating a dummy transition condition TRAN

bLAbel1
TRAN

bLabel2

bLAbel1
1

bLAbel2
2

IN1

IN2

AND

3

S

TRAN

4

8 SFC PROGRAM
8.2 Structure 93

94
Direct expression of transitions
The transition which transfers an active state to the next step can be created directly on the SFC diagram. A contact of FBD/
LD element is connected to it.

Coil, function block, function, jump, jump label, and return elements cannot be used.

Select a transition and select [Edit]  [Modify]  [Direct Expression for Transition] from the menu. This can
connect the FBD/LD element to the left side of the transition. (GX Works3 Operating Manual)

Transition label/device
Bit type label, bit device or Boolean value can be specified as a condition which transfer an active state to the next step.

Select a transition name, select [Edit]  [Modify]  [Name] in the menu, and input the bit type label, bit device
or Boolean value to be specified. (GX Works3 Operating Manual)

■Precautions
 • When a device (T, ST, C or LC) of timer or counter is used for transition, the device operates as a contact (TS, STS, CS or

LCS). Also, when a coil (TC, STC, CC or LCC) of timer or counter is used, the coil operates as a contact.
 • To use a coil of timer or counter for transition, use a timer type or counter type label.

Ex.

Timer device and timer type label

■Bit type label ■Bit device ■Boolean value

When a timer device is used When a timer type label is used

When the contact (TS0) is on, the transition becomes TRUE.
[Direct expression]

When the contact (TS1) is off, the transition becomes TRUE.

When the coil of the timer type label (tLabel0) is on, the transition becomes TRUE.
[Direct expression]

When the coil of the timer type label (tLabel1) is off, the transition becomes TRUE.

bLabel2bLabel1

TR1

bLabel1

TR2

M100

TR3

TRUE

TR0

TC0

TR1

TC1

TR0

tLabel0.C

TR1

tLabel1.C
8 SFC PROGRAM
8.2 Structure

8

8.3 SFC Control Instructions
SFC control instructions are used to check a block or step operation status (active/inactive), or to execute a forced start, end
or others. If SFC control instructions are used, SFC programs can be controlled from the actions of sequence programs and
SFC programs.

Instruction List
The following table lists the SFC control instructions.

*1 When using in a sequence program, block 0 is the target block. When using in a SFC program, current block is the target block.
For details on the SFC control instructions, refer to the following.
MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)

■Precautions
 • Do not use the SFC control instructions in interrupt programs.
 • Execute the SFC control instruction only when SM321 (Start/stop SFC program) is on.
 • When using the SFC control instruction, set "SFC Program Setting" to "Use".
 • When using the SFC program, do not specify the step relay to the instructions other than the SFC control instruction. If the

step relay is specified to the instructions other than the SFC control instruction, the program may perform an unintended
operation.

 • When "SFC Program Setting" is set to "Not to Use", the instructions which specify the step by using the step relay without
block specification (such as LD [S] and MOV(P) [KnS]) operate as the normal instructions.

 • In the case of the CPU module not corresponding to the SFC program, when the current value is read/written to the step
relay with block specification (BL\S) by the engineering tool, the current value is read/written to the step relay (S)
without block specification. (Page 119 Added and Changed Functions)

Instruction name Instruction symbol Processing
Checking the status of a step LD, LDI, AND, ANI, OR, ORI [S]*1 Checks whether a specified step is active or inactive.

LD, LDI, AND, ANI, OR, ORI [BL\S]

Checking the status of a block LD, LDI, AND, ANI, OR, ORI [BL] Checks whether a specified block is active or inactive.

Batch-reading the status of steps MOV(P) [KnS]*1 Batch-reads (in units of 16-bit binary data) the status (active or inactive)
of steps in a specified block, and stores the read data in a specified
device. (Kn: K1 to K4)

MOV(P) [BL\KnS]

DMOV(P) [KnS]*1 Batch-reads (in units of 32-bit binary data) the status (active or inactive)
of steps in a specified block, and stores the read data in a specified
device. (Kn: K1 to K8)

DMOV(P) [BL\KnS]

BMOV(P) [KnS]*1 Batch-reads (in units of the specified number of words starting from a
specified step) the status (active or inactive) of steps in a specified
block. (Kn: K1 to K4)

BMOV(P) [BL\KnS]

Starting a block SET [BL] Activates the specified block individually and executes a step
sequence starting from the initial step.

Ending a block RST [BL] Deactivates the specified block.

Activating a step SET [S]*1 Activates the specified step.

SET [BL\S]

Deactivating a step RST [S]*1 Deactivates the specified step.

RST [BL\S]

Step start/end instruction OUT [S]*1 Activates/deactivates the specified step.

OUT [BL\S]

ZRST(P) [S]*1 Deactivates all specified steps collectively.

ZRST(P)[BL\S]

Example: When the current value is read to BL5\S12
- CPU module corresponding to the SFC program: The current value of BL5\S12 is read.
- CPU module not corresponding to the SFC program: The current value of S12 is read.
8 SFC PROGRAM
8.3 SFC Control Instructions 95

96
Index modification
The SFC control instructions can specify index-modified step relays (S) and SFC block devices (BL). However, instructions
that control a step individually cannot specify index-modified devices.

The step relays and SFC block devices can be specified within the following range, including the case of index modification.

For details on index modification, refer to the following.
MELSEC iQ-F FX5 User's Manual (Application)

Device Index modification target part
SZ Step relay

BL\SZ Step of step relay with block specification

BLZ\S Block of step relay with block specification

BLZ\SZ Block and step of step relay with block specification

BLZ SFC block device

Device Range
S 0 to 4095

BL\S BL 0 to 31

S 0 to 511

BL 0 to 31
8 SFC PROGRAM
8.3 SFC Control Instructions

8

8.4 SFC Setting
Set start conditions and others of SFC program in CPU parameter or SFC block setting.

CPU parameter
The following table lists the SFC settings.

SFC program setting
Set whether to use the SFC program. If the parameter is set to "Not use," other SFC settings cannot be operated.

[CPU Parameter]  [SFC Setting]  [SFC Program Setting]

Window

Displayed items

*1 When the program language of a project is SFC, the default is "Use."
The following tables list the operation which changes according to the SFC program setting and operation depending on the
setting of the SFC program setting.

■Operation which changes according to the setting

■Operation depending on the setting

*1 When the SFC program is created, a conversion error occurs in the engineering tool. When the parameter for which "SFC Program
Setting" is set to "Not to use" and the SFC program are written separately during the boot operation using the SD memory card, a self-
diagnosis error of the CPU module occurs.

*2 When the step relay (S) is specified to the instructions other than the SFC control instruction, a self-diagnosis error of the CPU module
occurs.

Type Item Description
SFC setting SFC program setting Set whether to use the SFC program.

SFC program start mode setting Set whether to start the SFC program in the initial status (Initial Start) or to start it
holding the previous execution status (Resume Start).

Start conditions setting Set whether to automatically start and activate the block 0 or to keep it inactive until a
start request is issued when starting the SFC program.

FX3 compatible transition operation
mode setting

Set whether to operate the SFC program maintaining compatibility with FX3.

Setting Description
Not to Use (default) SFC program is not used.

Use*1 SFC program is used.

Operation Description
SFC program execution The SFC program can be executed only when "SFC Program Setting" is set to "Use".

Specifying the step relay (S) to the
instruction

When "SFC Program Setting" is set to "Use", the step relay (S) cannot be specified to the instructions other than the
SFC control instruction.

SFC Program Setting SFC program execution Specifying the step relay (S) to the instruction
Not to use Not supported*1 No restrictions

Use Supported Can be specified only to the SFC control instruction.*2
8 SFC PROGRAM
8.4 SFC Setting 97

98
SFC Program Start Mode Setting
Set whether to start the SFC program in the initial status (Initial Start) or to start it holding the previous execution status
(Resume Start).

[CPU Parameter]  [SFC Setting]  [SFC Program Start Mode Setting]

Window

Displayed items

The combination of SFC Program Start Mode Setting and SM322 (SFC program startup status) determines whether to
perform Initial Start or Resume Start.

*1 The initial status of SM322 is determined when the operating status of the CPU module is changed from STOP to RUN according to the
setting of the SFC program start mode.

*2 When "SFC Program Start Mode Setting" is set to "Resume Start" and no changes are made to the program before and after the
program is written, the program is resumed.

*3 When the parameter is set to "Initial Start," the on state of M322 is invalid.
*4 Depending on the timing, a program cannot be resumed and starts with initial status.
*5 M322 is turned on, and the program is initialized.

Setting Description
Initial Start (default) The program is started after the active state at the previous stop is cleared.

The operation after the start is performed according to "Start Condition Setting" of the SFC Setting. (Page 99
Start Conditions Setting)

Resume Start The program starts in the active state at the previous stop.
When setting the resume start, install a battery to the CPU module. (Page 99 Precautions)

Operation SFC Program Start Mode Setting: Initial Start SFC Program Start Mode Setting: Resume
Start

SM322: OFF
(Initial status)*1

SM322: ON
(When the setting is
changed)

SM322: ON
(Initial status)*1

SM322: OFF
(When the setting is
changed)

(1) SM321 is turned off and on. Initial Start Initial Start*3 Resume Start Initial Start

(2) The CPU module is powered off
and on.

Initial Start (M322 is turned
off, and the program is
initialized.)

Resume Start/Initial Start*4 Resume Start/Initial
Start*4*5

(3) SM321 is turned on and off, or the
CPU module is powered off and
on after the operating status is
changed from RUN to STOP.

Resume Start Resume Start*5

(4) CPU module is reset and the
operating status is changed to
RUN.

Resume Start/Initial Start*4 Resume Start/Initial
Start*4*5

(5) SM321 is turned on and off, or
CPU module is reset and the
operating status is changed to
RUN after RUN to STOP.

Resume Start Resume Start*5

(6) Operating status is changed from
STOP to RUN.

Resume Start

(7) Operating status is STOP, write a
program (other than the SFC
program), and the status is
changed to RUN.

Initial Start Resume Start Initial Start

(8) Operating status is STOP, write a
program (SFC program), and the
status is changed to RUN.

Initial Start*2
8 SFC PROGRAM
8.4 SFC Setting

8

■Precautions
 • When setting the parameter to "Resume Start," install a battery in the CPU module. If a battery trouble, such as no battery

or battery voltage drop, has occurred, the SFC program may start in the Initial Start mode when it is started first time after
the CPU module power is switched from off to on. Battery troubles can be detected by Option Battery Setting. For details,
refer to the user’s manual for the CPU module used.

 • When a program is resumed, the SFC program stop position is held, but the status of the label or device used for an action
is not held. Therefore, if labels or devices are required to be held for Resume Start, set them to the latch mode.
(MELSEC iQ-F FX5 User's Manual (Application))

 • When a program is resumed under a condition other than conditions ((1), (3), (5) in the table) under which the coil output of
the coil HOLD step [SC] is turned off, the coil HOLD step [SC] that holds an operation is restarted, but the output is not
turned on. To hold the output, set the labels and devices to the latch mode. (MELSEC iQ-F FX5 User's Manual
(Application))

 • When the CPU module is powered off or reset, the intelligent function module is initialized. To resume a program, it is
recommended to create the initial program for the intelligent function module in a block which is constantly active or in a
sequence program.

 • When the CPU module is powered off or reset, labels and devices are also cleared.
 • Depending on the timing, a program may not be resumed after the CPU module is powered off or reset. If a program is

started in the initial status after the start mode is set to Resume Start, an event where the program cannot be resumed is
stored in the event history. To ensure the program is started in the Resume Start mode, power off or reset the CPU module
after switching SM321 from ON to OFF or switch the operating status from RUN to STOP.

Start Conditions Setting
Set whether to automatically start and activate the block 0 or to keep it inactive until a start request is issued when starting the
SFC program.

[CPU Parameter]  [SFC Setting]  [Start Conditions Setting]

Window

Displayed items

Use the Start Conditions Setting to control the start block according to the product type.
"Auto-start block 0" is useful when block 0 is used as described below.
 • Management block
 • Preprocessing block
 • Continuous monitoring block

■Precautions
 • To execute the SFC program when "Do not auto-start block 0" is set, execute the SET instruction (Starting a block) from the

sequence program.
 • When "Auto-start block 0," is set, create block 0 without fail.

Setting Description

At SFC Program START At the end of block 0
Auto-start block 0
(default)

Block 0 is started automatically and starts execution from
its initial step.

Block 0 is restarted automatically and restarts execution
from its initial step.

Do not auto-start block 0 Block 0 is activated by a start request issued by the SFC
control instruction (Starting a block) or a block start step
in the same manner as other blocks.

Block 0 is not restarted automatically and remains
inactive until another start request is issued.
8 SFC PROGRAM
8.4 SFC Setting 99

10
FX3 compatible transition operation mode setting
This setting is designed to operate the SFC program in the same manner as on FX3. Use this setting to maintain the
compatibility with FX3 when the configuration of FX3 used on the user’s equipment is replaced with the configuration of FX5.

[CPU Parameter]  [SFC Setting]  [FX3 Compatible Transition Operation Mode Setting]

Window

Displayed items

For the continuous transition, refer to Page 108 Continuous transition ON/OFF operation.

For the replacement of the SFC program from FX3 to FX5, refer to the following.
Transition from MELSEC FX3G, FX3U, FX3UC Series to MELSEC iQ-F Series Handbook

Setting Description
Disable (default) Operation of FX5. "Continuous transition" or "No continuous transition" can be specified.

Enable Operation of FX3. The program operates with continuous transition (operation compatible with FX3).
0 8 SFC PROGRAM
8.4 SFC Setting

8

SFC block setting

Act at block Multi-Activated
Set this item to stop the operation of the CPU module when a start request for an already active block is issued in the block
start step (with end check) [BC] or block start step (without end check) [BS]. For the setting range, set the range of the block
to be stopped.

[Navigation window]  [Program]  Properties of SFC program file to be set

Window

Displayed items

■Precautions
 • When the SFC control instruction (Starting a block) is executed for an already active block, the start request is ignored, and

the processing of the SFC program is continued.
 • If an attempt to transition to an active block start step is made, the activation of the block start step is ignored. The block is

not executed again from the initial step.

(1) Set the range of the block to be stopped.

Setting Description
No setting (default) Standby CPU module operation continues, and standby until the start destination block becomes inactive while

the transition becomes TRUE.
When the start destination block is deactivated, the block is reactivated.

Block stop range is set Stop An error results.

(1)

BS

BL1

BL1
8 SFC PROGRAM
8.4 SFC Setting 101

10
8.5 SFC Program Execution Order
Whole program processing

Execution type that can be specified
This section shows whether the execution type of SFC program can be specified.

■Precautions
In a project with an SFC program, the step ladder (STL/RETSTL instruction) cannot be used.

Execution Type Specification
enable/disable

Remarks

Initial execution type program  

Scan execution type program  Only one SFC program can be executed.

Stand-by type program  

Event execution type program  

Fixed scan execution type program  

No specification  

Initial execution
type program

Scan execution
type program

Stand-by type
program

Fixed scan
execution type

program

Event execution
type program

CPU module
RUN Type that can be specified as

an SFC program

Execute only when required.

Execute using an
interrupt.
2 8 SFC PROGRAM
8.5 SFC Program Execution Order

8

SFC program processing sequence

Block execution sequence
While the SFC program is running, the actions of each step are executed sequentially starting from the initial step of an active
block.
An SFC program containing multiple blocks checks the state (active/inactive) of the blocks in ascending order of block
numbers (block 0  block 1  block 2).
An active block executes the actions of active steps in the block.
An inactive block checks for existence of a start request. If a start request exists, the block is activated and the active steps in
the block are executed.

Block 0 can be started automatically when "Auto-start block 0" is specified in "Start Conditions Setting" of the SFC setting.
With this setting, even if block 0 reaches the end step and becomes inactive, it will be restarted in the next scan. (Page 99
Start Conditions Setting)

Processing is performed in the following order.
(1) Processing of block 0 (BL0)
(2) Execution of the step in block 0 (BL0)
(3) Processing of block 1 (BL1)
(4) Execution of the initial step of block 1 (BL1)
(5) Processing of the next block

BS BL1 BS BL2

BL0 BL1
(1) (3) (5)

(2)

(4)
8 SFC PROGRAM
8.5 SFC Program Execution Order 103

10
Step execution sequence
In the SFC program, the actions of all active steps are processed within one scan.

When the action of each step is finished, whether the transition to the next step becomes TRUE or not is checked.
 • When the transition has not become TRUE: The action of the same step is executed again in the next scan.
 • When the transition has become TRUE: The outputs of the executed actions by using the OUT instruction are all turned off.

When the next scan is executed, the action of the next step is executed. The step executed previously is deactivated and
the action becomes inactive.

Even when the transition becomes TRUE, if coil HOLD step [SC] is set in the step attribute, the step is not deactivated but
performs processing according to the attribute. (Page 80 Coil HOLD step [SC])

Ex.

Example of transition operation (without continuous transition)

■Execution of action
The action performs the following operation for the instruction input condition described in the action depending on the status
of the step to be executed.

When the step is activated, the action is executed in the contact ON status every scan. When the step is deactivated, the
action is executed in the contact OFF status and will not be executed until next time the step is activated. The action is
executed in the contact OFF status in the following cases. Execution in the contact OFF status is enabled only in active steps.
 • When the transition just after a normal step becomes TRUE.
 • When the end step is executed (other than steps that hold operations when SM327 is on and remaining active steps that do

not hold operations when SM328 is on)
 • When the block is forcibly terminated by using the SFC control instruction (Ending a block).
 • When the step is forcibly terminated by the SFC control instruction (Ending a step).
 • When SM321 (Start/stop SFC program) is turned off
 • When the reset step [R] that has been set to reset the running step is activated
 • When the reset step [R] that has been set to reset the steps that hold operations is activated and S999 has been specified

for the reset step [R]

(1) All the active steps in the block are executed
within a single scan.

(1) Execution of sequence program
(2) Execution of action
(3) Checking the transition to the next step (FALSE)
(4) END processing
(5) Checking the transition to the next step (TRUE)
(6) The next action is executed.

Execution of action Description
Not executed The input condition is not reflected in the output.

Execution in the contact ON status The operation is performed according to the input condition.

Execution in the contact OFF status The input condition is set to off regardless of the actual input condition, and the operation is performed.

(1)

(1) (2) (3) (4) (1) (2) (5) (4) (1) (6)

STOPRUN (SM321=ON)

1 scan 1 scan 1 scan
4 8 SFC PROGRAM
8.5 SFC Program Execution Order

8

■Transition operation
The transition operation with/without continuous transition in the following SFC program is shown below. (Page 108
Continuous transition ON/OFF operation)

 • Without continuous transition

*1 In the case of coil HOLD step the action is not executed in the contact OFF status.

Steps (1) to (4) are activated, and the actions (A) to (D) are executed.
Although the transition (a) to (c) for Steps (1) to (3) become TRUE, the
transition (d) for Step (4) becomes FALSE.

Scan Description
Scan 1 Step (1) is activated and the action (A) is executed in the contact OFF status after the execution in the contact ON status.*1

Scan 2 Step (2) is activated and the action (B) is executed in the contact OFF status after the execution in the contact ON status.*1

Scan 3 Step (3) is activated and the action (C) is executed in the contact OFF status after the execution in the contact ON status.*1

Scan 4 Step (4) is activated and the action (D) is executed in the contact ON status.

Scan 5 and after Step (4) is active until the transition (d) becomes TRUE, and the action (D) is executed in the contact ON status.

(A)(1)

(B)(2)

(C)(3)

(D)(4)

(d)

(c)

(a)

(b)

(A)(1)

(B)(2)

(C)(3)

(D)(4)

(d)

(c)

(a)

(b)

Scan 1

(1) Active
(A) Execution in the
 contact ON status
(A) Execution in the
 contact OFF status
(a) TRUE
End processing

Scan 2

Scan 3

Scan 4 Scan 5

(2) Active
(B) Execution in the
 contact ON status
(B) Execution in the
 contact OFF status
(b) TRUE
End processing

(3) Active
(C) Execution in the
 contact ON status
(C) Execution in the
 contact OFF status
(c) TRUE
End processing

(4) Active
(D) Execution in the
 contact ON status
(d) FALSE
End processing

(4) Active
(D) Execution in the
 contact ON status
(d) FALSE
End processing
8 SFC PROGRAM
8.5 SFC Program Execution Order 105

10
 • With continuous transition

 • With continuous transition (operation compatible with FX3)

Scan Description
Scan 1 Steps (1) to (4) are continuously activated.

When each step is activated, the actions (A) to (C) are executed in the contact OFF status after the execution in the contact ON
status, and the action (D) is executed in the contact ON status. However, in the case of coil HOLD step the action is not executed in
the contact OFF status.

Scan 2 and after Step (4) is active until the transition (d) becomes TRUE, and the action (D) is executed in the contact ON status.

Scan Description
Scan 1 Steps (1) to (4) are continuously activated.

When each step is activated, the actions (A) to (D) are executed in the contact ON status.

Scan 2 The actions (A) to (C) are executed in the contact OFF status, and the action (D) is executed in the contact ON status. However, in
the case of coil HOLD step the action is not executed in the contact OFF status.

Scan 3 and after Step (4) is active until the transition (d) becomes TRUE, and the action (D) is executed in the contact ON status.

(A)(1)

(B)(2)

(C)(3)

(D)(4)

(d)

(c)

(a)

(b)

Scan 1

(1) Active
(A) Execution in the
 contact ON status
(A) Execution in the
 contact OFF status
(a) TRUE

Scan 2

(2) Active
(B) Execution in the
 contact ON status
(B) Execution in the
 contact OFF status
(b) TRUE

(3) Active
(C) Execution in the
 contact ON status
(C) Execution in the
 contact OFF status
(c) TRUE

(4) Active
(D) Execution in the
 contact ON status
(d) FALSE
End processing

(4) Active
(D) Execution in the
 contact ON status
(d) FALSE
End processing

(A)(1)

(B)(2)

(C)(3)

(D)(4)

(d)

(c)

(a)

(b)

Scan 1

(1) Active
(A) Execution in the
 contact ON status
(a) TRUE

(2) Active
(B) Execution in the
 contact ON status
(b) TRUE

(3) Active
(C) Execution in the
 contact ON status
(c) TRUE

(4) Active
(D) Execution in the
 contact ON status
(d) FALSE
End processing

Scan 3

(4) Active
(D) Execution in the
 contact ON status
(d) FALSE
End processing

Scan 2

(4) Active
(D) Execution in the
 contact ON status
(d) FALSE
End processing

(A) Execution in the
 contact OFF
 status

(B) Execution in the
 contact OFF
 status

(C) Execution in the
 contact OFF
 status
6 8 SFC PROGRAM
8.5 SFC Program Execution Order

8

■Precautions
 • If the transition for a step becomes TRUE at the first execution, the step starts/ends after one scan. When the step ends

after one scan, the following operation is performed according to the transition condition.

 • The actions of active steps in a block are executed simultaneously (within the same scan). For this reason, do not create
SFC programs which depend on the execution sequence of actions.

 • In the case of "Continuous transition," when a transition from one step to multiple steps occurs due to jump sequence or
selective convergence, the action of one step may be performed twice in one scan.

 • In the case of "Continuous transition," if a program that loops using the jump sequence is executed, an error will occur.
 • In the case of "Continuous transition" (operation compatible with FX3) where the transition destination step of jump

sequence is positioned above the transition source in the SFC chart, the destination step will be executed in the next scan
even if the transition becomes TRUE.

No continuous transition Continuous transition With continuous transition (operation
compatible with FX3)

I/O refresh of coil output, etc. is not reflected. To
reflect the I/O refresh, design the program so that
one step is scanned several times. However,
turning on of the step relay can be detected before
the previous scan (just after the transition from the
previous step) even in another program.

I/O refresh of coil output, etc. is not reflected, and
turning on of coil output cannot be detected in any
other program. To reflect the I/O refresh, design
the program so that one step is scanned several
times.

The step is started and ended in different scans,
and coil output in an action can be detected by
another program. However, the step relay is turned
off in a scan in which the transition becomes TRUE.

The execution sequence of actions (1), (2), and (3) are
undefined.

(1)

(2)

(3)
8 SFC PROGRAM
8.5 SFC Program Execution Order 107

10
Continuous transition ON/OFF operation
The transition conditions for the SFC program include "With continuous transition," "With continuous transition (operation
compatible with FX3)" and "Without continuous transition."
The setting "With continuous transition" or "Without continuous transition" is determined by "FX3 Compatible Transition
Operation Mode Setting" and SM323 (presence/absence of continuous transition for entire block).

 • The tact time can be reduced by setting the condition to "Continuous transition" or "Continuous transition
(operation compatible with FX3)." Accordingly, the wait time from when the transition becomes TRUE until
the action of the destination step is executed can be eliminated. However, the setting to "Continuous
transition" or "Continuous transition (operation compatible with FX3)" may slow down the operation of other
blocks and sequence programs.

 • SM324 (Continuous transition disable flag) is turned off only when "Continuous transition" is set. (Because
the system is basically turned on automatically when the SFC program is executed, SM324 is always ON.
Also, when "Continuous transition" (FX3 compatible operation) is set, SM324 is always ON.) Therefore,
continuous transition can be prohibited by using SM324 as a transition condition.

 • When "FX3 Compatible Transition Operation Mode Setting" is valid, "Continuous transition (operation
compatible with FX3)" is enabled regardless of whether SM323 is on or off.

FX3 compatible transition
operation mode setting

SM323 Description

Disable OFF No continuous
transition

When the transition becomes TRUE, the action of the transition destination step is
executed in the next scan.

ON Continuous
transition

When the transition becomes TRUE, the action of the transition destination step is
executed within the same scan.
When the transitions of the steps become TRUE continuously, the actions are executed
within the same scan until the transition becomes FALSE or the end step is reached. The
action of the transition source step is executed in the contact OFF status in a scan in
which the transition becomes TRUE.

Enable ON/OFF With continuous
transition (operation
compatible with
FX3)

When the transition becomes TRUE, the action of the transition destination step is
executed within the same scan.
When the transitions of the steps become TRUE continuously, the actions are executed
within the same scan until the transition becomes FALSE or the end step is reached.
Unlike normal continuous transitions, the action of the destination step is executed in the
contact OFF status in the next scan where the transition becomes TRUE.
8 8 SFC PROGRAM
8.5 SFC Program Execution Order

8

8.6 SFC Program Execution
Starting and stopping the SFC program
The SFC program can be started and stopped by either of the following methods.
 • Auto-start by the CPU parameter
 • Starting and stopping the program by the special relay (SM321)

Auto-start by the CPU parameter
Set "Start Conditions Setting" to "Auto-start block 0," in the CPU parameter. Block 0 of the SFC program starts automatically
when the CPU module is powered on or reset, or the operating status is changed from STOP to RUN. (Page 99 Start
Conditions Setting)

Starting and stopping the program by the special relay (SM321)
SM321 (Start/stop SFC program) automatically turns on at execution of the SFC program.
 • The program execution can be stopped by turning off SM321.
 • The terminated SFC program can be re-executed by turning on SM321.

Set the CPU parameter "SFC Program Start Mode Setting" to "Resume Start," and the SFC program can be
resumed. (Page 98 SFC Program Start Mode Setting)

Starting and ending a block

Starting a block
A block in the SFC program can be started by either of the following methods.

Item Method Remarks Reference
Auto-start by the CPU
parameter (only for block 0)

Set "Auto-start block 0" to "Start Conditions
Setting" in the CPU parameter. When the SFC
program is executed, block 0 starts
automatically and processing is performed
sequentially from the initial step.

This method is used to use block 0 as a
control block, preprocessing block, or
continuous monitoring block.

Page 99 Start Conditions
Setting

Start by the block start step Start another block by using a block start step
[BC or BS] in a block.

This method is effective when the control
sequence is clear.

Page 81 Block start step
(with END check) [BC]
Page 82 Block start step
(without END check) [BS]

Start by the SFC control
instruction

Start the block specified by the SFC control
instruction from the action of the SFC program
or another sequence program.
• Use the SET [BL] (Starting a block)

instruction to execute the program from the
initial step of the specified block.

• Use the SET [S/BL\S]/OUT [S/
BL\S] (Activating a step) instruction to
execute the program from the specified step
of the specified block.

This method is effective to restart the error
processing block or execute interrupt
processing.

Page 95 SFC Control
Instructions

Start by the engineering tool Start the specified block by turning on the SFC
block device.

This method is effective for debugging and
test operation.

GX Works3 Operating
Manual
8 SFC PROGRAM
8.6 SFC Program Execution 109

11
Ending a block
A block in the SFC program can be ended by either of the following methods.

Activating and deactivating a step

Activating a step
A step in the SFC program can be activated by either of the following methods.

Deactivating a step
A step in the SFC program can be deactivated by either of the following methods.

Item Method Remarks Reference
End by the end step Execute the end step in a block. Processing is

stopped and the block becomes inactive.
This method is effective to stop operation
by stopping a cycle in automatic operation.

Page 82 End step

End by the SFC control
instruction

End and deactivate the block specified by the
RST [BL] (Ending a block) instruction from the
action of the SFC program or another sequence
program. (The block ends when all the active
steps in the specified block are deactivated by
using the RST [BL\S]/OUT [BL\S]/
ZRST(P)[S/BL\S] (Ending a block)
instruction.)

This method is effective to end processing
regardless of the operation status, such as
an emergency stop.

Page 95 SFC Control
Instructions

End by the engineering tool End the specified block by turning off the SFC
block device.

This method is effective for debugging and
test operation.

GX Works3 Operating
Manual

Item Method Remarks Reference
Activation by the transition
condition

The transition is checked at the end of the step.
If it is TRUE, the next step is automatically
activated.

 Page 87 Transition

Activation by the SFC
control instruction

Activate the step specified by the SET [S/
BL\S]/OUT[S/BL\S] (Activating a step)
instruction from the action of the SFC program
or another sequence program.

 Page 95 SFC Control
Instructions

Activation by the
engineering tool

• Activate the specified step by turning on the
step relay.

• Activate the selected step from the menu
[Debug][Control SFC Steps].

This method is effective for debugging and
test operation.

GX Works3 Operating
Manual

Item Method Remarks Reference
Deactivation by the
transition condition

The transition is checked at the end of the step.
If it is TRUE, the current step is automatically
deactivated.

 Page 87 Transition

Deactivation by the reset
step [R]

Activating this step deactivates the step
specified for attribute target.

This method is effective to deactivate the
coil HOLD step [SC] when the sequence
for error processing is selected in the
selection branch.

Page 81 Reset step [R]

Deactivation by the SFC
control instruction

End the step specified by the RST [S/
BL\S]/OUT[S/BL\S]/ZRST(P)[S/
BL\S] (Deactivating a step) instruction from
the action of the SFC program or another
sequence program.

When all the active steps in the specified
block are deactivated by the SFC control
(Deactivating a step) instruction, the block
also ends.

Page 95 SFC Control
Instructions

Deactivation by the
engineering tool

• End the specified step by turning off the step
relay.

• Deactivate the selected step from the menu
[Debug][Control SFC Steps].

This method is effective for debugging and
test operation.

GX Works3 Operating
Manual
0 8 SFC PROGRAM
8.6 SFC Program Execution

8

Behavior when an active step is activated
When an active step is activated, the step behaves as follows.

Series sequence

Selective sequence
■Divergence
The transition condition is checked starting from the left side, and, if the destination of the branch where the transition
becomes TRUE is an active step, the same operation as the series sequence is performed. In the same manner as in the
normal selective sequence, the transition condition is not checked in the lines other than the branch where the double start
becomes TRUE.

■Convergence
The same operation as the series sequence is performed.

Simultaneous sequence
■Divergence
All steps below the transition become active in the next scan.

■Convergence
The transition source becomes inactive. The coil HOLD step [SC] holds operation.

When the transition (2) becomes TRUE, the step (1) becomes
inactive.
The step (3) of the transition which is supposed to be multi-
activated is activated.

When the transition (2) becomes TRUE, the step (1) becomes
inactive.
The step (3) of the transition which is supposed to be multi-
activated is activated.

When the transition (1) becomes
TRUE, the steps (2) to (5) which are
supposed to be multi-activated at
the next scan are all activated.

(1)

(3)

(2)

(1)

(2)

(3)

(3)

(1)

(2) (4) (5)
8 SFC PROGRAM
8.6 SFC Program Execution 111

11
Operation when a program is modified
To change an SFC program, use the following function.
 • Write to the programmable controller
The following table shows the SFC program data that can be changed by the above method.

When data is written to the programmable controller
Shown here is the operation when an SFC program is modified by writing data to the programmable controller.

■When the operating status is changed from STOP to RUN
If the CPU module is stopped during execution (running) of an SFC program, the device state and the SFC program active/
inactive state will be restored to the state immediately before the stop when the CPU module status is changed from STOP to
RUN. The program will start in the Resume Start mode regardless of the CPU parameter setting "SFC Program Start Mode
Setting."
If the sequence program file (including an SFC program) or the FB file is written to the CPU module while it is in the STOP
status, the SFC program will start in the Initial Start mode if the SFC program exists when the operating status is changed
back to RUN. Note that it may start in the Resume Start mode if there are no changes before and after writing of the SFC
program. (Page 98 SFC Program Start Mode Setting)

■Precautions
 • After an SFC program is modified by writing data to the programmable controller, reset the CPU module, and execute the

SFC program.
 • If the CPU parameter "SFC Program Start Mode Setting" has been set to "Resume Start," once turn off (Initial Start) SM322

(SFC program startup status), and modify the program by writing data to the programmable controller. Thereafter, start the
SFC program in the Initial Start mode, and then turn on (Resume Start) SM322 again.

Change type Write to the programmable controller

STOP/PAUSE RUN
SFC program addition  

SFC block addition/deletion  

SFC block
change

SFC diagram
change

Step/transition condition addition/deletion  

Transition condition (branch/ convergence/jump) change  

Step attribute change  

Change in SFC
diagram

Operation output program change  

Transition program change  

Block information change  

SM322 (SFC program startup status) Program modification status

Modified Not modified
OFF (Initial start) Initial start Initial start

ON (Resumption) Initial start Resumption
2 8 SFC PROGRAM
8.6 SFC Program Execution

8

Checking SFC program operation
The functions of the engineering tool that can be used to check the SFC program operation are shown below.
 • Monitor
 • Watch
 • Device/buffer memory batch monitor
 • Control SFC steps
 • SFC block list
 • SFC all blocks batch monitor
 • Active step monitor

 • For details on each functions and operation check methods, refer to the following.
GX Works3 Operating Manual
 • When using the SFC program, the data cannot be written to the step relay (S) by the engineering tool. The

data can be read from the step relay (S).
8 SFC PROGRAM
8.6 SFC Program Execution 113

11
APPENDICES
Appendix 1 Operations of when the MC/MCR

instructions are used to control EN
The following table lists operations of instructions, devices, and labels used in a function block when "Use MC/MCR to Control
EN" is enabled in the inherent property setting of the function block.

*1 Instructions specified in the coil side apply.

When "Yes" is selected for "Use MC/MCR to Control EN", do not use the MC/MCR instructions while the
function block is being executed. If the MC/MCR instructions are used, the EN control may not operate
properly.

Instruction/device/label used in a function
block

Operation of Instruction/device/label used in a function block

When "Yes" is selected for "Use MC/
MCR to Control EN"

When "No" is selected for "Use MC/MCR
to Control EN"

Instructions executed at the rising edge or falling
edge (PLS instruction, instructions for conversion to
pulses (P))*1

The next time EN is turned on, the instruction is
executed if the condition contact is TRUE.

The next time EN is turned on, the instruction may
not be executed even though the condition contact is
TRUE.

Timer (low-speed timer/timer/high-speed timer) The count value becomes 0 and the both coil
and contact turn off.

The state of devices remains unchanged.

Retentive timer (low-speed timer/timer/high-speed
timer), counter, long counter

The coil turns off, but the current count value
and the current state of the contact remain
unchanged.

The state of devices remains unchanged.

Devices specified as the device part of the OUT
instruction

The devices are forcibly turned off. The state of devices remains unchanged.
4 APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN

A

Instructions executed at the rising/falling edge
The following describes operations of instructions executed at the rising/falling edge.

Ex.

A subroutine-type FB using an instruction executed at the rising edge

■When "Yes" is selected for "Use MC/MCR to Control EN"
When EN is turned on, the instruction is executed if the condition contact is TRUE ((1) in the following figure).

■When "No" is selected for "Use MC/MCR to Control EN"
When EN is turned off, operations of the instruction differ depending on the condition contact status ((1) in the following
figure).

Sc: Scan
 EN is turned on. (User operation)
 IN is turned on. (User operation)
 The MOVP instruction is executed. (CPU module operation)
 EN is turned off. (User operation)
 The MOVP instruction is executed. (CPU module operation)

Sc: Scan
 EN is turned on. (User operation)
 IN is turned on. (User operation)
 The MOVP instruction is executed. (CPU module operation)
 EN is turned off. (User operation)
 The MOVP instruction is executed when the condition contact is FALSE immediately before EN is turned off at . (CPU module operation) (The MOVP
instruction is not executed when the condition contact is TRUE immediately before EN is turned off at .)

IN ENO

OUT

EN

IN

MOVP

END

IN

EN

MOVP

(1)

Sc

IN

EN

MOVP

(1)

Sc
APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN 115

11
Timer (low-speed timer/timer/high-speed timer)
The following describes operations of the timer (low-speed timer/timer/high-speed timer).

Ex.

A subroutine-type FB using a low-speed timer

■When "Yes" is selected for "Use MC/MCR to Control EN"
The count value becomes 0 ((1) in the following figure). The coil turns off ((2) in the following figure).

■When "No" is selected for "Use MC/MCR to Control EN"
The current count value and the current state of the coil remain unchanged. ((1) in the following figure).

Sc: Scan
T0 (Count): T0 (count value)
T0 (Coil): T0 (coil)
 EN is turned off. (User operation)
 The coil turns off and the timer value and the count value are cleared. (CPU module operation)

Sc: Scan
T0 (Count): T0 (count value)
T0 (Coil): T0 (coil)
 EN is turned off. (User operation)
 The values remain unchanged. (CPU module operation)

SM400 ENOEN
OUT T0 K3

END

T0 (Count)

EN

T0 (Coil)

(1)

(2)

Sc

0 1 2 23 0 1

T0 (Count)

EN

T0 (Coil)

(1)

(1)

Sc

0 1 2 33 3 3
6 APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN

A

Retentive timer (low-speed timer/timer/high-speed timer), counter, and long counter
The following describes operations of the retentive timer (low-speed timer/timer/high-speed timer), counter, and long counter.

Ex.

A subroutine-type FB using a low-speed retentive timer

■When "Yes" is selected for "Use MC/MCR to Control EN"
The current count value remain unchanged. ((1) in the following figure). The coil turns off ((2) in the following figure).

■When "No" is selected for "Use MC/MCR to Control EN"
The current count value and the current state of the coil remain unchanged. ((1) in the following figure).

Sc: Scan
ST0 (Count): T0 (count value)
ST0 (Coil): T0 (coil)
 EN is turned off. (User operation)
 The coil turns off, but the current count value and the current state of the contact remain unchanged. (CPU module operation)

Sc: Scan
ST0 (Count): T0 (count value)
ST0 (Coil): T0 (coil)
 EN is turned off. (User operation)
 The values remain unchanged. (CPU module operation)

SM400 ENOEN
OUT ST0 K3

END

ST0 (Count)

EN

ST0 (Coil)

(1)

(2)

Sc

0 1 2 33 3 3

ST0 (Count)

EN

ST0 (Coil)

(1)

Sc

0 1 2 33 3 3

(1)
APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN 117

11
Devices specified as the device part of the OUT instruction
The following describes operations of devices specified as the device part of the OUT instruction.

Ex.

A subroutine-type FB using M0 for the device part of the OUT instruction.

■When "Yes" is selected for "Use MC/MCR to Control EN"
M0 is forcibly turned off ((1) in the following figure).

■When "No" is selected for "Use MC/MCR to Control EN"
The current state of M0 remains unchanged ((1) in the following figure).

Sc: Scan
 EN is turned off. (User operation)
 The coil turns off. (CPU module operation)

Sc: Scan
 EN is turned off. (User operation)
 The state of coil remains unchanged. (CPU module operation)

SM400 ENOEN M0

END

M0

EN

(1)

Sc

M0

EN

Sc

(1)
8 APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN

APPX
Appendix 2 Added and Changed Functions 119

A

Appendix 2 Added and Changed Functions
The functions added or changed with the CPU module and engineering tool, and the supported CPU modules' firmware
version and engineering tool software version are given below. Firmware version can be checked through the module
diagnostics (CPU diagnostics). For the module diagnostics (CPU diagnostics), refer to the following manuals.
The firmware version can be confirmed with module diagnosis (CPU diagnosis). Refer to the following manuals for details on
diagnosing the module (CPU diagnosis).
MELSEC iQ-F FX5S/FX5UJ/FX5U/FX5UC User's Manual (Hardware)
For software version, refer to the GX Works3 Operating Manual.

FX5S CPU module

FX5UJ CPU module

FX5U/FX5UC CPU module

Add/Change Function Supported CPU module
firmware version

Supported engineering tool
software version

Reference

Applicable to FX5S CPU module
• Ladder diagram
• Structured text language
• FBD/LD language

From the first "1.080J" or later 

Unicode character strings are
supported.

From the first "1.080J" or later 

Add/Change Function Supported CPU module
firmware version

Supported engineering tool
software version

Reference

Applicable to FX5UJ CPU module
• Ladder diagram
• Structured text language
• FBD/LD language

From the first 1.060N and above 

Unicode character strings are
supported.

"1.030" or later "1.085P" or later 

Add/Change Function Supported CPU module
firmware version

Supported engineering tool
software version

Reference

Applicable to FX5U/FX5UC CPU
module
• Ladder language
• Structured text language
• FBD/LD language

From the first From the first 

Applicable to SFC program "1.220" or later "1.070Y" or later Page 71 SFC PROGRAM

Unicode character strings are
supported.

"1.240" or later "1.075D" or later 

12
INDEX

Symbols
- . 49
* . 49
**. 49
/ . 49
&. 49
+ . 49
< . 49
<= . 49
<> . 49
= . 49
> . 49
>= . 49
$. 39

A
AND . 49
Arrays of structures . 38
Assignment statement . 50

B
BC. 78
Bit . 32
Block start step (with END check) 78
Block start step (without END check). 78
BOOL . 32
BS. 78

C
CASE . 53
Class . 32,34
Coil HOLD step. 78
Common unit . 61,65
Connecting point. 61,66
Connecting wire . 61,66
Constant . 39
Constant unit . 62
COUNTER . 33
Counter . 33

D
Data type . 32,33,34
Device assignment . 31
DINT . 32
Double Word [Signed] . 32
Double Word [Unsigned]/Bit String [32-bit] 32
DWORD . 32

E
EN. 13,24
End step . 78
ENO . 13,24
EXIT . 53
External variable . 19

F
FB file .24
FBD unit . 61,62
FBD/LD language . 6,61
FLOAT [Single Precision] 32
FOR .53
FOR...DO .56
FUN file . 12,14
Function (FUN). 9,12
Function block (FB). 9,17
Function block call statement51
Function call statement .52
FX3 compatible transition operation mode setting
. .97

G
Generic data type (ANY)34
Global label . 32,34
Global labels .31

I
IF .52
IF ...ELSE .52
IF ...ELSIF .52
Initial step .78
Input variable . 13,19
Input/output variable .19
Instance .20
INT .32
Internal variable .19
Interrupt program .10

J
Jump sequence .88

L
Label/device. .87
Ladder diagram . 5,42
LCOUNTER. .33
LD unit . 61,64
Local label .31,32,34
Long Counter .33

M
Macro type function block 18,25
Main routine program .10
MOD .49
Module labels. .31

N
Normal step .78
NOT .49
Notes .46
Number of array elements36
Number of steps .16
0

I

O
OR . 49
Output variable . 13,19

P
POINTER. 33
Pointer . 33
Program. 7,14,24
Program Block . 10
Program file . 7
Programming languages 5
Project . 7

R
R. 78
REAL. 32
REPEAT . 53
Reserved word . 48
Reset step . 78
Retentive Timer . 33
RETENTIVETIMER. 33
RETURN . 52

S
SC. 78
Selective sequence (divergence/convergence). . . 88
Series sequence . 88
SFC program . 6,71
SFC program setting . 97
SFC program start mode setting 97
Simultaneous sequence (divergence/convergence)
. 88
ST language. 5,47
Start conditions setting 97
Statements. 46
STRING. 33,58,67
String. 33,58,67
String [Unicode] . 33
Structures . 33,37
Subroutine program . 10
Subroutine type function block 18,26
System labels . 31

T
TIME . 33
Time . 33
TIMER . 33
Timer. 33
Transition name . 87
Transition No. 87
Type conversion . 50
Type specification . 59

W
WHILE. 53
WORD. 32
Word [Signed]. 32
Word [Unsigned]/Bit String [16-bit] 32
Worksheet . 61,67
WSTRING . 33,58,67

X
XOR .49
121

122

REVISIONS

© 2014 MITSUBISHI ELECTRIC CORPORATION

Revision date Revision Description
October 2014 A First Edition

January 2015 B ■Added functions
FBD/LD language
■Added or modified parts
Chapter 1, Section 3.1, 3.2, 4.1, 4.3, 4.4, 4.5, 5.2, 5.3, Chapter 6, 7

April 2015 C A part of the cover design is changed.

August 2015 D ■Added or modified parts
Section 4.4, Chapter 7

July 2018 E ■Added or modified parts
RELEVANT MANUALS, TERMS, Section 3.2, 4.4, 5.2, 5.3, 6.1, 7.1

December 2018 F ■Added or modified parts
RELEVANT MANUALS, TERMS, Chapter 2, 3, Section 6.1, Appendix 1, TRADEMARKS

October 2019 G ■Added models
FX5UJ CPU module
■Added or modified parts
RELEVANT MANUALS, TERMS, Section 3.4, 5.3, 6.1

May 2020 H ■Added or modified parts
RELEVANT MANUALS, TERMS, Section 3.2, 6.1, TRADEMARKS

October 2020 J ■Added functions
SFC program
■Added or modified parts
RELEVANT MANUALS, Chapter 1, Section 5.2, 6.1, 7.1, Chapter 8, Appendix 2

April 2021 K ■Added or modified parts
RELEVANT MANUALS, TERMS, Section 3.2, 3.3, 4.3, 4.4, 4.6, 6.1, 7.1, Appendix 2,
TRADEMARKS

April 2022 L ■Added model
FX5S CPU module
■Added or modified parts
RELEVANT MANUALS, TERMS, GENERIC TERMS AND ABBREVIATIONS, Chapter 1, Section
3.2, 3.3, 5.2, 7.1, 7.2, 8.2, Appendix 2, WARRANTY

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot
be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

123

WARRANTY
Please confirm the following product warranty details before using this product.

[Gratis Warranty Term]
The gratis warranty term of the product shall be for one
year after the date of purchase or delivery to a
designated place. Note that after manufacture and
shipment from Mitsubishi, the maximum distribution
period shall be six (6) months, and the longest gratis
warranty term after manufacturing shall be eighteen (18)
months. The gratis warranty term of repair parts shall not
exceed the gratis warranty term before repairs.

[Gratis Warranty Range]
The range shall be limited to normal use within the
usage state, usage methods and usage environment,
etc., which follow the conditions and precautions,
etc., given in the instruction manual, user's manual
and caution labels on the product.

(1)

Even within the gratis warranty term, repairs shall be
charged for in the following cases.

(2)

Failure occurring from inappropriate storage or
handling, carelessness or negligence by the
user. Failure caused by the user's hardware or
software design.

1.

Failure caused by unapproved modifications,
etc., to the product by the user.

2.

When the Mitsubishi product is assembled into a
user's device, Failure that could have been
avoided if functions or structures, judged as
necessary in the legal safety measures the user's
device is subject to or as necessary by industry
standards, had been provided.

3.

Failure that could have been avoided if
consumable parts (battery, backlight, fuse, etc.)
designated in the instruction manual had been
correctly serviced or replaced.

4.

Relay failure or output contact failure caused by
usage beyond the specified life of contact
(cycles).

5.

Failure caused by external irresistible forces such
as fires or abnormal voltages, and failure caused
by force majeure such as earthquakes, lightning,
wind and water damage.

6.

Failure caused by reasons unpredictable by
scientific technology standards at time of
shipment from Mitsubishi.

7.

Any other failure found not to be the responsibility
of Mitsubishi or that admitted not to be so by the
user.

8.

Mitsubishi shall accept onerous product repairs for
seven (7) years after production of the product is
discontinued.
Discontinuation of production shall be notified with
Mitsubishi Technical Bulletins, etc.

(1)

Product supply (including repair parts) is not available
after production is discontinued.

(2)

2. Onerous repair term after discontinuation
of production

If any faults or defects (hereinafter "Failure") found to be
the responsibility of Mitsubishi occurs during use of the
product within the gratis warranty term, the product shall
be repaired at no cost via the sales representative or
Mitsubishi Service Company. However, if repairs are
required onsite at domestic or overseas location,
expenses to send an engineer will be solely at the
customer's discretion. Mitsubishi shall not be held
responsible for any re-commissioning, maintenance, or
testing on-site that involves replacement of the failed
module.

1. Gratis Warranty Term and Gratis Warranty
Range

Overseas, repairs shall be accepted by Mitsubishi's local
overseas FA Center. Note that the repair conditions at
each FA Center may differ.

3. Overseas service

The specifications given in the catalogs, manuals or technical
documents are subject to change without prior notice.

5. Changes in product specifications

4. Exclusion of loss in opportunity and
secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall
not be liable for compensation to:
(1) Damages caused by any cause found not to be the

responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user

by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether

foreseeable or not, compensation for accidents, and
compensation for damages to products other than
Mitsubishi products.

(4) Replacement by the user, maintenance of on-site
equipment, start-up test run and other tasks.

In using the Mitsubishi MELSEC programmable
controller, the usage conditions shall be that the
application will not lead to a major accident even if
any problem or fault should occur in the
programmable controller device, and that backup and
fail-safe functions are systematically provided outside
of the device for any problem or fault.

(1)

The Mitsubishi programmable controller has been
designed and manufactured for applications in general
industries, etc. Thus, applications in which the public
could be affected such as in nuclear power plants and
other power plants operated by respective power
companies, and applications in which a special quality
assurance system is required, such as for railway
companies or public service purposes shall be excluded
from the programmable controller applications.
In addition, applications in which human life or property
that could be greatly affected, such as in aircraft,
medical applications, incineration and fuel devices,
manned transportation, equipment for recreation and
amusement, and safety devices, shall also be excluded
from the programmable controller range of applications.
However, in certain cases, some applications may be
possible, providing the user consults their local
Mitsubishi representative outlining the special
requirements of the project, and providing that all
parties concerned agree to the special circumstances,
solely at the user's discretion.

(2)

6. Product application

Mitsubishi shall have no responsibility or liability for any
problems involving programmable controller trouble and
system trouble caused by DoS attacks, unauthorized
access, computer viruses, and other cyberattacks.

(3)

124

TRADEMARKS
Anywire and AnyWireASLINK are either registered trademarks or trademarks of Anywire Corporation.
Unicode is either a registered trademark or a trademark of Unicode, Inc. in the United States and other countries.
The company names, system names and product names mentioned in this manual are either registered trademarks or
trademarks of their respective companies.
In some cases, trademark symbols such as '' or '' are not specified in this manual.

JY997D55701L

Manual number: JY997D55701L
MODEL: FX5-P-PS-E
MODEL CODE: 09R538

Specifications subject to change without notice.

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

	SAFETY PRECAUTIONS
	INTRODUCTION
	CONTENTS
	RELEVANT MANUALS
	TERMS
	GENERIC TERMS AND ABBREVIATIONS
	1 OUTLINE
	2 PROGRAM CONFIGURATION
	3 PROGRAM ORGANIZATION UNITS
	3.1 Program Blocks
	3.2 Functions (FUN)
	3.3 Function Blocks (FB)
	3.4 Precautions

	4 LABELS
	4.1 Type
	4.2 Class
	4.3 Data Type
	4.4 Arrays
	4.5 Structures
	4.6 Constant
	4.7 Precautions

	5 LADDER DIAGRAM
	5.1 Configuration
	Ladder symbols
	Program execution order
	Precautions for using a function block in ladder diagram

	5.2 Inline ST
	5.3 Statements and Notes

	6 ST LANGUAGE
	6.1 Configuration
	Delimiter
	Operator
	Syntax
	Constant
	Label and device
	Comment

	7 FBD/LD LANGUAGE
	7.1 Configuration
	Program unit
	Worksheet
	Constant
	Labels and devices

	7.2 Inline ST
	7.3 Program Execution Order
	The order of executions of program units

	8 SFC PROGRAM
	8.1 Specifications
	8.2 Structure
	Block
	Step
	Action
	Transition

	8.3 SFC Control Instructions
	8.4 SFC Setting
	CPU parameter
	SFC block setting

	8.5 SFC Program Execution Order
	Whole program processing
	SFC program processing sequence

	8.6 SFC Program Execution
	Starting and stopping the SFC program
	Starting and ending a block
	Activating and deactivating a step
	Behavior when an active step is activated
	Operation when a program is modified
	Checking SFC program operation

	APPENDICES
	Appendix 1 Operations of when the MC/MCR instructions are used to control EN
	Appendix 2 Added and Changed Functions

	INDEX
	REVISIONS
	WARRANTY
	TRADEMARKS

