
Remote I/O R30 Series

MODBUS/TCP INTERFACE MODULE

• Interchanges analog or discrete I/O signals with the

Functions & Features

MODEL: R30NE1[1]

ORDERING INFORMATION

• Code number: R30NE1[1] Specify a code from below for [1]. (e.g. R30NE1/Q)

• Specify the specification for option code /Q (e.g. /C01/SET)

[1] OPTIONS

blank: none
/Q: With options (specify the specification)

SPECIFICATIONS OF OPTION: Q (multiple selections)

COATING (For the detail, refer to M-System's web site.)

/C01: Silicone coating

/C02: Polyurethane coating

/C03: Rubber coating

EX-FACTORY SETTING

/SET: Preset according to the Ordering Information Sheet (No. ESU-9019)

RELATED PRODUCTS

PC configurator software (model: R30CFG)
PC configurator software (model: R30CON)
Downloadable at M-System's web site.
For connecting to PC, use commercially available Mini-B
type USB cable. (provided by user)
R3 series I/O modules (except R3-TC2)

M-SYSTEM CO., LTD. http://www.m-system.co.jp/

GENERAL SPECIFICATIONS

Connection

Ethernet: RJ-45 connector

Internal bus: Via the Installation Base (model: R30BS) Internal power: Via the Installation Base (model: R30BS) Isolation: Ethernet to internal bus or internal power

Setting input type & input range:

R30 series I/O module: PC configuration software (model: R30CFG)

R3 series I/O module: PC configuration software (model: R3CON)

Internal bus communication cycle: Approx. 1 msec. Status indicator LEDs: PWR, RUN, ERR (Refer to the instruction manual for details.)

ETHERNET COMMUNICATION

Communication Standard: IEEE 802.3u Transmission: 10BASE-T, 100BASE-TX Baud rate: 10/100 Mbps (Auto Negotiation function) Protocol: Modbus/TCP Data: RTU (Binary) Max. number of socket connections: 2 Transmission media: 10BASE-T (STP, Category 5), 100BASE-TX (STP, Category 5e) Max. length of fieldbus segment: 100 meters Ethernet indicator LEDs: LINK10, LINK100 IP address: 192.168.0.1 (factory setting); can be set/changed using PC Configurator Software (model: R30CFG) Port No.: 502

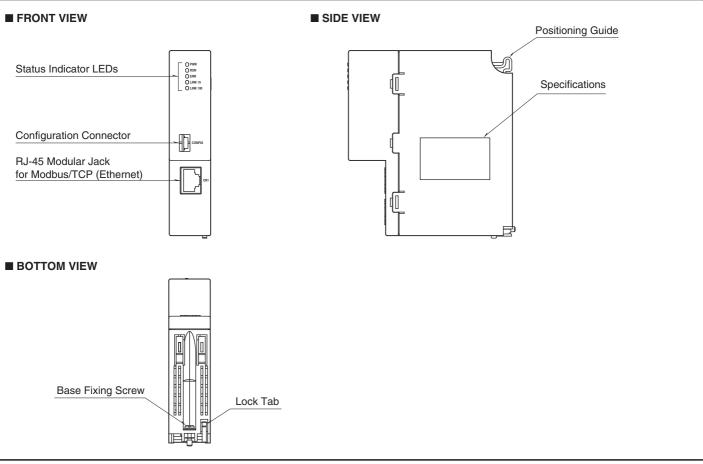
INSTALLATION

Current consumption: 110 mA Operating temperature: -10 to +55°C (14 to 131°F) Storage temperature: -20 to +65°C (-4 to +149°F) Operating humidity: 10 to 90 %RH (non-condensing) Atmosphere: No corrosive gas or heavy dust Mounting: Installation Base (model: R30BS) Weight: 105 g (3.70 oz)

PERFORMANCE

Insulation resistance: \geq 100 M Ω with 500 V DC Dielectric strength: 1500 V AC @ 1 minute (Ethernet to internal bus or internal power) 1500 V AC @ 1 minute (power input to FE; isolated on the power supply module)

STANDARDS & APPROVALS


EU conformity: EMC Directive EMI EN 61000-6-4 EMS EN 61000-6-2 RoHS Directive EN 50581

PC CONFIGURATOR

The following parameters can be set with using PC Configurator Software (model: R30CFG) Refer to the users manual for the R30CFG for detailed operation of the software program.

SETTING RANGE	DEFAULT
0.2. to 3200.0 (sec.)	3.0 (sec.)
0 to 255	192.168.0.1
0 to 255	255.255.255.0
0 to 255	192.168.0.100
1 to 32000	502
3.0 to 3200.0 (sec.)	180.0 (sec.)
	0.2. to 3200.0 (sec.) 0 to 255 0 to 255 0 to 255 1 to 32000 1 to 32000 1 to 32000 1 to 32000 1 to 32000

EXTERNAL VIEW

MODBUS FUNCTION CODES & SUPPORTED CODES

Data & Control Functions

CODE	NAME		
01	Read Coil Status	Х	Digital output from the slave (read/write)
02	Read Input Status	Х	Status of digital inputs to the slave (read only)
03	Read Holding Registers	Х	General purpose register within the slave (read/write)
04	Read Input Registers	Х	Collected data from the field by the slave (read only)
05	Force Single Coil	Х	Digital output from the slave (read/write)
06	Preset Single Register	Х	General purpose register within the slave (read/write)
07	Read Exception Status		
08	Diagnostics	Х	
09	Program 484		
10	Poll 484		
11	Fetch Comm. Event Counter	Х	Fetch a status word and an event counter
12	Fetch Comm. Event Log	Х	A status word, an event counter, a message count and a field of event bytes
13	Program Controller		
14	Poll Controller		
15	Force Multiple Coils	Х	Digital output from the slave (read/write)
16	Preset Multiple Registers	Х	General purpose register within the slave (read/write)
17	Report Slave ID	Х	Slave type / 'RUN' status
18	Program 884/M84		
19	Reset Comm. Link		
20	Read General Reference		
21	Write General Reference		
22	Mask Write 4X Register		
23	Read/Write 4X Register		
24	Read FIFO Queue		

Exception Codes

CODE	NAME		
01	Illegal Function	Х	Function code is not allowable for the slave
02	Illegal Data Address	Х	Address is not available within the slave
03	Illegal Data Value	Х	Data is not valid for the function
04	Slave Device Failure		
05	Acknowledge		
06	Slave Device Busy		
07	Negative Acknowledge		
08	Memory Parity Error		

Diagnostic Subfunctions

CODE	NAME		
00	Return Query Data	Х	Loop back test
01	Restart Comm. Option	Х	Reset the slave and clear all counters
02	Return Diagnostic Register	Х	Contents of the diagnostic data (2 bytes)
03	Change ASCII Input Delimiter	Х	Delimiter character of ASCII message
04	Force Listen Only Mode	Х	Force the slave into Listen Only Mode

MODBUS I/O ASSIGNMENT

	ADDRESS	DATA TYPE	DATA
Coil (0X)	1 to 2048		Discrete Output
Input (1X)	1 to 2048		Discrete Input
	2049 to 2064		Module Status (R30 series)
	2065 to 2080		Module Status (R3 series)
	2081 to 2096		Error Status (R30 series)
	2097 to 2112		Error Status (R3 series)
	2113 to 2128		Data Error Status (R30 series)
	2129 to 2144		Data Error Status (R3 series)
Input Register (3X)	1 to 512	I	Analog Input
Holding Register (4X)	1 to 512	I	Analog Output

DATA TYPE

I: Integer; 0 to 10000 (0 to 100%)

Note: DO NOT access addresses other than mentioned above. Accessing such an address may result in problem such as malfunction of the unit.

- 1) Module Status indicates whether or not an I/O module is mounted on each slot. The bit corresponding to the mounted slot turns to '1', and the unmounted slot to '0'.
- 2) Error Status indicates occurrence of an error of each module as described below. The bit corresponding to the module having an error turns to '1'.
 - R3-TSx, R3x-RSx, R3-US4 (input type: T/C or RTD): Input burnout
 - R3x-DA16A: Power input error or disconnection
 - R3x-YS4: Output disconnection
- 3) Data Error Status indicates occurrence of an error of each module as described below.

The bit corresponding to the module having an error turns to '1'.

- Analog input modules transmitting 0 to 100% scaling value: Input overrange (\leq -15% or \geq 115%)
- R30YS4: Output disconnection
- R30TS4, R30RS4, R30USx (input type: T/C or RTD): Input burnout
- R3-TSx, R3x-RSx, R3-US4 (input type: T/C or RTD): Input burnout
- R3-US4 (input type: voltage): Input overrange (\leq -10% or \geq 110%)

4) I/O Data (discrete input, discrete output, analog input, analog output) Assignment

This unit recognizes type (No. of data areas) of each I/O module mounted on the same base, and automatically assigns it to each data area in the order of slot number. See table below.

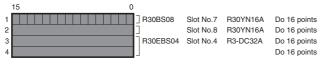
Each data area is allocated only with the data of the assigned module and still has space.

When data of each data area is transmitted to the host PC/PLC in the order of slot number, other types of data of the latter slot number, if any, are allocated and transmitted together so that each type of data is transmitted sequentially; that is, no blank data is transmitted. See figures below.

I/O Data Assignment is performed only when the power is turned on.

Be sure to turn the power off and on again when the module configuration has been changed.

The max. number of data areas per node is 64.


Thus, the total number of data areas of the mounted I/O modules must be equal to or less than 64.

When there is a blank slot, data of the latter slot number is transmitted to the host PC/PLC so that no blank data is transmitted. The table below shows an example of I/O configuration and the figures show how I/O data are assigned.

BASE	SLOT NO.	MODEL	DATA AREAS
R30BS08	PWR	R30PS1	-
	COM	R30NE1	-
	1	R30SV4	4
	2	R30US2	2
	3	R30TS4	4
	4	R30YV4	4
	5	R30XN16A	1
	6	R30XN16A	1
	7	R30YN16A	1
	8	R30YN16A	1
R30EBS04	1	R3-SV8	8
	2	R3-YV8	8
	3	R3-DA32A	2
	4	R3-DC32A	2

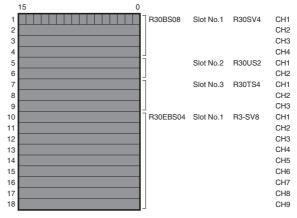
Coil (0X)

The figure below indicates discrete output.

Input (1X)

10

The figure below indicates discrete input.


	15 0			
1] R30BS08	Slot No.5	R302
2]	Slot No.6	R302
3		R30EBS04	Slot No.3	R3-D
4				
		-		

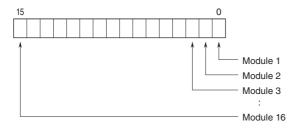
0

.5 R30XN16A Di 16 points .6 R30XN16A Di 16 points .3 R3-DA32A Di 16 points Di 16 points Di 16 points

Input Register (3X)

The figure below indicates analog input.

Holding Register (4X)


The figure below indicates analog output.

MODULE STATUS, ERROR STATUS, DATA ERROR STATUS

Shows each module's availability and error status.

I/O DATA DESCRIPTIONS

The data allocations for typical I/O modules are shown below.

Refer to the manual for each module for detailed data allocations.

ANALOG DATA (16-bit data, models: R30SV2, R30SV4, R30YV4, R30YS4, R30US2, R30US4 etc.)

16-bit binary data.

Basically, 0 to 100% of the selected I/O range is converted into 0 to 10000 (binary).

Negative percentage is represented in 2's complements.

15								0

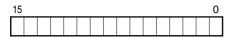
ANALOG DATA (16-bit data, models: R30RS4, R30TS4, R30US2, R30US4, etc.)

16-bit binary data.

With °C temperature unit, raw data is multiplied by 10. For example, 25.5°C is converted into 255. With °F temperature unit, the integer section of raw data is directly converted into the data.

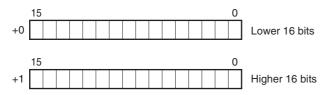
For example, 135.4°F is converted into 135.

Minus temperature is converted into negative values, represented in 2's complements.


15								0	

ANALOG DATA (16-bit data, models: R30CT4E etc.)

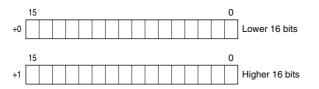
16-bit binary data.

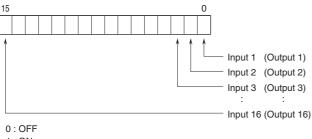

Integer obtained by multiplying unit value (A) by 100.

In case of CLSE-R5, integer obtained by multiplying unit value (A) by 1000.

ANALOG DATA (32-bit data, models: R3-PA2, PA4A, WT1, WT4, etc.)

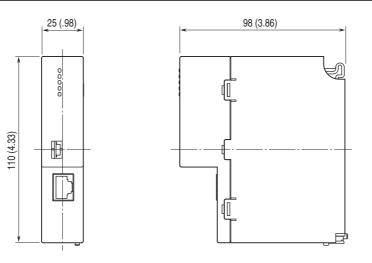
32-bit binary data is used for accumulated counts, encoder positions and active energy. Lower 16 bits are allocated from the lowest address to higher ones, higher 16 bits in turn.




ANALOG DATA (32-bit data, models: R3-BA32A, BC32A, etc.)

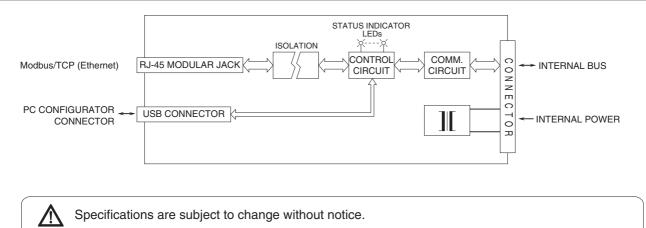
32-bit binary data is used for BCD.

Lower 16 bits are allocated from the lowest address to higher ones, higher 16 bits in turn.



■ 16-POINT DISCRETE DATA (models: R30XN16A, R30YN16A, R30YN16C etc.)

1 : ON


DIMENSIONS unit: mm (inch)

MODEL: R30NE1

SCHEMATIC CIRCUITRY & CONNECTION DIAGRAM

