BEFORE USE

Thank you for choosing M-System. Before use, please check contents of the package you received as outlined below. If you have any problems or questions with the product, please contact M-System's Sales Office or representatives.

- PACKAGE INCLUDES:

Digital panel meter
Engineering unit sticker label sheet

MODEL NO.

Confirm Model No. marking on the product to be exactly what you ordered.

OPERATING MANUAL

This manual describes necessary points of caution when you use this product, including installation, connection, basic maintenance procedures and detailed operations.
$\underline{\mathbf{2 . 0 0}}$ marked parameters are usable with the product version 2.00 or higher.

POINTS OF CAUTION

■ CONFORMITY WITH EC DIRECTIVES

- This equipment is suitable for Pollution Degree 2 and Installation Category II. Reinforced insulation (input or DC output to alarm output to power: 300 V) and basic insulation (input to DC output: 300 V) are maintained. Prior to installation, check that the insulation class of this unit satisfies the system requirements.
- Altitude up to 2000 meters
- The equipment must be installed such that appropriate clearance and creepage distances are maintained to conform to CE requirements. Failure to observe these requirements may invalidate the CE conformance.
- In order to enable the operator to turn off the power input immediately, install a switch or a circuit breaker according to the relevant requirements in IEC 60947-1 and IEC 60947-3 and properly indicate it.

■ POWER INPUT RATING \& OPERATIONAL RANGE

Locate the power input rating marked on the product and confirm its operational range as indicated below:
$100-240 \mathrm{~V}$ AC rating: $85-264 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$, approx. 6.5VA
24 V DC rating: $24 \mathrm{~V} \pm 10 \%$, approx. 3 W
110 V DC rating: $85-150 \mathrm{~V}$, approx. 3 W

■ GENERAL PRECAUTIONS

- Before you remove the unit or mount it, turn off the power supply and input signal for safety.
- Be sure to put the terminal cover on while the power is supplied.

ENVIRONMENT

- Indoor use
- When heavy dust or metal particles are present in the air, install the unit inside proper housing with sufficient ventilation.
- Do not install the unit where it is subjected to continuous vibration. Do not subject the unit to physical impact.
- Environmental temperature must be within -10 to $+55^{\circ} \mathrm{C}$ (14 to $131^{\circ} \mathrm{F}$) with relative humidity within 30 to $90 \% \mathrm{RH}$ in order to ensure adequate life span and operation.
- Be sure that the ventilation slits are not covered with cables, etc.

- REQUIREMENTS TO ENSURE IP 66

- Observe the designated panel cutout size (W92 $\times \mathrm{H} 45$ mm).
- The watertight packing included in the product package must be placed behind the front cover.
- Both mounting brackets must be fastened tightly until they hit the panel.
- Confirm visually that the packing is not contorted or excessively run off the edge after installation.

WIRING

- Make sure for safety that only qualified personnel perform the wiring.
- Do not install cables (power supply, input and output) close to noise sources (high frequency line, etc.).
- Do not bind these cables together with those in which noises are present. Do not install them in the same duct.

■ AND

The unit is designed to function as soon as power is supplied, however, a warm up for 10 minutes is required for satisfying complete performance described in the data sheet.

COMPONENT IDENTIFICATION

- FRONT VIEW

(6) Scale $/ \uparrow$ Button
- COMPONENT IDENTIFICATION

No. COMPONENT	FUNCTION	
(1)	Main display	Indicates present values and setting values.
(2)	Alarm indicators *1	Indicate alarm status of the input signal.
		LL turns on when the LL alarm is tripped.
	L turns on when the L alarm is tripped.	
	H turns on when the H alarm is tripped.	
	HH turns on when the HH alarm is tripped.	
P turns on when none of the other alarms is tripped.		

INSTALLATION

PANEL CUTOUT unit: mm

Panel thickness: 1.6 to 8.0 mm

■ HOW TO MOUNT THE UNIT ON A PANEL

The watertight packing must be in place to hold the meter. Do not remove it.

1) Insert the unit into the panel cutout.
2) Push the mounting brackets into the grooves on both sides of the rear module, until they hit the panel's rear side.

TERMINAL CONNECTIONS

Connect the unit as in the diagram in the following page or refer to the connection diagram on the terminal cover.

■ EXTERNAL DIMENSIONS unit: mm (inch)

- CONNECTION DIAGRAM

■ ALARM SUFFIX CODE 0: No alarm output

- ALARM SUFFIX CODE 1: N.O. contact, 4 points

ALARM SUFFIX CODE 2: SPDT contact, 2 points

- Relay Protection
- AC Powered

- DC Powered

Note: The section enclosed by broken line is only with DC output option.

- Input Terminal Assignments

INPUT TYPE (indicator)	MEASURING RANGE	INPUT TERMINALS
V200	$\pm 200 \mathrm{~V}$	$1-4$
V10	$\pm 10 \mathrm{~V}$	1
V5	$\pm 5 \mathrm{~V}$	
V1	$\pm 1 \mathrm{~V}$	
A2-2	$\pm 2 \mathrm{~A}$	
A1-1	$\pm 1 \mathrm{~A}$	
V700	$\pm 700 \mathrm{~V}$	
V01	$\pm 100 \mathrm{mV}$	$2-4$
V001	$\pm 10 \mathrm{mV}$	$2-4$

INPUT TYPE (indicator)	MEASURING RANGE	INPUT TERMINALS
V0-5	$0-5 \mathrm{~V}$	$2-4$
V1-5	$1-5 \mathrm{~V}$	$2-4$
A100	$\pm 100 \mathrm{~mA}$	$3-4$
A1	$\pm 1 \mathrm{~mA}$	$3-4$
A0-2	$0-20 \mathrm{~mA}$	
A4-2	$4-20 \mathrm{~mA}$	
A01	$\pm 100 \mu \mathrm{~A}$	

■TERMINAL BLOCK

- How to remove the terminal block cover

Insert the minus tip of a screwdriver into each hole at the four corners of the cover and pull it to the direction as indicated below to separate the terminal block cover.

- How to remove the terminal block

The terminal block is separable in two pieces. Loosen two screws on both sides of the terminal block to separate. Be sure to turn off the power supply, input signal and power supply to the output relays before separating the terminal block.

SETTING PROCEDURE

■ INITIAL SETTING FLOWCHART

*1. Optional settings for parameters in a broken-line section Alarm Setting Mode is locked with no-alarm-output type.

■ GENERAL SETTING FLOWCHART

*1. Preset time can be specified with "Transition Time to Lockout Setting Mode" in Advanced Setting Mode.
*2. Alarm Setting Mode is locked with no-alarm-output type
*3. The last measured values or status are held for DC and alarm outputs while the measuring is stopped. (Except the analog output adjustments during the loop test and the scaling setting)

OPERATIONS IN MEASURING MODE

- Switching the main display to MAX or MIN values

Press Max/Min button to switch the main display to MAX or MIN values.
'Max' or 'Min' indicator turns on during the MAX/MIN display mode.
Press Max/Min button again for 1 second or more, or turn the power supply off and on to cancel the MAX/MIN display mode.

- Forced Zero

Press Up button to shift the present display value to zero and to continue measuring in reference to this point. 'Zro' and 'Fnc' indicators turn on during the Forced Zero mode.
Press Up button again for 1 second or more to cancel the Forced Zero mode.
Forced Zero cannot be executed when the operation is prohibited with the lockout protection setting.
MAX/MIN display mode cannot be cancelled while in the Forced Zero mode.
Forced Zero cannot be cancelled while in the MAX/MIN display mode.
Forced Zero value is stored in memory even when the power is removed.

- Confirming alarm setpoints

Press Alarm $/ \downarrow$ button to confirm alarm setpoints.

- OPERATIONS IN SETTING MODES

- Main display

The main display shows the current settings while the panel meter is in the setting mode.

- Shifting through setting parameters

In any setting mode, pressing Alarm $\downarrow \downarrow$ button shifts one parameter to the next. Pressing Scale/ \uparrow button shifts one to the previous.

- Changing parameters

Pressing Shift button while one of the parameter settings is indicated on the display shifts the panel meter into the setting standby mode. The digit to which you can apply changes starts blinking.
Press Up button to change the blinking value.
Press Shift button to go to the next digit.
Press Alarm $/ \downarrow$ or Scale $/ \uparrow$ button to apply the new value and go to the next or previous parameter setting.

- Invalid parameters
'Max' and 'Min' indicators start blinking when a parameter is within invalid range while setting. Return the setting within the valid range or abort it by holding down Max/Min button for 1 second or more.

- Negative reading setting

The negative sign (-) must be set to the leftmost digit. For example, set '-080.0’ instead of ${ }^{〔}-80.0$.'

- If you get lost...

Hold down Max/Min button for 1 second or more to return to the measuring mode without applying the last changes.
(Those which have been already applied by pressing Alarm/ \downarrow or Scale/ \uparrow button are not cancelled.)

- SCALING SETTING MODE

[^0]

Scaling setting: Go through the scaling setting in the order of 'Input scaling value A' --> 'Display scaling value A' --> 'Input scaling value B^{\prime}--> 'Display scaling value B ,' so that the zero and the full-scale points are connected linearly as shown in the figures below. Input scaling value $A<I n p u t ~ s c a l i n g ~ v a l u e ~ B . ~$
Do not set the same value for Display scaling value A and B.
Decimal point position: Decimal point position is specified independently from the scaling. When you set the display scaling, include zeros for fractions (10000 to show 10.000).

PARAMETER	INDICATORS	DISPLAY	FUNCTION	DEFAULT VALUE
Decimal point position＊2	D／P	4 positions or none	Decimal point position（ $10^{-4} \underline{\underline{\mathbf{2} .00}}$ ）	10000 1.0000 2000 10000 2000 700.0
Analog output function mode$\underline{2.00}$	Fnc	d，59	Proportional to the display value	d，59
		SLEE	Proportional to the scaling value	
Analog output 0\％ adjustment $\underline{\underline{2.00}}$	Zro Fnc	119 （increasing）	Analog output 0\％adjustment： adjustable range -5 to 100\％	0\％output （default value）
		dロニ゙の（decreasing）		
Analog output 100\％ adjustment	Spn Fnc	UP（increasing）	Analog output 100\％adjustment： adjustable range 0 to 105%	100% output （default value）
		dロニ゙ゥ（decreasing）		

＊1．During setting with parameters，＇Tch＇turns off．
＊2．＇Default Value＇shows values for input code in order from 1 through 6.
Analog output functioin mode：Forced zero，low－end cutout and display refreshing rate are applied to the display value，thus affecting the analog output when the mode is set to＇Proportional to the display value．＇
The input signal directly affects the analog output with＇Proportional to the scaling value＇setting．
Analog output 0\％／100\％adjustment：Pressing［Shift］button switches the signal to increase or decrease，and then pressing［Up］ button controls it toward the desired output value．Analog output 0\％＋5\％\leq Analog output 100\％

－Normal Scaling

The display value increases when the input signal increases．

－Inverted Scaling
The display value decreases when the input signal increases．

‘Teach＇Calibration

＇Input scaling value A＇and＇Input scaling value B＇can be adjusted by applying actual input signals．These settings will be lost after an initialization．

How to＇Teach＇Input Values

1）Hold down Scale／\uparrow button for 3 seconds or more to enter the scaling setting mode．
2）Choose an appropriate input type and press Alarm／\downarrow button to move on to Input scaling value A．
3）＇Zro＇and＇Tch＇indicators turn on．
4）Zero point：Press Up button and＇Tch＇indicator starts blinking．
5）Apply 0% input signal．Press Up button again and＇Tch＇indicators returns to ON．
6）Press Alarm $/ \downarrow$ button to move on to Display scaling value A．
7）Press Alarm／\downarrow button again to move on to Input scaling value B ．
8）＇Spn＇and＇Tch＇indicators turn on．
9）Full－scale point：Press Up button and＇Tch＇indicator starts blinking．
10）Apply 100% input signal．Press Up button again and＇Tch＇indicators returns to ON．

*1. Alarm point is fixed at " 2 " when the alarm model suffix code 2 is specified.

PARAMETER	INDICATORS		DISPLAY	FUNCTION	DEFAULT	
Alarm points	H L Fnc		RLne	Dual alarm：L，H	ML $\frac{1}{}$	
	HH H L LL	Fnc	9154	Quad alarm：LL，L，H，HH	号近	
LL setpoint＊	LL Fnc		－19999．．． 19999	LL：Setpoint value	－8．000	
			－．8000			
			－ 1500			
	$\underline{L L}: \mathrm{FnC} \quad \mathbf{2 . 0 0}$				－ 80.00	
			－ 1.600			
			－ 5600			
LL trip action $\underline{\mathbf{2 . 0 0}}$	L－Fnc			ᄂก̄力，	LL：Hi trip	ᄂñ̆o
			Lñ̆	LL：Lo trip		
LL deadband（hysteresis）	H ）LL Fnc			$0000 . .9999$	LL：Deadband（hysteresis）value	0001
	P LL Fnc	2.00				
LL ON delay time	LL D／P Fnc			$80 . .99$	LL：ON delay time（seconds）	00
	LL D／P Fnc	2.00				
LL coil at alarm $\quad \underline{\mathbf{2 . 0 0}}$	LL－Fnc		rSEn	LL：Coil energized at alarm	「UEn	
			ryon	LL：Coil de－energized at alarm		
L setpoint＊	L Fnc		－ 19999 ．．． 19999	L：Setpoint value	$\begin{aligned} & -4000 \\ & -4000 \\ & -7800 \\ & -4000 \\ & -0.800 \\ & -2800 \end{aligned}$	
	L Fnc $\mathbf{2 . 0 0}$					
L trip action $\quad \underline{\mathbf{2 . 0 0}}$	L Fnc		Lフ̈H，	L：Hi trip	Lño	
			Lñı	L：Lo trip		
L deadband（hysteresis）	H, L Fnc		$8000 . . .9999$	L：Deadband（hysteresis）value	0001	
	P ${ }^{\text {P／}}$ L Fnc	2.00				
L ON delay time	L D／P Fnc		00．．． 99	L：ON delay time（seconds）	00	
	L D／P Fnc	2.00				
L coil at alarm $\underline{\underline{\mathbf{2 . 0 0}}}$	L：Fnc		ryEn	L：Coil energized at alarm	「UEп	
			ryon	L：Coil de－energized at alarm		
H setpoint＊	H Fnc		－ 19999 ．．． 19999	H：Setpoint value	$\begin{array}{r} 4000 \\ 4000 \\ 800 \\ 4000 \\ 0.000 \\ 20000 \end{array}$	
	H Fnc 2.00					
H trip action $\quad \underline{\mathbf{2 . 0 0}}$	He Fnc		ᄂニ̆н，	H：Hi trip	ᄂп̆н，	
			Lñ̆	H：Lo trip		
H deadband（hysteresis）	H Fnc		$0000 . . .9999$	H：Deadband（hysteresis）value	0001	
	P H：Fnc	2.00				
H ON delay time	H D／P Fnc		$00 . . .99$	H：ON delay time（seconds）	00	
	H D／P Fnc	2.00				
H coil at alarm	H：Fnc		ryEn	H：Coil energized at alarm	rSEn	
			ryon	H：Coil de－energized at alarm		

PARAMETER	INDICATORS	DISPLAY	FUNCTION	DEFAULT VALUE
HH setpoint＊	HH Fnc	－ 19999 ．．． 19999	HH ：Setpoint value	8.000
				80ロロ
				160.0
	$\underline{\mathrm{HH}} \mathbf{} \mathrm{Fnc} \quad \underline{\mathbf{2 . 0 0}}$			80ถ
				1.600
				560.0
HH trip action $\underline{\mathbf{2 . 0 0}}$	HH：Fnc	டデカ	HH：Hi trip	ட п̈，
		டだレロ	HH：Lo trip	
HH deadband（hysteresis）	H, HH Fnc	8000．．． 9999	HH：Deadband（hysteresis）value	
	P HH Fnc			
HH ON delay time	$\mathrm{HH} \mathrm{D} / \mathrm{P}$ Fnc	旳… 99	HH：ON delay time（seconds）	018
	HH ${ }^{\text {H／P }}$／Fnc			
HH coil at alarm $\underline{\underline{2.00}}$	Hi F Fnc	ーエEの	HH：Coil energized at alarm	「UEの
		rudn	HH：Coil de－energized at alarm	
Main display flashing $\mathbf{2 . 0 0}$ at alarm	Fnc	\square－	No flashing	17
		1	Flashing in 1.0 sec．intervals	
		b こ	Flashing in 0.5 sec ．intervals	
		b 3	Flashing in 0.2 sec．intervals	
		$b 4$	Flashing in 0.1 sec．intervals	

＊＇Default Value＇shows values for input code in order from 1 through 6.
Note 1：Alarm Setting Mode is locked with no－alarm－output type．
Alarm points depend upon the model suffix code．LL and HH setpoints are usable only for quad alarm type．
Note 2：LED status： \qquad $=\mathrm{ON}$ ， ＝Blinking
Note 3：Specify setpoint and deadband in the scaled range values．Alarm is disabled when＇$-\quad-\quad$－＇is specified for the setpoint．
Note 4：All alarm setpoints are disabled（reset to＇－－－－＇status）when the input type has been changed．Re－setting is required．
Note 5：Alarm is set with the display value．
Note 6：Decimal point is not indicated when setting deadband values．
Note 7：Alarm indicators are shown at＇S．ERR＇error（input signal out of the usable range）for the product version 2.00 or higher．
Note 8：During setting mode，status indicators and also alarm indicatorsturn on according to the alarm status when changing mode．

- Alarm output pattern

Alarm trips according to the setpoint and the trip action (direction) setting.
P indicator turns on when all other alarm indicators are off.

[Example] All trip points set to High setting

■ ADVANCED SETTING MODE

PARAMETER	INDICATORS	DISPLAY	FUNCTION	DEFAULT VALUE
Moving average	Fnc	RoFF	No moving averaging	BoFF
		\bigcirc Q	Moving average with 2 samples	
		94	Moving average with 4 samples	
		月 8	Moving average with 8 samples	
		915	Moving average with 16 samples $\underline{2.00}$	
		の コこ	Moving average with 32 samples $\underline{2.00}$	
		954	Moving average with 64 samples $\underline{\mathbf{2 . 0 0}}$	
Low－end cutout	Fnc	EOFF	Low－end cutout OFF	EaFF
		三an	Low－end cutout ON	
Low－end cutout value	Zro Fnc	こ $017 \ldots 90$	Low－end cutout value setting	N／A
Brightness	D／P Fnc	［ i	Brightness level 1 （dark）	［3］
		［ 2	Brightness level 2	
		［ 3	Brightness level 3	
		［ 4	Brightness level 4	
		55	Brightness level 5 （bright）	
Automatic return time to Measuring Mode	D／P Fnc	r $10 . . .0$ r 99	Specify in seconds	$r 15$
Transition time to Lockout Setting Mode	D／P Fnc		Specify in seconds	$\bigcirc 85$
Display refreshing rate＊1	Fnc	F90．0．．．F999	Specify in seconds	F0n0
Version indication	Fnc	N／A	Version number，indication only	N／A

Low－end cutout：Input signal below the preset cutout value is forcibly cut to 0 ．
Set for the two lowest digits of the scaled range（disregarding the decimal point）
With the cutout set to OFF，the low－end cutout value setting is locked．
Automatic return time to Measuring Mode：The display goes back automatically to Measuring Mode if the front buttons are left untouched for the specified time period while it is in one of the setting modes（except the loop test output mode）． With this value set to 0 ，the display must always be exited manually from the setting mode．
Transition time to Lockout Setting Mode：The display goes to Lockout Setting Mode only when the designated buttons are pressed for the specified time duration．
＊1．F00．0＝ 25 msec ．refreshing rate

■ LOCKOUT SETTING MODE

＊1．Preset time can be specified with＂Transition Time to Lockout Setting Mode＂in Advanced Setting Mode．

PARAMETER	INDICATORS		DISPLAY	FUNCTION	DEFAULT VALUE
Alarm setting lockout	D／P	Fnc	RoFF	Unlock Alarm Setting Mode	RoFF
			日 an	Lock Alarm Setting Mode	
Scaling setting lockout	D／P	Fnc	$50 \% \%$	Unlock Scaling Setting Mode	$50 \% \%$
			5 on	Lock Alarm Setting Mode	
Advanced setting lockout	D／P	Fnc	doFF	Unlock Advance Setting Mode	doFF
			don	Lock Advanced Setting Mode	
Forced zero lockout	D／P	Fnc	EaFF	Unlock（Enable）Forced Zero operation	EロFF
			三an	Lock（Disable）Forced Zero operation	
Loop test output lockout $\underline{\underline{2.00}}$	D／P	Fnc	LoFF	Unlock Loop Test Output Mode	LoFF
			t on	Lock Loop Test Output Mode	
Initialization	D／P	Fnc	rorF	Initialization prohibited	roff
			rESt	Execute Initialization	

■ LOOP TEST OUTPUT MODE $\underline{2.00}$

*1. Hold down Alarm/ \downarrow or Scale/ \uparrow button for ≥ 1 second to return to the measuring mode while setting parameters.

PARAMETER	INDICATORS	DISPLAY	FUNCTION	DEFAULT VALUE
Loop test output	Zro Spn D / P Tch Fnc Min / Max	$\begin{gathered} -19999 \ldots \quad 19999^{* 1} \\ \text { (display blinking) } \end{gathered}$	Scaling value for the loop test output	N/A
Loopt test output: Pressing [Shift] button switches the signal to increase ($\operatorname{Max} \mathrm{ON}$) or decrease (Min ON), and then pressing [Up] button controls it toward the desired output value. Alarm trip functions according to the scaling values during the loop test. *1. The specified decimal point position is applied to the loop test output value. -19999 to 19999 when 'No decimal fraction' is specified.				

ERROR MESSAGES

MAIN DISPLAY	ERROR MESSAGE	WHAT TO DO
$5 . E r r$	Input error, Out of the measuring range	Increase/decrease the input signal until it is back within the measuring range.
1.Err	Non-volatile memory error (reading)	While the error message is on the display, press Up button for 3 seconds or more, go to the lockout setting mode and initialize the unit to its factory default status.*1
uEr	Non-volatile memory error (writing)	
r.Err	Internal data error	Repair is needed if the display does not recover after the power is reset.

*1. If the unit does not recover its function after the initialization, repairing in the factory may be required.

CHARACTER SET

LIGHTNING SURGE PROTECTION

M-System offers a series of lightning surge protectors for protection against induced lightning surges. Please contact M-System to choose appropriate models.

M-SYSTEM WARRANTY

M-System warrants such new M-System product which it manufactures to be free from defects in materials and workmanship during the 36 -month period following the date that such product was originally purchased if such product has been used under normal operating conditions and properly maintained, M-System's sole liability, and purchaser's exclusive remedies, under this warranty are, at M-System's option, the repair, replacement or refund of the purchase price of any M-System product which is defective under the terms of this warranty. To submit a claim under this warranty, the purchaser must return, at its expense, the defective M -System product to the below address together with a copy of its original sales invoice.
THIS IS THE ONLY WARRANTY APPLICABLE TO M-SYSTEM PRODUCT AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. M-SYSTEM SHALL HAVE NO LIABILITY FOR CONSEQUENTIAL, INCIDENTAL OR SPECIAL DAMAGES OF ANY KIND WHATSOEVER.
M-System Co., Ltd., 5-2-55, Minamitsumori, Nishinari-ku, Osaka 557-0063 JAPAN, Phone: (06) 6659-8201, Fax: (06) 6659-8510, E-mail: info@m-system.co.jp

[^0]: *1. Depends upon model suffix code and input type. Refer to the following parameter list. *2. Refer to Teach Calibration for detailed procedures.

